Robot Path Planning Using Neural Networks and Fuzzy Logic

P Payeurf , H. Lc-Huyf, C. Gosselin®

\f.

Department of Electrical Engineering, Université Laval, Sainte-Foy (Québec), Canada, G1K 7P4
phone: (418) 656-2988 ; fax: (418) 656-3159 ; e-mail: [ppayeur lehuyl@gel.ulaval.ca

#

Department of Mechanical Engineering, Université Laval, Sainte-Foy (Québec), Canada, G1K 7P4

phone: (418) 656-3474 ; fax: (418) 656-7415 ; e-mail: gosselin@gmc.ulaval.ca

Abstract - A new approach for path planning of robotic manipula-
tors using neural networks and fuzzy logic is proposed. These
alternative computing techniques are evaluated for high level con-
trol of robots. Neural networks are used to predict in real-time the
trajectory of a moving object to be caught by a serial three-
degree-of-freedom manipulator. An inference engine controlling
the joint motion with fuzzy logic rules is described. Collision avoi-
dance between the object and robot members is also considered.
Simulation results are presented to illustrate the performance of
the algorithm both in predicting the object’s movement and plan-
ning the robot’s trajectory.

INTRODUCTION

For a large number of industrial robotic applications, the manipula-
tor path planning problem is of prime importance. To obtain a high
productivity rate of robots, it is indispensable that their movements
are planned efficiently. Unfortunately, this task generally requires a
large part of the available computing power and a long processing
time. It is then essential to optimise these algorithms. In this way, arti-
ficial intelligence techniques appear to be powerful solutions which
are worth investigation.

This paper presents a study of neural networks and fuzzy logic as
alternative computing techniques for the development of efficient
robotic path planning strategies. The main objective is to demonstrate
that these algorithms require less computational power compared to
standard polynomial techniques, while providing similar performan-
ces. This should allow a significant reduction of implementation costs.

The test-bench used consists in catching a mobile object with a
serial three-degree-of-freedom planar manipulator. Fig. 1 illustrates
the robot and the shape of the object considered. A planar robot has
been selected to provide an easier evaluation of the system’s beha-
viour. The object is shaped like a T, and moves on the plane with three
degrees of freedom including rotation about an axis orthogonal to the
plane. It can be caught only by one of its sides since the others are lar-
ger than the maximum opening of the end effector. This imposes that
the third member of the manipulator matches the object’s orientation

at the grasping time.

Fig. 1. Robot and object considered to test the algorithms.

0-7803-1328-3.94303.00C 1994 IFEE 800

GENERAL ARCHITECTURE OF THE PATH PLANNER

Fig. 2 shows the organization of the path planner. The heart of the
system is the main controller which acts as a data manager for each
specialized function. The vision stage allows the system to find the
actual object’s position and orientation using 2D and 3D cameras cou-
pled with pose determination algorithms based on geometric hashing.
This step is simulated as well as the robot controller and the manipula-
tor itself. Four other specialized modules are used to provide efficient
computation on specific tasks.

Object’s trajectory :
predicﬁ’gtcl Cagcmlu'qg

by Pl !
neural nétworks selection

N

- ’11///11////1111//1/’

"A3AANNARNGY

Fig. 2. General architecture of the path planner.

Once the actual object’s position and orientation are known from
the simulated pose determination module, the object’s movement is
predicted by a neural network based algorithm. This task is required
since the end effector must be directed towards a location in front of
the continuously moving object, otherwise the manipulator would
only track the object until it leaves the workspace.

A catching point, as illustrated by the simulator graphic interface in
Fig. 3, is then chosen. The working space of the robot and the distance
between its base and the object are the main criteria considered. This
point is continuously updated to follow the motion of the object.

Fig. 3. Selected catching point and robot’s workspace.

Concentric circles delimit important zones in the workspace. The
largest and smallest ones represent respectively the external and the
internal workspace limits. Intermediate ones illustrate the dextrous
workspace of the manipulator inside which the catching point is selec-
ted.

The standard inverse kinematic solution for serial three-degree-of-
freedom planar manipulators is also computed to validate the selected
point since it must be reachable by the end effector. When two joint
configurations are admitted for a given point, the one requiring the
smallest joint motion from the current configuration is selected as the
goal for the path planning step.

Finally, the inference engine uses a set of fuzzy logic rules to drive
the robot arm from its actual configuration to the configuration corres-
ponding to the selected catching point. It also prevents collisions
between the object and the robot members during the displacement.

PREDICTION OF THE MOVING OBJECT’S TRAJECTORY

Anticipation of the object’s trajectory is performed, along each axis,
by a neural network trained to reproduce a cubic function. The cubic
model is used because acceleration can then be considered to be non-
constant while minimising risks of overmodeling.

The objective is to obtain a faster processing by taking advantage of
the inherent parallelism of neural networks. This allows a gain in
computation speed and leaves more time available for path planning.

The object’s movement is modeled by a cubic polynomial with
variable coefficients as shown in (1).

x (6 = éo‘o's‘*%ﬁo’z*’b”‘xo 1)
where 7y represents position, orientation, velocity or acceleration
depending on the considered variable. X is the initial value and 7 is
the time. Coefficients oy, By and yg are updated at each sampling ins-
tant in order to always use the best fitting cubic curve with the latest
measurements. For position and orientation, these coefficients are
expressed as follows:

Yo = ’% @

B
Bo= ®)

C
ao = F (4)

where

A =p(t0) -p{ty-T) 5)
B =p(ty=T) -p(t5-21) ©®
C = p(1y=2T) =p(1,-3D) ™

and in which p(t) is the position or orientation of the object at a given
time and T is the sampling period.

Neural Network Structure

The neural structure used is & multilayer perceptron [4] [6] com-
posed of 3 inputs, 2 layers of 20 hidden cells each and 1 output, as
shown in Fig. 4. A bipolar sigmoidal function processes data in each
cell.

The network inputs are preceded by preconditioning modules
which compute the three latest displacements of the object along one
direction as seen in Fig. 5 for position or orientation. These displace-
ments are also normalized by a factor py, in such a way that the largest
possible value which is read by the neural net is always smaller than
the sigmoid boundaries.

The neural net then uses these informations to compute the displa-
cement that should occur along the same direction during the next
sampling period. A postconditioning module finally denormalizes this
anticipated displacement with the same factor p,, and adds the real
dimension variation to the actual position or orientation to obtain the

absolute coordinate of the object, one sampling period later.

The object’s trajectory may be predicted for a given period of time
in the future by repeating this procedure as many times as required to
cover all the period by steps of one sampling interval.

Latest object+ coordinates

[Preconditioning !

[Postconditioning |

Predicted obje‘ct coordinates

Fig. 4 . Neural network structure.

p(ty) plty-T) p(tg-2T) p(to-3T)
A B i A B i A B
(A-B)/p (A-B)fp (A-B)fp

Ap(tp) Ap(ty-T) Ap(ty-2T)

Neural network (cubic model)

Ap(to+T)

A B
poo)‘.El@

plig+T)
Fig. 5 . Details of the pre- and postconditioning modules.

This neural structure is duplicated for as many variables as needed.
It can also be used for velocity and acceleration prediction by modi-
fying the pre- and postconditioning modules accordingly [5]. For
example, for a planar movement there are 9 neural networks working
in parallel (2 for position, 1 for orientation, 3 for velocity and 3 for
acceleration). In a similar manner, a three-dimensional system will
require 18 neural nets because there are 6 degrees of freedom to consi-
der both in position, velocity and acceleration. However, since these
networks can be easily implemented in parallel, working with 9, 18 or
more networks will require the same computation time.

Nerwork Training

Training the network is the most important and the most time con-
suming task. Here, the use of pre- and postconditioning modules pro-
ves to be very advantageous since predicting the movement by
increments instead of absolute positions considerably reduces the trai-
ning data set. This simplification is possible because the relationship
between displacements is exactly the same for any position inside the
robot workspace. The anticipation is then totally independent of the
object’s absolute coordinates.

Furthermore, it can be observed, in practice, that two successive
position or orientation variations are very close if sampling is made at
a constant rate on a continuous object’s trajectory. Since a cubic
model is used for the movement prediction, training data sets can then
be even more limited in size.

801

With these simplifications, a data set of 323 inputs has been built. It
contains triplets of possible variations, one for each network’s input,
starting from the maximum negative to the maximum positive displa-
cement that the object can undergo between two samplings. These tri-
plets are processed using the polynomial cubic model presented in (1)
to create an output training data file containing exact values that
would be produced if a real cubic model is used instead of the neural
network.

The Backpropagation algorithm [2] [3] is then used to train the
network with this 323 data set. The training procedure required opera-
tor supervision to smoothly adapt the gain and momentum in order to
ensure convergence of the algorithm. In some variants of the backpro-
pagation technique, this task could be automatised. The algorithm
finally required 22 000 cycles of pseudo-random presentation of each

Real trajectory

—— Predicted trajectory by cubic equation

triplet to converge to an error level of about 1 percent of the entire
data range.

Simulation Results

Fig. 6 shows a comparison between a neural network and a real
cubic equation prediction of the object’s trajectory for a generic
motion. The object is a rectangle describing a circle modulated by a
sinusoidal function. Fig. 7 shows the projection of the same trajectory
on the X-axis and the rotation about the Z-axis. The quality of these
results clearly demonstrates that neural nets have the ability to learn
the general relationship between training data independently of their
absolute values. This is proved by the fact that the anticipation is as
accurate with neural networks as with a real cubic polynomial inde-
pendently of the absolute position of the object in space.

Real trajectory
——— Predicted trajectory by neural networks

Fig. 6 . Results from the trajectory prediction.

802

Translation along X-axis

Linear velocity along X-axis

3

!
)

0

|
|0
[}
ool Ly

n

> Ex— == -

0

/~\ /\\ AAAAAAAAAA /r\ A

> =

b i

a) Position and orientation

~b) Linear and angular velocity

¢) Linear and angular acceleration

Rotation around Z-axis

[R

e

=

Acceleration around Z-axis

0
[}

0

T ISTTIIUIY ITY)

|
0
]
]

=3 =

Fig. 7 . Components of the anticipated movement along the X-axis and around the Z-axis.

ROBOT'S PATH PLANNING USING Fuzzy LOGIC

An inference engine using fuzzy logic controls the motion of the
manipulator. It reads the joint coordinate errors between the actual
manipulator’s configuration and the one corresponding to a virtual
manipulator whose end effector is located at the selected catching
point with a proper orientation of the end effector. The joint velocity
and acceleration errors are also computed by differentiating joint
coordinate errors with respect to time. All these errors are computed
as follows:

Error_p[i] = Bi virtual (1) —6‘. real (1) (8)
Error v[i] = [8; yi (0 =8, i (1=1)1] ©

-[ei real 0 _ei real (t=-D)]
Error_a[i]=[8, ;05 (0 =28, 00 (1= T) +e[vir1ual(t_2T)](10)

-_[ei real 0 _2ei real (=7 +ei real (1-27)]

where 0, is the angular coordinate of the ith joint, t is time, and T is the
sampling period. Fig. 8 illustrates the inference engine inputs and out-
puts.

Error_p[i] Proximity[i] Error_v[i]

—— S
AR N S 2 A A A

e vl .. Fuzzyfication

Error_ali]

Fig. 8 . Fuzzy logic inference engine structure.

A8, AB,

The inference engine then produces three components of correction
for each joint. Here, for a three-degree-of-freedom robot, there are
nine components. The first group is a correction associated with the
angular position error. It is also the main part of the correction which
will result in an angular displacement of the considered joint during
the next sampling period. The second group of components corrects
the velocity error, and the third one the acceleration error. These two
supplementary corrections are only small increments which are added
to the main angular position correction to allow matching of velocities
and accelerations.

Finally, the amplitude of motion of one joint, A6;, during the next
sampling period is the sum of these three corrections, as shown in
(11).

A8, = éep[x] +86, (i) +30,, [(1)

The setpoint given to the ith joint at time (t+T) will then be computed
as follows:

[setpoint(1+T1)],; = [setpoinr(t)]i+A9i (12)

Therefore, the path planning is a local approach in time since errors
and corrections are reevaluated at each sampling instant. This provi-
des a more efficient reaction to object’s trajectory modifications than a
global path planning which computes a priori the entire joint evolu-
tion.

Collision Avoidance

Two supplementary inputs to the inference engine, labelled Proxi-
mity, allow the detection of the proximity between the object and
manipulator intermediate members. The threshold is provided by cir-
cles distributed along the robot arm, as shown in Fig. 9. The radius of
these security circles depends on the real size of the object and the
robot’s members. The objective is to avoid any collision between the
object and the robot structure considering that the object’s position is
evaluated only by a reference point located at its center. The security
circles radius must then be larger than the object peripheral size
around its reference point.

803

Fig. 9 . Threshold circles for detection of possible collisions.
When the object enters one of these circles, a possible collision is

detected and one (or both) of the proximity inputs is activated at a
level proportional to the residual distance as given in (13).

(ereal - 9viruml)
Proximity(i] = | —4—r——
* = [I (ereal - evirtual) l:l

- 2 - 2
’*/(xrabot xobjecr) + (ymbol yobject)

(13)

where 0., is the angular coordinate of the ith manipulator’s joint and
Oyirtual is the same coordinate on the virtual manipulator. Coordinates
(Xrobot» Yrobot) COITespond to the cartesian location of the center of one
security circle and (Xgpiecr, Yobject) &7¢ the cartesian coordinates of the
object’s reference point.

Once the collision is detected, the manipulator must be moved
away from the object’s path. The manipulator reaction is always direc-
ted, by means of fuzzy logic rules, in the opposite direction of the col-
lision detection in such a way that the object is brought out of the
security circles.

In general, a new catching point must be selected after a collision
has been avoided. In this situation, a local path planning provides a
powerful tool since no data about the end of the manipulator motion is
lost. With a global planning, previously computed data would be
unused, resulting in a reduction of the system efficiency.

Inference Engine Structure

The inference engine for the path planning of the three-degree-of-
freedom planar manipulator is composed of 11 inputs, 3 outputs and
7247 rules. Each input and output has a function membership similar
to those shown in Fig. 10. Minimum and maximum admitted values of
each input and output are dictated by the physical joint limitations.
The members distribution is based on the desired accuracy and the
nature of the task. Fine tuning is performed by trial and error over a
set of possible object trajectories and robot initial configurations.

Rule encoding is realized by observation of the system behaviour
for every possible situation. These rules are divided into three distinc-
tive tomes. The first one is composed of 6561 rules providing angular
position corrections and collision avoidance. The second and the third
tomes, containing 343 rules each, manage the angular velocity and
acceleration corrections, respectively. This subdivision allows the
inference engine to be more efficient. Furthermore, only rules having
their conditions activated by the inputs are considered to produce the
outputs. Thus, rule processing is fast despite the large number of
available rules.

Rules are built using a conventional approach with the help of
membership function tags. For example, a rule in the first tome con-
tains 5 conditions and 3 conclusions to be compatible with the illustra-
ted structure of Fig. 8. A possible rule would be given as follows:

If: Error_p[1] = SP (small positive),
and Error_p[2] = Z (zero),
and Brror_p[3] = MN (medium negative),
and Proximity[1] = Z (zero),
and Proximity[2] = P (positive);
Then : 86,[1] = SP (small positive),
and sep[z] = LN (large negative),
and 899[3] = SN (small negative).

804

The centroid defuzzyfication method [3] is used to convert back
fuzzy output data to real world angular displacements after they have
been added together. These data are finally sent to the low-level robot
controller.

Error_p[1]

4

$HN LN MN SN Zz SP MP LP HP

Error_p[2] angle
y

#HN IN MN SN Z PP MP LP HP

Exror_p[3] angle
8 4HN LN MN SN Z PP MP LP HP
.
]
anre
Proximity(1] gl
4 N z P
Proximity(2] distance
4 N z P
_— distance
T 88,1
4IN MN SN Z SP MP LP
591,[2] angle

LN MN SN Z SP

Outputs
y

LN MN SN Z SP

Fig. 10 . Membership function description for angular
position inputs and outputs.

SIMULATION RESULTS

Fig. 11 presents an example of simulation results obtained with this
path planning strategy. The object’s trajectory considered here is a
translation along a straight line in the XY-plane while rotating at a
constant rate around the Z-axis. The manipulator’s joint coordinates
are plotted together with those of the virtual manipulator pointing to
the selected catching point. It can be observed that the real manipula-
tor tracks the virtual one until position, velocity and acceleration mat-
ching is sufficient to ensure a safe and firm grasping of the moving
object.

In this example, grasping occurs after approximately 30 seconds,
when the two curves on each graph match. Similar curves can be
obtained for velocity and acceleration for all joints.

The complexity of the object’s trajectory is not limited a priori.
However, it is assumed to be continuous and not totally random, while
remaining unknown. Furthermore, it is clear that the object must cross
the manipulator’s workspace with a proper orientation to be caught.
When this does not occur, the manipulator simply points towards the
object as it moves outside of the workspace. This approach allows the

:
ol
g
£
k|
2
o 10 20 time (%ds) 40 50 80
Joint 2
L_ R ulstor

Joint position (degrees)

NS
Bk s e J -
- o 10 20 ume(sedﬁds) 40 50 80

Joint 3
120- = =
B |
/

i v \

g, .
~2c° 10 20 time (seciﬁds) 40 50 60

Fig. 11 . Joint trajectories of the manipulator while
tracking and grasping an object.

planner and the manipulator to react faster if the object’s movement
changes.

The velocity of the object is in general limited to about 3 to 7
cm/sec for translation, and 2 to 5 degrees/sec for rotation. It depends
essentially on the computing power available and the complexity of
the object’s path.

The maximum sampling frequency of the system has been fixed to
5 Hz when all the algorithms were implemented on a single Sparc 10
station shared between a few users. It is noted that the neural network
anticipating module has only been implemented serially on this com-
puter. With such an implementation, performances in time and success
rate compare advantageously to those obtained with a global polyno-
mial path planner applied to a similar task [1]. With & parallel imple-
mentation of neural networks and a dedicated processor for fuzzy
logic and general management, performances could certainly be
improved significantly.

When the few mentioned limitations are satisfied, which covers
most normal operation contexts, the global success rate of the cat-
ching task is about 90%. The remaining 10% corresponds to more
complex cases where obstacle avoidance does not leave enough time

for the planner to succeed in catching the object, or when the object’s
orientation is not reachable by the end effector.

Since the path planning is performed locally, resulting curves are
not as smooth as with a global planning algorithm. In fact, the appa-
rent instability that can be observed on joint curves is simply due to
the dynamics of this approach in planning the manipulator’s path in
complex situations. The robustness of the algorithm is never compro-
mised and all joint limitations are satisfied since the fuzzy logic infer-
ence engine takes them into account and is not allowed to produce
overshooting values.

CONCLUSION

The proposed algorithm has been tested by simulation. It has provi-
ded very good results and demonstrated the capability of modern arti-
ficial intelligence techniques in robot path planning. A large number
of possible applications can be envisioned to experiment further with
this approach. For example, in industrial assembly installations, it is
usual to find operators or machines fed with components by means of
a belt conveyor. Such an algorithm could be well suited for a robot to
grab those components and put them in the assembly without having
to stop the belt conveyor.

This work demonstrates that neural networks are appropriate for a
fast and precise prediction of an object’s movement. Their capability
to learn a general relationship independently of absolute training data
values has been observed. It is an important result to promote the use
of neural networks in tasks for which they are not usually designed.

Fuzzy logic has also revealed a high potential in the development
of efficient robotic path planning algorithms. The use of implicit rules
imitating the human behaviour considerably simplifies the tuning, and
could eventually reduce implementation costs. This is of prime impor-
tance when the task’s complexity level is high. Since, in modern robo-
tics, modelling of the task and its environment is usually difficult and
inaccurate, fuzzy logic provides a promising development tool to
solve some difficult industrial problems.

ACKNOWLEDGEMENTS

This work has been completed under a strategic research grant from
the Natural Sciences and Engineering Council of Canada (NSERC).
Pierre Payeur is supported by a NSERC graduate scholarship. The
authors also wish to acknowledge the support from the Networks of
Centres of Excellence program of the Government of Canada to the
Institute for Robotics and Intelligent Systems (IRIS).

REFERENCES

[1] Caté, J., Gosselin, C., Laurendeau, D., “Tracking a moving object
with a 6-dof manipulator”, in Proceedings of the SPIE Machine
Vision and Robotics Conference, Orlando, Florida, April 14-16,
1993, pp. 300-308.

[2] Fahlman, S.E., “An Empirical Study of Learning in Back-Propa-
gation Networks”, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, September 1988.

[3] Kosko, B., Neural Networks and Fuzzy Systems , A Dynamical
Systems Approach to Machine Inteligence, Prentice-Hall, 1992,
449 p.

[4] Lippman, R.P, “An Introduction to Computing With Neural Nets”,
IEEE ASSP Magazine, April 1987, pp. 4-22.

[5] Payeur, P, Le-Huy, H., Gosselin, C., “Trajectory Prediction for
Moving Objects Using Artificial Neural Networks”, submitted to
IEEE Transactions on Industrial Electronics, May 1994.

[6] Zurada, J.M., Introduction to Artificial Neural Systems, St-Paul,
MN, West Publishing Co., 1992.

805

