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A Prototypical Knowledge Oriented Adaptation
Framework for Semantic Segmentation

Haitao Tian™, Shiru Qu, and Pierre Payeur

Abstract— A prevalent family of fully convolutional networks
are capable of learning discriminative representations and pro-
ducing structural prediction in semantic segmentation tasks.
However, such supervised learning methods require a large
amount of labeled data and show inability of learning cross-
domain invariant representations, giving rise to overfitting per-
formance on the source dataset. Domain adaptation, a transfer
learning technique that demonstrates strength on aligning feature
distributions, can improve the performance of learning meth-
ods by providing inter-domain discrepancy alleviation. Recently
introduced output-space based adaptation methods provide sig-
nificant advances on cross-domain semantic segmentation tasks,
however, a lack of consideration for intra-domain divergence of
domain discrepancy remains prone to over-adaptation results on
the target domain. To address the problem, we first leverage
prototypical knowledge on the target domain to relax its hard
domain label to a continuous domain space, where pixel-wise
domain adaptation is developed upon a soft adversarial loss.
The development of prototypical knowledge allows to elaborate
specific adaptation strategies on under-aligned regions and well-
aligned regions of the target domain. Furthermore, aiming to
achieve better adaptation performance, we employ a unilateral
discriminator to alleviate implicit uncertainty on prototypi-
cal knowledge. At last, we theoretically and experimentally
demonstrate that the proposed prototypical knowledge oriented
adaptation approach provides effective guidance on distribution
alignment and alleviation on over-adaptation. The proposed
approach shows competitive performance with state-of-the-art
methods on two cross-domain segmentation tasks.

Index Terms—Domain adaptation, semantic segmentation,
prototypical knowledge, unsupervised learning, transfer learning.

I. INTRODUCTION

HE vision and cognition systems endow humans the
ability to not only precisely segment objects from famil-
iar scenes, but also transfer learnt visual knowledge to an
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unknown scene. However, for computer vision models, such
as semantic segmentation, cross-domain knowledge transfer
remains challenging. With the goal of further boosting state-
of-the-art performance [1], [2] for structural prediction, fully
convolutional networks (FCNs) [3] have recently dominated
the field of semantic segmentation, while involving training on
huge pixel-wise labeled datasets in a supervised, end-to-end
way. In spite of such massive training, FCN-based segmen-
tation networks yet exhibit inherent limitations for practical
use. In applications such as autonomous driving and robotic
navigation that need to operate in changing scenarios, trained
networks must deal with large appearance gaps, and thus may
need to be retrained using a large number of pixel-wise labeled
data in the new scenarios to transfer visual knowledge. How-
ever, it is difficult to collect and annotate such amounts of data
in practice. A recently introduced and particularly appealing
workaround [4] consists of utilizing photo-realistic synthetic
street-scene images rendered by graphic engines which can
simulate various scenarios for supervised network training.
Nevertheless, an FCN pre-trained on synthetic datasets will
generally perform poorly on real-world datasets (as shown
in Fig. 1), which is mainly caused by a domain shift [5] in
the data associated with different scenarios. The domain shift
cannot be eliminated even with a large number of synthetic
data.

Domain adaptation (DA), a transfer learning method [6] that
is effective for handling label distribution mismatch between
different domains, has been employed for computer vision
tasks such as image classification to transfer learnt knowledge
from a source domain to a target domain without using any
labeled data from that target domain. In semantic segmentation
tasks, this idea has been well leveraged to address domain-
shift problems between synthetic datasets (source domain) and
real-world datasets (target domain). Early researches [7]-[9]
looked at the feature-level alignment that aims to align high-
dimensional and suppressed features by employing a discrim-
ination network (discriminator) on the feature space. More
recently, researchers [10]-[13] paid closer attention to the use
of structural information on the output space of FCN and
hence obtained better adaptation performance than feature-
space based methods. It is also revealed that feature-level
adaptation provides limited improvement because DA suffers
from encoding various complex visual cues that have been
suppressed in the feature space. Given this, feature-based
methods tend to resort to more extensive prior statistical
knowledge from the target domain such as object proportion,
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Fig. 1. Tlustration of prototypical knowledge oriented adaptation.
Top 2 rows: samples from source and target domain (left), a source-domain
pretrained model for semantic segmentation inferred on samples without
adaptation (right). An obvious performance drop can be observed on the
prediction result of the target domain. Bottom first row: marginal distribution
alignment is used for domain adaptation for image classification (left), where
image labels are adapted by the alignment over global domain features
(P(FIO]) = P(F[O])). However, marginal distribution alignment would
have negative effectiveness on output-space domain adaptation (right) because
the overlook on local appearance variance causes visible over-adaptation
results on the target domain, i.e., the segmentations are corrupted after
domain adaptation. Bottom second row: The proposed adaptation method
(left) utilizes prototypical knowledge to develop a joint distribution align-
ment (e.g., category features from the prototype “building” are aligned
by: P(|AF[O]) = P(|/AF[O])) and obtains better improvement while it
alleviates over-adaptation (right).

Proposed method

street scene layout, static object priors, etc., to reduce the inter-
domain discrepancy.

Both DA models for image classification and semantic seg-
mentation tasks assign hard domain labels to samples (images
or pixels) and operate an adaptation process by optimizing a
binary cross-entropy loss (further detailed in Section III.B.)
However, we argue that the hard domain label assignment
hinders the DA performance for semantic segmentation tasks
and gives rise to over-adaptation performance on the target
domain. First of all, different from cross-domain image clas-
sification tasks that operate marginal distribution alignment
while handling an entire image as an instance, cross-domain
semantic segmentation tasks need to align joint distributions by
handling each pixel as an instance, to encode local appearance
variance in a single image sample (see Fig. 1). Accord-
ingly, inter-domain discrepancy of instances varies widely
and causes intra-domain divergence among pixels in a single
image sample. However, hard domain label assignment lacks
consideration for this observation. Second, given the existence
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of the possible prior domain semantic consistency between
the source and the target domain, a source-trained FCN is
able to correctly segment parts of aligned target regions
without any adaptation. But binary cross-entropy adaptation
loss cannot exempt those regions from over-adaptation. One
simple solution to the hard domain label assignment is to
deploy specific discriminators for each class on the feature
space [9], [14], which aims to disentangle feature encodings
for independent adaptation. Nevertheless, such an approach
not only introduces a huge number of parameters to the DA
network which gives rise to a computational burden during
training, but also is limited by adaptation performance on the
feature space.

In this paper, we introduce a new domain adaptation loss
for cross-domain semantic segmentation tasks, named the soft
adversarial adaptation loss, to tackle the over-adaptation prob-
lem existing in conventional adaptation methods and improve
the adaptation performance. First, prototypical knowledge is
used to relax hard domain labels to a continuous domain space
where constraints from binary adversarial loss are disentangled
and a soft domain label based adversarial adaptation loss
is developed. Second, with the soft domain label, we treat
local regions on the target domain separately and particularly,
thereby proposing distinct adaptation strategies for under-
aligned (domain-specific) and well-aligned (domain-invariant)
regions, in order to conduct pixel-specific adaptation on the
target domain. Lastly, given the uncertainty associated with
prototypical knowledge on the output space, we introduce
discrimination confidence yielded from a unilateral discrim-
inator to refine the prototypical knowledge. In this way, the
adaptation performance is further improved.

The proposed prototypical knowledge oriented adaptation
framework draws on two key observations: (1) visual appear-
ance changes, such as illumination and object context dif-
ferences between the source and target datasets, may give
rise to different degrees of inter-domain discrepancy among
domain pixels; and (2) there exist embedding spaces in
which this variance may be interpreted and measured in
a DA network. The main contributions of this work are
threefold:

o The introduction of prototypical knowledge for output-
space based DA models, which allows DA models to treat
target domain pixels particularly and precisely.

o The introduction of an unsupervised output-space based
adversarial domain adaptation approach that formulates a
soft adversarial adaptation loss without introducing addi-
tional parameters beyond that of conventional adversarial
loss;

o The introduction of a unilateral discriminator on the
feature space, which is trained in a unilateral way instead
of adversarial one. It preserves a persistent capability on
interpreting inter-domain discrepancy.

II. RELATED WORK

A. Supervised Pixel-Wise Structural Prediction

Semantic image segmentation is important for vision-based
applications, e.g., scene understanding, autonomous driving,
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medical image processing and robotic navigation. Fully con-
volutional networks [3] have brought significant leaps for-
ward in semantic segmentation against traditional non-CNN
models [15], [16]. Some state-of-the-art FCN-based models
(e.g., Deeplab v2 [1], PSPNet [2]) achieved impressive per-
formance on semantic segmentation. Meanwhile, benefitting
from the increasing number of pixel-wise annotated datasets
(e.g., CamVid [17], KITTI [18], MS COCO [19], PASCAL
VOC 2012 [20], Mapillary [21], Cityscapes [22]), FCN-based
models leverage a supervised network training approach and
obtain high accuracy segmentation results. However, the side
effect of supervised training is its heavy dependence on well
annotated data, while it is impractical to collect datasets with
widespread variability that cover various testing scenarios in
the real world. Moreover, the annotation of datasets at the
pixel level is extremely time-consuming (e.g., annotating one
image in Cityscape would require more than 90 minutes).
Based on the cost of access to labeled datasets, FCN-based
segmentation networks were alternatively trained on synthetic
datasets [4], [23], which are readily rendered and annotated by
Graphic engines. Nevertheless, due to the domain discrepancy
in the visual appearance, models trained on synthetic data tend
to perform poorly when running on real-world datasets and
scenarios [5].

B. Unsupervised Pixel-Wise Adversarial Domain Adaptation

Domain adaptation (DA) [6] has been successfully
leveraged to approach the generalization issue of com-
puter vision tasks such as cross-domain image classifica-
tion [24], [25] and detection tasks [26], [27]. It is intuitive
to implement DA on FCN-based segmentation networks to
tackle the problem of domain-shift. A prevalent family of
approaches [7]-[14], [28]-[42] specialize in leveraging adver-
sarial adaptation methods to address the pixel-wise adaptation
problem by embedding a discrimination network (discrimina-
tor) into FCN-based segmentation networks as an adaptation
component. For the DA model, the segmentation network not
only learns discriminative representations, but also acts as a
generative network (generator) interacting with the discrimina-
tor for invariant representation learning. In other words, adap-
tation progress can be realized by adversarial learning [43],
where the discriminator is trained to best distinguish the source
and target domains encodings, and the generator simultane-
ously tries to produce invariant outputs that emphasize cases
where the discriminator is confused on their classification.
As a result of adversarial interaction with the discriminator,
the generator manages to produce invariant- discriminative
features, such that the segmentation network can be applied
on both domains.

There are three major types of DA models for
segmentation networks, i.e., image-space based adapta-
tion [8], [28], [30], [40] that considers each pixel of the
input image as an adapting instance aiming to generate cross-
domain similar looking images; feature-space based adapta-
tion [7]-[9], [14], [29] that considers each spatial grid on the
feature layer as an adapting instance; and output-space based
adaptation [10]-[13], which considers each element on the
soft-max output layer as an adapting instance. For example,

the method of Vu er al. [12] is an output-space adaptation
method which utilizes entropy-based adversarial loss, while
Zhou et al. [13] recently proposed an output-space adaptation
method that introduces affinity space adaptation for semantic
segmentation. In comparison to image-space and feature-space
based approaches, adversarial DA relying on output space
recently yielded better performance due to the usage of spatial
information in the output space, though the method shows a
certain degree of overfitting adaptation on the target domain.

C. Cluster Assumption for Domain Adaptation

The method proposed in this paper also relates to cluster
assumption-based domain adaptation approaches. The clus-
ter assumption states that the feature projections of sam-
ples should be clustered around category prototypes so
that decision boundaries can go through low-density regions
with low entropy. In cross-domain image classification tasks,
Shu et al. [44] incorporate a virtual adversarial training and
conditional entropy minimization to push the decision bound-
aries away from the target domain. Saito ef al. [45] utilize
the cluster assumption to develop a semi-supervised domain
adaptation strategy, while Pan et al. [46] compute category
prototypes on the source domain, target domain and source-
target domain, in order to push the prototypes to be close
in the feature space. With regard to cross-domain semantic
segmentation tasks, Vu et al. [12] utilize entropy minimiza-
tion and adversarial adaptation simultaneously to encourage
unambiguous cluster assignments. The approach was evolved
by Chen et al. [47] who introduce a maximum squares loss
based on cluster assumption. Besides, Lee et al. [48] employ
adversarial dropout to enforce the cluster assumption on the
target domain, by which the decision boundaries are pushed
away from the target domain features.

ITI. PRELIMINARIES

In this section, we introduce mathematical preliminaries
on supervised segmentation model settings and unsupervised
output-space based domain adaptation settings. Building upon
that, the proposed approach is detailed in the next section.

Under the cross-domain adaptation for semantic segmen-
tation settings, let’s consider a source domain Dg =
{(XE"],YEI])}:.’S, where X! ¢ RWXHX3 g the i th of ng
synthetic dataset images with a size of W x H x 3 in Dy,
and YE'] e RW>xHxL i5 a corresponding pixel-wise annotation
label with L categories. Also, we denote the target domain in

the same way, i.e., Dy = {(XE"])}?T, where XP] € RWxHx3
is a real-world dataset image. Note that there are no available
labels in D7. The goal of this work is to train an FCN-based
segmentation network on the source domain and transpose
it to the target domain unsupervisedly. For clarity, (X, Yy)
and X; correspond to a random sample from Dg and Dy
respectively in the rest of this paper. We use m") to denote
the element of a matrix M, e.g., x, " is the pixel of X at
the location (w, h).

A. Supervised Semantic Segmentation Problem Settings

An FCN-based segmentation network trains a feature
encoder F(-) that learns discriminative features and a dense
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classifier C(-) that produces structural prediction (i.e., classify-
ing each pixel into a specific category). During network train-
ing, a source domain pair (Xy, Ys) is fed into F, then C takes
high-dimensional feature encodings from F and produces a
final label soft-max output C(F (X,) ). The segmentation loss
is the multi-class cross entropy, formulated as:

S _ _
Lieg = E(XS,YX)EI)S[Z(w,h) Zl ]l[l=y§,"””)]
[
x log C(Fx ™M P7 (1)

where [ € {1, ..., L}, E[-] is the statistical expectation. Ground
truth label Y is correspondingly encoded into one-hot vector
by the indication function ] [-].

As for a target domain sample, X; € Dr, the source-trained
segmentation network under the parameter distribution of Dy
can also generate a direct label soft-max output C(F (X7)),
while it would hardly reflect the genuine label distribution of
Dy because of the presence of domain-shift. Meanwhile, the
absence of pixel-wise annotation in D7 does not allow for
fine-tuning on the trained segmentation network.

B. Unsupervised Output-Space Based Domain Adaptation
Problem Settings

The output-space adaptation scheme considers the
entire  FCN-based segmentation model as a generator
(G = C[F (-)]), which generates as invariant soft-max output
distributions as possible with regard to the two domains. This
generalizing capability of G is endowed by a discriminator D,
which is embedded on the output space, at the end of the
segmentation network, to classify the structured prediction
from different domains into a specific domain label. The G
and D are updated alternatively by adversarial optimization
as follows:

First, the discriminator D has the capability of classifying
each element on the soft-max outputs G(Xy) and G(X7) into
its original domain label (we denote source domain label as 1,
and target domain as 0). During training, samples from the
two domains with hard domain label (X, 1) and (X¢, 0) are
propagated forward into the generator and the discriminator
successively. In this step, the segmentation network G just
takes part in the forward propagation and the discrimination
network D is updated with binary cross entropy by back
propagation, formulated as:

Laa (D) = ~Ex,en > 1og(D(Gx{"")]
~Exen Y, log(l = DG @)

Second, as part of the DA model, the segmentation network
G is also expected to generate invariant cross-domain dis-
tributions in order to eliminate the inter-domain discrepancy.
Optimizing Eq. (3) with sample (X,,1), G must manage to
produce ‘“‘source-style” soft-max output while it is actually
trained with data from the target domain. In this stage, the
back propagation is only applied on G, while D is fixed.
Combining with supervised training using Eq. (1), the seg-
mentation network G manages to generate discriminative-
invariant distributions among pixels within the source and
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Fig. 2. Visualization of the prototypical knowledge adaptation (PKA) process.
Only distribution projections of two classes are illustrated for clarity, and
symbols are defined in Fig. 1. Four stages are considered in the adapta-
tion process: (a) before adaptation; (b) supervised learning with prototypes
on the source domain; (c¢) domain adaptation on the target domain; and
(d) after adaptation. The training interaction between (b) and (c) is detailed
in Section IV.C. The green and orange arrows denote the optimization of
objective functions (7) and (9) respectively.

target domains.
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IV. METHOD

In this section, the proposed prototypical knowledge ori-
ented adaptation framework is defined with the objective to
seek more precise guidance on the adaptation process in
two ways. First, it extends the idea of conventional output-
space DA approaches to a soft domain label-based pixel-
specific adaptation strategy. Second, it resorts to a unilateral
discriminator to refine the prototypical knowledge to further
improve its adaptation performance.

A. Prototypical Knowledge Adaptation (PKA)

In conventional adaptation methods to approach domain
shift problems for semantic segmentation, target domain dis-
tributions, along with hard domain label, are treated under the
same distance from the source domain, by which gradients of
the adaptation network are backpropagated in a global manner.
After adaptation, the segmentation model would segment
aligned target domain regions incorrectly and cause over-
adaptation performance (see an example in Fig. 1). In this
section, we first investigate the use of prototypical knowl-
edge as an interpreter of soft domain label, then introduce
a soft adversarial loss on under-aligned regions and a semi-
supervised learning strategy on aligned regions. Our model
is built upon conventional output-space DA models without
introducing extra parameters.

1) Prototypical Knowledge Interpretation (PKI): After
the supervised training of a FCN on the source domain
using Eq. (1), a pixel-wise classifier C is obtained and
can be degraded into L estimated category prototypes
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{Ci,...C1,...,CL}, such that SE, C(F{"™M)) = 1.
From the perspective of cluster assumption [44], [45], source
instances are clustered around class prototypes on the feature
embedding (as shown in Fig. 2(b)) with supervision from
the source domain ground truth. The category label of each
instance x"" is assigned to the nearest prototype according
to the confidence C;(F (xgw’h))). Due to the absence of labels
on the target domain, each estimated prototype can be regarded
as a representative point of a specific category within the
source domain while keeping in the center of the source
domain distributions. Therefore, given a target instance pro-
jected onto the feature embedding, even though not allowing to
make precise prediction, prototypes measure the confidence of
a source-trained FCN when generating source-like predictions
on the target domain, which is referred to as C;(F (xt(w’h)).

Building upon the above observation, we define the proto-
typical knowledge of the target domain in Eq. (4).

p M = o[ (F"M)) - 7] )

where ®(-) represents a nonlinear transformation followed
with sigmoid activation. To relieve the influence of the dom-
inance of high frequency classes, we introduce the balance

coefficient, 7; = \/ Nvi/>, Ci(F (xt(")’h) ), proposed in [14],
where ! is the [-th layer of one-hot outputs of X;, and N is
the nonzero pixel number of . The prototypical knowledge
indicates the extent of source-consistent semantic knowledge
that a target instance learns from the source domain proto-
types on the output space. We also illustrate this prototypical
knowledge interpretation (PKI) process in Fig. 3.

2) Soft Adversarial Loss: As mentioned in Section IIL.B,
conventional adaptation methods utilize hard domain labels
((Xs,1) and (X, 0)) to develop the binary adversarial loss
function. However, the usage of hard domain labels assigns
the membership of domains to a Boolean set regardless of the
existence of semantically consistent regions across domains.
With the access to prototypical knowledge, it is possible to
relax the binary domain membership to a continuous space,
where we take the prototypical knowledge of the nearest
prototype as the soft domain label of the target domain as:

(w,h)

h
P = max{p{"", ..., pf ") )

With the target domain label (X, p*), the binary cross-
entropy term over a target domain sample in Eq. (2) is
transformed into a soft cross entropy loss as defined in Eq. (6):

== D P 1og(DGE" )T (©)

3) Domain Adaptation Process: In order to deploy precise
guidance on adaptation, we split the soft-max output of target
domain into two regions by a threshold 7': the under-aligned
regions (where p*(*-") < T) and the aligned regions (where
p*@:1) > T We then consider specific adaptation processes
on under-aligned regions and on aligned regions respectively,
as follows and shown in Fig. 2.

a) PKA on under-aligned regions using soft adversarial

loss: Combined with soft adversarial loss Lzoﬁ, we evolve the

conventional adaptation loss from Eq. (2) to an adversarial
adaptation loss defined as:

Lsoftfadv (G, D)
= —Ex,en[)  , log (DGE")]

_ w(w,h) (w,h)
Ex,enr 12 pewm? log(D(G(x;""" M1 (7)

This loss function (7) allows to localize adaptation operation
over the source domain and the under-aligned regions [UN]
of the target domain, meanwhile preventing aligned regions
from adaptation by extinguishing gradients backpropagation
on these regions.

b) PKA on aligned regions using semi-supervised loss:
The semi-supervised learning strategy is used for adapting
aligned regions in a non-adversarial way. Semi-supervised
learning [41] is already commonly leveraged in DA methods as
an efficient supplementary alignment approach with adversar-
ial adaptation. Collaborating with adversarial adaptation that
proceeds on under-aligned regions, semi-supervised learning
operates the adaptation process on aligned regions.

To conduct the semi-supervised learning of prototypical
knowledge adaptation (PKA) on aligned regions [AL], pseudo

labels j},(w’h) are first distilled from prototypical knowledge by

Eq. (8), where the indication function [[-] encodes prototyp-
ical knowledge into one-hot vectors.

~(w,h)
Vi = H[l:argmax{/)l(w’h) _____ /)gu,h)}] )

Second, since entropy minimization has demonstrated com-
plementary effectiveness [42], [47] on the development of
semi-supervised learning by encouraging unambiguous cluster
alignments, we employ the negative entropy [42] on proto-

typical knowledge, H™" = — 3} | pl(w’h) ~ log(pl(")’h)), to
penalize over-confident prototypical knowledge values so as to
prevent the network from early overfitting on easy-to-transfer
regions.

Finally, the semi-supervised learning objective function is
formulated in Eq. (9):

LT

_ ~(w,h) (w,h)
seg = "Ex e, [Z(w,h)e[AL] (7 log Glx, ™)

+aH(UJ,h))] (9)

where a controls the strength of entropy minimization. The
overall network training is operated by minimaxing optimiza-
tion among loss functions, which will be further detailed in
Section IV.C.

B. Prototypical Knowledge Refinement (PKR)

The development of soft domain labels builds upon the
cluster assumption that prototypical knowledge adaptation
is highly related to the intra-domain semantic inconsis-
tency. Nevertheless, the prototypical knowledge would contain
implicit uncertainty information when involving uncertain
predictions [53] on the output space. For instance, a target-
domain pixel might be segmented incorrectly by a FCN learnt
on the source domain because of the FCN’s inherent inability
in segmenting some regions (e.g., class boundaries and regions
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Fig. 3. A conceptual overview of the proposed prototypical knowledge oriented adaptation (PKA) framework. Entire network is parameterized by 3 different
fully convolutional networks: generator G (ResNet-101 based segmentation network), and 2 discrimination networks, D and D’.

having large inter-class confusion [49]). In other words, under-
aligned regions would contain aligned pixels that are far away
from all prototypes, which eventually causes a side effect
on the PKA process. To alleviate the influence of uncertain
information on the prototypical knowledge, we propose a
prototypical knowledge refinement strategy to enhance the
performance of PKA.

1) Unilateral Discriminator: A unilateral discriminator D’
on the feature space builds upon the assumption that discrim-
ination confidence encoded by this unilateral discriminator
can provide intra-domain discrepancy information from a
different perspective. Different from conventional discrimina-
tors [7], [9], the unilateral discriminator D’ is not trained in an
adversarial manner but is trained separately by circumventing
the interaction with the generator network. As a result, D’ will
remain discriminative to interpret intra-domain discrepancy
(further discussed in Section V.F and Fig. 8).

In detail, the unilateral discriminator D’ is trained by
Eq. (10) to best discriminate the source and target domains
encodings on the feature space.

Luni (D) = ~Ex,en [ tog (D'(F(x{"" )]

~Exen, [, log(l = D'(FG™" )] (10)

In each iteration, it allocates discrimination confidence
D'(F(x“"M)) € [0, 1] to measure the intra-domain discrep-
ancy of each feature grid. With discrimination confidence,
we realize a control gate to refine prototypical knowledge,
as defined in Eq. (11):

p'\*(w,h) — (1 + D/(F(xfw’h))) . p*(w,h) (11)

Finally, the soft adversarial loss from Eq. (7) with pA*(“”h)
is updated as in Eq. (12).
Libit aav (G, D)

soft_adv

= “Ex,ens[D, , 102(DG "))

_ ~x(w,h) (w,h)
Exenr D ocqun? o 0e(PGE")] (12)
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Fig. 4. Tllustration of iterative updates of the proposed network. Input data
and tensor flow on the source domain are denoted in green. Input data and
tensor flow on the target domain are denoted in red. Network embeddings is
denoted with dotted lines during back-propagation.

C. Network Overview and Optimization

We detail the proposed prototypical knowledge oriented
adaptation framework in Fig. 3. The framework is parame-
terized by three convolutional networks: a generator G and
two discriminators D and D’. In particular, D’ is embedded
on the final feature layer, and D is embedded on the soft-max
output space. Note, G is the identical expression of C - F in
the context of an output-space adaptation network.

The interactions between different network embeddings
and adversarial optimization are critical to the network per-
formance. During the network training, Eq. (1), (9), (10)
and (12) are used to alternatively optimize the adaptation
network according to the stages below. Note that there is no
specific optimization order for stages in each iteration. The
optimization stages are also shown in Fig. 4.

o Segmenter updating. At this stage, there are available
labeled data from Dg and pseudo labels (produced by
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Eq. (8)) from Dr. The segmentation network is trained
in a supervised way such that parameters in F and C
are updated by minimizing the loss function Eq. (1) and
Eq. (9) as follows:

min [£S,, (F,C) 4+ LT
F,C

seg seg (F> O] (13)
o Generator updating. At this stage, unlabeled data in D
are used to optimize the generator G, by maximizing the
loss function Eq. (12) as in Eq. (14). The D is fixed at
this step. Aagy is the trade-off weight used to balance the

segmenter and generator updating processes.

max [Zaav Lot aay (G> D)] (14)
« Discriminators updating. Data and domain labels in Dy
and Dy are used to update D and D’ simultaneously,
so as to best distinguish soft-max output and feature
encodings from the source and target domains. At this
stage, the generator network is fixed. The loss functions
Eq. (10) and Eq. (12) are jointly minimized as in Eq. (15).
min (L3 gy (G, D) + Luni (F, D')]

soft_adv

5)

D. Analysis

In this section, we theoretically evaluate the efficacy of the
proposed prototypical knowledge oriented adaptation frame-
work compared to conventional adaptation approaches.

Proposition 1: Semi-supervised learning in the PKA intro-
duces a class-wise threshold filtration strategy in the process
of pseudo label generation.

Proof: The class-wise threshold filtration strategy was
initially proposed in [41], showing better performance than a
global thresholding strategy. It sets a class-specific threshold k;
to filtrate pseudo labels for class / by the inequality operation
C (F(ng’h)) > k.

In the PKA, prototypical knowledge on pseudo labels com-
plies with the inequality (16):

pl(w,h) > T (16)
& O[CFE"") 41> T
& CQEE"M)) > o \(T)/4 (17)

The derivation in (17) shows that, even though a global
threshold, 7', is used in semi-supervised learning, the PKA
utilizes a class-specific threshold k; = @~ (T)/7; for pseudo
label generation.

Proposition 2: PKA relaxes constraints from hard domain
labels to a soft semantic similarity space, thereby achieving a
tighter bound than conventional output-space based adaptation
approaches.

Proof: We first revisit the domain adaptation theory which
is initially proposed in [50]:

Theorem: Let H be a hypothesis space. €5 (-) and er(-)

are corresponding generalization error functions for domains

Dy and D7. For all h € H:

1
er (h) <es(h)+ EdH (Ds,Dr) + 4 (18)

where: 1 = eg (h*) +er (h*), In* = argmineg (h) +er (h).

heH
In Eq. (18), distance dy (Ds, D7) measures the supremum of
the domain distribution divergence over Dg and Dy, which
can be further formalized by:

dp (Ds, Dr)
=2 sup |Prog[h (X)=1] = Pro [k (X)) =1]| (19)
€

In conventional output-space based adaptation tasks, the
minimization of €g (k) in Eq. (18) is solved by cross-entropy
minimization (as formulated in Eq. (1)). Domain distribution
divergence dy (Ds, Dr) in Eq. (19) is measured by learning
a discriminator using Eq. (2), and then dy (Dgs,Dr) is
minimized by optimizing the generator G (as formulated in
Eq. (3)). The interactions between the discriminator and the
generator form the iterative adversarial learning process in
conventional methods.

Taking a closer look on the relationship between
dg (Ds, D7) and adversarial adaptation loss in Eq. (2),
hypothesis 4(-) in Eq. (19) can be denoted as D (G (+)) € H,
and given hard domain labels (X, 1) and (X, 0), the domain
distribution divergence dy (Dg, D7) can be rewritten as in
Eq. (20):

Prog [D (G ((Xy)) = 1]
+ Pro, [D(G (X)) =0] -1
(20)

We shall see that PKA will achieve a tighter bound in H AH
space [51] than conventional adversarial adaptation methods
do in H space.

In PKA, soft domain labels (X, 1) and (X, p*) are used
to evolve binary adversarial loss. If we set:

dH (:Ds, :DT) =2 sup
DeH

1, if X e Dg

21
o*, if X € Dr, @D

F(X):[

the proposed soft adversarial loss (7) is subject to the HAH
distance [51]:

duan (Ds, Dr)
Prog [D (G (xs(Xy)) =T (Xy)]
sup
DeH,TeH | — Pro,[D (G ((Xy) =T (X()]

If we define D (G (X)) Al (X) = (D*: D* (X*) =1},
where X* = {X : D (G (X)) ® ' (X)}, @ is XOR operator,
we can denote dyay (Ds, Dr) as in Eq. (23):

duan (Ds, Dr)

=2 (22)

_ Propg [D* (G ((Xy)) = 1] ‘
=2+ Pro, [ (G (X =0] - 1] P
Prog [D (G ((Xy)) = 1]
< 2 sup (24)
DeH |+ Pro, [D(G (X)) =0] -1

In Eq. (23), PKA shows a similar theoretical basis with con-
ventional adaptation methods which is formulated in Eq. (22),
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aiming to develop a discriminator D* that is able to best
distinguish encodings from source and target domains. How-
ever, in the inequality of Eq. (24), by reducing dgan, PKA
yields a tighter bound [51] over conventional methods that are
developed on H hypothesis space. In this way, by relaxing
constraints from hard domain labels, PKA obtains better
adaptation performance compared with conventional methods.

V. EXPERIMENTS

In this section, we experimentally evaluate the efficacy of
the proposed framework by exploiting cross-domain semantic
segmentation tasks, and analyze the results qualitatively and
quantitatively with comparisons to state-of-the-art approaches.

A. Datasets

Cityscapes [22] is a real-world street scene dataset col-
lected by dash cameras mounted on a moving car wandering
in European cities. It contains 2,975 training images and
500 validation images, with high resolution (2048 x 1024), and
pixel-wise labels in 34 categories of street objects. This dataset
is not used for training but rather the training set (without
labels) is considered as the target domain.

GTAS [23] is a synthetic street scene dataset extracted
from a realistically rendered computer game: Grand Theft
Auto V. As rendered and annotated by a Graphic engine,
it forms a large dataset with 24,966 images with high res-
olution (1914 x 1052), and pixel-wise labels in 19 of the
34 categories of Cityscape. The entire image set with ground
truth labels is used as the source domain in the task “GTAS
to Cityscapes.”

SYNTHIA-RAND-CITYSCAPES [4] contains 9,400 syn-
thetic images with 16 of the 19 categories of GTAS. The
resolution of each image is 760 x 1280. While this dataset
is also rendered by a Graphic engine, it is less realistic
than GTAS and uses different viewing angles. That presents
more severe domain shift that will challenge the adaptation
capability of the proposed model. This dataset is used as the
source domain in the task “SYNTHIA to Cityscapes.”

B. Implementation Details

The proposed network is deployed using PyTorch on a
NVIDIA GTX 1080Ti GPU. We use DeepLab-v2 [1] with
ResNet-101 as FCN backbone for the segmentation network.
Discriminator D comprises four convolutional layers with
stride 2 and kernel size 4 followed by a leaky ReLU, and a
classifier layer with same stride and kernel size. The discrim-
inator D’ comprises three convolutional layers with stride 1
and kernel size 1 followed by a leaky ReL.U, and a classifier
layer with kernel size 1. Before feeding into D and D’, the
encodings from output space and feature space are up-sampled
to the size of the input image: W x H. The hyperparameter
Aady 18 initialized as 0.001 and decayed by a damping policy
with the multiplier (1 — mai)f"l.’ —). In our best model, a is set
as 0.005.
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C. Baselines

The proposed method is able to readily combine with vanilla
DA paradigms, while keeping the same number of network
parameters. We consider two output-space based domain adap-
tation models as baselines for our experiments:

o ASNet [10] (CVPR 2018) is the first output-space based
DA method which has been widely adopted as the
baseline model in the state-of-the-art works [11]-[13].
We use ASNet (single mode) with implementation details
reported in [10] as our “Baseline I.

« MRNet [53] (IICAI 2020) is a recently proposed method
to evolve the ASNet with a simple but efficient memory
regularization module. It does not introduce any extra
parameters compared to [10]. We adopt MRNet (Statel)
with corresponding implementations as our “Baseline II.”

D. Adaptation From GTAS to Cityscape

The overall quantitative experimental results over 19 classes
are detailed in Table I. It shows that when the model is
trained on data from the source domain (GTAS5) only (‘“without
adaptation”) and inferred on the target domain (Cityscapes),
the performance measured as the mean Intersection over Union
(mIoU) [18] reaches 36.6%. The rest of Table I are adaptation
strategies from the literature compared to the proposed PKA
and PKA + PKR (denoted as PKA+ in the rest of this paper)
respectively. In this section, we experimentally compare the
proposed methods with the state-of-the-art approaches in two
ways.

1) Comparison With the Baselines: Results in Table I
show that both baselines [10] and [53] surpass the without-
adaptation model by a clear margin. The latter achieves
an 8.9% improvement on mean IoU from the without-
adaptation model. The PKA models (PKA (Baseline I) and
PKA (Baseline II)) are developed upon Baseline I [10] and
Baseline II [53], respectively, while keeping the same number
of network parameters. By exploiting the prototypical knowl-
edge on the output space and proceeding with pixel-specific
adaptation strategy, PKA outperforms the corresponding Base-
line I and Baseline II by a margin of 5.7% and 3.7% on
mean IoU, respectively. Close inspection of the specific classes
reveals that, PKA outperforms the baselines in most categories
(e.g., “wall,” “terrain,” “bus” and “bike”).

2) Comparison With State-of-the-Art: Given that PKA relies
on a different joint domain alignment strategy than another
recently introduced pixel-wise weighted adaptation approach
CLAN [11] that evolves the method in Baseline I [10], we also
include a comparison with [11]. From the perspective of
methodology, Luo et al. [11] employ two classifiers and con-
sider the cousin-distance as the inter-domain discrepancy met-
ric, while PKA only employs one classifier and considers more
accessible prototypical knowledge on the output space, demon-
strating a more intuitive and simpler adaptation network.
From the experimental results in Table I, PKA (Baseline I)
demonstrates better adaptation performance than [11] both in
terms of overall mloU and classes-specific IoU. In the overall
comparison with other methods, PKA models outperform
recently proposed output-space based methods [12], [13], [54]
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TABLE I

EXPERIMENTAL RESULTS OF THE ADAPTATION TASK “GTAS TO CITYSCAPES” UNDER THE METRICS OF IoU ON EACH CLASS AND MEAN IoU ON
OVERALL PERFORMANCE. THE HIGHLIGHTED RESULTS SHOW BEST IoU AND BEST MEAN IOU IN EACH COLUMN

; 5 = v - .8 = B 9 . -

~-GTAS to Cityscapes- g 'qg) % Tg E é E‘) -gf gﬂ g % % .% § § H 'é é _% %

Without adaptation 758 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 264 499 172 259 6.5 253 36.0|36.6

Adversarial Domain Adaptation

feature IASNet (fea.) [10] 83.7 27.6 755 203 199 274 283 274 79.0 284 70.1 551 202 729 225 357 83 20.6 23.0|393

space SIBAN [29] 88.5 354 79.5 263 243 285 325 183 81.2 40.0 76.5 58.1 25.8 82.6 303 344 34 21.6 21.5(42.6

SSF-DAN [14] 90.3 38.9 81.7 248 229 30.5 37.0 21.2 84.8 38.8 769 58.8 30.7 857 30.6 38.1 59 283 369|454

IASNet [10] 86.5 259 79.8 22.1 20.0 23.0 33.1 21.8 81.8 259 759 573 262 763 29.8 32.1 72 295 325|414

CLAN [11] 87.0 27.1 79.6 273 233 283 355 242 83.6 274 742 58.6 28.0 76.2 33.1 367 6.7 319 314|432

IAdvEnt [12] 89.9 36.5 81.6 292 252 285 323 224 839 34.0 77.1 57.4 279 83.7 294 39.1 15 284 233|438

IAdvEnt+Minent [12] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 247 839 36.7 78.8 587 30.5 84.8 38.5 445 1.7 31.6 324|455

Zggz:lg IASA [13] 89.2 27.8 813 253 227 287 36.5 19.6 83.8 31.4 77.1 59.2 29.8 843 332 45.6 16.9 34.5 30.8|45.1

IMRNet [53] 89.1 239 822 19.5 20.1 335 422 39.7 853 33.7 764 602 33.7 86.0 36.1 433 59 22.8 30.8|455

IntraDA [54] 90.6 37.1 82.6 30.1 19.1 29.5 324 20.6 857 40.5 79.7 58.7 31.1 863 31.5 483 0.0 302 358|463

IPKA (baseline I) 88.1 30.7 822 33.1 233 322 356 28.0 844 432 772 612 282 852 342 492 0.0 342 43.3|47.1

KA (baseline II) 90.4 33.1 84.6 31.7 244 36.4 42.2 413 86.8 40.6 78.8 64.1 36.5 87.9 374 48.0 2.3 26.7 40.9]49.2
Non-adversarial Domain Adaptation

Context Aware [55] 91.3 46.0 845 344 29.7 32.6 358 364 84.5 432 83.0 60.0 32.2 832 35.0 46.7 0.0 33.7 42.2]49.2

PIT [56] 87.5 434 788 312 30.2 363 399 420 79.2 37.1 793 654 37.5 832 46.0 45.6 25.7 23.5 49.9|50.6

MaxSquare [47] 89.4 43.0 82.1 30.5 21.3 303 347 240 853 394 782 63.0 229 84.6 364 43.0 55 347 335|464

CBST [42] 91.8 53.5 80.5 32.7 21.0 340 289 204 839 342 80.9 53.1 24.0 827 303 359 160 259 428459

CRST (MRENT) [42] 91.8 534 80.6 32.6 20.8 343 29.7 21.0 84.0 34.1 80.6 539 24.6 828 30.8 349 16.6 264 42.6]46.1

PKA+ (baseline I) 91.6 50.5 84.4 34,5 275 325 364 31.1 855 37.1 84.8 60.8 30.2 81.2 28.5 385 0.0 384 457|484

PKA + (baseline II) 93.0 55.0 85.9 32.7 30.0 345 40.0 36.3 85.7 40.6 86.4 62.5 329 828 26.7 50.5 0.2 39.8 49.4|50.8

and feature-space based methods [10], [14], [29] in terms
of mean IoU, demonstrating the superior effectiveness of the
proposed soft adversarial adaptation. When taking a close look
on the results of IoU on infrequent classes and small objects in
Table I, both the proposed PKA methods and other adversarial
learning methods vary in DA performance on different classes,
which reflects the different underlying adaptation strategies
used by them. Besides, the PKA methods are not only
more efficient on specific classes, such as “person,” “wall”
and “terrain,” but also show effectiveness for over-adaptation
alleviation, e.g., baselines [10] and [53] exhibit obvious over-
adaptation on the class “bike” and “fence” compared to the
without-adaptation model, while the PKA methods address
it efficiently. Nevertheless, it also can be observed that the
PKA methods occasionally underperform other approaches,
as exhibited on the class “train.” We infer that prototypical
knowledge on that category is not effectively utilized as there
is a large inter-class confusion [49] on that category in the
source domain, which inspires our future works to improve
this problem.

With regard to PKA+, which is proposed to further boost
the performance of PKA by employing a unilateral discrim-
inator, the study compares PKA+ (PKA+ (Baseline I) and
PKA+ (Baseline II)) with a variety of state-of-the-art non-
adversarial adaptation methods. As shown in Table I, the two
PKA+ models yield comparable results with non-adversarial
DA methods [42], [47], [55], and [56] in terms of mean IoU,
showing the convincing effectiveness of the proposed method
in the domain adaptation community.

In terms of qualitative experimental evaluation, Fig. 5 illus-
trates the efficacy of the proposed method. First, it is seen that,

compared to a trained model that does not involve adaptation,
the proposed methods provide a noticeable improvement in
the segmentation. In comparison to [10], there are visible
improvements on specific classes in the segmentation results,
demonstrating the fundamental adaptation capability of the
proposed models on those classes. Second, we visualize the
feature clusters formed in the embedding space in Fig. 6 by
using t-SNE [57]. We can observe that even though visible
adaptation results are achieved from ASNet [10], a certain
degree of domain misalignment exists. The proposed PKA and
PKA+ provide more uniform and separable feature clusters,
resulting in better performance in the target domain.

E. Adaptation From SYNTHIA to Cityscapes

Table II refers to the experimental results of the PKA
and PKA+ methods on the task “SYNTHIA to Cityscapes.”
Similar to [10]-[13], the proposed models are evaluated
on 13 classes on Cityscapes. As detailed in Table II, without
adaptation, the model (trained on SYNTHIA only) reaches
38.6% on mean IoU. PKA outperforms the two baselines
consistently, demonstrating the fundamental efficacy of PKA
on this different cross-domain scenario.

When compared to the adversarial methods ([11]-[13],
and [54]), similar effectiveness as discussed in “GTAS to
Cityscapes” is observed in Table II. More specifically, the
proposed PKA (Baseline I) method shows comparable overall
performance to [11] on mean IoU with slightly different
performance on IoU for specific classes while leveraging
different underlying principles. Besides, the proposed PKA+
(Baseline II) outperforms the non-adversarial methods, Con-
text Aware [55], PIT [56], MaxSquare [47], CBST [42], and
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target domain samples without adaptation ASNet [10]

PKA (baseline I) PKA+ (baseline I) manual annotation

Fig. 5. Qualitative results obtained for semantic segmentation without and with domain adaptation. The third column is the adaptation results shown in ASNet.
The fourth and fifth columns are adaptation results obtained with the proposed PKA and PKA+. The last column is the ground truth manual annotations.

without adaptation ASNet [10]

Fig. 6.

MRENT [42] on mean IoU while being more efficient on some

classes, such as “building,” “sky,” and “car.”

F. Ablation Studies

Experimental ablation studies are also conducted in the
task “GTAS to Cityscapes” to investigate the efficacy of the
proposed framework.

1) Learning of the Hyper-Parameter T: Parameter T in
the formulation (16) is used to split the soft-max output of
target domain into the under-aligned regions and the aligned
regions. Setting an appropriate value of 7 not only involves
sufficient aligned pixels for semi-supervised learning, but
also alleviates the over-adaptation problem in the adversarial
adaptation process. We tested PKA+ on both baselines by
altering 7' over the range [0.7, 1]. As illustrated in Fig. 7,
the adaptation performance is affected as 7T varies. The best
performance is achieved when T is around 0.92. When T = 1,
PKA+ degrades to a single adversarial adaptation strategy.

2) Evaluation of the Efficacy of Each Component: Without
placing any constraints on the baseline networks and intro-
ducing additional parameters, PKA can facilitate the develop-
ment of output-space based DA works with soft adversarial

PKA

Feature clusters visualization in the embedding space by t-SNE [57].

mPKA+(Baseline I) ®mPKA+(Baseline II)

50
i II|I||‘||III|
40 I

0.70 0.80 0.85 0.90 0.92 0.94 0.96 1.00

Fig. 7. Performance (on mloU) of PKA+ while altering the
hyperparameter T.

adaptation loss and lead to efficient adaptation improvements.
Experimental results in Table III first show that the proposed
PKA achieves a significant gain on mloU from Baseline I and
Baseline II, respectively. Second, a domain confidence (DC)
based refinement strategy is proposed for PKA to improve the
adaptation performance by refining prototypical knowledge.
When combining with DC (shown as PKA+ in Table III),
the PKA’s mloU elevates from 47.1% to 48.4% on Baseline I,
and from 49.2% to 50.8% on Baseline II, which demonstrates
the fundamental efficacy on the refinement component. Fur-
thermore, given that discrimination confidence (DC) is able
to measure the intra-domain discrepancy, we experimented
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TABLE II

EXPERIMENTAL RESULTS OF THE ADAPTATION TASK “SYNTHIA TO CITYSCAPES” UNDER THE METRICS OF IoU ON
EACH CLASS AND MEAN IoU ON OVERALL PERFORMANCE

PROTOTYPICAL KNOWLEDGE ORIENTED ADAPTATION FRAMEWORK FOR SEMANTIC SEGMENTATION

S 5 =} b=} o g 5 ] o =)

-SYNTHIA to Cityscapes- | § 2 3 2 ) ? 4 % T 8 2 g oz|2

Without adaptation 55.6 23.8 74.6 6.1 12.1 748 79.0 553 19.1 39.6 233 13.7 25.0]38.6

Adversarial Domain Adaptation

reature rSNet (fea) [10] 624 219 763 117 114 753 809 537 185 59.7 13.7 20.6 24.0]408

space SIBAN [29] 82.5 240 79.4 165 12.7 792 828 583 18.0 793 253 17.6 25.9|46.3

SSF-DAN [14] 84.6 41.7 80.8 11.5 14.7 80.8 853 57.5 21.6 82.0 36.0 19.3 34.5(50.0

IASNet [10] 843 427 715 47 7.0 779 825 543 21.0 723 322 189 323|467

CLAN[11] 81.3 37.0 80.1 16.1 13.7 78.2 81.5 53.4 21.1 73.0 329 22.6 30.7|478

IAdvEnt [12] 87.0 44.1 79.7 4.8 72 80.1 83.6 56.4 23.7 727 32.6 12.8 33.7|47.6

IAdvEnt+Minent [12] 85.6 422 79.7 87 54 80.4 841 579 23.8 733 364 142 33.0|48.0

‘;“;pc‘: IASA [13] 91.2 485 804 55 52 79.5 83.6 564 21.0 803 362 20.0 329493

PACC IMRNet [53] 82.0 36.5 80.4 18.0 13.4 81.1 80.8 61.3 21.7 844 324 148 457|502

IntraDA [54] 843 37.7 79.5 92 84 80.0 84.1 572 23.0 78.0 38.1 20.3 36.5|489

PKA (Baseline I) 86.1 43.1 81.6 9.4 124 80.6 84.1 61.1 234 81.4 351 23.0 36.4|50.6

PKA (Baseline II) 84.1 37.7 822 13.1 14.1 81.7 81.0 63.4 24.9 87.2 359 24.9 44.1|51.9
Non-adversarial Domain Adaptation

Context Aware [55] 82.5 422 813 183 159 80.6 83.5 61.4 332 729 39.3 266 439|524

PIT [56] 83.1 27.6 81.5 26.4 33.8 764 788 642 27.6 79.6 312 31.0 31.3|51.8

MaxSquare [47] 82.9 40.7 80.3 12.8 182 825 822 53.1 18.0 79.0 31.4 104 356|482

CBST [42] 68.0 29.9 763 22.8 29.5 77.6 783 60.6 283 81.6 23.5 18.8 39.8|48.9

CRST (MRENT) [42] 69.6 32.6 75.8 233 29.5 77.7 789 60.0 28.5 81.5 259 19.6 41.8|49.6

PKA+ (Baseline I) 86.4 42.0 84.4 124 143 81.1 849 63.1 214 858 373 224 39.7|51.9

PKA+ (Baseline II) 86.8 403 833 21.6 184 832 842 61.0 256 857 345 204 44.353.0

TABLE III

ABLATION STUDIES. FDA REFERS TO FEATURE SPACE BASED
ADVERSARIAL ADAPTATION [7]. CGAN REFERS TO Cycle-GAN [52].
PK AND DC ARE SHORTED FROM PROTOTYPICAL KNOWLEDGE
AND DISCRIMINATION CONFIDENCE

Vanilla DA Components
Method ASNet MRNet FDA PK DC CGAN miloU
Baseline I [10] v 41.4
PKA v v 47.1
PKA+ ¥ v v 48.4
Baseline 11 [53] v 455
PKA v v 49.2
PKA+ v v v 50.8
Baseline with DC v v 433
PKA with FDA [7] v v v 475
PKA+ with CGAN[52] v Vi v v 51.2

a separate adaptation approach, Baseline with DC, that uti-
lizes the discrimination confidence as soft domain labels and
operates the same adaptation strategy as PKA. As shown in
Table III, Baseline with DC provides a mere improvement of
1.9% on mean IoU over Baseline I [10], and shows an inferior
performance with respect to PKA(Baseline with prototypical
knowledge (PK)). It indicates that discrimination confidence
interpreted on the feature space is less reliable to estimate soft
domain labels than prototypical knowledge.

3) Combination With Other DA Methods: We further
explored the efficacy of the proposed method when combin-
ing with recent DA methods. First, given that [7]-[9] have
demonstrated the effectiveness of DA on the feature space,
we modified the D’ from a unilateral training discriminator

iter.=5000 iter.=30000 iter.=50000

Fig. 8.  Discrimination confidence visualization at different iteration steps
(Unilateral discriminator (first row) vs. Conventional adversarial discriminator
(second row)).

iter.=20000

to a general adversarial discriminator for feature-space based
domain adaptation [7] (FDA), to evaluate the superiority of the
two kinds of discriminator when combined with PKA. Results
in Table III show that, although PKA with FDA provides a
slight improvement over the sole PKA model, it underper-
forms the proposed PKA + (PKA with DC) method. In Fig.8,
we visualize discrimination confidence maps encoded by the
unilateral discriminator and the adversarial discriminator at
different iterations. It can be observed that the adversarial
discriminator tends to be indiscriminate when the generator
produces domain-invariant features with increasing adversarial
training iterations number. However, the proposed unilateral
discriminator is trained independently without interactions
with the generator G, thereby being able to remain discrimi-
native on domain discrepancy information. Lastly, we assem-
bled the PKA+ with an image-space based DA method [8],
which transferred the GTAS dataset into a Cityscapes-style
dataset using Cycle-GAN [52]. With this strategy, the results
in Table III show a further 0.4% improvement in the mean
IoU over PKA+ alone.

4) Choice of the Entropy Regularization Term: Chen et al.
[47] propose Maximum Squares Loss as a variation of negative
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Fig. 9. PKA in real-world domain shifts. From top to bottom: target domain samples, segmentations without domain adaptation, adaptation results obtained

with the proposed PKA.

TABLE IV

EXPERIMENTAL COMPARISON BETWEEN ENTROPY MINIMIZATION LOSS
(H(x)) AND MAXIMUM SQUARES LOSS (MS(x)). Vanilla Model
REFERS TO PKA MODELS TRAINED WITHOUT
USING H (x) NOR M S(x)

GTAS to Cityscapes

PKA (Baseline I) PKA (Baseline II)
Vanilla model 46.0% 48.4%
H(x) 47.1% 49.2%
MS(x) 46.9% 49.3%

entropy to achieve class-balanced cluster alignments. We also
experiment PKA with the Maximum Squares term (defined
in (25)) in our experiments.

pon — Lt ?
—_5 =1 Py )

Experimental results with two types of entropy minimization
terms are summarized in Table IV. It can be observed that
the effectiveness of the maximum squares loss is on par with
that of the negative entropy loss over prototypical knowledge
regularization. Therefore, we just use the common negative
entropy in all our models.

(25)

G. Domain Adaptation Experiments on Practical Scenarios

In this section, we further explore the potential applications
of the proposed prototypical knowledge adaptation in more
practical and general scenarios. With experimental details,
we discuss the effectiveness and generalization ability of the
proposed framework.

1) PKA for Real-World Domains: In this part, we exploit
PKA on multiple real-world domains with more challenging
settings. MSeg [58] is a new cross-domain semantic segmen-
tation composite dataset that unifies a variety of real-world
datasets from different scenes (“Everyday objects,” “Driving,”
and “Indoor”) at a unified taxonomy of 194 categories. It con-
tains 190,231 training images and 12,561 validation images

with flexible image resolutions, providing various realistic
cross-domain shifts for real-world domain adaptation and
generalization applications. Its elaborated taxonomy allows
PKA to learn a universal segmentation model over multiple
domains and adapt to the testing split (target domain) without
using labels from that target domain. In our experiments, the
training split [58] of MSeg with ground truth labels are set as
the source domain. We revisit all training sets of the testing
split of MSeg to build the target domain. Note that we do not
use any images from the testing split of MSeg for training,
e.g., the testing dataset of CamVid still is used for evaluation
and the training dataset of CamVid is used in the target domain.
In implementations, we follow [58] to train a HRNet-W48 [59]
segmentation network and construct intra-scene DA pipelines
with the proposed PKA method. Experimental results are
summarized in Table V. The PKA method outperforms the
source-only method on all target datasets with slight variations
in different scenes. Meanwhile, qualitative results visualized in
Fig 9 show that even though domain shift is less evident in the
real-to-real scenarios, PKA achieves noticeable improvements
on specific classes in the segmentation results.

PKA demonstrates its independent effectiveness while deal-
ing with the domain shift across the large-scale label space.
On the one side, PKA can readily combine with elaborated
FCNs, e.g., HRNet-W48 [59], to aggregate semantic knowl-
edge over a diversity of source domains. On the other side,
although multiple adaptation scenes are involved over the
large-scale label space, e.g., three distinct test scenes are
predefined over 194 categories in MSeg [58], PKA allows
to transfer semantics across domains by utilizing prototypical
knowledge from the unlabeled target scenes without placing
any constraints, thereby aligning intra-scene domain shifts and
obtains better performance than the method without domain
adaptation.

2) PKA for Cross-City Test Case: Oxford RobotCar [60]
is a real-world street dataset containing 895 training images
and 271 validation images collected in rainy scenes, provid-
ing another practical test case for our method. We follow
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TABLE V

ADAPTATION RESULTS OVER THE MSeg DATASET UNDER THE METRICS MEAN IoU ON EACH DATASET AND THE HARMONIC MEAN OVER ALL
DATASETS (THE TESTING SPLIT). WE DO NOT INCLUDE WildDash IN THE TARGET DOMAIN SINCE IT DOES NOT PROVIDE A TRAINING DATASET.
THE SOURCE-ONLY MODEL IS TRAINED WHILE FULLY DEPENDING ON THE SOURCE DOMAIN DATASETS. BOTH THE SOURCE-ONLY
MODEL AND PKA ARE TRAINED UNDER UNIFIED TAXONOMY AND EVALUATED ON TEST DATASET TAXONOMY AFTER LABEL
MAPPING [57]. BALANCE COEFFICIENT 77 IN EQ. (4) IS SET AS 1 DURING TRAINING

Everyday objects Driving Indoor
Method Backbone VOC Context CamVid KITTI ScanNet /. mean
Source-only 66.1 40.3 83.3 61.5 44.8 55.2
PKA HRNet-W48 68.0 41.4 84.9 61.7 46.2 56.5

TABLE VI

EXPERIMENTAL RESULTS OF THE ADAPTATION TASK “CITYSCAPES TO OXFORD ROBOTCAR” UNDER THE METRICS OF [OU ON EACH CLASS AND MEAN
IoU ON OVERALL PERFORMANCE

Method road sidewalk building light sign sky person automobile two-wheel mloU

Source-only 79.2 49.3 73.1 55.6 373 36.1 54.0 81.3 49.7 61.9

PatchAlign [61] 94.4 63.5 82.0 61.3 36.0 76.4 61.0 86.5 58.6 72.0

MRNet [53] 95.9 73.5 86.2 69.3 31.9 87.3 57.9 88.8 61.5 72.5

PKA 93.8 77.9 86.1 70.2 40.3 89.1 56.0 91.1 60.4 73.9
TABLE VII

EXPERIMENTAL RESULTS OF THE ADAPTATION TASK ON VIDEO SEMANTIC SEGMENTATION. WE SET THE 1ST FRAME AS OUR INITIAL KEY FRAME
WITH A DURATION LENGTH OF 5, AND MEASURE MIOU ON THE 20TH FRAMES

Per-frame approaches

Key-frame approach

Backbone Resnet-101 MobileNet-V2 Resnet-101-FlowNetV2
Metric mloU runtime mloU runtime mloU runtime
Source-only 36.6 35.2 36.5

PKA 471 1.5 fps 445 20.7 fps 46.9 10.5 fps

Tsai et al. [61] to conduct the domain adaptation experiment:
“Cityscapes to Oxford RobotCar” with PKA (Baseline II).
Experimental results in terms of mean IoU are summarized in
Table VI. It can be observed that the PKA method surpasses
the source-only model by a clear margin, demonstrating the
efficacy of our method on this different cross-domain scenario.
When compared to state-of-the-art methods, PKA performs
more efficiently on both general and class-specific adaptation
improvements.

3) PKA for Video Semantic Segmentation: We further show
that the proposed PKA can facilitate video segmentation
scenario by being free from using any frame annotations.
Due to the exceptional cost of frame-wise labelling for
video sequences, video semantic segmentation models are
generally trained on sparsely-labeled benchmark datasets in a
semi-supervised manner [61]-[66]. To deploy PKA for video
domain adaptation, the whole image set of GTAS [23] is taken
as the source image domain. Cityscapes [22] contains 2,975
and 500 snippets for training and validation. Each snippet
has 30 frames, of which only the 20" frame is annotated.
We randomly extract one frame from each snippet to form the
target video domain.

Based on the proposed PKA framework, we propose two
schemes to develop unsupervised video domain adaptation.
First, we propose a simple but efficient approach, per-frame
inference, via combining PKA with a compact FCN backbone.
In detail, we build PKA on a MobileNet-V2 [67] back-
bone, to train the PKA-MobileNet model over the source

domain and the target domain. During the inference phase,
we directly deploy the trained PKA-MobileNet model on each
frame of the validation video set of Cityscapes. We observe
the unsupervised video segmentation performance in terms
of mean IoU and the average of frames per second (fps).
Experimental results are summarized in Table VII. Second,
we propose a key-frame based solution, PKA-FlowNet, to
reduce redundant computation among neighboring frames by
using frame-to-frame optical flow estimate. It utilizes a strong
image segmentation model at keyframes but propagates the
semantic features of keyframes to non-key ones. It is built upon
the observation that available temporal correlations of high-
level semantic concepts exist on consecutive frames [62]-[64].
To train such a key-frame based model, we reuse the off-
the-shelf ResNet-101 model (yielded from the “GTAS to
Cityscapes” task) as the semantic backbone on key frames and
deploy a pretrained optical flow network, FlowNet V2 [68],
to encode the temporal consistency across frames, and then
propagate semantic patterns from the temporal consistency to
non-key frames by using a wrap operation [62]. Even though
the absence of labels in the target domain, pseudo labels
distilled from prototypical knowledge are utilized to train
FlowNet V2 to obtain temporal correlations. During inference,
we are able to deploy the PKA-FlowNet model for instant
video sequences segmentation.

Experimental results with the proposed approaches are
reported in Table VII. First, when directly applying a trained
Resnet-101 model onto each frame of the target domain (the
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validation video set of Cityscapes [22]), both the source-only
and the PKA method show slow inference runtime (1.5 fps).
However, when trained with MobileNet, the source-only model
is able to run faster with 20.7 fps. PKA further adapts
MobileNet to the target domain and achieves higher accuracy
(44.5% on mloU) by learning prototypical knowledge from the
target domain. Lastly, the key-frame based approach enables
PKA to trade-off between inference accuracy and runtime.
With estimated optical flow, the key-frame based model even-
tually achieves 46.9% of mloU with 10.5 fps.

VI. CONCLUSION

In this work, we first propose a prototypical knowledge
adaptation strategy by utilizing a soft adversarial loss to
regularize the output-space adaptation process at a finer detail
level. It realizes joint distribution alignment on the output
space without introducing additional parameters beyond that
of the conventional methods. In order to further improve the
adaptation performance, we secondly propose a prototypical
knowledge refinement strategy by introducing a unilateral
discriminator in the proposed adaptation framework.

The theoretical analysis, experimental results on two base-
lines and comparison of performance against alternative DA
strategies demonstrate that the proposed method is effective
for adaptation improvements and is comparable to both adver-
sarial and non-adversarial state-of-the-art methods. Besides,
the proposed method is also evaluated under practical test
settings with detailed experiment results on two real-world
cross-domain scenarios. Future work will involve defining
more efficient domain discrepancy metrics and regularization
schemes to continue improve the performance of DA on cross-
domain scenarios.
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