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Abstract

Probabilistic occupancy grids have proved to be very
useful for workspace modeling in 2-D environments. Due
to the formidable expansion of computational load, this
approach was not tractable for mapping a 3-D
environment in real applications. In this paper, the original
occupancy grid scheme is revisited and a generic closed-
form  function is introduced to avoid numerical
computation of probabilities for a range sensor with
Gaussian error distribution. Occupancy probabilities are
computed and stored in a multiresolution octree for
improved performance and compactness. Occupancy
models are built in local reference frames and linked to a
global reference frame through uncertain spatial
relationships that can be updated dynamically. This
scheme is used for building a 3-D map in a telerobotic
maintenance application of electric power lines where
perturbations may cause motion of object assembly.

1 Introduction

The ability for modeling 3-D occupied and free space
is a critical issue in robot reactive planning such as
collision avoidance in cluttered workspaces. Occupancy
grids offer interesting modeling characteristics since the 3-
D space is tessellated into voxels whose occupancy state is
measured directly from passive [9] or active range data
[12], without the need for feature extraction. The resulting
models are independent of the complexity of the scene
geometry. Furthermore, occupancy grids provide a useful
tool for collision detection.

Since data is of variable and limited precision when
gathered from different ranges and viewpoints, an estimate
of occupancy probability should be associated with every
voxel in opposition to discrete grids that only provide
empty, occupied or unknown states of the cells [2, 6, 8, 13].
This probabilistic information is helpful in finding next
best views or secure free paths for robot guidance. For such
low-level tasks, complementary representations based on
geometrical models may not be necessary.

Elfes [3, 4] has initially proposed a framework for
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building 2-D occupancy maps of the environment of a
mobile robot using a sensor error model in a Bayesian
probabilistic approach to combine data from one or more
viewpoints [10]. Although Elfes has brought some
simplifications for applying this theoretical framework, the
computational complexity of estimating the conditional
probability of occupancy for every cell depends on the
resolution of the map and increases exponentially with the
number of cells. This leaves the method impractical for 3-
D applications. To circumvent this problem, the Bayesian
occupancy probability estimation procedure is revisited in
the following and a closed-form approximation of the
occupancy probability function for each new measurement
allows for computational simplification  which
significantly speeds up the algorithm.

For 3-D space, the number of voxels in an occupancy
map increases as a power of 3 with a resolution increase.
However, several voxels may have a similar value for the
occupancy probability and their state can thus be merged.
Used as a multiresolution structure, the octree can improve
the compacity of the model while allowing to incorporate
information about the uncertainty (imprecision) of the state
of each cell. It is thus proposed to encode occupancy
probabilities of 3-D space maps into an octree structure to
provide a detailed and compact model of the environment.

In this paper, the probabilistic octree framework is put
to advantage for the development of a 3-D dynamic
environment modeling system. The model is built from
data provided by an active range camera from multiple
viewpoints. The occupancy model is intended to serve as a
map for guiding a telemanipulator in servicing on-line
electricity distribution equipment.

Due to the oscillations produced by wind in outdoor
scenes, a data gathering strategy for compensating
perturbations is proposed to allow the construction of
stable and unblurred models of 3-D environments. The
scene is composed of one or more assemblies of rigid
objects. To each of these assemblies is attached a local
reference frame in which a probabilistic occupancy grid is
built. These local reference frames are linked to a global
reference frame through an uncertain spatial relationship.



Section 2 extends Elfes’ 2-D probabilistic mapping
scheme to 3-D space and describes a framework for
workspace modeling using probabilistic octrees. Section 3
describes the approximation of the occupancy probability
function and section 4 details the integration of local grids
into the global octree. Section 5 proposes a data gathering
strategy under perturbed conditions. Finally, simulation
results and performance considerations are presented for
the power line maintenance application.

2 Occupancy grid framework revisited

Building a probabilistic occupancy grid model of a
scene consists in estimating the probability that each cell is
occupied based on sensor measurements. In the original
framework proposed by Elfes [3], building such a grid
involves two processing stages. First, a range measurement
is interpreted using the probabilistic sensor model of the
form P[rIM] providing the probability of observing a
measurement r given the actual state M of the grid.
Secondly, the occupancy grid cell probabilities are updated
using a Bayesian procedure.

Ideally, obtaining an optimal occupancy estimate of
each cell in the first stage would require determining the
conditional probabilities of all possible environment
configurations. Even if the cell states are discretized to
empty (EMP) and occupied (OCC) values, this leads to 2"
possible environment configurations i in the 1-D case, 2"
configurations in the 2-D case, and 2" configurations in
the 3-D case for n cells along each axis of the grid.
Currently, for a useful resolution level, the 3-D case is
obviously not computationally tractable. To avoid this
combinatorial explosion in the number of configurations,
Elfes has assumed that the cell states are independent
random variables. This is equivalent to assuming that the
occupancy grid is a Markov Random Field (MRF) of order
0. This simplification implies that there are no causal
relationships between the occupancy state of different
cells. Experiments have shown that this assumption is
acceptable for low-level robot guidance tasks. This
simplification thus leads to a tractable evaluation of the
probability that the state s(C;) of a cell C; is occupied given
a sensor reading r, P[s(Ci) = OCClr], using Bayes theorem
and the probability density function of the sensor P[rlM],
as follows:

P[r[( ) occ] - P[( ) occ]
P[r|s( l)] 'P[A‘(Ci)]

P[( ) 0CC|r] (1

s(Ci) = {OCC, EMP}
where

Plrs(c,)= occl =
> P[rls(Cl.) =0cC, GX( Ci)] -P[GX( Ci)

{Gs(C.)}

T

s( cl.) = OCC} 2)
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for a specific grid configuration Gs(c y = (s(Cp) = 54, sy
S(Cip) =51 8(Ciy1) = Sy - S(Cy) = 5,,) in the set of all
grid configurations {Gyc,} given that s(C;) is occupied. In
the same way, equation (2) can be rewritten for P[rls(C;) =
EMP].

In spite of the assumption of independent random
variables made by Elfes, equation (2) reveals that the
probabilistic density function of the sensor must be
evaluated for the entire set of configurations. For a sensor
having a probabilistic distribution only along the
measurement axis, this algorithm effectively remains
tractable. But for a range sensor having a 3-D Gaussian
probabilistic distribution, i.e. with imprecision along the
measurement axis as well as on the orientation of the laser
beam, each neighboring cell around the measurement must
be considered. The configuration set thus becomes very
large and a rigorous application of the numerical
computation procedure still leads to an impractical
algorithm implementation.

In the following, it is proposed to eliminate the heavy
computational task of equations (1) and (2) for estimating
the sensor distribution function and the occupancy grid
probability. The idea consists in developing a closed-form
approximation of the characteristic occupancy probability
distribution function (OPDF) which results from the
numerical evaluation procedure proposed by Elfes.
Working on range measurements, this approximated OPDF
is used to compute the occupancy probability of a given
volume of 3-D space centered on the sensor viewpoint.
Since the range sensor inherently scans a spherical area
around a center point, the occupancy probabilities are first
stored in local spherical occupancy grids. A given grid
corresponds to a given scanning viewpoint of the sensor.
These spherical grids are next integrated into the global
Cartesian occupancy grid which is then encoded as an
octree. Figure 1 shows the algorithm block diagram.

The algorithm is thus a two-step procedure. The first
step computes local spherical occupancy grids around each
viewpoint. The second step provides the global octree
encoded model by merging the local spherical grids.

OPDF Approx.

Range Data

Cartesian |
Occupancy Grid i

Figure 1 : Integration algorithm of 3-D range data.



3 Approximated probability distribution and
local occupancy grids

The origin of the approximated OPDF is centered on
the measurement 7 and shaped in accordance to the error
distribution characterizing the sensor. It is parameterized
along the axes following the alignment of the measurement
axis.

For a sensor with Gaussian error distribution, the
characteristic profile resulting from the occupancy
probability estimation process proposed by Elfes has a
shape which can be approximated by combining a sigmoid
curve and a Gaussian-like function. The fitted curve
exhibits a similar shape as the characteristic profile found
by Elfes for a given value of the sensor’s variance on range,
o, . This is shown in Figure 2 for a one-dimensional
probability distribution function. One must note that these
curves are valid for a single measurement and each curve
approximates the occupancy probability in space for this
single range measurement with variance ¢ . The
multiplicity of curves should not be confused with the
updating process allowed by repetitive measurements as
can be found in [3].

In Figure 2, the surface of the object is located at the
transition point (p = 50 mm) while the sensor is at the
origin. Far behind the object surface, the occupancy
probability remains unknown (P = 0.5) while between the
sensor and the surface it gradually drops to the empty state
P=0).

For a generic sensor with two additional degrees of
freedom including the azimuth (0) and elevation (¢) angles,
the closed-form approximation of the OPDF for a single
measurement is expressed as follows:

P(p,0,¢) =
[2((p—p)+2cp> (0-5)° <¢-¢)’]‘
- p + 7 + 3
l l1+e ? % % +
2

3)

{(p—pﬂ ©-9°, <¢—2$)2J

[} Ty (S¢

The intrinsic parameters of this approximation are
provided by the vanance characterizing the sensor along
each axis (cs , ce, o ). (p, 8, §) are the measurement
coordinates. %‘or more clarlty, the two-degree-of-freedom
example (p and 0) is illustrated in Figure 3. The probability
distribution is shaped like a dome centered on the
measurement (¥ = 35 mm, y = 0 mm). The resulting
occupancy grid shape is related to the multidimensional
Gaussian distribution of the sensor imprecision. Here,
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Figure 2 : Approximated occupancy probability profiles
for a single measurement with a sensor exhibiting
Gaussian error dzstrzbunon wzth parameters o varying
between 10* mm? and 100 mm?.

variance paran%cters have been set to o> = 25mm’ and
o = 3x10" rd" and the viewpoint is located at the origin.

Using such an approximation provides directly the
probability that a cell is occupied for a given range
measurement and avoids the heavy numerical computation
of conditional probabilities. Moreover, the dependency on
the discretization step along the sensor measurement axis,
an artefact caused by the cell state mdependency
assumption (0™ order of MREF), is eliminated since the
approximation is continuous and can be evaluated
everywhere along the measurement axis.

The approximated OPDF is computed for each
measurement contamed 1n one scan with given sensor
parameters (cp, 09, o’ ) as shown in Figure 4a. The
resulting occupancy probability distribution is temporarily
stored into a spherical occupancy grid before being merged
with the other occupancy probability distributions
associated with the other measurements contained in the

£

Figure 3 : Approximated occupancy probability
distribution function for one measurement from a two-
degree-of-freedom sensor.
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Figure 4 : Approximated probability distribution merging
process between each measurement and construction of

local spherical occupancy grids for each scan.

same scan. The merging process is performed using the
following Bayesian rule:

PP, @
PP+ (1-P) (1-P))

P[s(C) = OCC|P,P,] =

where P; and P, are the respective occupancy probabilities
of the occupancy grid cells that are merged together. This
provides a local spherical occupancy grid containing the
occupancy probabilities resulting from the entire set of
measurements contained in one scan. The measurements
are uniformly distributed on slices of the spherical grid.
Figure 5 shows such a probabilistic spherical occupancy
grid for one scan located at a given angle ¢. White cells
reveal a probability of occupancy close to one showing the
objects surface while black cells represent empty space.
Gray cells illustrate the unknown area located behind the
objects surface. Gray cells also appear on each side of the
scanned surfaces since the approximated OPDF affects
both the cells located along the measurement axis and the
neighboring ones. This results from. the uncertainty on
sensor orientation for each measurement of the scan.

In some circumstances, when safety considerations
prevail on the representativity of the model, the Bayesian
merging process may be replaced by a more conservative
rule such as:

P[s(C,) = OCC|P,P,] = Max(P,,P,)) )

where the resulting occupancy probability is the maximum
of the two probabilities (P;, P,;) to be merged. This
approach has been tested in the current application because
collision avoidance with high voltage cables is of
paramount importance.

This first computing step is repeated for each scan. For
N scans gathered by the sensor, a set of N spherical
occupancy grids is thus available for building the octree
representation of the scene as shown in Figure 4b.
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object surface

Figure 5 : Spherical grid resulting from one scan
composed of 128 range measurements (Resolution: 50 mm
along p, 9x107 rd along 8).

4 Probabilistic octree-based model building

Since the occupancy model of the scene has a cubic
shape, each local spherical grid must thus be integrated into
the global occupancy grid.

A first integration approach would be to scan each cell
of the spherical occupancy grid and find the corresponding
cells' in the Cartesian grid to update their occupancy
probability. However, since spherical cell boundaries do
not coincide with Cartesian cells, interpolation techniques
must be applied to avoid that the resulting model includes
erroneous empty voxels.

Another approach could be to scan the entire
workspace of the Cartesian occupancy grid subdivided to
its higher resolution level. Each of the cubic cells must then
be matched with their corresponding spherical cells to
update the probabilistic occupancy state. But doing so
reveals to be computationally expensive, especially for
high resolutions. The number of cells Q to visit for an n-
dimensional model is given by:

_ [ModelSize7"
Q= [Resolution]

(6

where ModelSize is the size of the entire model and
Resolution is the size of the finest occupancy grid cell.
Although working in 2-D space allows such a procedure,
extending the technique to 3-D space is time consuming.

It is rather proposed to take advantage of the
multiresolution property of octrees to avoid useless volume
matching where no data had been gathered. Starting at the
coarsest level of resolution, the approach consists in
recursively checking whether a given cell of the Cartesian
occupancy grid intersects with a given spherical occupancy
grid. When the Cartesian voxel does not match any part of
the spherical grid, it is discarded and its occupancy
probability is left unchanged. On the other hand, when the
spherical occupancy grid intersects with the voxel of



interest, the latest is subdivided into the next finer
resolution level in the octree and the intersection test is
repeated for each of the eight children which have just been
created. This process is repeated until the highest level of
resolution is reached. To speed up the algorithm,
intersection checking is based on a progressive refinement
such that the fastest parts of the test are made first. Vertices
of the spherical occupancy grid are precomputed to speed
up the procedure.

The Cartesian cells that are matched with a
corresponding spherical cell have their occupancy
probability updated following a Bayesian rule such as
equation (4). Here P; corresponds to the current occupancy
probability value of the voxel already stored in the octree.
This probability is initially set to 0.5 (unknown) for a new
model. P, is the maximum probability of the spherical grid
cells that intersect the voxel. Coordinates of the eight
corners and of the center point of the voxel are considered
to evaluate this maximum probability. Using only the
probability of the center point of the voxel to update the
occupancy probability brings some incoherent data into the
model since a cubic voxel does not necessarily lie entirely
inside a single cell of the spherical grid. Using the
maximum occupancy probability value of the voxel
overrides this problem and ensures a safer model.

In the current implementation, local spherical
occupancy grids are built sequentially before being
integrated one at a time into the global Cartesian octree-
based model. However, since each spherical grid is
independent from the others, the scalability of the
procedure for parallel implementation is high. Intersection
checking, which is the most demanding part of the
algorithm, can even be processed simultaneously on
multiple spherical grids.

Our approach thus differs from Elfes’ in that it avoids

asurement
]

JI\

range me:

sensor model

current polar
probabilistic
occupancy grid

P[s(C)) = OCC]
—>,

P[rl s(C) = OCC}j eq. (2)

()" Bayesian mergs, eq. (1)

Elfes’ approach

initial spherical

occupancy grids
P= O.Sg

the use of discrete configuration sets of the grid to estimate
the occupancy probability. With the closed-form
approximation of the occupancy probability distribution,
the computation is entirely analytic. Furthermore; instead
of resampling the entire occupancy grid to transform the
spherical grid into the Cartesian grid, advantage is taken of
the multiresolution property of the octree. This allows
processing large volumes of space in a single step thus
speeding up the algorithm. Figure 6 shows a comparative
scheme of both approaches.

5 Data gathering in a dynamic environment

To build and maintain an occupancy model in actual
operating conditions where perturbations may occur, one
must compensate for the relative motion between the
sensor and the scene. Otherwise, the recovered model
would be blurred and useless, especially for robot
guidance. In the power line maintenance application,
sensors are mounted on a working platform at the extremity
of a truck boom. While the working platform is exposed to
vibrations, the rigid assembly composed of the pole, the
crossarm, the insulators and the conductors is also
submitted to external perturbations such as wind for
instance (see Figure 7).

One possible way to deal with this problem consists in
using a set of cameras with synchronized shutters to grab
instantaneously a snapshot of the whole scene of interest
from different viewpoints [9]. However, significant
development progresses are needed for this solution to
become applicable.

A simpler solution that has been tested and adopted
integrates a unique laser range sensor which can rotate (pan
only) and translate on a slider mounted on the platform.
The scanner grabs a profile in a very short period of time (<
0.1 sec) such that scan distortion due to motion remains

scan 1 scan 2
1 f12 .- ' measurements ° f21 22 o
¢ + sensor model ¢ ¢
) closed-form
' approximation - -
eq. (3) /-

oq. (4)

eq. (4)

Pls(C)) =0CC 1]
updated polar
probabilistic initial Cartesian intersection intersection
p occupancy grid occupancy grid checking checking
if not last gl 5%
|_measurement '\ if last measurement =5 +eq. (4) +eq. (4)
s probabilistic
Cartesian occupancy
occngxﬁgncy grid encoded

as an octree

Proposed approach

Figure 6 : Comparative schemes of occupancy grid building frameworks.
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negligible. While grabbing scans, a small dedicated sensor,
which is currently under development in our laboratory,
acts as a high speed tracking device (HSTD) to keep track
of the relative transformation between the platform and the
scene.

Scans can then be transformed and integrated in the
reference frame attached to the scene. Building the model
in this local frame, only the transformation between the
global reference frame, attached to the truck, and the scene
reference frame has to be maintained during tracking. This
eliminates the need to update the octree for moving objects
[1, 11].

The HSTD consists of a video camera with a laser
beam providing both an intensity image and a single range
point. The camera is mounted on a fast orienting device [5]
that tracks a reference point fixed at the extremity of the
crossarm for instance. By calibration, the transformations
between the HSTD (Ry,gy), the platform (Rpjsrm) and the
range camera (R,,yerq) are obtained. The transformation
between the HSTD and the scene is provided by the HSTD.
These frames are depicted in Figure 7 showing a view of
the workspace from the simulator. The manipulator which
is usually located behind the slider is not shown for display

purposes.

1t is then possible to compute the transformation chain
between the camera reference (R,,.,,) and the model
reference frame associated with the target feature tracked
by the HSTD (Ry.,.). Measurements r_, . are
transformed from the range camera reference frame to the

model reference frame as follows:
ro =TT p D

scene hs“ ph” pc’ camera

where Ty, Tp, and T, represent the homogeneous
transformation matrices between the HSTD and the scene,

Figure 7 : Workspace view and transformation chain for
motion compensation.
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between the platform and the HSTD and between the
platform and the camera respectively. r . andr
are the range measurements in the scene and in the camera
reference frames respectively. Perturbations on the scene
assembly or on the platform that may occur between two
scans can be compensated within limits of precision of the
transformation chain. When a robotic task has to be
performed on a part of the moving scene, transformations
provided by the HSTD are continuously used for
controlling the robot by making it track the object on which
the robot works.

6 Results and performances

To evaluate the performance of data gathering and
integration procedure, a simulator has been developed for
reproducing to scale an electric pole configuration and the
sensing system mounted on the platform including the
HSTD. The simulator processes are distributed over a
network of workstations. A Silicon Graphics workstation is
used for monitoring the simulation including the
generation of perturbations of the platform and of an
oscillatory motion to the pole for simulating wind effects.
The workstation is also used as a graphic server for
displaying the data gathering and the resulting models. A
range sensor server runs on a Sun Sparc 4 workstation and
provides range profiles from the current world state.
Precision garametgr for the range sensors were set to
o, = lmm and oy = 3x10 rd".

Figure 8 shows the recovered model of the scene with
the vertical pole, the crossarm, three insulators and
conductors. Maximum resolution for a voxel was set to 50
mm. As a comparison, the length of the crossarm is 2.44 m.
The range sensor gathered 320 scans from as many
viewpoints on a trajectory where the sensor was pivoting
and translating along the slider. Each scan contains 128
range measurements. The platform and the sensor faced the
crossarm as illustrated in Figure 7. In Figure 8, gray
shading of the cells corresponds to the probability of
occupancy; white being 100% (occupied) and black 0%
(empty). For the purpose of displaying the entire modeled
volume, only voxels having a probability of occupancy
higher than a threshold € are displayed and unknown cells
(P =0.5) are removed. We can observe higher probabilities
of occupancy for the extremity of the crossarm and the
insulator that were closer to the sensor. Closer voxels’
states are measured more often than farther ones, then their
probability of occupancy converges toward O or 1 similarly
to the Elfes’ approach.

Simulation experiments have confirmed that the
required computing time is directly related to the desired
resolution and to the size of the scene area to model. For
instance, computing a large model over 3 m such as in
Figure 8 for a maximum resolution of 50 mm required less



Volume of interest

b)

c)

Figure 9 : Models of the zone of interest (resolution: 10 mm).

than 15 minutes on a Sun Sparc 4 workstation, while more
than an hour was needed for a 10 mm resolution model.
This suggests speeding up model building by focusing the
modeled zone to a volume of interest in order to avoid high
resolution integration of unneeded data. For instance, when
scanning the electricity distribution pole, a coarse model of
the scene is first built to prevent the manipulator from
colliding with objects while acquiring further data. Then
the human operator selects the volume of interest as a
subregion of the coarse model corresponding to the area
where a specific task must be achieved by the manipulator.
Thereby, the integration algorithm rapidly eliminates
irrelevant data.

Taking advantage of this strategy, models representing
only one insulator and conductor, as well as the extremity
of the crossarm have been computed with a 10 mm
resolution. Figure 9 shows these models from different
viewpoints. Each model can be computed in
approximatively 10 minutes.

In Figure 9a and 9b unknown cells are not displayed.
The center of the crossarm thus appears empty in b) where
the model is observed from behind. This shows that the
interior of objects keeps the Q.5 (unknown) probability
level of occupancy in conformity with the probabilistic
distribution function since these regions are located behind
the surface captured by the range sensor. Figure 9c shows
the same model but with the unknown cells displayed.
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Unscanned regions of the 3-D space appear as mean gray
areas since they are still unknown.

For the simulations, the source of imprecision
originated from the range sensor which was assumed to
provide p and O measurements following Gaussian
distributions. However, imprecision may also originate
from transformation errors occurring in the calibration
process and from the transformation provided by the
HSTD. The imprecision can be propagated through the
compound transformations to estimate the precision of the
sensor position. This can be done by linearizing the
resulting transformation and developing the Jacobian
matrix [14] or by applying the nonlinear transformation to
sampled distribution of random variables and reestimating
the distribution of the transformed samples [7]. In the 2-D
case, Elfes proposed to convolve the occupancy grid with
the probability distribution of the sensor position. This
amounts to lessen sensor precision.

Figure 10 shows the resulting model of the insulator
when the sensor error increases. The occupancy probability
at the model surface is slightly lowered and distributed on
a larger area as expected. It leads to a model with blurred
surfaces. This result is not rigorously exact when rotation
errors occur. This aspect might be investigated more
deeply to reflect the actual imprecision caused by the
transformation error.



Figare 10 : Effect of a loss of sensor precision.

7 Concluding remarks

In this paper, probabilistic occupancy grids have been
extended to the case of 3-D space modeling applications.
Enhancements to the technique proposed by Elfes override
the combinatorial explosion resulting from the addition of
a third degree of freedom. The process makes use of a
closed-form approximation of the probability distribution
and takes advantage of the multiresolution characteristic of
octrees to lead to a computationally tractable algorithm.
However, simulation performances have shown that
processing time must still be reduced significantly for
acceptable performances in the maintenance task. This is
achieved by locally controlling the bounding volume of the
model as well as its resolution depending on the precision
required for guiding the robot. Parallel implementation of
the algorithm could also significantly reduce the
computation time.

Another important point that was put forward in this
work consists in maintaining one or several volumetric
models in local scene reference frames while relating these
frames to the global world system. In the electricity line
maintenance task, the spatial relationship between the
robot platform and the crossarm changes dynamically with
perturbations. Using such a representation allows simple
maintenance of the 3-D model since only one
transformation is continuously updated. Furthermore,
taking advantage of the high speed tracking device to
update the reference frames relationship provides stable
and unblurred models.
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