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Abstract— Necrotizing enterocolitis (NEC) is a disease 

that leads to inflammation in the intestinal tissue of prema-

ture babies. In this paper, we present a novel automated 

image acquisition and processing system that integrates 

infrared and RGB-D sensors for NEC detection. Inter-

sensor calibration and data registration are introduced to 

ensure the consistency of depth, color and infrared images 

captured by the multispectral sensor. Segmentation of a 

baby’s torso area is automatically achieved over the infrared 

imagery while relying on depth and color data to entirely 

retrieve the region of interest. Analysis of thermal distribu-

tion over the whole area reduces the risk of missing key 

information due to manual intervention. Preliminary results 

obtained with this multispectral imaging approach for NEC 

diagnosis are encouraging. 

Keywords— infrared imaging, NEC diagnosis, RGB-D 

sensing, image segmentation, thermal distribution analysis. 

I. INTRODUCTION  

Necrotizing enterocolitis (NEC) affects the gastrointes-

tinal tract of infants. It generates inflammation in intesti-

nal tissue, eventually leading to necrosis, perforation, 

sepsis and even death. However, the signs of NEC at an 

early stage are subtle and difficult to detect with current 

x-ray and ultrasound imaging, but could be monitored via 

infrared (IR) thermal imaging technology, which 

measures the thermal field emitted by a body. Given that 

the normal human body has a normal heat distribution, 

while an abnormal body state tends to radiate a modified 

heat distribution, the similarities and differences between 

the two can assist in clinical diagnosis to infer the nature 

and extent of a disease [1]. 

 Knobel et al. [2] and Rice et al. [3] determined the dif-

ferences between normal infants and those diagnosed 

with NEC by comparing the temperature distribution of 

the infant's abdominal segments and chest. More recently, 

Herry et al. [4], Ntonfo et al. [5], and Frize et al. [6] 

demonstrated the validity of applying infrared thermal 

imaging to NEC detection in newborns. By analyzing and 

comparing abdominal thermograms of neonates with 

confirmed NEC and healthy control newborns, they ob-

tained positive results in distinguishing between NEC 

infants and infants without NEC.  

Although promising results were obtained in previous 

studies, the operation of the infrared sensor and interpre-

tation of data had limitations. The clinical staff had to 

manually select areas of interest prior to analysis. Moreo-

ver, thermogram analysis was performed only by individ-

uals with specific experience in IR imaging, which was 

not optimal for a clinical environment. This led to non-

uniform acquisition of thermograms, resulting in potential 

erroneous interpretation. Therefore, with the goal to pro-

vide health practitioners with more accurate and easy-to-

operate sensing technology for early-stage NEC diagnosis, 

our goal is to design an automated multispectral imaging 

approach that combines a thermal IR camera and a RGB-

D sensor. The sensors work together during acquisition, 

and thermogram image processing is automated for 

streamlined operation and to minimize interference from 

manual intervention. 

II. METHODOLOGY 

In this study, a Microsoft Kinect Xbox ONE sensor is 

bundled and calibrated with a FLIR Thermovision 

A320M thermal infrared camera to simultaneously cap-

ture registered images of a baby’s body. The IR images 

record the temperature distribution over the body while 

the Kinect sensor simultaneously acquires color and depth 

images (RGB-D). The latter are used in conjunction with 

the IR images to segment the subject from the back-

ground and to remove any visible apparatus, such as 

probes, tubes and wires, which may lie over the body and 

may compromise part of the data about temperature dis-

tribution.  Moreover, the combined inputs make segmen-

tation of the region of interest over the torso of the infant 

more robust without requiring manual intervention in the 

image processing stage.  

Fig. 1 shows the flow chart of this automated multi-

spectral image acquisition and analysis system. It consists 

of three main parts: acquisition system design and cali-

bration, automated image segmentation and extraction of 
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region of interest over the infant`s torso, and temperature 

distribution analysis. RGB, depth and IR images are reg-

istered and adjusted to form a set of images of corre-

sponding resolution, as perceived from the same viewing 

angle. Background removal, torso segmentation and ex-

traction of the abdominal region are performed based on 

the characteristics of each image. Finally, pixel values 

corresponding to temperature data are processed into a 

thermal signature and statistical measures are applied to 

analyze variations between NEC and normal infants. 

 
Fig. 1. Multispectral image acquisition and IR data analysis flow chart. 

A. Image Acquisition 

A Kinect XBox One sensor, shown in Fig. 2a, forms 

the RGB-D sensor. The embedded RGB camera collects 

1920 x 1080 color images; and the depth sensor estimates 

the relative distance in a map of 512 x 424 pixels. A FLIR 

A320 infrared camera, shown in Fig. 2b, provides thermal 

images with a resolution of 320 x 240 pixels.  

Since the RGB-D sensor has a wider field of view than 

the IR camera, it must be positioned closer to the subject 

than the IR camera. A separation of 20 cm was empirical-

ly found to be suitable. In order to ensure that the devices 

do not occlude each other, the Kinect is also assembled 

slightly lower than the IR camera, with a vertical separa-

tion of 12 cm. Fig. 2c illustrates the configuration of 

sensors. Since the spectral ranges are respectively 827-

850nm for the Kinect depth sensor, and 7.5-13µm for the 

IR camera, there is no interference between the devices. 

 
 

 

 
(a) (b)  (c) 

Fig. 2. Imaging devices and their assembly: a) Kinect Xbox One color 

and depth sensors, b) FLIR A320 infrared camera, and c) assembly of 
multispectral sensor for a subject located on the right side. 

 

B. Calibration Process 

Since the resolution and field of view of the two sen-

sors in the Kinect are not the same, their images cannot 

be directly matched. Therefore, the first step of calibra-

tion is to register the internal devices in the Kinect sensor, 

to combine depth and color data. Registration is per-

formed in between the color and depth image streams by 

acquiring images with OpenNI2 registration mode. Depth 

point coordinates are verified for validity and the corre-

sponding color pixel value is assigned to a matrix with 

the same size as the depth image. Thus, the alignment 

produces an image with the appearance of a broken color 

map, which forms the RGB-D image. Displayed pixels 

indicate locations where alignment is successful, while 

black pixels indicate the locations of alignment failure in 

between the color and depth fields, as shown in Fig. 3. 

 

   
(a) (b) (c) 

Fig. 3. RGB-D images registration: (a) 1920 x 1080 color image, (b) 

512 x 424 depth image, (c) 512 x 424 RGB-D image after registration. 

Concurrently, the classical checkerboard calibration 

method is applied for calibration of the Kinect sensor 

with the IR camera. A customized calibration target was 

designed for this purpose that embeds LED lights at 50% 

of the corner locations of a traditional black-and-white 

checkerboard pattern to support the simultaneous detec-

tion of feature points by the color and IR cameras. There-

fore, it permits feature points to be matched in between 

the color and IR images, which facilitates registration in 

between the sensors. The algorithm used to detect and 

process the IR feature points is similar to that introduced 

by Twelves et al. [7]. Multiple checkerboard images are 

collected from different viewing angles by the Kinect and 

IR sensors. The GML Calibration Toolbox [8] is used to 

calculate the intrinsic parameters of the cameras and the 

extrinsic parameters in between the pairs of images. 

 

C. Segmentation 

Since the infrared image contains only temperature in-

formation, and the difference in body temperature of each 

part of the human body is subtle, it is difficult to extract 

the corresponding abdominal region only by analyzing 

the IR image. Therefore, we first rely on the depth and 

color data to segment the infant’s torso. The segmentation 

process is initially driven by the depth. The body is iso-

lated from the background (isolette bedding surface) by 

applying a distance threshold, as the newborn is typically 

closer to the sensor, which is installed over the subject 
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and pointing vertically. As shown in Fig. 4, color infor-

mation also helps to fine-tune the contours of the body 

area and to prevent interference from any visible objects. 

Color coding in the YCbCr space [9, 10] is known to 

better support the skin color retrieval process because 

different skin colors are distributed over a small range in 

the YCbCr space, and only the brightness value, Y, tends 

to significantly change with the external environment. 

Since the ambient light in a hospital does not change 

much when the images of the baby are collected, YCbCr 

better limits the distribution of skin color, which makes 

the acquisition system less sensitive to the environment 

and to various ethnic groups’ skin color. 

 

   
(a) (b) (c) 

Fig. 4. Background removal and fine-tuning of the human body contour:  

(a) original depth image; (b) after removing background based on depth 

threshold; (c) after applying skin color detector. 

Knowledge of the human anatomy provides rich in-

formation for finely segmenting the human body from a 

scene. Moreover, the depth sensor can support an estima-

tion of skeleton data, which refers to the coordinates of a 

set of joint points that connect parts of the body. Detect-

ing and properly selecting the relevant joint points facili-

tates the extraction of the region of interest. Hesse et al. 

[11] proposed a pixelated body part classifier using ran-

dom ferns. This approach inspired the method proposed 

here. We first created 15 virtual 3D baby models, as 

shown in Fig. 5a, using the MakeHuman modeling soft-

ware [12], and then augmented the data set to 120 by 

rotating, mirroring, etc. For each model, we selected the 

effective joint points after fine tuning according to Hes-

se’s work [11]. Here, the joint points do not have to be 

consistent with anatomically articulated joints. They are 

only used as critical points to segment different regions. 

We select 15 joints for each model (Fig. 5b) and extract 

the depth information from the virtual 3D models. Then 

for each pixel, we compare the depth of the current pixel 

with that of pixels in the neighborhood. If the difference 

in the depth value is smaller than a set threshold, the 

pixels are associated to a same surface. Then according to 

the Random Ferns method [11], pixel points are divided 

into several clusters and each cluster is associated with a 

joint probability. We use the naïve Bayes classification 

method to generate the classifier in combination with the 

preset joint information, the label of each class, and the 

joint probability. By using the classifier, we can divide 

the body into different areas based on the depth data, and 

extract the abdominal area, as shown in yellow in Fig. 

5(c), which is our region of interest for NEC diagnosis.  

   
(a) (b) (c) 

Fig. 5. Mock-up models: (a) an infant model created by MakeHuman 

software [12], (b) 15 joint points selected according to experimental  

needs, (c) abdominal area extracted by the classifier. 

D. Temperature Distribution Analysis 

After successful extraction of the region of interest, we 

directly analyze the temperature over the entire region. 

We first convert the IR image into a grayscale image that 

represents the temperature distribution over the ab-

dominal area. First order statistics (mean, median, vari-

ance, standard deviation, interquartile range, etc) are used 

to compare between NEC and normal infants, as in previ-

ous work [5]. It is effective to use the data differences to 

describe and distinguish between two groups because 

babies in the NICU rarely can mount a fever under nor-

mal circumstances. Even if they do, it is usually due to 

significant illness such as sepsis, in which case they 

would be excluded from our study. 

III. RESULTS AND DISCUSSION 

In the earlier study performed by our group, a dataset 

of infrared IR images was collected by imaging the ab-

domen of 10 NEC and 19 normal infants. We used this 

data to validate the proposed segmentation and thermal 

distribution analysis processes. In [5], only a manually 

selected rectangular area over the abdomen was used for 

statistical analysis. We applied the same temperature 

distribution analysis method for the more extensive ab-

dominal area that is extracted on the same dataset but 

with the automated segmentation methodology described 

in Section II. Resulting statistics are reported in Table 1 

and Fig. 6, in comparison with results obtained in the 

previous study [5].  

From both sets of experiments, it is clear that the mean 

and median temperature values are lower on NEC infants 

than on those who are normal, indicating that abdominal 

temperature of NEC newborns can be affected by necro-

sis of the small intestine and poor blood circulation. In the 

boxplots shown in Fig. 6, we also observe that fewer 

outliers (blue dots) occur with the new method. In Fig. 6a, 

the outliers are more numerous and concentrated in the 

lower temperature range, indicating that the data freedom 

of both the NEC and the normal group is small, and the 

data as a whole are left skewed. In the results obtained 
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with the proposed method, Fig. 6b, only the NEC popula-

tion exhibits some outliers. Since these are concentrated 

in the higher temperature range, it can be concluded that 

the overall abdominal temperature distribution of the 

NEC infants is right-biased, while the normal infants 

form a normal distribution. 

Table 1. Statistical measures over 10 NEC and 19 normal infants. 

 NEC 

(baseline [5]) 

Normal 

(baseline [5]) 

NEC 

(proposed) 

Normal 

(proposed) 

Mean 185.7 217.87 183.9 222.9 

Standard 

variance 
12.2 9.9 16.7 14.9 

Median 188 219 184 225 

Min 139 154 130 126 

Max 217 255 249 255 

Skewness -0.39 -0.78 0.039 -0.99 

Median 

absolute 

deviation 

9.97 7.56 13.31 11.86 

Interquartile 

range 
17 20 23 20 

Kurtosis 2.7 4.2 3.2 3.6 

Sum 1093336 2514164 2260374 5147958 

 
Fig. 6. Boxplots of NEC and normals (left: baseline [5], right: proposed). 

IV. CONCLUSION  

In this study, we present a custom multispectral vision 

sensor, which aims to automate the imaging analysis 

process for the detection of NEC in newborn infants, 

making it easier for healthcare professionals to capture 

and analyze IR images while minimizing the introduction 

of bias from manual manipulation of data. A procedure 

for calibration of IR, depth, and color images collected 

from different viewing positions and resolutions is devel-

oped to support the integration of a RGB-D sensor with 

an IR camera. Depth and color space information is fully 

leveraged to make up for the shortcomings of traditional 

segmentation approaches when applied on IR images. 

The proposed acquisition system and automated segmen-

tation approach lead to a more comprehensive tempera-

ture distribution analysis over the entire abdominal region 

than when manual segmentation was performed over IR 

images only. Beyond facilitating the work of medical 

personnel, this can reduce the risk of missing key infor-

mation. Future work will involve validation and applica-

tion of this system in a clinical environment with the 

acquisition of new datasets to further test the approach.  
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