
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Warm Liquid Spill Detection  

and Tracking Using Thermal Imaging 
 

Ghazal Rouhafzay  

School of Electrical Engineering and 

Computer Science  

University of Ottawa 

Ottawa, Canada 

0000-0003-3762-0900 

 

Haitao Tian  

School of Electrical Engineering and 

Computer Science 

University of Ottawa 

Ottawa, Canada 

0000-0002-8464-7973 

Pierre Payeur 

School of Electrical Engineering and 

Computer Science 

University of Ottawa 

Ottawa, Canada 

0000-0003-3103-9752 

Abstract— Detection of liquid spill is a crucial and effective task 

to maintain safety and protection in various environments. Thermal 

imaging as a passive imaging modality working in different lighting 

conditions and even through smoke can be advantageously used to 

detect liquid spill in challenging conditions. Deep learning-based 

object detectors are well-established techniques to detect and 

localize different objects or phenomena in a variety of image 

modalities, however they require large scale databases with 

bounding box annotation in order to be trained from scratch. In this 

work, we present, evaluate, and compare three different methods to 

address the unavailability of substantial datasets dedicated to liquid 

spill detection from thermal images in the context of health and 

safety prevention. A Flir A35 thermal camera is used to collect data 

for the experiments. The three methods are based respectively on a 

conventional image processing algorithm using watershed 

segmentation, a weakly supervised approach using Gradient Class 

Activation Mapping, and an unsupervised deep learning approach 

for salient object detection guided by motion. No pixel level 

annotation is required for the proposed approaches. The work 

demonstrates that a conventional image processing approach, 

achieving an average precision and an average recall as high as 0.83 

and 0.72 respectively, can reliably detect and localize warm liquid 

spill in sequences of thermal images.  
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learning. 

I. INTRODUCTION  

Generally speaking, liquid spill can be an indicator of a 
serious threat in different situations and environments. 
Leakage in oil pipelines, water leakage from warm water units 
in a variety of industrial machines, and bleeding detection 
following an injury are some examples. Many research efforts 
are devoted to detecting liquid spill in a timely manner. While 
most of the existing leakage detection techniques rely on the 
use of sensors in direct contact with the liquid surface [1], 
noncontact sensing approaches such as image and video 
processing frameworks can effectively increase the 
operational efficiency.  

Infrared thermal imaging cameras have found their ways 
in a variety of domains such as industrial inspection, medicine, 
security, protection, etc., to analyze scenes or particular 
objects. In thermal imaging, the surface temperature of objects 
within a scene is estimated by interpreting the intensity of 
infrared radiometric signals received at the camera sensor 
which is known as a microbolometer. Heat sensing elements 
in a microbolometer are sensitive to radiometry signals within 
a wavelength of 7 to 14 µm. The electrical resistance of the 
sensing elements changes in response to the incident 

radiometry signals. These resistance changes are then 
measured and mapped into temperature values. 

While detection and segmentation of objects with solid 
shapes and unique temperature signatures within a scene is a 
well-established task in the field of computer vision for 
thermal imaging, a variety of situations impose more 
ambiguity on the operational conditions. Spilling liquid 
detection with no specific shape signature is one of these 
challenging cases, specially if the temperature of the liquid 
does not differentiate distinctively from other objects in the 
scene. A possible application could be early detection of blood 
on clothes or floor as a result of an injury. According to the 
fact that the emissivity of liquids in general is lower than the 
emissivity of a perfect emitter, the temperature reading using 
a thermal camera would not match the exact real temperature, 
adding uncertainty to the detection task. Often, when thermal 
cameras are used for temperature reading from surfaces with 
lower emissivity, a series of calculation are in place to 
compensate the effect of lower infrared emission captured by 
the camera. However, taking into consideration that for some 
monitoring and detection applications we do not have any 
prior knowledge about the existing materials in the scene, the 
proposed framework needs to rely on other characteristics of 
the sequence of captured frames rather than on pure 
thermography.  

In this paper, we focus on the problem of warm liquid spill 
detection using thermal imaging. The case study targets the 
detection of injuries leading to blood spill. More specifically 
we investigate three solutions to detect bleeding as a result of 
an injury in thermal videos. The lack of any publicly 
accessible annotated dataset for liquid spill/bleeding 
detection, together with the challenges and laboriousness of 
creating a large dataset with pixel level annotation in such a 
sensitive context, motivated us to consider three different 
methods. One is based on conventional image processing 
algorithms, another one is using a weakly supervised deep 
learning approach, while the last method leverages an 
unsupervised deep network with saliency estimation driven by 
optical flow. 

 The rest of the paper is structured as follows. Section II 
discusses the data acquisition setup. Section III-A introduces 
the bleeding detection algorithm using conventional image 
processing approaches. The weakly supervised technique is 
detailed in section III-B. The working principle and setups for 
the unsupervised deep learning approach are explained in 
Section III-C. Section IV presents and evaluates the results 
and Section V concludes the paper.   



II. DATA ACQUISITION 

In this research a Flir A35 thermal camera with a focal 
length of 9 mm is used to acquire thermal images. The camera 
streams 14-bit 320×256 radiometry data, with a maximum 
framerate of 60 Hz. The Temperature Linear Mode of the 
thermal camera is activated for data acquisition, therefore a 
signal to temperature mapping is performed as 𝑇𝑘 = 0.04 ×
𝑆 , where S is the 14-bit radiometry data and 𝑇𝑘  is the 
temperature read at each pixel in kelvin. For data acquisition 
the framerate is reduced to three frames per second to simplify 
data processing.  

To simulate the liquid spill/bleeding, a water bag filled 
with 37±2℃ water is used, and the participant is asked to pour 
water gradually on her clothes and on the floor. 

III. DATA PROCESSING  

A. Conventional segmentation based detection 

The thermal signature of the monitored scene can be 
decomposed mainly into three levels to distinguish among the 
background, human body surface and regions on the body 
with higher temperature. The latter include the flow of warm 
liquid, the forehead, cheeks, and areas between joints, such as 
a flexed elbow, where heat can be trapped. For this purpose, a 
three level Otsu’s thresholding algorithm is applied to divide 
the temperature spectrum of the scene into three clusters.  
Since these threshold values are determined in an offline phase 
with no object warmer than the person in the frame, the 
acquired threshold value remains acceptable for cases where 
objects with higher temperature are imaged, however a 
recalculation of the threshold will be required if the 
environment changes. Once the threshold values are 
determined, the framework illustrated in Figure 1 is 
implemented to perform detection and generate an alarm if 
warm liquid spill is detected. 

For any acquired thermal image frame, noise is firstly 
reduced by median filtering over a neighborhood window of 
size 5x5 pixels. The previously mentioned threshold values 
then cluster the image into three main regions based on the 
temperature level. The clusters at this stage mainly mark the 
background, human body and warmer regions on the body 
surface. However, such an approach is not enough to perform 
segmentation because of the noisy nature of thermal images. 
The Sobel edge detection algorithm is then applied on the 
thermal map to find edges. We perform the main segmentation 
using the watershed algorithm [2] with the Sobel edge 
detection as the input image and the thermal thresholding map 
as the markers for the three regions. The watershed algorithm 
then gives a fine segmentation of the thermal image. Next step 
is to find an exact contour around the regions marked by the 
highest threshold. 

Once the contours of the regions of interest are detected, a 
bounding box encountering the region in a rectangular shape 
is calculated. At this step, a series of false detections can be 
present. These false detections mainly include warmest 
regions of the body such as the face or the waterbag itself 
when it becomes visible to the camera. Elimination of false 
detections based on precise temperature reading is not 
practically feasible since the lower emissivity of water 
compared to human skin prevents to distinguish between 
them.  

 
Fig. 1. Liquid spill detection framework using conventional image 

processing. 

In order to remove false detections, a matching and 
tracking algorithm is proposed to examine the evolution of 
suspicious regions between the consecutive frames. The lack 
of any shape signature in liquids as well as the lack of color 
signature in thermal images make standard matching criteria 
useless. Therefore, for each bounding box in frame i, we 
search for a matching bounding box in frame i-1 with shortest 
Euclidean distance between the centers of the two-bonding 
boxes.  

The pseudo-code of the proposed algorithm for bounding 
box matching is as follows:  

 
where 0 ≤ 𝑗’ < 𝑛  denotes the bounding box indices in frame 
i-1, and 0 ≤ 𝑗 < 𝑚 represents the bounding boxes in frame i.  

Once the detected bounding boxes are matched between 
successive frames, a series of conditions are checked to 
generate an alarm on warm liquid spill detection. These 
conditions are developed empirically to distinguish among 
normal and abnormal regions with similar temperature 
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signatures and rely on the fact that spilling liquid area grows 
over time. The conditions are as follows: 

1- If a candidate region has an area smaller than 20 

pixels, it is removed as it should possibly refer to 

small heat trapping between human joints.  

2- If a candidate region has a bounding box with a 

height value twice longer than its width, and the 

center of the associated bounding box is positioned 

on the lower vertical half of the frame, a “warning” 

alarm is sent meaning that there is a possibility of 

liquid spill. This condition is determined using the 

prior knowledge about the position of the camera 

and considering the fact that liquids flow in the 

direction of gravity. 

3- If a region is gradually increasing in size within 10 

consecutive frames, a more powerful alarm is sent 

as “warm liquid spill detected”. 

 

B. Weakly supervised detection 

In recent years deep learning has achieved a great success 
for analysis and processing of a variety of image modalities 
and for many different tasks such as classification, regression, 
detection, and semantic segmentation. 

Most of the relevant approaches for detection and 
segmentation require large image datasets with either pixel 
level annotation or at least bounding boxes around the regions 
of interest. YOLO [3] and its newer versions represent state-
of-the-art methods for object detection and give very 
promising results for different image modalities, however, the 
tedious nature of collecting and annotating a large dataset for 
training has encouraged us to consider alternative weakly 
supervised approaches.   Unlike supervised object detection 
techniques that require bounding box annotations for training, 
weakly supervised object detectors [4] estimate the objects 
location by only image level labeling. 

In this paper we take advantage of the Gradient Class 
Activation Mapping (Grad-CAM) [5] to roughly estimate the 
location of liquid spill in a thermal frame, if the frame is 
classified as containing liquid spill. 

In order to train a Grad-CAM based liquid spill detector, a 
binary classifier is firstly trained by fine-tuning a pretrained 
Resnet 101 on a balanced dataset with 1200 frames without 
any liquid spill in it and 1200 frames containing liquid spill. 
These 2400 frames are sampled from video streams that are 
collected using the Flir A35 camera and annotated as either 
containing liquid spill or not. The binary classifier achieves an 
accuracy of 98.33% on a 80/20 split for training and 
validation. For evaluation and comparison of the detection 
results using the three methods in the paper, we employ a test 
dataset including 252 consecutive frames of a video sequence 
as detailed in section IV. The binary classifier reaches an 
accuracy of 99.2 on these 252 frames.  

The idea of Grad-CAM is to compute the gradient of the 
final classification score of the wining class with respect to the 
final convolutional layer in the network. Given a test image, if 
it is classified as containing liquid spill by the binary classifier, 
the classification score will be used to compute gradients with 
respect to the last convolutional layer in Resnet 101. The 
gradient values are linearly combined with the activations 
from the last convolutional layer and resized back to the size 
of the original image to create a color map highlighting the 

class-specific regions in the input image.  An example of a 
colormap generated by Grad-CAM and superposed on the 
input image is depicted in Figure 2.  

The last step in this approach is to convert the class 
activation map into a binary image using a threshold (here 
0.85) and computing a bounding box around it to mark the 
location of the detected liquid spill on the thermal image. The 
threshold value is determined empirically to maximize the 
performance of the detector. Finally, an alarm is set by 
visualizing the bounding box and a text message. Figure 2 
summarizes the framework of liquid spill detection using 
Grad-CAM as a weakly supervised approach. 

It is worth mentioning that the accuracy values reported in 
this section evaluate the performance of the backbone 
classifier for the binary classification task. An evaluation of 
the weakly supervised detector for the detection task 
comparing the detected bounding box against the ground truth 
will be provided in section IV.  

 
Fig. 2. Weakly supervised framework for liquid spill detection. 

C. Unsupervised detection based on motion guided 

attention 

 Salient object/region detection in videos aims to identify 
and localize noteworthy regions that are of interest and of 
importance in consecutive video frames. Such an approach 
attempts to imitate the attention mechanism in human visual 
perception. This strategy is therefore considered in this paper 
for warm liquid spill detection on thermal frames where the 
regions containing liquid flow are considered salient from the 
point of view of an attention mechanism.  

More specifically, we adopt the unsupervised saliency 
detection approach presented in [6] to highlight regions 
containing liquid flow.  This is justified by the observation that 
the region corresponding to liquid spill across frames 
demonstrates significant and fast changes, which are dominant 
over other human body parts movement as well as the 
background. Figure 3 illustrates some examples of the 
saliency maps computed for thermal image frames.    

With the saliency-aware maps of thermal frames, we 
define objectiveness bounding boxes denoting liquid flow 
regions with thresholding. It is worth noting that this 
thresholding process is built upon the saliency values of the 

 



saliency-aware map, which is distinct from the conventional 
image thresholding strategy, which utilizes temperature-wise 
thresholding on the entire thermal frames. Since the saliency-
aware representation is invariant to temperature changes but 
rather sensitive to the spread of liquid, the corresponding 
thresholding strategy is expected to be reliable.    

    

    

Fig. 3. Input thermal frames (upper row) and corresponding saliency-

aware representations (lower row). 

IV. RESULTS AND DISCUSSIONS 

In order to quantitively evaluate each of the proposed 
methods, we adopted the LabelImg [7] annotation tool to 
manually annotate bounding boxes around the spilling liquid 
regions for 252 test frames. As presented in Table I, five 
metrics are computed for each method with respect to the 
ground truth. They are computed as follows: 

  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑜𝑈   = 
1

𝑛
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where A represents the detected bounding box, B represents 

the ground truth bounding box, n is the number of test frames, 

i.e., 252, TP is the number of pixels in each frame that are 

correctly detected as liquid, FP is the number of pixels in each 

frame that are falsely detected as liquid, and FN represents the 

number of pixels in each frame that are missed to be detected 

as liquid. Also in Table I, the fifth metric is the number of 

missed frames that represents the number of frames in which 

liquid spill was present, but the algorithms failed to detect it.  

While the weakly supervised approach shows a higher 

performance in terms of identifying that liquid spill exists in 

a thermal frame with fewer missed frames, the conventional 

segmentation-based approach performs better to localize the 

liquid spill region in the image. The higher average precision 

and higher average recall of the conventional approach 

confirm the superiority of this approach in minimizing both 

the false positives and false negatives. These results are 

justifiable by the fact that deep learning approaches call for 

large databases to be efficiently trained while the available 

dataset for this study is of a moderate size. 

 

TABLE I.  EVALUATION METRICS 

Evaluation 

Metric 

Method 

Conventional 

segmentation- 

based detection 

Weakly 

supervised 

detection 

Unsupervised 

detection with 

motion attention 

Average 
IoU  

0.6878 0.5626 0.0911 

Average 
IoMin 

0.8628 0.7138 0.2627 

Average 

Precision 
0.8307 0.6168 0.2256 

Average 

Recall 
0.7226 0.6785 0.1389 

Number of 
missed 

frames 

12 2 0 

     Figure 4 illustrates samples of detection performed using 
respectively the conventional, the weakly supervised, and the 
unsupervised saliency-aware approaches for 20 consecutive 
frames. The frames are selected in a way to represent the early 
start of the liquid spill until the flow has significantly 
expanded. The green bounding box highlights the ground 
truth. Detections by the conventional, the weakly supervised 
and the unsupervised approaches are depicted by blue, red 
and magenta bounding boxes respectively. One can notice 
that in the first two frames of the sequence the conventional 
approach fails to detect any liquid spill, which is due to the 
fact that the algorithm checks for the shape and the area 
conditions of the bounding box to trigger the alarm. Bounding 
boxes with an area smaller than 20 pixels are removed. Also, 
the conventional algorithm waits to find a growth in the area 
of the bounding box to set the alarm. These conditions were 
set to prevent false detection of small regions with constant 
area corresponding to heat traps between joints or the 
subject’s face. The overall twelve missed frames correspond 
only to four seconds at the beginning of the thermal images 
sequence.  

Conversely, the weakly supervised approach misses on 
detecting the liquid spill on only two out of the 252 frames. 
However, it underperforms the conventional segmentation 
approach in terms of localization of the liquid flow, 
progressively diverging from the region of interest as the 
spread of warm liquid expands. The unsupervised approach 
achieves the lowest performance for localizing the liquid flow 
over the entire test video sequence with the saliency being 
dragged toward warmer areas on the upper part of the body 
until the detection becomes more accurate when the flow of 
warm liquid spill increases, as was also demonstrated in 
Figure 3. The weak definition of saliency and the lack of 
consideration for physics-driven characteristics of liquid spill 
in the two deep learning methods are coherent with the 
experimental results. 

V. CONCLUSION  

In this research we propose and compare three approaches 

for warm liquid spill detection with a thermal camera in the 

context of health and safety prevention. The first approach 

makes use of the conventional watershed segmentation 

approach with Otsu’s thresholding as the markers to segment 

regions within the temperature map of warm liquid, and then 

checks for the shape and area growth in consecutive frames to 

generate an alarm. The second approach relies on a Resnet 101 

fine-tuned as a binary classifier on thermal images and Grad-



CAM to localize the liquid spill. The third approach is an 

unsupervised approach for detection of salient regions in 

video sequences that is adapted to detect expanding liquid 

spills. The conventional segmentation-based approach 

achieves an average precision and average recall of 0.83 and 

0.72 and outperforms the weakly supervised and unsupervised 

approaches in terms of liquid spill localization. Such a 

conclusion is explained by the fact that deep learning requires 

large datasets to be efficiently trained and does not inherently 

encode physics laws in the intermediate representation of the 

detection stage. The work demonstrates a case where 

conventional image processing methods can prove superior to 

modern deep learning approaches and provide an advantage 

for applications where substantial and realistic image datasets 

are virtually impossible to acquire. 
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Fig. 4. Simulated bleeding detection results in consecutive frames where the ground truth is represented in green, the conventional image processing 

approach is highlighted in blue, the weakly supervised approach is highlighted in red, and the unsupervised approach is highlighted in magenta. 


