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Abstract - The vast majority of sensors used in autonomous robotic
systems are submitted to uncertainty sources that often generate
contradictory data that must be interpreted in order to optimize the
reliability of the information extracted from the models that are built
from those measurements. When certainty occupancy maps are used to
represent the workspace of a robot, the estimation of the uncertainty level
becomes a critical issue as it must become an active part of the model.
Numerous techniques such as the Bayesian theory, the Dempster-Shafer
theory of evidence and fuzzy logic inference schemes have been proposed
to achieve data fusion of uncertain measurements. However, the
performance of these approaches has not been extensively investigated
and compared in the specific context of certainty occupancy maps
construction. This paper presents the results of an experimental
investigation that has been conducted to adapt, implement and evaluate
these three data merging techniques to achieve smooth progressive
refinement in the construction of occupancy grids based on cumulative
uncertain range measurements. The context of the application considered
is that of collision-free path planning for mobile robots.

I. INTRODUCTION
Merging data from various sensors and from numerous

viewpoints became mandatory with the evolution of sensing
technologies and autonomous robotic systems. Intrinsic limitations
of specific technologies are now stimulating the development of
multi-modal sensing devices [1, 2]. However, the combination of
measurements representing the same physical reality but collected
with different approaches for which error models differ brings
important concerns on the handling of associated uncertainties.

Various strategies have been proposed in the literature. The
classical Bayesian theorem [3] has been widely used in many
applications mainly due to its relative simplicity and computational
efficiency. A generalization of the Bayesian method known as the
Dempster-Shafer theory of evidence [4, 5] provides inference
mechanisms that are closer to human reasoning while its statistical
performance mostly remains similar to that of the Bayesian theory
[6]. Leung et al. [7] have investigated the two statistic-based
approaches of Bayes and Dempster-Shafer for the recognition of
targets in noisy radar images and observed their respective strengths
and limitations, namely a higher robustness in Dempster-Shafer at
the expense of a higher computational cost. Wu et al. [8] proposed
an extended weighted Dempster-Shafer theory of evidence which is
able to take into account the reliability, or error level, of respective
sensors as a means to improve sensor fusion accuracy in
progressive refinement modeling applications. This aspect cannot
be easily handled with the Bayesian inference method. Yang [9]
conducted an analytical comparison of the Bayesian and Dempster-
Shafer theories in the context of mapping and localization of mobile
robots and put in evidence another advantage of the Dempster-
Shafer approach, that is the capability to encode and track a
distinction between parts of the environment that are unknown
because they have not been scanned and regions that are uncertain
because of numerous contradictory measurements.

Another class of data fusion methods consists of fuzzy logic
inference engines. Fuzzy logic appears as a more intuitive approach
to merge uncertain information. Fuzzy memberships and rules
definition are mainly inspired by designer’s experience, perception
and knowledge or the average performance of sensors. Zhu et al.

[10] investigated the Dempster-Shafer evidence theory and
proposed a parallel with fuzzy sets representation, demonstrating
that the approaches can be made consistent according to the way the
probabilistic evidence is represented. In our previous work, an
elementary fuzzy logic inference system has been developed to
merge range measurements in a progressive refinement modeling
strategy with constructive and destructive contributions [11]. This
initial experimentation demonstrated the relevance of the method. A
refinement is proposed in the present work to allow direct
comparison with the other theoretical approaches. 

On the other hand, if uncertainty is to be encoded in the virtual
representation resulting from data fusion, the encoding scheme
must provide a sufficient flexibility. The pioneer work of Moravec
on certainty grids [12] thoroughly explored the concept of
probabilistic modeling. Certainty models offer an opportunity to
propagate uncertainty from the sensors through the registration
estimation and to encode the resulting confidence on the
information directly in the model. This option is not possible with
classical discrete representations where information is encoded in
an absolute binary way (true/false, empty/occupied). Certainty
maps allow the progressive refinement of the representation which
is critical in exploration of unknown environments. New
measurements, even if provided from uncertain sensors, can
contribute to increase the level of confidence in the mapping.
Rendas et al. [13] observed the importance of taking into account
the past knowledge about the environment to make future decisions
in safely operating an autonomous vehicle in unknown space.

However, a mathematically rigorous estimation of the
probability of the state of a variable, such as space occupancy, is
hardly achievable as this probability heavily relies on an accurate
knowledge of the sensor’s error characteristics, which are difficult
to estimate. Often, a relative knowledge of the risk to perform an
operation is sufficient to make the safest decision possible. The
fusion method must then ensure the coherence of the model through
its constructive and destructive refinements, the relative level of
certainty being based on the best available estimate of the sensor’s
accuracy.

Facing this need to evaluate various merging schemes and to
adapt them for operation in workspace modeling with progressive
refinement, an experimental study was conducted with a simulated
mobile platform equipped with a range finder to map cluttered
environments. This paper presents an experimental implementation
and an adaptation of three data merging approaches, the Bayesian
theory, the Dempster-Shafer theory of evidence and a fuzzy logic
inference engine, to identify strategies that are the most appropriate
in this specific context. The aspects of richness and accuracy of the
environment map, ease of tune, capability of refinement and overall
computational workload are mainly considered.

The following sections define the sensor model used for
experimentation and summarize the merging schemes. Details of
the adaptation made to merging techniques to achieve certainty
occupancy maps with progressive refinement are discussed. The
experimental testbed is presented to illustrate how uncertain
measurements were collected and manipulated. An extensive
comparative analysis is proposed to identify the strengths and
limitations of each of the merging schemes for this application.
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II. SENSOR UNCERTAINTY MODEL
In order to obtain an certainty occupancy map through the merge

of uncertain range measurements a typical model of the
performance of a range sensor was used. This model maps the
distance, , between the sensor and the surface of an object as a
percentage representing the risk that space is occupied, , given
that the sensor’s accuracy follows a Gaussian distribution of
variance, .

(1)

where  corresponds to the numerical measurements provided by the
sensor.

The parameters of this model were empirically estimated to
match those of a standard laser range finder used in our previous
work. This sensor model is designed to match the evolution of the
probabilistic state of occupancy along the scan line on a physical
scene. That is, the region between the sensor and the object is empty
(low ), the area located close to the object’s surface is most
probably occupied (high ) and the region behind the surface of
the object is occluded, that is in an unknown state ( ).
This occupancy mapping is presented in figure 1.

III. MERGING SCHEMES

A. Bayesian theorem
The classical Bayesian theorem provides a straightforward

mathematical means for estimating the probability of a given
parameter’s state, P, resulting from the direct merge of two
uncertain measurements having their own level of confidence, P1
and P2 respectively.

(2)

This rule can be interpreted in two ways: first, if P1 and P2
represent two separate measurements, eq. (2) will combine them in
an estimate of the state that depends on both contributions; second,
if P1 represents the current state of the model and P2 corresponds to
a new measurement, the result of the merge will be an update of the
model state that takes into account the memory of the past
measurements and the information provided by the new data.

Starting from a fully unknown model, that is P(ρ)=0.5
everywhere, and applying eq. (2) recursively leads to the desired
progressive refinement of the state estimate as information is
accumulated in the model following the availability of new
measurements. According to the nature of the information perceived
in the past, that is empty or occupied space for our application, the
memory encoded in the model might evolve in various ways,
preserving the past knowledge on a short-term or long-term horizon.

Fig. 1. Range sensor model with Gaussian uncertainty.

This characteristic is illustrated in figure 2 where the Bayesian
method is initially applied iteratively to merge a sequence of 10
consistent measurements (fig. 2a) that are followed by a sequence of
20 perturbations (fig. 2b) before another set of 10 consistent
measurements is provided by the sensor (fig. 2c). The sensor is
assumed to be located at 0 cm.

As consistent measurements indicating the surface of an object
at 50 cm are successively provided, the probability of occupancy
rises toward 1.0 around the object’s surface while the zone located
between the sensor and the object progressively drops to 0.0,
making the confidence in the model stronger. When erroneous
measurements start to report an object farther away from the sensor
(located at 60 cm), a new region starts to see its probability of
occupancy grow until it reaches the maximum. However, as the
region where the object was supposed to reside (around 50 cm) is
now seen as empty by the sensor, its probability progressively
decreases to reach 0.0. This illustrates the effect of short-term
memory when new measurements are collected over a given area.

Finally, an extra set of measurements indicate that the object is
really located at 50 cm. When this information is merged with the
perturbed model, the probability of occupancy around 50 cm is
brought back progressively. However, the zone around 60 cm is now
occluded by the object and cannot be measured by the sensor.
Therefore, subsequent merges combine the current state of the
model for this region with 0.5, according to the sensor model. Given
the Bayesian theorem, a merge with 0.5 is neutral. As a result, the
model keeps a long-term memory that there were measurements
indicating the presence of an object around 60 cm. These results are
used as a reference for the experimental study.
B. Dempster-Shafer theory of evidence

Even though the Bayesian method is a valuable approach to
merge uncertain measurements, this approach does not provide a
strong mechanism to differentiate between various types of
unknown states. For example, following the example of section A,
no difference is made between zones that have never been explored
and regions where contradictory measurements led to unknown
occupancy state (0.5).
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Fig. 2. Progressive model refinement with Bayesian theorem.
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The generalized theory of Dempster-Shafer implies an
enumeration of all mutually exclusive alternatives, as defined by the
frame of discernment, . This frame of discernment includes all
possible combinations of events. For example, in the case of
occupancy representation, a valid frame of discernment is given by:

(3)
where  represents occupied space,  represents empty space,

 represents unknown space state, that is a lack of information
that preempts any conclusion, and  represents any other state,
excluding “occupied”, “empty” and “unknown”.

A basic probability density function, , determines the
confidence, or belief, in the information provided by the sensor.
When applied on a measurement from a sensor, the estimate of this
belief comes from a sensor uncertainty model.

From there, two important concepts dictate the behavior of the
Dempster-Shafer method, and the uncertainty estimation on the
occupancy model in our application. These are the belief and the
plausibility. The belief is the level of confidence that one can have
into a given event to happen based on the information reported by
the sensors that directly supports this event. The plausibility
measures the degree of confidence that one can have into that event
based on the information provided by the sensor that does not
directly contradict this event. In other words, evidences that say
something else than what we are looking for.

Given an evidence, , by a sensor that a region of space is
occupied. The belief and the plausibility are computed as:

(4)

(5)

Adapting these relationships to the frame of discernment of
interest in our workspace occupancy modeling, we can rewrite eqs.
(4) and (5) as:

(6)
(7)

And similarly for empty and unknown space:
(8)
(9)

(10)
(11)

Given that we want to use the same sensor uncertainty model as
with the Bayesian theorem to provide a valuable comparison basis, a
mapping function from the Gaussian occupancy probability
distribution, , to the basic probability density function, ,
must be defined. To achieve this, a sequence of linear functions have
been used as presented in figure 3. This diagram puts in evidence the
capability to explicitly encode the lack of information on the status
of a region of space resulting from uncertainty or errors in the
measurements when a Dempster-Shafer approach is used. For
example, if a region has 37% probability of being occupied. With
the Bayesian model, this would automatically correspond to 63%
probability of being empty. On the other hand, the Dempster-Shafer
theorem does not conclude on the evidence that this region is empty.
It rather estimates a plausibility of 63% (1-Belief(O)) that this space
is empty. This opens a whole new set of opportunities to refine the
encoding of the occupancy model by offering the capability to
represent unknown state by assigning belief to generic events such
as {O,E}.

This makes the strength of Dempster-Shafer theory as everything
is not simply true or false, empty or occupied. There might be
sensors clearly reporting that a region is occupied, thus increasing
the belief, while other sensors do not confirm that it is occupied nor
confirm that it is empty, thus not reducing the plausibility. The
confidence interval for a given measurement is bound by the belief
and the plausibility for a given state.

Fig. 3. Conversion between the Gaussian sensor uncertainty model and
the basic probability density function of Dempster-Shafer.

To merge successive information provided by the sensors, m1 and
m2, in a consistent way, Dempster-Shafer define a merging rule as
follows:

(12)

where .
This rule can be applied recursively between two measurements

or between the current state of the model and a new measurement as
described in section III.A for the Bayesian merge equation.

Another particularity that has to be taken into account here is that
the fully unknown state of the original model is represented by a
belief and a plausibility of the unknown state that is maximum,
which corresponds to belief({O,E})=plausibility({O,E})=1.0 since
there is no initial evidence about the current state of occupancy of
space. The initial certainty map must then be encoded in a slightly
different way.

In order to test the behavior of the Dempster-Shafer theorem in a
recursive merging application with consistent and contradictory
measurements, a series of measurements were presented to the
merging procedure when starting from a fully unknown state, as
shown in table 1. The first set of 5 measurements place the region of
interest in empty space, making the belief in empty state rise
progressively while the belief in unknown state and the plausibility
of occupancy state decrease. Next a set of 10 other measurements
contradict the initial information and place the region of interest in
occupied space. A transition is observed where the belief in
occupied space increases while the belief in empty space is reduced.
However, the belief in unknown state continues to drop as extra data
are now provided about the state of the space even though they are
contradictory. The plausibility of emptiness is reduced while that of
occupancy increases.

Table 1. Evolution of belief and plausibility values over
the merge of contradictory measurements.
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7 O 0.086 0.886 0.029 0.114 0.886
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One can observe that after the merge with the 10th measurement,
the belief of occupancy and the belief of emptiness are both around
0.5 as an equal number of contradictory measurements have been
merged for each group. At the same time, the belief in unknown
space is already very low as the uncertainty does not result from the
lack of measurements. Would have it been the case, the
belief({O,E}) would still be large. This specific encoding of the
belief in unknown state of space provides an essential element for
the interpretation of raw data contained in occupancy models that
can reveal to be critical for efficient robot guidance. Such
information is not permitted with the Bayesian scheme.

Finally to evaluate the progressive refinement process that can
be achieved with the Dempster-Shafer theory of evidence in
comparison with the results obtained with the Bayesian model, the
resulting mapping based on belief and plausibility needed to be
converted back to probability of occupancy on a 0-100% scale. A
cascaded Gaussian transfer function depicted in Figure 4 has been
introduced to achieve this conversion at the expense of losing the
specific information about unexplored regions versus contradictory
measurements. However, this conversion is not required normally
and is performed here only for comparison between techniques.

Experimentation was conducted with the same range dataset as
used with the Bayesian approach. That is a sequence of 10
consistent measurements were successively merged (fig. 5a),
followed by 10 perturbed data that estimate the object’s surface to
be 10 cm farther away from the sensor (fig. 5b). Finally, a last set of
10 measurements consistent with the original set were again
provided (fig. 5c). The results are very similar to those obtained
with a Bayesian merge except that minimum and maximum
convergence levels are slightly lower due to the boundaries imposed
on the Gaussian distribution for the final conversion.

This demonstrates that the Dempster-Shafer method can be
adapted to provide a similar progressive refinement modeling
strategy as that obtained with a Bayesian approach. However, if the
model takes full advantage of the extra information encoded in
belief and plausibility values, especially about unknown state of
space, unexplored areas and contradictory measurements can be
distinguished. The progressive refinement provides meaningful
information about the confidence that we have on what is known but
also on what is unknown. These observations suggests that a model
based only on a percentage scale of occupancy probability is not the
best suited for modeling with uncertainty management.

Fig. 4. Conversion from the Dempster-Shafer mapping to
a probabilistic occupancy representation.

C. Fuzzy logic inference
Unlike the Bayesian and Dempster-Shafer approaches, fuzzy

logic inference appears as an intuitive way to merge redundant
information. In previous work, it has been demonstrated that it is
possible to reproduce the desired progressive refinement behavior
with a fuzzy logic set of membership functions and rules [11]. A
refined fuzzy logic system is proposed here that smoothens the
progressive refinement in the evaluation of the space occupancy
certainty level. The proposed fuzzy logic inference engine preserves
the desired long-term and short-term memory effects.

The system input correspond to a mapping of the occupancy
state of space along the line of scan of the sensor. This area is
discretized and the fuzzyfication process operates successively on
each of the resulting cells. The crisp input is defined as a fuzzy state
of occupancy at a given distance with respect to the sensor. Input
membership functions are classified in an order that matches the
typical occupancy distribution. As shown in figure 6, starting from
empty space just in front of the sensor located on the far left-hand
side, it evolves up to unknown space behind the surface of the
object, with a region of occupied space around the surface of the
object located at 0. The rate of transition between these zones is
adjusted according to the sensor uncertainty model as before.

The merge between measurements corresponding to a same
region is achieved through a set of fuzzy inference rules that are
defined in such a way that the refinement process occurs in both
directions (toward empty or occupied) as the certainty on the state
of space increases with the availability of new measurements. Table
2 presents the expanded set of rules that has been defined to refine
the resolution of the fuzzy data merging method. As the number of
membership functions has been increased from the original version,
the number of rules has been enlarged. Rules have also been revised
to improve performances. These rules can be applied between two
measurements or between the current state of the model and a new
measurement as described in section III.A.

Table 2. Data fusion fuzzy inference rules.
P b bilit f P( )

Ba
si

c 
pr

ob
ab

ilit
y 

de
ns

ity
 fu

nc
tio

n 
(m

)

{E} {O}

{O,E}

Input 1 (new measurement)

In
pu

t 2
 (m

od
el

 c
ur

re
nt

 s
ta

te
)

E E E E O O U
M.P.M.P. P. M.A.

E

E

E

E

O

O

U

M.P.

M.P.

P.

M.A.

U

U

U

P.

P.

U

U

O

O

O
M.A.

O
M.A.

O
M.P.

O
M.A.

O
M.A.

O

O
M.P.

O
M.P.

O
A.

E
P.A.

E
M.A.

E
A.

O
A.

O
M.A.

O
A.

O
M.A.

E
A.

O
A.

O
A.

E
A.

O
A.

E
P.

E
P.

E
P.

E
P.

E
P.

E
P.

E
A.

E
M.P.

E
M.P.

E
M.P.

E
M.P.

E
M.P.

E
M.A.

E
M.A.

E
M.P.

E
M.P.

E

E

E

E
A.

M.A.

O
P.

E
A.

O
M.A.

E
A.

E
P.
E
P.

O
A.

M.A.

O
P.

E
A.

O
P.

O
A.

E
M.A.

E
P.

O
M.A.

A.

O
M.P.

U

O
P.

O
A.

E
M.A.
E

M.A.
O
P.

U

O
M.P.

O
A.

O
M.P.

O
A.

E
A.
E
A.

E
A. M.A.

O
M.A.

O
M.A.

E
A.

E
M.A.

E
M.A.

E
P.

E
A. U O

A.
O
A.

O
A. A.

O
P.

O
M.A.

O
A.

E
A.

E
M.A.

E
M.A. U O

A.
O

M.A.
O

M.A.

O
M.A. A.

O
P.

O
P.

O
M.A.UE

A.
E

M.A.
O
A.

O
A.

O
M.A.

O
P.

O
P. U O

M.P.
O

M.P.
O
P.

O
A.

E
A.

E
A.

O
M.A.

O
M.A.

O
P.

O
P.

E

E

E

E.

E E E E

Fig. 5. Progressive model refinement with Dempster-Shafer theory of evidence.
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Fig. 6. Fuzzy input membership functions.

When measurements are merged using this fuzzy approach, the
resulting occupancy model is encoded in the fuzzy space. That is
the level of certainty on the state of occupancy of space is
represented by fuzzy labels. In order to allow a comparison with the
Bayesian and the Dempster-Shafer schemes, as defuzzyfication
stage has been defined that converts the representation from the
fuzzy space to the probabilistic occupancy space (on a 0-100%
scale). The defuzzyfication procedure provides a mapping between
the fuzzy tags and their respective activation level and the
probability of occupancy. Figure 7 presents the output membership
functions that were used for this extended fuzzy logic inference
engine.

In order to compare the behavior of this data fusion method with
the previous ones, a similar test was made using the proposed fuzzy
logic inference engine. The results are presented in figure 8. A first
sequence of 7 consistent measurements were merged (fig. 8a),
followed by 7 perturbed data that estimated the object’s surface to
be 10 cm farther away from the sensor (fig. 8b). Finally, a final set
of 7 consistent measurements were again provided with an
estimated distance equal to that of the very first set of
measurements. (fig. 8c). 

From these curves, we observe that the progressive refinement is
preserved but the evolution of the certainty on the occupancy state
does not evolve as smoothly as with the Bayesian theorem or the
Dempster-Shafer theory of evidence. Actually the behavior
extensively depends on the number of members in the input and
output functions, the shape of those membership functions
(triangular, Gaussian) and the setting of the fuzzy rules. Moreover,
the defuzzyfication step appears to be computationally expensive
and significantly slows down operation, taking up to 45 minutes for
this model during our experimentation.

If a fuzzy merging scheme would be selected, this suggests that
the certainty occupancy model would preferably be saved and
manipulated in the fuzzy space where the occupancy status of each
cell is represented by fuzzy tags along with their respective degree
or confidence. Tuning of the fuzzy rules also revealed to be difficult
in spite of its intuitive nature. Further refinement to the merging
process, especially to smoothen the evolution of the progressive
refinement, would imply extra membership functions and fuzzy
rules to be added. This appears as major limitation of this approach.

Fig. 7. Fuzzy output membership functions.

IV. EXPERIMENTAL TESTBED
The comparison between these three data merging methods has

been performed in the context of the exploration of unknown space
with mobile robots. A simulation of a mobile platform equipped
with a virtual laser range finder was designed on Matlab running on
a Sparc 10 Sun workstation [14]. All merging schemes have been
implemented using the same sensor uncertainty model and run in
similar conditions with the same dataset of range measurements.
Apart from generating the one-dimensional curves presented above,
the simulator provides a visual interface to render 2D certainty
maps resulting from successive merge of range measurements
collected from various viewpoints over a limited field of view.

Figure 9 presents the resulting 2D certainty maps obtained with
this simulator when the measurements collected from 8 different
viewpoints are merged using the three data fusion techniques that
are analyzed. White cells corresponds to regions where the certainty
of occupancy is high while black cells represented a high certainty
of emptiness. We observe that all techniques are able to provide
similar realistic occupancy mappings of a cluttered space with
progressive refinement of the certainty level.

The computational workload implied by the use of the Bayesian
theory is the lowest among all methods. However, the use of
Dempster-Shafer theory of evidence only slightly raises the
computational workload as more equations need to be process. But
this slight increase provides supplementary information, especially
a specific encoding of unknown space, which is not available with
the Bayesian approach. The main constraint imposed by the
Dempster-Shafer method comes from the need to define a more
complex encoding scheme for the certainty occupancy model which
cannot map occupancy state only with a percentage value but rather
requires a specific encoding of belief and plausibility values for
each region of space. The resulting model is therefore slightly
larger. Finally, the fuzzy logic encoding scheme has a higher
computational workload that becomes intractable for real-time
systems if the defuzzyfication stage is used. Otherwise, when the
certainty occupancy model is to be encoded in the fuzzy space, the
computational workload remains tractable but the tuning of the
membership functions and fuzzy inference rules is challenging in
spite of its intuitive nature. On the other hand, a fuzzy logic
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Fig. 8. Progressive model refinement with fuzzy logic inference.
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inference approach for data fusion offers extra flexibility on the rate
of transition of the uncertainty estimation when consistent and
erroneous measurements are combined. Not being limited to
predefined merging rules as with the Bayesian (eq. (2)) and the
Dempster-Shafer (eq. (12)) methods gives a maximum flexibility to
tune the behavior of the data fusion. This might reveal
advantageous when safe operation is a major concern.

V. CONCLUSION
This research work proposes an adaptation and a comparison of

three data merging approaches for the construction of occupancy
maps where the level of uncertainty of range sensors and the
confidence resulting from the merge of overlapping measurements
is directly estimated. Experimentation demonstrated that the
Bayesian theorem, the Dempster-Shafer theory of evidence and a
fuzzy logic inference engine can all be used to create occupancy
maps that are representative of the physical reality with a
progressive refinement on the certainty level of occupancy or
emptiness for a given region of space.

The Bayesian approach appears as a simple and efficient
technique that requires a minimum of analysis to obtain a
meaningful representation. It provides both an extreme simplicity of
implementation and a high computational efficiency.

Dempster-Shafer theory of evidence is a generalization of the
Bayesian theory which is able to handle aspects that are neglected
with the Bayesian scheme such as a clear differentiation between
unknown occupancy state resulting from contradictory
measurements or from the lack of exploration of a given region.
This characteristic reveals strategically advantageous to facilitate
and optimize collision-free path planning in synchronization with
optimal sensor positioning. It also provides an excellent method of
selection of the input when multi-modal sensing technologies are
used as unknown areas resulting from many contradictory
measurements can be identified to switch the sensor to another
mode. On the other hand, a Dempster-Shafer approach is slightly
more difficult to implement as sensor’s error level must be mapped
to the basic probability density function.

Finally, the fuzzy logic inference fusion method appears to be
the most difficult to tune and the less efficient in terms of
computational workload. However, this approach opens the door to
a different modeling scheme of uncertain representations where
occupancy is no longer represented by percentage or degree of
belief but rather by a set of fuzzy tags with their respective degree
of confidence. When combined with a fuzzy logic inference engine
for navigation and control as found on many mobile robot
platforms, this scheme might be advantageous as it directly
provides fuzzy input data.

Future investigation of data merging techniques for the
construction of certainty occupancy models will extend the
comparison to Kalman filters which provide means to explicitly
estimate both the occupancy state of space and the associated
uncertainty level in parallel.
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