To appear in: Math. Struct. in Comp. Science (1997), vol. 7, pp. 7 Copyright © Cambridge University Press

Normalization and the Yoneda Embedding

DJORDJE CUBRIC!t PETER DYBJER 2% and PHILIP SCOTT 3§

Y DPMMS, University of Cambridge, 16 Mill Lane, Cambridge CB2 18B, UK.
e-mail: cubric@triples.math.mcgill.ca

2 Department of Computing Science, Chalmers University of Technology,
S5-412 96 Gdteborg, Sweden . e-mail: peterd@cs.chalmers.se

3 Department of Mathematics, University of Ottawa, 585 King Edward,
Ottawa, Ontario KIN 6N5 , Canada. e-mail: phil@csi.uottawa.ca

Received

We show how to solve the word problem for simply typed ABn-calculus by using a few
well-known facts about categories of presheaves and the Yoneda embedding. The formal
setting for these results is P-category theory, a version of ordinary category theory
where each hom-set is equipped with a partial equivalence relation. The part of
‘P-category theory we develop here is constructive and thus permits extraction of
programs from proofs. It is important to stress that in our method, we make no use of
traditional proof-theoretic or rewriting techniques. To show the robustness of our
method, in the Appendix we give an extended treatment for more general A-theories.

1. Introduction

In this paper we describe a new, categorical approach to normalization in typed A-
calculus and related theories. Traditionally, the operational semantics of A-calculi have
been based on rewriting theory or proof theory, e.g. normalization or cut-elimination,
ordinal assignments, Church-Rosser, etc. Such techniques, e.g. the familiar Tait-Girard
computability method (Girard, Lafont, Taylor 1989), or the method of logical relations
(Statman 1985; Mitchell 1990) are often based on ingenuity and lack the explanatory
power of a model-theoretic proof. At the same time, they introduce specialized syntactic
notions intrinsic to the technique (e.g. neutral terms, admissible logical relations, etc.)
but orthogonal to the problem.

We use categorical methods to model By convertibility in a presheaf category. This
arises essentially from the fact that the Yoneda functor preserves cartesian closedness.
This technique has intriguing analogues to the Joyal-Gordon-Power-Street techniques for

T Research supported by an NSERC postdoctoral fellowship at the Department of Pure Mathematics,
Cambridge University.

 Research supported from ESPRIT Basic Research Action 6811 Categorical Logic in Computer Science
(CLiCS-1II) and from TFR, the Swedish Technical Research Council.

§ Research supported by an operating grant from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC).

D. Cubrié, P. Dybjer and P. Scott 2

proving coherence in various structured (bi-)categories and is also closely related to the
(Berger and Schwichtenberg 1991) method for normalizing A-terms. We discuss history
and related work in more detail in section 5 below.

In a certain sense, our program is dual to Lambek’s original goal of categorical proof
theory (Lambek 1968), in which he used cut-elimination to study categorical coherence
problems. Here, we use a method inspired from categorical coherence proofs to normalize
lambda terms (and thus intuitionistic proofs.)

However to actually extract an algorithm from these observations requires us to con-
structively reinterpret the categorical setting, as explained below. It is this intuitionistic
aspect of our work which is both novel and fundamental to extracting a normalization
algorithm. Not only is this a non-trivial example of program extraction from a structured
proof, but it also appears to illustrate a fundamental dictum of Martin-L&f, that one may
understand normalization by direct semantic reflection.

1.1. Categorical Normal Forms

We can characterize a normal form function abstractly in the following way. Let 7 be
a set of terms and ~ a congruence relation on terms. One way to decide whether two
terms are congruent is to find an abstract normal form function, by which we mean a
computable function nf : 7 — 7T satisfying the following conditions for some (finer)
congruence relation = :

NF1 f ~ nf(f)

NF2 f ~ g = nf(f) =nf(g)
NF3 C ~

NF4 is decidable.

From (NF1), (NF2) and (NF3) we see that f ~ g & nf(f) = nf(g). This clearly permits
a decision procedure: to decide if two terms are equal, compute nf of each one, and see if
they are = related, using (NF4). The normal form function nf essentially “reduces” the
decision problem of ~ to that of =.

Here we will consider the example where 7T is a set of A-terms of a given type, ~ is O7-
conversion, and = is a-congruence. Let us see heuristically how simply typed A-calculus
can be given a normal form function nf, from categorical considerations.

Recall that A-terms modulo gn-conversion can be organized as the arrows of a free
ccc Fx on the set of sorts (atoms) X. The universal property of a free ccc is as follows:
for any ccc C, and any interpretation of the atoms X in 0b(C), there is a unique (up to
iso) cce-functor [—] : Fax — C freely extending this interpretation. Now let C be the
presheaf category Set”*°”. There are two obvious cce-functors: (i) the Yoneda embedding
Y : Fy — Set?*” is a cce-functor, (ii) if we interpret the atoms by Yoneda, there is also
the free extension to the ccc-functor [—] : Fx — Set?x™
there is a natural isomorphism ¢ : [—] — Y. Hence, by the Yoneda lemma, for each hom-
set we can construct an inverse of the interpretation [—] (on this hom-set) according to
the following commuting diagram

. By the universal property,

[-]

Fx(A, B) - Set” ([A], [B])

—4(1a) Y dge—°qy

Set”x (YA, VB)

Hence, for any f € Fx(A,B), we obtain natural transformations YA —> [A] —]1
[B] 22 YB. In particular, evaluating at A gives the following functions: F (A4, A) -3 qA 5
~%' [B]A =3 Fa(A, B).

Let us now define the function

nf(f) = qp a ([F]alga’s(14)))
It immediately follows that
f=nf(f)
Indeed, this is just a restatement of part of the Yoneda isomorphism. But what does it
have to do with normalization? As it stands nf is nothing but the identity function on
Bn-convertibility classes of terms!

However, if we reinterpret this diagram in the setting of P-category theory we shall
show that nf indeed maps typed A-terms to normal forms. In a P-category each hom-set
is equipped with a partial equivalence relation (per). We can thus construct a free P-ccc
(Fx,~), where the arrows are actual A-terms and the per ~ on arrows is n-convertibility.
In this setting nf will be a (per-preserving) function on terms (a P-function), and not
just on convertibility classes of terms. As above, it follows immediately that nf is an
identity P-function, that is, an identity up to ~. But this is nothing but NF1:

f ~nf(f)

Moreover, the part of P-category theory that we use is constructive in the sense that all
functions we construct are algorithms. Therefore nf is computable.
It remains to prove NF2:

[~ g = nf(f) =nf(g)

This is the most subtle point. Here too the P-version of a general categorical fact will
help us: that the presheaf category SetC” is a ccc for any category C. In particular, let
C be the P-category (Fx,=) of sequences of A-terms up to a-congruence =. Note that
this P-category has the same objects and arrows as (Fx,~), but the pers on arrows are
different. Because of the freeness of (Fx,~) we have another interpretation P-functor

I-17 : (Fx,~ %PSet(fX’E)ap

(PSet is the P-version of the ordinary category Set.) This P-functor has the same effect

D. Cubrié, P. Dybjer and P. Scott 4

on objects and arrows as the previous interpretation P-functor:
[-1: (Fx,~) = PSetT*~)"

Hence, we can conclude that f ~ g implies [[f]] = [g] (here = refers to the per on
arrows in ’PSet(fX:E)DP). Since we can show that 4p, 4 and qE}A preserve = , it follows
that nf(f) = nf(g).

This concludes the summary of our method. In the remainder of the paper we develop
the relevant part of P-category theory in detail and show how to construct the normal
form function. Note that the development of P-category theory is essentially nothing but
the development of ordinary category theory, where the usual (set-theoretic) equality of
arrows is everywhere replaced by an explicit per on arrows which is part of the structure
of a P-category.

1.2. Plan of the Paper

The rest of the paper is organized as follows:

Section 2 gives the basic definitions of P-category theory. It finishes with the definition
of free P-cccs and shows how to extract the function nf. It is worth emphasizing that
the definition of nf for which NF1 holds is done uniformly for any free P-ccc.

Section 3 contains the proof that sequences of typed A-terms form a free P-ccc and
instantiates the general normal form function nf to this case. We also prove that this
nf satisfies NF2. It is worth remarking that the proof of NF2 (unlike the proof of NF1)
depends on properties of the particular presentation. For example, NF2 fails if we instead
construct nf from the proof of freeness of the P-ccc of categorical combinators with
syntactic identity as =.

Section 4 shows that the normal forms returned in the case of typed A-terms are long
Bn normal forms in the ordinary A-calculus sense.

Finally, in the Appendix we show how to apply our method to the word problem
for typed A-calculi with additional axioms and operations, i.e. to freely-generated ccc’s
modulo certain theories. This employs appropriate free P-ccc’s (over a P-category, a P-
cartesian category, etc.) We introduce various notions of A-theory, which are determined
not only by a set of atomic types, but also by a set of basic typed constants as well as a
set of equations between terms. Although our methods always yield an algorithm nf, it
does not necessarily satisfy NF4 (the decidability of =). What we obtain is a reduction
of the word problems for such free ccc’s to those of the underlying generating categories.

2. P-Category Theory
2.1. Basic Concepts

As mentioned above, P-category theory is like ordinary category theory, but equality
is systematically replaced everywhere by partial equivalence relations (i.e. symmetric,
transitive relations).

Definition 2.1. A P-setis a pair A = (JA|,~4), where |A]| is a set and ~ 4 is a partial
equivalence relation (per) on |A|.

If A is a P-set, we say |A| is its underlying set and refer to ~4 as P-equality . Given a
P-set A, let dom 4, the domain of ~ 4, be the set of elements a € |A| such that a ~4 a.
Note that ~ 4 is an equivalence relation on dom 4.

Definition 2.2. A P-function between the P-sets A = (|A|,~4) and B = (|B|,~p) is a
function f : |A| — |B| satisfying: a ~4 a' implies f(a) ~p f(a'), for all a,a’ € |A|.

Although P-sets and P-functions form an ordinary category, and even a cartesian
closed category (ccc), we shall be interested in P-analogues of these properties. To de-
scribe this, we first introduce some fundamental operations on P-sets corresponding to
the ccc structure.

Definition 2.3. We introduce the following P-sets:

o 1 is the one point P-set ({*},~), where % ~ x.

e Given two P-sets A and B, their cartesian product A x B is obtained by taking the
cartesian product of their underlying sets, with ~ 4« p defined pointwise.

e Given two P-sets A and B, their exponential B4 is obtained by taking the exponential
of their underlying sets, with P-equality of functions defined as follows:

f ~pag iff forall a,a’ €|A|,a~4a' implies f(a)~p g(a').

It is easily verified that the above constructions of P-sets are well-defined. Note that a
P-function from A to B is precisely an element in the domain of ~ga.

Definition 2.4. A P-category C is a set of objects ob(C), an indexed family of P-sets
(C(A, B))4,Beob(c) and two indexed families of P-functions 14 : 1 — C(4, A4), caB,c :
C(A,B) x C(B,C) = C(A,C) such that the appropriate diagrams from the definition of
enriched category theory describe ~-related arrows. Writing c4,5,c(f,9) as gf and all
pers as ~, we obtain the following explicit axioms:

) f~ f implies f' ~ f,

ii) f~ f'and f' ~ f" implies f ~ f",

i) 14~ 14,

iv) f~ f"and g ~ ¢’ implies fg ~ f'¢g’,

v) f~ f' implies 1f ~ f" and f1 ~ f’,

vi) f~f',g~¢g and h ~ k' implies (fg)h ~ f'(g'h’).

Remark 2.5. A slightly different, but equivalent, presentation of a P-category may be
given by restricting functions to domains of pers; for example, in the definition above,
(iii) says 14 € dome(a,ay, (v) says: for all f € domc(a,ay, 1f ~ f and f1 ~ f, and (vi)
says for all f, g, h in domains of appropriate hom P-sets, (fg)h ~ f(gh).

(
(
(
(
(
(

We will also need the following notion:
Definition 2.6. Given a P-category C, we say f € C(A, B) is a P-isomorphism if there
exists f~1 € C(B,A) such that f ~ f, f7' ~ f~L ffl~1pand f71f ~ 14.

Observe that P-category theory includes ordinary category theory by letting P-equality
be ordinary equality. But, in general, P-categories are not categories, although one may

D. Cubrié, P. Dybjer and P. Scott 6

obtain genuine categories from them by “sub-quotienting”. Note that in P-categories, as
in ordinary categories, we have a set of objects, not a P-set.

Notation We sometimes denote P-categories by (C,~) if we wish to emphasize a par-
ticular per structure on the hom-sets, i.e. that each hom P-set has the form C(A, B) =
(IC(A,B)|,~a4,B)- Of course there may be several P-category structures on the same
underlying data: (C,~), (C,=), etc.

Proposition 2.7. There is a P-category PSet, whose objects are P-sets and where
PSet(A,B) = B4, the P-set of all functions between the underlying sets, under P-
equality of functions.

Definition 2.8. Let C and D be two P-categories. A P-functor F :C — D is a function
F : 0b(C) = 0b(D) and an indexed family of P-functions F4 p : C(A,B) — D(FA, FB)
such that all the expected diagrams from the definition of enriched functors specify
related arrows. Explicitly, a P-functor satisfies (omitting subscripts):

(i) f~ f'implies Ff ~ Ff',

(i) Fl~1,

(iii) f~ f" and g ~ ¢’ implies F(fg) ~ (Ff')(Fg').

Remark 2.9. As in Remark 2.5 we can equivalently restate some of these defi-
nitions using domains of pers. For example, (iii) would be reformulated as: for all

[€ domep ¢y, 9 € domea By, F(fg) ~ (Ff)(Fg)

Definition 2.10. Let F,G : C — D be two P-functors. A P-natural transformation
0 : F — G is an indexed family of P-functions 84 : 1 — D(FA,GA) such that all the
expected diagrams from the definition of enriched natural transformation specify related
arrows. Thus, a P-natural transformation satisfies:

o 0a~0a,ie., 04 € dompraga), for all A
o f~ fleC(A, B) implies g(Ff) ~ (Gf')04 (we call this the P-naturality condi-
tion).

2.2. P-presheaves and P-ccc’s

Definition 2.11. Let C, D be two P-categories. The P-functor category D¢ is the P-
category defined as follows. Objects are P-functors from C to D. Arrows between F' and
G are indexed families of arrows 04 in |D(F'A,GA)| with P-equality of families defined
as follows: 6 ~pc(p, 0 iff

e 0 and @' satisfy the P-naturality condition ,

e For all A, 0A ~D(FA,GA) 014

A P-natural transformation from F to G is precisely an element in the domain of
~pe(F,q)- Note that the arrows in a P-functor category are all indexed families of arrows
04, not just the P-natural ones.

7

For every object F we define 1 : 1 — DC(F,F) to be the indexed family defined
by (1r)p = lrp. Likewise, we define cr g m : D(F,G) x D°(G,H) — DC(F,H) by
crGu(0,%)A = cracana(0a,Pa).

Notation In a P-functor category we denote the P-set of arrows from F to G by
DC(F, @) as usual, but sometimes also by PNV at(F,G), when the meaning is clear.

The opposite of a P-category is again a P-category. Therefore there is a P-category
PSet”™ whose objects are called P-presheaves.

Definition 2.12. Let C be a P-category. Define the P-Yoneda functor) : C — PSet¢”
by VB = C(_aB)

The functor Y is a well-defined P-functor, and we have the following P-version of
Yoneda’s Lemma:

Lemma 2.13. (P-Yoneda) Let C be a P-category.

(i) For every P-presheaf F : C°? — PSet, PNat(y —, F) is a P-presheaf.
(i) There is a P-natural isomorphism of P-presheaves

9:F - PNat(y —,F)

given by: for any ¢ € F(C), f € C(D,C), (8c(c))p(f) = (Ff)(c) and 651(17) =
ne(le)-

Corollary 2.14. For a P-category C
0B,4:C(A,B) - PNat(YA,VB)
is a P-isomorphism of P-sets.

We now introduce the P-version of a cartesian closed category.
Definition 2.15. A P-ccc is a P-category with the following distinguished arrows and
arrow-forming operations:

cLa 0 5B

Products 4947 AxB™§ 4, AxBZS B, — ;.
CY% AxB
f
Exponentials BA x 454E C'XA*;B
o REANy Y

such that the following rules are satisfied:
e P-Products
04~04, TAB~TAB, Tap ~Tap
if f~ f'then f~0a (for f,f':A—=T)
if f~ f',9~ g then (f,g) ~(f',g)
if f~ f',9~ g then 74 5(f,g)~ f'
if f~ f',9~g' then 7y p(f,g) ~ 4’
if k ~ k' then (74 gk, 7y gk) ~ k'

D. Cubrié, P. Dybjer and P. Scott 8

e P-Exponentials
EAB ~ EAB
if h ~ ' then h* ~ '~
if h ~ h' then e {h*mc 4,70 a) ~ h
if | ~ I then (e4,8(Imc,A, 70 4))" ~ 1.

Proposition 2.16. PSet is a P-ccc.
Proof. The P-ccc structure of PSet was given in Example 2.3, with the P-ccc structure
on arrows inherited from Set. m|
Theorem 2.17. If C is a P-category, then PSetC” is a P-ccc.
Proof. The cartesian closed structure of PSetC” is given as follows:
(i) 1A=1.
(i) (FxGA=FAxGA
(iil) GFA=PNat(YA x F,G).
On arrows f € C(B, A) define:
(iv) 1f=idq
v) Fx@)f=Ff)x(Gf)y:FAxGA—FBxGB
(vi) GFf:PNat(C(—,A) x F,G) - PNat(C(—,B) x F,G) is defined as follows: for
0 € PNat(C(—,A) x F,QG), C € ob(C), and (g,¢) € C(C,B) x FC:

(G F)O)c(g.c) = bc(fg.c) (1)

The P-ccc structure on arrows of PSetC” is defined by analogy with ordinary presheaves
as follows:

(vii) The evaluation € : G¥ x F — @ is given by:
€a(0,a) = 04(14,a) (2)
for all € GFA and a € FA
(viii) The exponential transpose §* : H — G¥ of § : H x F — G is given by: for all
€ HA h:C(B,A),be FB,
(04 (2))B(h,b) = 6p((Hh)(z),b) 3)
It is easy to see that all transformations above are P-natural. a

We are interested in P-functors that preserve P-ccc structure up to P-isomorphism.
We shall use the following explicit notion:
Definition 2.18. Let C,D be P-ccc’s. A P-cce functor is a P-functor H : C — D
equipped with specified P-isomorphisms r+: T — H T,raxp : HAXHB — H(Ax B),
rga : (HBYHA — H(B4), whose inverses are as follows:
i) r7' =0t :HT —T.
(ii)r L p = (Hm,Hr') : H(Ax B) — HA x HB.

(iliyrgh = (He)rpaxa)* : H(BA) — (HB)HA,

Remark 2.19. The above r-notation is slightly ambiguous. A more precise notation
would be to introduce three families z : T — H(T), yap : HA x HB — H(A x B),
za,p : H(BA) — (HB)H4, along with their inverses. Note that y and z are P-natural
in both arguments. However, we shall keep the notation 7+ = z, raxp = ya,p and
rpa = za,p in the sequel.

Proposition 2.20. Let C be a P-ccc. The P-Yoneda functor Y : C — PSet’” is a
P-cce functor.

Proof. We shall examine the explicit structure referred to in Definition 2.18. In each
case, r~! comes from that definition. So, for every object C' € C we define (rt)c : 1C —
C(C,T), (r7")c : C(C, T) = 1C, (raxn)c : C(C, A) xC(C,B) = C(C, A x B), (rATiB)C :
C(C,A x B) - C(C,A) x C(C,B), (rga)c : PNat(C(—,C) x C(—,A),C(—,B)) —
C(C,B*) and (rgi)c : C(C, B4) = PNat(C(—,C) x C(—, A),C(—, B)) as follows:

(rr)c(*x) =0, (r:Y)c(l) = *
(raxs)c(f,9) =(f,9), (raxp)c(h) = (xh,a'h)
(rga)c(8) = (Boxal(m, @), (rgh)c(k)plc,a) = e(ke,a)

foreveryl:C = T,f:C =3 A,9g:C B, h:C 3AxB k:C —BA,¢c:D—C,
a:D — Aand § € PNat(C(—,C) xC(—,A),C(—,B)).

It is easy to see that the above are indeed components of P-natural isomorphisms
which satisfy Definition 2.18. m|

2.3. Free P-ccc’s

We work with the following definition of freeness (for some bicategorical aspects, see
Remark 3.17 below).

Definition 2.21. Let X be a set. Fx is a free P-ccc on X provided there exists a
function I : X — ob(Fx) such that for any P-ccc C and any function J : X — 0b(C),
there is a P-ccc functor [—] : Fa — C making the following diagram commute:

and such that for any other P-ccc functor G : Fx — C satisfying the same property as
[—], there is a P-natural isomorphism ¢ : [—] = G.

D. Cubrié, P. Dybjer and P. Scott 10

It follows that if Fx is a free P-ccc as above, then there is a P-ccc functor [—] :
Fr — PSet”™"" which agrees on generators with Yoneda, together with a P-natural
isomorphism g: [—] = V.

We have now developed the P-category theory needed for defining the function nf :
C(A,B) — C(A, B) for an arbitrary free P-ccc C, as outlined in the introduction:

Definition 2.22. For f € Fy(A, B), define
nf (f) =apa ([F]a (@2ls (14)))

Hence, as in the discussion in the introduction, we immediately conclude axiom NF1
Corollary 2.23. f ~ nf(f) .

3. A Normal Form Algorithm for the Typed A-Calculus

There is a well-known correspondence between cartesian closed categories and typed \-
calculi with product and terminal types (see (Lambek and Scott 1986)). In this section,
from our P-perspective, we expand on the remark of A. Pitts ((Pitts 199-), Section 4.2)
that a similar and quite natural connection can be established between ccc’s and typed
A-calculi without product and terminal types. We choose Pitts’ connection, because our
nf then satisfies NF1 — NF4 with = as ordinary a-congruence; this is not the case for
Lambek-Scott’s terms up to a-congruence, nor for categorical combinators up to syntactic
identity (cf. also Remark 3.10). We first develop the connection between free P-ccc’s and
typed A-calculi with no free arrows or additional theories. The extension to the more
general case is discussed in Remark 3.10.

3.1. Typed \-Calculus

We briefly recall the typed A-calculus, as presented in (Barendregt 1984; Girard, Lafont,
Taylor 1989; Lambek and Scott 1986; Mitchell and Scott 1989).

Definition 3.1. (Typed A-calculus) Let Sorts be a set of sorts (or atomic types). The
typed A-calculus generated by Sorts is a formal system consisting of Types, Terms and
Equations between terms, as follows:

Types This is the set inductively generated from the set of Sorts using the following
rules: Sorts are Types and if A and B are types then so is BA.

Terms To every type A we assign a denumerable set of typed variables denoted z :
A,... A contert is a finite (possibly empty) sequence of different typed variables
x1: A1,...,2, ¢ Ay, often denoted X. Terms (in context) are inductively generated
using the following rules:

r:Aex Y,x:Avt: B YSos:BA Ypt: A
Ypx:A Yeizdit:BA S>st: B

Note, we write Az?.t , rather than Az : A.t
Equations between terms Equations between terms (in context) of the same type are
inductively generated using the following axioms and rules:

11

Yot=t:B ==bs=t:B Yps=t:B Ypt=r:B

Ypt=s5:B YX>s=r:B
Ybsi =t :BA Ybsg=t: A Y,x:A>ps=t:B
Ybsisg =tity : B Yo zd.s = zAt: BA

Yo (A\ztt)s =t(s/z): B (B)
Yot=Mtz:BA if z:A¢gY (n)

In the above, we write t(s/z) to denote the substitution in ¥,z : A > ¢ : B of the
term ¥ > s : A for the variable z : A. It is assumed that we have taken care of clashes
of variables for () as usual.

Remark 3.2.

(i) In what follows, when we speak of “a A-calculus”, we mean the typed A-calculus
generated by some set of Sorts, unless otherwise specified.

(ii) It is easy to see that a general substitution rule is admissible in the above system.
We will use a still more general “simultaneous substitution” rule:

Yoty Ay Yoty A 21 AL, Apps: B
EDS(tl/.’L'l,...tn/{L'n) :B

which is also admissible in the above system.

(iii) We have chosen to work with ordinary A-terms in this paper. The decidable equiv-
alence relation = (referred to in NF2 - NF4) is a-congruence, where terms are
a-congruent if they only differ with respect to names of bound variables. Alterna-
tively, we could have used terms & la de Bruijn and let = be syntactic identity.

(iv) We adopt familiar A-calculus notation, e.g. uvw denotes (uv)w and Az.Ay.s denotes
Az.(\y.s). Sometimes we say a well-formed equation ¥ >t =¢' : B “holds” if it can
be proved using the previous inductive rules.

3.2. Constructing a Free P-ccc from A-terms

Definition 3.3. Given a set of sorts X, a P-ccc C and a function J : X — 0b(C), the in-
terpretation of the A-calculus generated by X is the following recursively defined function
[—] which maps types to objects and maps a term in context 1 : Ay, z9 : As, ..., Ty :
A, bt Atoan arrow (... ([A1] x [42]) x ...) x [4,] = [A] (for n = 0 we get an
arrow T — [A], and for n = 1 we get an arrow [[Al]] — [A]), as follows:

Objects: o [X]=J(X),if X € X
. [B4] =[]
Arrows: e [[xl:Al,...,wn:Anbm,-:A,-]]:
ﬂ,((l[Al]]Xl[Ag]])X)X[[An]]—)[[Az]]
if ¥ # () then [[ED)\mA.t:BA]]=[[E,x:Al>t:B]]*
if = () then [pAz?.t: BA] = ([z: Avt: B]]WLF,[[A]])*
[Evts] =e([E>t],[Z v s])

D. Cubrié, P. Dybjer and P. Scott 12

The following is standard and easy to prove:
Proposition 3.4. (Soundness) Given a set of sorts X, a P-ccc C and a function
J : X = 0b(C), the above induced interpretation [—] satisfies: if ¥>s =t : B then
[Evs:B]~[Evt:B] inC.
Fact: To prove Soundness, and only in the case of 3, one needs to show by induction
on u that [z1 : A1,...,2, : Appu : B{[E>s1 : Ai],...,[Eb syt A]) ~ [Zb

w(s1/x1,82/T2, ..., 8, /%) : B].

To show completeness we first define a syntactic P-ccc. We use the following notation:
bold face letters denote finite sequences e.g. A denotes a finite sequence Aq,..., A, of
types and t denotes a finite sequence tq,...,t,, of terms with the same context . The
empty sequence of types will be denoted by () and the empty sequence of terms in a
context Y. is denoted by X > . Concatenation of two sequences will be denoted by a
comma; for example, the concatenation of A and B will be denoted by A, B.

Definition 3.5. Given a A-calculus generated by a set of sorts X', the P-category (Fx,~)
is defined as follows:

Objects are finite sequences of types.
An arrow between A and B = By, ..., B, is a finite sequence of terms each in context
x:A,sayx:Apty:By,...,x: Ap>t, B, .Suchan arrow will often be written
(x:Apvt:B), where t =1t1,...,tm.
Two such arrows are P-equivalent, denoted (x : A>t:B) ~ (y: Ab>s: B) if
for every i, z : A >t;(z/x) = s;(z/y) holds. Obviously, the above relation is an
equivalence relation on sequences of terms.
The identity on A is (x: A>x: A). Composition is defined by simultaneous compo-
nentwise term substitution.
Proposition 3.6. (Fx,~) is a P-ccc.
Proof. It is an easy observation that this is a category with finite products: the empty
sequence is the terminal object, with the terminal arrow from A being (x : Ap).
The product of A and B is given by A,B, i.e. by concatenation of sequences. The
projections 7 : A,B — A, 7' : A)B — B are defined to be (x : Ay : B> x: A) and
(x : A,y : B>y : B), respectively. Pairing ((z : A >t :B),(y : A s: C))is the
concatenation (x: A > t(x/z) : B,s(x/y) : C).
We introduce some abbreviations: B41+4» denotes (---(B4»)---)41. In particular,
B{) = B. We define exponents: (B, .. .,Bm)A = BlA, .. ,BmA. In particular, ()A =

()
The arrow ¢ : BA x A - B is given by

A

(ml BT, :BmAay:ADmiyl---yn:Bi)izl

For an arrow (z:C,x: Aph:B):C x A — B we define

sees T

(z:C,x:Aph:B)*:C - BA
to be
(z:Co Az Aadn b BiA Yi=1,,m

13

It is easy to see that the above gives a P-ccc. a

Remark 3.7. There are various syntactic presentations of (Fx,~), each with their own
advantages and disadvantages. For example, another way (cf. (Pitts 199-)) involves taking
objects = contexts, and arrows = lists of terms in context.

A familiar Lindenbaum-Tarski style argument shows that completeness follows “by
definition”. For the record:

Proposition 3.8. (Completeness) The canonical interpretation of the typed A-calculus
generated by X is obtained by letting C = (Fx,~) and J(X) = X (the singleton sequence)
in Definition 3.3. For this interpretation [£>s: B ~ [t : B] iémplies Tos =t : B.

Proposition 3.9. (Fx,~) is a free P-ccc over the set of generators X, with I : X —
ob(Fx) the function I(X) = X, qua singleton sequence.

Suppose that we are given a function J : X — 0b(D) where D is a P-ccc. Such a J
determines an interpretation [—] of the simply typed A-calculus into D, as in definition
3.3. We now extend [—] to a P-ccc functor also denoted [-] : (Fx,~) — D. The
definition is by primitive list recursion, but with two base cases (one for the empty list
and one for the singleton list).

On objects we let

[0] = 7
[A] = asin Definition 3.3
[A,B] = [A]lx[B]

where in the last clause A # ().
On arrows we let

[x:A>]| = OHA]]
[x:Avt:A] = asin Definition 3.3
[x:Avt:B,s:C] = ([x:Avt:B],[x:Aps:C])
where in the last clause t # ().

As required by Definition 2.18 there are obvious P-natural isomorphisms between

[A] x [B] and [[A,B]] and between [[B]][[A]] and [[BA]] and hence it follows that
[—] is a P-ccc functor. Also, obviously [—]1I = J.

Assume now that H : Fx — D is another P-ccc functor such that HI = J. We want
to find a P-natural isomorphism ¢ : [—] — H. Recall that for H to be a P-ccc functor
means that there exist P-natural isomorphisms 7, r g, ry4 as in Definition 2.18. We
will define ¢, and qgl by induction on the complexity of A using these r’s:

-1 -1

4y =Ty 4y = Om), 9x = 9x = lix),

qga = Tga(gpe(m, QZIWI»*:

qB}, = (qng(m :BAy: Avay B)rgay 4{m,q,m))*,

and for a nonempty sequence A we have

D. Cubrié, P. Dybjer and P. Scott 14

49aA,B) = TaxB{qam qpm') and

q(_AiB) =(gx'H(x:A,y:Brx:A),qg'H(x: A,y: Bry: B)).

Although tedious, the proof that the above defined ¢’s are P-natural isomorphisms is
easy.

Remark 3.10. It is not difficult to see that we can extend the discussion above to
more general notions of free P-cccs (over a P-category, a P-cartesian category, etc.). Our
method then applies to solving the word problem for free ccc’s generated by a category,
a cartesian category, etc. To this end, in the Appendix we introduce various notions of
A-theory which are determined not only by a set of atomic types, but also by a set of basic
typed constants as well as a set of equations between terms. Then the relative soundness
holds as well as completeness with respect to a “canonical model” I : T — F7 where Fr
is built similarly to Fx except that the role of the per on arrows is played by provability
from the theory. Moreover, one can show that I is the “initial” model in the following
sense: for every model J : T — C of a A-theory T in a P-ccc C there is a unique (up to a
P-iso) P-cec functor [—] : Fr — C such that [—]I = J where & is a naturally defined
notion of isomorphism of models. (Actually, the “right” notion of initiality here includes
further coherence conditions but we are not going to use them: cf. also Remark 3.17.)

3.3. The Normal Form Algorithm

Recall from Section 2.3 that for an arbitrary free P-ccc, we can define a normal form
function such that NF1 holds. We now use the specific syntactic constructions in the above
proof of freeness of (Fx,~) to get a normal form algorithm for the typed A-calculus.

First, from Definition 2.22 applied to (Fx,~) above, we define the normal form func-
tion to be

nf(t) = gp a([t]algala(x: A>x: A))) (4)
Here [—] in (4) is obtained by instantiating the interpretation P-functor in the proof of
freeness (Proposition 3.9) to the case where the target P-category D is the P-presheaf
category PSet7x~) and where J(X) = Fx(—,X). Moreover, ¢ and ¢~ ' in (4) are
obtained by instantiating the ¢ and ¢ ! in the freeness proof to the case where the P-
natural transformations 7+, r, . g, TA refer to the constructions used for proving that
Yoneda preserves the distinguished P-ccc structure (see Theorem 2.17 and Proposition
2.20, with C = (Fx,~)). We now give the details of this instantiation.
We start with [—]. On an object A, [A] is a P-presheaf, so we have to show its
effects both on objects and arrows. We define it recursively as follows.

On objects:
[o]c=1 5)

[X]C = Fx(C, X) (6)
[BA]C = PNat(Fa(—,C) x [A], [B]) (7)

[A,B]c=[AlCcx[B]C A#() (8)
On arrows:
[O]n6x) == (9)
[X]w:E>h:C)(z:Cpg:X)=(w:En» gh/z):X) (10)
([BA](w:E > h:C)8)p((k:Drg' :E),a) (11)
= 6p((k:D>h(g'/w):C),a)
([A,B]h)(a,b) = ([A]h)a, ([BIn)b) A #() (12)
On arrows [—] is defined recursively as follows:
[x:Av [c(a) == (13)
[[X:Abmi:Ai]]C(a):ai (14)
(Ix: Avx2h: BA]c(@)p((w:Drg: C),a) = (15)

[x:A,z:Avh:B]p([Al(w:Db>g:C)(a),a’)
[[x:ADst:B]]C(a) = (16)
(Ix:Avs: B]c(a)c((z: Crz:C), [x: Avt: Al o(a)
For a nonempty t
[[x :Abt:B)s: D]]C(a) =([x:A>t: B]]C(a), [x:Abs: D]]C(a)) (17)

The specific instances of ¢ are the following:

qp,c(¥) = (x: Cp) (18)
4xc(z:Cprt: X)=(z:Cprt:X) (19)
dpacll) = (20)

AmA.qB’(C’A)(G(C,A)((x :C,z: Avx: C)qu,l(c,A) (x:C,z: Apzx: A)))

Q(A,B),c(aab) = (qA,C(a)7QB,C(b)) A #() (21)
(The right hand side of the above equation is a pairing é.e. concatenation of the two
sequences with previously equated contexts.)

q<_),lc(z :Cp) =x (22)

q)_(’lC(Z:CDt:X):(Z:CDt:X) (23)

D. Cubrié, P. Dybjer and P. Scott 16

(@ga c(z:Crt: BY))p((w:Des:C),a) = (24)
4p.p(W : D>t(s/z)gsp(d) : B)

q(_AI’B)vc(z:CDt:A,s:B) = (25)
(qx’lc(z : CDt:A),qE}C(z :Cps:B)) A#{)

This completes the algorithm. Note the similarity between this algorithm and the
algorithm by (Berger and Schwichtenberg 1991, p. 203). Our [—] corresponds to their
“evaluation functional” into Sets. Our ¢ corresponds to their functional “procedure —
expression” p — e; and our ¢! corresponds to their “make self evaluating” mse.

3.4. Uniqueness of Normal Forms

Following the discussion in the Introduction, we shall now prove NF2, i.e. that the normal
forms returned by nf are unique up to a-congruence = : if f ~ g then nf(f) = nf(g).
Clearly, a-congruence is decidable (NF3) and is a subrelation of ~ (NF4).

Recall the free P-ccc (Fx,~) from Definition 3.5. We shall now move to a P-category
given by a-conversion:

Definition 3.11. Consider the P-category (Fx,=) which has the same objects and
arrows as (Fx,~), but where the per = is defined from a-congruence as follows: (x :
Avt:B)=(y:Aps:B),ifforeveryi, theterms z:Aprt;(z/x)and z: A>s;(z/y)
are a-congruent.

To prove that (Fx,=) is indeed a P-category, we use that substitution of the identity
arrow (x : A x: A) for the free variables in a term returns an a-congruent term and
that termwise simultaneous substitution is associative up to a-congruence.

Remark 3.12. What categorical properties does (Fx, =) enjoy? More generally, recalling
Remark 3.10, given a A-theory 7 what are the categorical properties of (Fr,=) where
= is a per obtained without # and n but using the rest of the rules as well as the
equations from the theory? It is not difficult to show that such a (P-)category has finite
(P-)products, and for every two objects A and B there is an object B4 which satisfies
the following: there is an arrow € : B4 x A — B, and for every arrow f : C x A — B
there exists an arrow f* : C — B such that for any g : D — C, f*g = (f(gn,'))*. This
identity is a =-version of a familiar ccc-identity (cf. (Lambek and Scott 1986), (3.2), p.
54). Furthermore, this is a complete characterization since for every (P-)category C with
these properties, using the internal language, we can find a A-theory 7¢ such that the
above construction gives Fr, = C where 2 denotes a (P-)equivalence of (P-)categories.
Coming back to our (Fx,=) we can say that this is a free object in the category of such
(structured) categories.

Notation: Recall that the underlying set of a per A is denoted by |A|. Also recall that a
P-function f between P-sets is a function between their underlying sets. We sometimes
write | f| when we want to emphasize that we consider f as an underlying function rather

17

than a P-function. Now, we extend this notation. For a P-presheaf F': (C,~)°? — PSet
we let |F'| denote the function C — Set defined as follows: for objects C, |F|(C) = |F(C)|
and for arrows f, |F|(f) = F(f). Finally, for every arrow 8 : F' — G in P-presheaves, 6|
is used to emphasize that we consider it as a family of underlying functions |8|c = 0¢ :
|F|C — |G|C ObViOllSly, |0102| = |01||62| and if |F| = |G| then |1F| = |lg|
We can now state the key lemma for proving uniqueness of normal forms:
Lemma 3.13.
Let ¢4 = (C,~1) and C; = (C,~2) be two P-categories with the same “underlying”

C. Then, their P-presheaf categories have the same underlying P-ccc structure in the
following sense: |T1| = |Ta|, if F;,G; € C;¥ — PSet and |Fy| = |F>| and |G1| = |G2|

then: |Fy x G1| = |Fy x Ga| and |[FC'| = |FS?|. Also, under the same assumptions
08| = 0m|; |75 61| = 1TE.6.l5 |75, 6| = 1Tk, 6,5 i 101] = [62] and |61] = |05] then
(61, 62)] = [(01,05)|, lex| = |e2| and if |61] = |62] then |67] = |63].

Proof. By definition of the canonical P-ccc structure of a P-presheaf category. a

So far we have considered P-presheaves over F; = (Fx,~). Let us now also consider
‘P-presheaves over Fo = (Fx,=). Since these form a P-ccc and F; is a free P-ccc,
Proposition 3.9 shows how to define a P-ccc functor [—]= : i — PSet” with [X [= =
Fa(—, X) for each sort X € X. Since it is a P-functor it satisfies:

f ~ g implies [[f]]EE 191~ (26)

Lemma 3.14. For every object C' and every arrow f, the following holds: |[C]|
[[CT=] and [[£]1=1[£]7I.

Proof. By induction, using the previous lemma and the fact that |Fi(—,X)| =
|‘7:2(_7X)|' o

Consider the P-natural transformations ¢, and qzl defined in subsection 3.3. Using
the above lemma (and the fact that |Fy(—, 4)| = |Fa(—, 4)| for every object A, not only
a generator) we know their underlying functions are maps |g4| : |[[A]=| = |Fz(—, 4)]
and |g'| : |[F2(—, A)| = |[A]=|. To prove uniqueness of normal forms we need to know
that these preserve =, that is, that they are P-functions g, p : [A]=B — F»(B, A) and
QZ}B : Fo(B, A) - [A]=B. To this end we prove the following stronger property :
Lemma 3.15. The above transformations q, : [A]= — Fa(—, A) and g;" : Fo(—, A) —
[A]= are =-natural, i.e. P-arrows in PSet™” . In particular, for every A and B,
dap: [A]=B — F»(B, A) and qZ}B : Fo(B, A) = [A]=B are P-functions.

Proof. By induction on A. Only the exponential case is non-trivial. Here we show that
dga : [[BA]]E — Fa(—, BA) is =-natural. The proof that qg}, : Fo(=,BA) = [[BA]]E is
=-natural leads to similar calculations.

We have to show that for every C, D, 6 ~ 6' € [[BA]]C, (w:Dps:C)=(w':Dbns':
C)

(i) qBA’C(O) = qBA’C(G')

(i) 4pa p([B4])(6) = Fals', B4) (a5 c(0).

D. Cubrié, P. Dybjer and P. Scott 18

(i) is immediate. Let us see just (ii). By definition of gz (cf. equation 20) this is
equivalent to

Mt g o) ([BA](8)0) 0.4 (W : D,z : Abw : D), gy, o (W:D,w: Abz: 4) =

(Az".qp (c,4)0(c,a) (2 : Coz: Abz: C), ¢ 4y (2: Co: Az i A))))(s'/x).
By equation (11) this is the same as:

/\wA.qB(D,A)(H(D,A)((w :D,r: Abs: C),qE}(D,A)(w :D,z: Az A))) =

(Az".qp,c,0)0(c,n) (2 : Coz: Abz: C), ¢ 4 (7: Com: Abz: A))))(s'/x)).
By definition of substitution, since z : A ¢ w : D the above is the same as:

/\wA.qB,(D,A)(H(D,A)((w :D,r:Abs: C)7qZ,I(D,A)(W :D,z: Az A))) =

Aet(ap 0,0y 0(c) (Z: Coz: Abz: C) gy g) (2: Coz: Aba: A))(s'/x)).
By the induction hypothesis, ¢ is P-natural. We use its naturality with respect to
(w:D,z:Aps:C,z: A) = (w:D,z: Aps’ : C,z : A) to transform the above into
the following equivalent expression:

)\a:A.qB,(D’A) Op,a((w:D,z: Aps: C)an,I(D,A)(W :D,z: Abzx: A))) =
/\wA.qB’(D’A)([[B]](W :D,z:Aps: Cx: A)(0c 4)((z:Coz: Avz: C),qu’l(C’A)(z :C,
z:Avx: A))).

Now, by 6 ~ 6’ (so therefore both of them are P-natural), the above is equivalent to:
/\wA.qB’(D,A)(H(D,A)((w :D,z:Apbs: C)qu}(D,A)(W :D,z: Az : A))) =
/\wA.qB’(D,A)(H(D,A)((w :C,z: Avs:C),[A](w:D,z: A>s:C,z: A)(qZ’I(C’A)(z :
C,z: Avzx: A)))).

Finally, by the induction hypothesis, q;l is P-natural with respect to (w: D,z : A>s:
C,z:A)=(w:D,z: Avrs:C,z: A) and therefore the above is equivalent to:

)\mA.qB’(D,A)(H(D,A)((w :D,z: Aps: C),qu’l(D,A)(w :D,z:Avx: A))) =

)\wA.qBv(D’A)(O(D,A)((w :C,z:Abs: C),q;}(D’A)(w :Dyz: Avz: A))))

and this is true. O

Assume now that f ~ g : A — B. Implication (26) gives [[f]]E = [9]~ By
Lemma 3.15 it holds that qB’A[[f]]qu}A(lA) = qB’A[[g]]ijZ}A(lA). By Lemma 3.14
ap [F]F0a4(14) = ap 4] F]laga’s (1) and qp A[9]Fa0 4 (14) = a5 4[9]aqx 4 (14)-
Therefore nf (f) = nf(g). This completes the proof of N F2 and since the other properties
were proved before, our algorithm nf indeed gives a normal form for terms in the typed
A-calculus. For the record:

Theorem 3.16. The above specified nf is indeed an algorithm which satisfies the proper-
ties NF1 — NF4 from the Introduction, where ~ is Bn-equality of terms in simply typed
A-calculus and = is a-congruence.

19

Before we end the section, let us remark on an alternative definition of freeness.

Remark 3.17. The reader may wonder why we did not define [—]| by ordinary primitive
recursion on lists, which has only one base case (the empty list), rather than by the variant
here which has another base case for the singleton list. We could instead try to define
[—] by [[()H =T and [[A,B]] = [A] x [B]. But then, it may seem that we have a
problem since for the object which is just a singleton sequence, e.g. a basic type X, we
would have [X] = [[()H x [X] = T x J(X) and this does not have to be equal to J(X).
And therefore, this more elegant definition does not satisfy our definition of freeness.
But, it does satisfy another “bicategorical” definition of freeness which is anyway the
preferred one when dealing with “categories” of categories. In our case this definition
goes as follows: Fx is a free (P-)ccc over I : X — ob(Fy) if for every (P-)ccc D and
every J : X — ob(D) there exists a (P-)ccc functor [—] : Fx — D such that there is a
P-iso 6 : [[I(—)]] = J. Moreover, for any other J' : X — ob(D), [-]' : Fx — D and
g : [[I(—)]]' = J' as above, and for any (P-)iso ¢ : J = J' there exists a (P-)unique
(P-)natural iso p : [—] = [—] such that 6'(p o I) ~ o6 (in the “ordinary” (non
P) world, the last ~ is actually equality). P-uniqueness for P-natural transformation p
meant that for any other p’ satisfying the above condition p ~ p'. Let us also mention
here that the “coherence conditions” from Remark 3.10 are same as the above ones.

Another advantage of the above definition of freeness is that it does not use equality
on objects and this is one of the basic features of “pure” P-category theory as well.
We find it interesting that the direct inductive definitions in our study gives rise to the
categorically prefered notion of freeness. Yet, to make our paper more accessible to non-
category theorists we decided to define freeness as in Definition 2.21 which then implied
the more extensive “case handling”.

4. Characterizing Normal Forms in A-Calculus

In this section we characterize our categorical normal forms nf(t) as being exactly the long
Bn-normal forms familiar from A-calculus (Huet 1976) (see also (Cubri¢ 199-; DiCosmo
1995)). Observe that we have obtained our normal forms purely categorically—without
reference to rewriting techniques in A-calculus. It is only now, when we must prove
that our normal forms coincide with the usual ones, that we employ familiar syntactic
methods.

4.1. Normal Forms in A-Calculus

We now generate (by mutual induction) two collections of terms, neutral and long-8n
normal, and we prove that neutral terms are closed under substitution. From now on,
the word “normal” means “long-3n normal”.

Definition 4.1. Variables of arbitrary type are neutral. Neutral terms of atomic type are
normal as well. If u is normal and v is neutral then vu is neutral and \x.u is normal.

At this point we want to show that normal terms are irreducible and that neutral
terms are irreducible “inside”. For that we need a few definitions.

D. Cubrié, P. Dybjer and P. Scott 20

Notation: By a substitution context C[] we mean a term with a hole in it (Barendregt
1984). These play a fundamental role in the rewriting theory of A-calculi (both typed and
untyped). The most important fact about contexts is that one can plug in a term (of the
right type) into the hole without paying attention to possible clashes of variables. This
permits a smooth discussion of local reduction rules, as we see below. Substitution into
a context C[] is just formal plugging-in, whereas whenever we write u(v/x) we mean
genuine substitution, that is, we rename bound variables by a-conversion to prevent
clashes.

Let us now define the notion of (long) Bn-reduction with respect to a substitution
context C[] by two clauses:

Clzu)w] 2 Clulv/z)],
Clu=B] L C\z.(ux)] , = € FV(u)

provided neither u = Ay.w nor C[u] = D[(uw)]

for any term w and any substitution context D[]. The 7 rule used here is sometimes
called “n-expansion” in the literature.

The term (Az.u)v in (8) and the term w in (n) on which reduction is possible are called
(long Bn-)redexes. A term which contains no redexes is called irreducible.

Lemma 4.2. Normal terms are irreducible and neutral terms don’t have proper subterms
which are redexes. Also, irreducible terms are normal.

Proof. The first sentence is proved by simultaneous induction on the structure of normal
and neutral terms. The second sentence is then obviously true. O

From now on we will use the fact that normal and irreducible mean the same thing
without explicitly stating it.

Lemma 4.3. If u and v are neutral terms then u(v/z) is neutral and if u is normal and
v is neutral then u(v/z) is normal.

Proof. This is proved by induction on u using the previous lemma. O

Remark 4.4. In what follows, we simplify notation by suppressing the context ¥ when
no ambiguity arises. Thus we speak simply of “terms”.

4.2. The Characterization Theorem

In this section we shall show that for a term x : A >t : B our categorical normal form
nf(t) is actually the long normal form. We shall prove this by a computability argument
(Girard, Lafont, Taylor 1989; Lambek and Scott 1986); this is related to the glueing
argument in (Altenkirch, Hofmann, Streicher 1995).

We start with our free P-ccc (Fx,~). Recall that the objects and arrows were finite
sequences of types and terms, respectively. First we extend the notions of neutral and
normal to arbitrary arrows: for an arrow t € Fx(A,B) we say t € NE(A, B) if for every

21

i all the terms ¢; are neutral; similarly, we say t € N F(A,B) if for every i all the terms
t; are normal. In particular, empty sequences of terms in context are neutral and normal.

We shall define computability predicates Comps,c C [B]C by induction on the
complexity of B.
Definition 4.5.
(a) Compy,c = {*}
(b) Compx,c = NE(C,X) for X atomic,
(¢) Comppac=1{0:Fx(—,C)x[A] — [B] | vDVt € N(D,C)

Vu € Compa,p 0p(t,u) € Comppp} , where 8 is P-natural.

(d) Compm,a),c = Comps,c x Compa,c , where B # ().
Lemma 4.6. For every object A, if s € NE(D,C) and a € Compa,c then [A](s)(a) €
Compa p.
Proof. The proof is by induction on A using the fact that neutral terms are closed under
substitution (Lemma 4.3). The only interesting case is when A is a single type A. Recall
that for s: D — C, [A](s): [A]C = [A]D.

For A atomic, since [A] = Y(A), the action of [A](s) is given by composition, i.e.
we have [A](s)(a) = a(s/z) which is neutral by the lemma, and for atomic objects this
is the same as computable.

For A an exponent, say A2, we have to check that [[AlA?H(s)(a) € Comp 44 1.
Using the definition of computability at an exponent, the above is equivalent to: VElVr’ €
NE(E,C)Vu € Compa, k [[AIAZH(S)(a)E(r,u) € Compy, . By equation (11) this is
the same as ag(s(r),u) € Compy, . This holds by the assumption of computability of

a and u, and neutrality of s(r) by Lemma 4.3.
O

Theorem 4.7.

(i) 6 € Compa,c implies ga,c(d) € NF(C,A);

(i) feNE(C,A) implies qx}c (f) € Compa,c;

(iii) Let t € Fx(A,B). Then for all a € Compa,c [t]c(a) € Compg,c.

Proof. (1) and (2) are proved simultaneously by induction on A. The only interesting
case is when A is a single exponential type Afz Then, by equation (20) (and using 7, 7' as
the obvious meta-notation) we have q a2 ,C(H) = AyA2.q4, (C, 42) (0(C, 4,) (T, q;i’(c’Ag) (@))).
By induction hypothesis qzi,(c, A2)(7r') is computable since projections/variables are
normal; also by definition of computability at an exponent 6c, 4, (7, qZZI © AZ)(ﬂJ))
is then computable. By the induction hypothesis applied to ga,,(c,4,) we have that
44, ,(C,A5)(0c, A, (w,qzzl (c AQ)(TFI))) is normal. Finally, A-abstraction of a normal term
remains normal.

Let us now prove that q;l

Ag
1 .C

show that VDVt € NE(D, C)Vu € Compa, b,

(f) € Comp 44, for a normal f. For that we have to
1

-1

Afz,c(f))D(t:u) € COmPAl,D .

(¢

Using equation (25) we get (q;1 (Np(t,u) = q;ll’D(f(t)qAQ,D(u)). By the induction

Ag
1 :C

D. Cubrié, P. Dybjer and P. Scott 22

hypothesis g4, p(u) is normal, by lemma 4.3 f(t) is neutral, neutral applied to normal
is neutral by the definition of normal terms, and finally, by the induction hypothesis
applied to QZII,D, the whole expression is computable.

(3) is proved by induction on t. The only interesting case is when the sequence is a
single term. Also, if the term is just a variable we are again done. It remains to check
two cases:

1. t=wwv:B . Observe that by equation (17) [uv]ca = [ulc(a)(ida, [v]c(a)). We
must show [u]c(a)(ida, [v]c(a)) is computable. This follows by the inductive
hypothesis applied to u, neutrality of ida and the computability of [v]c(a) (again
by the inductive hypothesis), using the definition of computability at an exponent.

2.t = XxP1.h . We must show [[/\mBl.h]]c(a) € Compgs, where a € [A]c is
computable. To show this, we must show: VD,r € A?E(D, C),u € Compgp, p
it holds that [AzB!.h]c(a)p(r,u) € Compp,p. But [AzP.h]c(a)p(r,u) =
[h]p([A](r)(a),u) (equation (16)). The right hand side is indeed computable
by the inductive hypothesis applied to h and Lemma 4.6.

O

Corollary 4.8.

nf(t) = gp,a([t]a((gan)(x: A>x: A)))
is an element of N F(A, B).

Proof. Observe that (x : A>x: A) is a finite sequence of variables, hence computable.
The result follows by using (in order) statements (ii), (iii), (i) of the theorem above. O

Observe that until now, we have only used computability techniques. However it is
worth remarking that if we appeal to the Church-Rosser theorem, we can prove the
following result:

Corollary 4.9. Every element of NF(A,B) is nf(g), for some g.

5. Historical Background and Related Work

Our method is an example of normalization by intuitionistic model construction, a
method going back to (Martin-Lof 1975a; Martin-Lof 1975b). The general idea is to
prove normalization by first interpreting a term in a suitable model and then map this
interpretation back to the normal form of the term. By working in an intuitionistic
framework one ensures that the normalization function thus obtained is an algorithm.

Martin-Lof’s approach was investigated further by (T. Coquand and P. Dybjer 1997).
They formulated the abstract conditions NF1 and NF2 (for the special case that = is
syntactic equality of terms, so that NF3 and NF4 are trivially satisfied). Moreover, they
focussed on algebraic aspects and used the fact that syntax modulo conversion is a free
model and hence has a unique homomorphic interpretation into any other model. They
also related Martin-Lo6f’s construction to the glueing construction from category theory,
especially as used by (Lafont 1988).

In (Martin-Lo6f 1975a; Martin-Lof 1975b), he introduced the technique for normaliza-
tion in typed combinatory logic and weak A-calculus. The same general technique was

23

used to construct a normalization algorithm for simply typed A\37n-calculus by (Berger and
Schwichtenberg 1991). They inverted the interpretation function into the set-theoretic
model. They were also able to generalize Friedman’s completeness theorem (Friedman
1975).

Another normalization algorithm for the simply typed A-calculus (actually, a variant
with explicit substitutions) was presented by (C. Coquand 1993). Her algorithm is similar
to Berger and Schwichtenberg’s but algebraically cleaner. It is obtained by inverting an
interpretation function into a Kripke model.

Then (Altenkirch, Hofmann, Streicher 1995) gave a “categorical reconstruction” of
the work of Berger and Schwichtenberg and C. Coquand in terms of inversion of an
interpretation functor into the category of presheaves. The fact that the Yoneda functor
preserves ccc-structure plays a key role in their reconstruction.

The present paper has exploited and reformulated the insights of Altenkirch, Hofmann,
and Streicher. The crucial difference is due to our use of P-category theory, which enables
us to solve the word problem for cccs by more purely categorical means. In particular we
do not need to introduce syntactic notions such as the sets of normal and neutral terms
as in their proof and in Girard’s computability methods (cf. (Girard, Lafont, Taylor
1989)). Altenkirch, Hofmann, and Streicher also used a “twisted” variant of the glueing
construction, which is unnecessary here. Although for us it is a subsidiary concern, we
have included a proof that our normal form function actually returns long Sn-normal
forms. This proof uses syntactic techniques related to traditional computability/glueing
arguments.

‘P-category theory may be of interest in its own right. An interesting feature is that
a P-category only comes equipped with a notion of equality of arrows but not with
an equality of objects. It may also be the appropriate way to develop category theory
inside a constructive framework such as Martin-Lof type theory. As such it provides an
alternative to £-category theory (category theory where each hom-set is equipped with
an equivalence relation) as studied by (Aczel 1993), (Huet and Saibi 1995), and (Duval
and Reynaud 1994). £-categories were also studied abstractly by (Lack 1995), who shows
them to be bicategories enriched over a monoidal bicategory.

The fact that the P-category theory we use can be formalized (programmed) in Martin-
Lof type theory is one way of ensuring that our normalization function is indeed an
algorithm. Of course, P-category theory can equally well be understood in an ordinary
(set-theoretic) way, but then we are left with the problem of showing that our normaliza-
tion function is computable. Although ultimately all our constructs are given inductively
(and therefore have an informal constructive character) to show that they are algorithms
in a precise recursion-theoretic sense would require some encoding. We can use here,
for example, the result that Martin-Lof type theory has a recursion-theoretic model, see
(Beeson 1985).

Our P-categorical setting also highlights the connection between our technique and
the abstract approach to coherence problems in ordinary category theory described for
example by (Joyal and Street 1993), (Power 1989), and (Gordon, Power, and Street 1996)
. As in these references, it is an essential feature of our approach that we use a P-version
of Yoneda to embed our free P-ccc in a “stricter” P-ccc of P-presheaves.

D. Cubrié, P. Dybjer and P. Scott 24

The paper by (Beylin and Dybjer 1996) shows how to go from a reduction-free nor-
malization proof for monoids to a proof of coherence for monoidal categories. They first
solve the word problem for monoids using a simple version of the technique employed in
the present paper. Then they show coherence for monoidal categories by examining the
formal proof objects (obtained from a formalization in Martin-L6f type theory) of this
proof of normalization. The proof obtained in this way is much like Joyal and Street’s.

A preliminary version of the results reported in this paper was obtained in December
1995 and presented in seminars in Géteborg, Montreal, and Cambridge during February
and March, and at the Workshop on Constructive Programming in Kyoto in April 1996.
This version was based on £-category theory. But it then became clear to us that it would
be more elegant to rework the result in the context of P-category theory. The reason is
that P-category theory makes it possible to identify the underlying “data parts” of the
cce-structures on presheaves over terms modulo 8rn-convertibility and terms modulo a-
congruence respectively. This new version was presented at the Peripatetic Seminar on
Sheaves and Logic in Dunquerque in July, at the Seventh Scandinavian Logic Symposium
in Uppsala in August, and at the LOGSEM Workshop in Birmingham in September, 1996.

6. Acknowledgements

The work on this paper has been done while D. Cubri¢ was an NSERC postdoctoral
fellow at the Department of Pure Mathematics of Cambridge University, associated to
Martin Hyland. He would like to thank them all. Part of the work on this paper was done
at the Newton Institute while the second and third author participated in the programme
on Semantics of Computation during the autumn of 1995. We gratefully acknowledge the
support of the Newton Institute. P. Dybjer also wishes to acknowledge support from
ESPRIT Basic Research Action 6811 Categorical Logic in Computer Science (CLiCS-
IT) and from TFR, the Swedish Technical Research Council. P. Scott was also partially
supported by an operating grant from the Natural Sciences and Engineering Research
Council of Canada (NSERC). The authors would like to thank the anonymous referee
for careful reading and detailed comments.

References

P. Aczel, Galois: a theory development project, in: A report on work in progress for the Turin
meeting on the Representation of Logical Frameworks, 1993.

T. Altenkirch, M. Hofmann, T. Streicher, Categorical reconstruction of a reduction-free nor-
malisation proof, Proc. CTCS ’95 Springer Lecture Notes in Computer Science, Vol. 953, pp.
182-199.

H. P. Barendregt. The Lambda Calculus, Studies in Logic, Vol. 103, North- Holland, 1984.

H. P. Barendregt, Lambda Calculus with Types, Handbook of Logic in Computer Science, Vol.
2, ed. by S. Abramsky, D. Gabbay, T. Maibaum. Oxford U. Press, 1992.

M. Beeson. Foundations of Constructive Mathematics, Springer-Verlag, 1985.

U. Berger and H. Schwichtenberg, An inverse to the evaluation functional for typed A-calculus,
Proc. of the 6th Annual IEEE Symposium of Logic in Computer Science, 1991, pp. 203-211.

25

I. Beylin and P. Dybjer, Extracting a proof of coherence for monoidal categories from a proof
of normalization for monoids, in Types for Proofs and Programs (= TYPES ’95), Springer
Lecture Notes in Computer Science 1158, Stefano Berardi and Mario Coppo, eds, 1996, pp.47-
61

C. Coquand, From Semantics to Rules: a Machine Assisted Analysis, in : Proceedings of CSL
’93, Egon Borger, Yuri Gurevich and Karl Meinke, eds. Springer Lecture Notes in Computer
Science, 832 (1993).

T. Coquand and P. Dybjer, Intuitionistic Model Constructions and Normalization Proofs , Math.
Structures in Computer Science, Vol.7, No.1 (1997), pp. 75-94.

R. Crole. Categories for Types, Cambridge Mathematical Textbooks, 1993

D. Cubri¢, Embedding of a free cartesian closed category into the category of Sets , to appear
in J. Pure and Applied algebra.

R. Di Cosmo. Isomorphism of Types: from A-calculus to information retrieval and language
design, Birkh&user, 1995.

D. Duval and J-C Reynaud, Sketches and computation I: basic definitions and static evaluation,
Mathematical Structures in Computer Science, Vol. 4, No. 2 (1994), pp. 185-238 .

H. Friedman, Equality between functionals, Logic Colloguium ’73, Springer Lecture Notes in
Mathematics, Vol. 453 1975, pp. 22-37.

J.Y. Girard. Proof Theory and Logical Complezity, Vol. 1, Bibliopolis, (1987).

J.Y. Girard, Y. Lafont, P.Taylor. Proofs and Types, Cambridge Tracts in Theoretical Computer
Science 7, (1989).

R. Gordon, A. Power, and R. Street. Coherence for tricategories, Memoirs of the American
Mathematical Society, 1996.

V. Harnik and M. Makkai, Lambek’s categorical proof theory and Lauchli’s abstract realizability,
J. Symbolic Logic 57 (1992), pp. 200-230.

G. Huet. Résolution d’équations dans les langages d’ordre 1,2,... ,w. These d’Etat, U. Paris
VII, 1976.

G. Huet and A. Saibi , Constructive Category Theory, in: Proceedings of the Joint CLICS-
TYPES Workshop on Categories and Type Theory (Goteborg), Jan. 1995.

A. Joyal, R. Street, Braided tensor categories , Advances in Mathematics, vol.102. no. 1 Nov.1993,
pp- 20-79.

J-P. Jouannaud and M. Okada, A Computation Model for Executable Higher-Order Algebraic
Specification Languages, LICS 6 (sixth Annual IEEE Symp. on Logic in Computer Science),
1991, pp- 350-361.

G. M. Kelly. Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes
64, Camb. Univ. Press, 1982.

S. G. Lack. The algebra of distributive and extensive categories. PhD thesis, University of Cam-
bridge, 1995.

Y. Lafont. Logiques, catégories et machines. Theése de doctorat, Université Paris VII, 1988.

J. Lambek, Deductive Systems and Categories I, J. Math. Systems Theory 2, pp. 278-318.

J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic, Cambridge Studies
in Advanced Mathematics 7, Cambridge University Press, 1986.

S. Mac Lane. Categories for the Working Mathematician, Graduate Texts in Mathematics 5,
Springer-Verlag, 1971.

P. Martin-L6f, An Intuitionistic Theory of Types: Predicative Part, in Logic Colloguium ‘73, H.
E. Rose and J. C. Shepherdson, eds., North-Holland, 1975, pp. 73-118.

P. Martin-L6f ; About Models for Intuitionistic Type Theories and The Notion of Definitional
Equality , in: Proceedings of the 3rd Scandinavian Logic Symposium, S. Kanger, ed., North-
Holland, 1975, pp. 81-109.

D. Cubrié, P. Dybjer and P. Scott 26

J. C. Mitchell, Type Systems for Programming Languages, in: Handbook of Theoretical Computer
Science, Vol.B, (Formal Models and Semantics), J. Van Leeuwen, ed., North-Holland, 1990
pp. 365-458.

J. C. Mitchell and P. J. Scott,Typed Lambda Models and Cartesian Closed Categories, in
Contemp. Math.: Categories in Computer Science and Logic (J. Gray and A. Scedrov, eds),
92 (1989), pp. 301-316.

A. Pitts, Categorical Logic , in Handbook of Logic in Computer Science, S. Abramsky and D.
M. Gabbay and T. S. E. Maibaum, eds. Oxford University Press, 1997, Vol. 6 (to appear)

J. Power, A general coherence result , J. Pure and Applied Algebra 57, 165-173, 1989.

R. Statman, Logical Relations and the Typed Lambda Calculus, Inf. and Control 65 (1985),
pp- 85-97.

A. S. Troelstra. Metamathematical investigations of intuitionistic arithmetic and analysis,
Springer LNM 344, 1973.

7. Appendix: A-Theories

In this Appendix we apply our methods to the word problem for typed A-calculus with
additional operations and axioms, i.e. to A-theories. This shows the robustness of our
method: the extraction of the normalization algorithm nf from a proof of freeness is done
in essentially the same way as before (and NF1 follows for the same general reasons).
What changes is that we work with new notions of freeness which correspond to the
respective notions of theory. Moreover, the proof of NF2 is also essentially unchanged.
NF3 is (as always) trivial. But proving NF4, the decidability of = , involves additional
syntactical considerations. From the examples which follow (see also Remark 7.10), it
should be clear that our method gives an algorithm nf for any A-theory. However, in
general, this nf does not have to satisfy NF4. The examples below will satisfy NF4
relative to the initial theory.
We consider several theories:

(i) A A-calculus T}‘ with additional operations but with no additional axioms. This
corresponds to a free ccc with free arrows (Harnik and Makkai 1992; Lambek and
Scott 1986; Cubri¢ 199-).

(ii) A A-calculus T2, with additional operations and axioms such that all the types
occurring in them are sorts and moreover their contexts contain exactly one variable
typed by a sort. This corresponds to the free ccc generated by a category.

(iii) A A-calculus T2,,, with additional operations and axioms but in which all types are

sorts. This corresponds to the free ccc generated by a cartesian category.

In each case we will obtain a solution to a word problem by constructing our nor-
mal form algorithm. In cases (ii) and (iii) this solution will be relative to the solution
of the word problem for the generating category (cartesian category, respectively). Our
(relative) proofs of NF4, however, are syntactical. The main technical result of this Ap-
pendix, Theorem 7.5, resembles Cut-Elimination and is used to reduce the number of
cases examined. Of course to even apply our methods, we require appropriate notions of
‘P-category, P-freeness, etc. modulo a A-theory.

We now introduce the appropriate machinery.

27

7.1. A-theories

In order to deal with additional operations and axioms we slightly extend our definition
of A-calculus (cf. Definition 3.1).

To Terms we add the following: (a) to every sequence of types A and every type B we
associate (a possibly empty) set of operations Op(A; B). (b) We also add the following
term-formation rule:

Yot1:A... B>ty Ay c€Op(Ar,...,An; B)

Y > e(tr,--.,ty) : B
For a given ¥ and B the set of all terms with context ¥ and type B is denoted
Term(X, B).

To the Equations between terms we add a specified set of basic equations BEq(X, B) C
Term(X, B) x Term(X, B), for every 3, B. We also add the following two rules

CGOp(Al,...,An;B) ED81:U13A1... DSn:unZAn
Y > c(s1,...,80) =c(u1,...,u,) : B

(Op)

(SubOp)

(t,s)EBEq(mfl,... 24 B) Sbuy=v1:A4; ... E>up=v,: A,

et (NR)
> t(u/21,. .., un/Ts) = 8(V1 /71, ..., 00/7s) : B
The pair Sig = (Sorts, Operations) we call a signature of a A-calculus, the pair £ =
(T'ypes, Terms) we call its language, the basic equations BEq we call its azioms and,
finally, a language together with its set of provable equations we call a A-theory.

(i) T} is now defined as a A-theory such that for every & and B, BEq(%, B) = 0.

(ii) T2, is now defined as a A-theory such that for every A and B, Op(A, B) = () unless
B is a sort and A is a single sort. Moreover, we require that no basic equation
3 > s =t : B can contain exponent types, that is, all subterms of s and ¢ are typed
by sorts and that ¥ is a single variable typed by a sort.

(iii) T2, is the following M-theory: for every A and every B, Op(A,B) = () unless
B is a sort and A is a sequence of sorts. Also we require that no basic equation
x: A > s =t: B can contain exponent types (here, we do not require x : A to be

a single variable but only that A is a finite sequence of sorts).

(Beq)

Obviously, T2, is a special case of Tj,,, but T} is not a special case of either of them.

7.2. nf and NF1 for theories

To each theory T' above, we associate a P-category just as we did in Definition 3.5. The
key difference is that we have to include the additional operations in the construction
of terms and that in the second and third case we have to include provability from the
basic equations. Therefore we define the relation ~7 in (Fr,~7) as follows:

(x:Ap>t:B)~r(y:A >s:B) iffforeveryi TFz:A > t;(z/x) =si(z/y)

where T stands for any of T}, T2, or T,,, and T I --- denotes provability from 7. In
each case we get a P-ccc (cf. also Remark 3.10).
As before, we will construct the normalization algorithm nf from a proof of P-freeness

D. Cubrié, P. Dybjer and P. Scott 28

(in the appropriate sense) and the proof that Yoneda preserves P-ccc structure. This
amounts to defining [—] and ¢, g~ as before, except that we now must define the effect
of [—] on terms of the form ¢(t) too: this is the only change in the previous explicit
definition of [—]. Therefore we add to the equations (13-17) the following. For every
c € Op(A,B) and every (w:D > t: A)

[W:Dp>c(t): Bj=[cl[w:Dp t:A] (27)
where [c] : [A] = [B] is defined as:
[clc(a) = 45 c(claa,c(a)) (28)

In categorical terminology, we map the generating arrow ¢ : A — B to gg5'V(c)qa :
[A] — [B].

Therefore, just as before, we have our algorithm nf. Also, as before, we easily have
NF1,ie. for every t, nf(t) ~r t.

7.3. NF2 and NF3 for theories

To prove the other properties we first have to define a subrelation =1 of ~7, where T
stands for any of T3, T, Toy, -
without (7, up to a-congruence”. More precisely, for each A-theory T above, we first
define a “restricted” theory T (i.e. Tf, Tiyy, Tyr) which is the same as T except that
B and 7 are not included.

As in Definition 3.11 we define (in each of the above cases) the P-category (Fr,=r)
to have the same objects and arrows as (Fr, ~r1) but the relation on arrows is defined

as follows:

As in our previous work, =7 is essentially “provability

(x:Ap>t:B)=r(y:A > s:B)iffforeveryi T®Fz: A > t;(z/x) = s;(z/y) -

Obviously, in all three cases =7 C ~7p i.e. condition N F'3 is satisfied. Let us now show
that NF2 holds as well.

As before, we would now like to show that in each of the above cases we have a P-ccc
functor [—]* : (Fr,~71) = PSetFr:=1)" The first thing which we want to ensure is
the following:

Lemma 7.1. For every theory T and ¢ € Op(A, B), [c]? defined using the same formula
as in Definition 28 is a P-arrow in PSetFT=1)"

Proof. By examining the proof of Lemma 3.15 we could notice that g5 and qgl are
=rp-natural here as well. For the rest we use the rule (SubOp), or in other words that Ve
is =p-natural as well. O

The next thing which we have to ensure is that [—]* preserves the axioms. But for
the case of T = T]?‘ (the “completely free” case) we are done since there are no axioms.
Let us consider the two other cases.

Lemma 7.2. Let T be either T2, or To

c cart*

T . Then, [s]® =r [t]* in PSetFr=1)",

Letx: A > s=t:B be a basic equation in

29

Proof. First we should notice the following easy

Fact: For every “T-restricted” A we have qqa" =1 15, a) where “T2 -restricted”

cat
means that A is a single sort and “T’2,,,-restricted” means that A is a finite sequence of
sorts.

By induction, and using the above fact, we can show that for every T-restricted arrow
we have [t]* =7 gg' (Vt)g, -

To prove that [s]* =7 [t]* it is enough to show that Vs =7 Yt. This follows from
the fact that rule Beq is included in 7'*. m|

Therefore, by the appropriate freeness of (Fr,~r) we indeed have a P-ccc functor
[-12: (Fr,~1) > PSetFr=1)"" defined as above.

Using exactly the same reasoning as in Section 3.4 we can now show the property N F2
for all three cases of T, i.e. if s ~7 t then nf(s) =r nf(¢). The only remaining thing now
is to see whether =1 is decidable.

7.4. NFJ for theories

To investigate =7 is the same as to investigate provability in 7, for each theory T =
T}, Toui, Toure- As before, ordinary a-congruence among terms is denoted by =.

First, we separate the easiest case T'f". As in Section 3.4, provability here is exactly the
same as a-congruence and therefore NF4 holds. Now we shall prove NF4 for the other
two cases. We begin with some syntax.

Recall the notion of a substitution context, i.e. “term with a hole”. Here we need
to consider several holes at once; we denote a term with precisely n distinct holes by
ClUy,...,Uy] (strictly speaking, the indexing of the holes is redundant.) Our holes are
typed (although we try to avoid explicitly writing types); that means that we can plug
into the holes only terms of the appropriate type.

A term is called simple if it contains neither exponents nor A nor application. It is
easy to see that every term typed by a sort arises by substitution from a simple term
with holes, i.e. for any term typed by a sort ¥ > g : Z there is a simple term with
holes C[Uy,...,U,] containing no variables and a sequence of terms ¥ > w; : X; such
that g = Clu,...u,] and where each w; is either an application or a sorted variable.
Such a term with holes C[Uy,...,U,] is called the mazimal simple head of ¥ > g : Z.
For any given term g : Z , there is an effective method to find its maximal simple head
CJ...] and the associated terms w; satisfying the above conditions. Moreover, they are
uniquely determined. For example, assuming ¢ and d are operation symbols typed by
sorts, ¢(U1, 2, d(s3)) is the maximal simple head of both z : X,y : Y > ¢(z, z, d(uwv)) : Z
and z : X,y : Y > ¢(z,y,d(uv)) : Z. From now on, the notation Fluq,...,u;] always
implies that FJ...] is the appropriate maximal simple head.

We now introduce two algebraic theories Ty, and Ty, where Ty, refines T2, and
Tun refines T4 :

e Ty, Types are only the sorts of T2, while the terms are those terms of T2, that
do not contain exponents. The equations of Ty, are formed by only those rules from

T2+ which do not contain exponents.

D. Cubrié, P. Dybjer and P. Scott 30
e Tun: Tyn is a further restriction of Ty, as well as of T2, such that the contexts
appearing can only have a single sorted variable.

It is folklore that T, corresponds precisely to the internal theories of cartesian categories
and that T, corresponds to the internal theories of categories.

Remark 7.3. Since we work in P-category theory it is important to realize that the
corresponding P-statements hold: for example, T4 corresponds precisely to the internal
theories of P-cartesian categories as well.

Let £Eg{Xpwu; : A|i=1,...m} denote a finite set of equations among u’s such that for
every ¢ and j, ¥ > u; = u; : A is in the equivalence closure of Eg{Ebu; : A|i=1,...m}.
Although, the above definition would be sufficient for the development below, we will
further specialize equations to be in circular form, i.e. we assume our set of equations is
written:

E{Z v u;:Ali=1,..m}={Svui=u: A X bus=uz:A,...,X > up =u}

(altogether m equations). From now on whenever we write £g{...} we assume that the
equations are in the above special form.
Next we notice that the following rule is admissible in 7

cart
Eq{E >u; Xg |l S (P_l(k)}kzl .
ASub 1
(ASub) Y> Fluy,...,w] = Glugt, - wigr] Y
where ¢ : {1,...,0 +1I'} = {1,...,n} with the additional restrictions: To;y F 21 :
Xiyooin 2 X > Flzgy,. - To0)] = GlTeugr),- - Tpuqry] = Y, each u; is either
a sorted variable or an application and all the variables of F[zy,(1),...,Zy)] and

Glzo@41)s- -+ > Tpayir)] are exactly zo1),...,Ty40)- (All this implies that FI...] and
G]...] are maximal simple heads of the appropriate terms.) Moreover, in case that
k & Image(p) we assume that £¢{¥ >u; : Xi|i € ¢ '(k)} denotes a single equa-
tion X >u = u : Xj. Since such a term w is not going to cause any new occurrences in the
conclusion, it is not important which term it is—the only important thing is that such a
term has to exist.

Similarly, the rule below is admissible in T ,:

cat*
YSopu=v:X
USW) 55 ufz) = g(v]7)

with the additional restrictions: Ty, F z : X > f = g : Y and v and v are either sorted
variables or applications.

Lemma 7.4. Let T'),, denote the same theory as T2, but such that the rules (SubOp)
and (Beq) are replaced by (ASub). Then, both theories have the same equational conse-
quences. Similarly, let T'), denote the same theory as T2, but such that the rules (SubOp)
and (Beq) are replaced by (USub). Then, both theories have the same equational conse-
quences. Moreover (and even more important for us) both statements hold for TS, and
TC.Y

cat*

Proof. We leave to the reader, as an easy exercise, to show how to replace each occurrence
of (SubOp) and (Beq) by a combination of the other rules plus the new rules.

31

To prove the converse we use that FJ...] and G[...] in the rule (Asub) are maximal
simple heads. O

Now we want to further reduce the number of cases which will appear in our proofs.

Theorem 7.5. Let T'® denote either T.%,, or T!%,. Then (Transitivity) and (Symmetry)
are admissible rules in T'®.

Both the statement and the proof of Theorem 7.5 closely resemble cut elimination.
Moreover, the purpose is basically the same: to obtain a kind of subterm/subformula
property. Since the proof is rather long and technical, we leave it to Subsection 7.5
below.

In the following proposition we reduce equality in 7% to the equality of simple terms.
Proposition 7.6. Let T be Tc);lt or Tc)?m and let T~ denote Ty, and Toy, respectively.
(a) IfT*FXvx=g:BA theng=x.

(b) IfT®F Zodzd.f = g: B2 then there exists h such that g = A\z.h and T® F X,z :
A> f=h:B.

(¢) If T* F X >ujv; = ugve : B then there are the following two possibilities: either
T+ S,2:B,y: Box=y:B and B is a sort, or T® F S >u; = uy : B4 and
T Ybv =0y : A.

(d) IfT*FXYXpvx=uv:X where X isa sort thenT*+X,y: Xvx=y:X.

(e) If T*F Ev>Clut,...,w] = Duit1,..-wyr] © Z such that C[Lh,...,U1;] and
D[Ui41,- .-, U] are the appropriate mazimal simple heads and such that this
case is not covered by (c) nor (d). Then, there exists a function ¢ : {1,...,1 +
'} = {1,...,n} and a sequence of sorts X1, -, X, so that T~ Fxy : Xq,... 2, :

Xn > Clzyay, - Zo@)] = D[Tpat),---Toarr)) © Z where for every i and j if
(i) = ¢(j) then T* F > u; = u; : X; and moreover, for every k ¢ Image(yp)
there is a term in context ¥ of sort Xy. In the case when T is Tc’\at (and T~ =Tyy)
n=1.

Let us first observe that the case (e) would hold even if we were not to exclude its
overlapping with (¢) and (d) but this exclusion is helpful when extracting an algorithm
out of the proposition.

Proof. By Theorem 7.5, we may assume that proofs do not contain (Transitivity) or
(Symmetry). We then proceed by induction on the height of a proof by a straightforward
analysis of the last rules (for the precise definition of the height of a proof , see Definition
7.12 in Section 7.5 below.) O

To construct an algorithm from the above proposition, we would have to be able to
determine the sequence X1, ..., X, (in case (e)) not from the proof of X f =g : Z but
only from the fact that ¥ > f : Z and ¥ > g : Z are well formed terms. In the case of TS,
(and Ty) it is trivial. However, in the case of TS, (and Ty,) this is a difficult question,
and in this case we will introduce a new assumption. But before we do that, let us prove

a lemma.

Lemma 7.7. For a type C we define its “right sort” R(C) as follows: R(AB) = R(A)
and R(X) = X. Then

D. Cubrié, P. Dybjer and P. Scott 32

() IfT*Fz:Xy: X, :A4,...,yn:Apprc=y: X thenTy, Fa: X, y: X, 2 :
R(A1),...,zn:R(Ap) >z =9y:X.

(i) IfTug Fa1:X1,...,¢n: Xppx=y: Xy then T by : Xq,...,2p : Xpppx =y
X]_.

Proof. The second statement is trivial. To prove the first one we observe that with

several lambda abstractions we can always produce a term in context z; : R(A;) of the

type A;. Substituting these terms in z : X,y : X,y1 : A1,...,yn : Appx =9y : X we

obtain T"* F z : X,y : X, 21 : R(A1),...,Zn : R(A,)>x =y : X. This latter equality is

between two simple terms, so it can be shown that it had to hold in T%;,, as follows: the

proof is by induction on the length of the derivation. By inspection, the only possible

last rule is (Beq), for which the result follows by induction assumption. O

Now we can introduce our additional hypothesis:
Assume: that the theory Ty, satisfies the “non-empty” rule i.e.

x:X,y:Yos=t:Z y:Y &FV(st)
x: Xps=t:7
(where F'V (s,t) denotes the variables occurring in s or t). The appropriate variant of the
assumption is always trivially satisfied for T,.

With this assumption the above lemma becomes an equivalence and can be expressed
asT)FY¥pz=y: X iff Tybz:X,y:Xvr=y:X.

Also, the sequence x1 : Xi,...,2, : X, in case (e) of Proposition 7.6 is reduced to
variables which actually appear. Since the converse of the above proposition obviously
holds, the decidability of equality in T2, has been reduced to the decidability of equality
in Tp4. In that sense we have also reduced N F'4 for =7 to the existence of these decision
procedures.

As we mentioned above Ty, and T, correspond to the internal theories of categories
and cartesian categories respectively. Hence we have the following:

Corollary 7.8. (Reduction of Word Problems) In the case of Ty, our method
reduces the word problem for the ccc generated by a category to the word problem of the
starting category. In the case of Tg14, we reduce the word problem for the ccc generated
by a cartesian category to the word problem of the starting cartesian category but only
provided that in the starting cartesian category all projections are eps.

Let us summarize the algorithm: to test whether T F ¥ b u = v : A we first normalize u
and v and then check 7% + ¥ > nf(u) = nf(v) : A. For this we use Proposition 7.6 and do
case analysis on nf(u) : A. First, if A is exponential, we get recursive calls corresponding
to the appropriate parts of (a), (b), and (c¢). If A is a sort we determine the maximal
simple head of nf(u). In case this is just a hole we get recursive calls according to the
appropriate parts of (¢) and (d). Otherwise we use (e), but note that in the case of T2,
it is a non-trivial question to determine the sequence Xi,..., X, from the sorts of the
holes. With the non-emptiness assumption we can take the sequence of sorts determined
by the holes and try all of the finitely many ¢’s. Without the non-emptiness assumption
we would have had to consider sequences of sorts of unbounded length.

Remark 7.9. There are several cases when the above assumption is satisfied: e.g. when

33

all the sorts have a closed term. Also, if in all the axioms all the variables appear on both
sides of equations.

Remark 7.10. What would happen if we were to work with an arbitrary A-theory (i.e.
arbitrary operations and basic equations allowed). Using exactly the same reasoning as
in Section 7.2 we would obtain an algorithm which would satisfy NF1. But, in proving
NF2, we would have to establish that ¢ ,= q;ﬁ = 1 (see the Fact in the proof of Lemma
7.2). But to establish this, we would have to include 8 and 7 into =. In other words, we
would not reduce the problem of decidability of ~ to anything else but itself!

We now present an example which illustrates the need for the additional assumption on
“non-emptiness” .

Proposition 7.11. There is a cartesian category with a decidable word problem but
such that its free ccc closure has an undecidable word problem.

Proof. The cartesian category is the one obtained from the following algebraic theory.
The sorts are Y, Z and X;, ¢ = 1,2,...n,... The generating arrows are: two constants
a,b : Z and the following family of constants ¢; : X(; where f is a total recursive function
whose range is not a recursive set. The only postulated equation is y : Y pa =5b: Z.
(The rest are provable equations in a cc).

Claim 1. Equality is decidable in this cartesian category.

Proof (sketch): all the arrows are expressible as finite sequences of terms in context, and
here we can generate only variables or constants. So, we only have to decide whether
4 = v in context, where u, v are either variables or constants. In general they should be
different, unless they are identical or they are a = b and the context includes Y.

Consider the free ccc closure of the above theory.

Claim 2. It is undecidable in this ccc closure whether
w:Y5pa=0b:2

Proof: we will show that {j |w : YXi ba =b: Z} = Range(f) and this will be sufficient.
Obviously, if j € Range(f), say j = f(i) for some %, then the constant ¢; determines an
arrow 1 — X;. We then have an arrow YXi - Y. Using the fact that y : Yba=b: Z,
then w : YXi >a = b: Z . For the converse, assume that w : YXi ba = b : Z. Then by
Proposition 7.6 (e) we have Ty F 21 : X{,...,2, : X, pa =b: Z and for every X,
k =1,...,n there exists a term/arrow in the ccc closure YXi — X}. By the proof of
Claim 1 we know that one of X; must be Y. So, the above assumption w : YXiba=0b:2Z
is equivalent to the existence of an arrow in the ccc closure of the form YXi — Y. This
is so iff there is an arrow in the ccc closure of the form 1 — X;. The last equivalence
is obvious from right to left. For the other direction one needs to examine the normal
form of a term of sort Y with a free variable of type Y Xi. It must be an application (it
cannot be a A, a variable, or a basic constant.) Let the application be uv. If u were not a
variable it would have to be another application, etc. The leftmost term of this chain of
applications would have to be a variable of higher type then Y Xi. This is impossible, so
u must be a variable of type YXi. Now, v has to be of type X j- If v is a constant we are
done. Otherwise, v has to be an application but this time such a chain of applications

D. Cubrié, P. Dybjer and P. Scott 34

would have to stop with the leftmost term being a variable of a “very wrong type” i.e.
having the rightmost type X; which is no good. A gluing argument following Lafont
(cf. (Lafont 1988), also reproduced in (Crole 1993)) shows the fullness of the canonical
embedding of a cartesian category into the free ccc generated by it. So, such an arrow
1 — X; has to be in the cartesian part. But the arrow must then arise from constants
¢i : Xj, for some i such that f(i) = j; that is, j € Range(f). |

7.5. Proof of Theorem 7.5

Although the main thing is the elimination of (T'ransitivity), we use the elimination
of (Symmetry) to simplify this proof. The following exposition is modelled on the cut-
elimination proof in Girard (Girard 1987). First we introduce some definitions :

Definition 7.12.

(i) A quasiterm is a typed term without its explicit context.

(ii) For every quasiterm ¢t its degree d(t) is defined as follows: for a variable z, d(z) = 1;
if F[...] is not a single hole then d(F[uq,...,w]) = max{d(u;) + 1|7 = 1,...,1};
d(uv) = max{d(u),d(v)} + 1; d(Az.u) = d(u) + 1.

(ili) The degree d(P) of aproof Pof ¥ f=g:Ain T} is

sup{d(t) | t is a “middle” term of a (T'ransitivity) rule in P}

and let d(P) = 0 if P does not contain any (T'ransitivity) rules.

(iv) The height h(P) of a proof P in T}, is defined inductively as follows: the height of
an axiom (and of reflexivity) is 0; for all the other rules the height is defined as the
maximum of the heights of the proofs of its assumptions increased by 1.

(v) The width v(t) of a term is defined to be 1 if the term is not typed by a sort;
otherwise, y(t) = k where k is the number of holes in its maximal simple head (so,
V(@) = 7(uv) = 1).

(vi) The width v(P) of a proof is max{~y(t) | t appears in P as a subterm}.

Now we can eliminate (Symmetry). We will prove the following:

Claim 1: For every proof in 7' of ¥>s = ¢ : A which does not contain any (Symmetry)
there is a proof in 7"%* of ¥ >t = s : A of exactly the same height which does not contain
the (Symmetry) rule either.

Proof of claim 1: By induction on the height of the proof observing that the equational
consequences of T,;, and Ty, are closed under (Symmetry). In other words: reverse each
equality in the proof.

Claim 2: For every proof in 7'* of ¥ > s = ¢ : A in which the rule (Symmetry) was
used exactly once at the end, there is a shorter proof of ¥ > s = ¢ : A which does not use
any (Symmetry) rule.

Proof of claim 2 : Just use the previous claim.

Corollary 7.13. (a) If P is a proof in T'* of ¥ > s =t : A there is a proof P’ in T'® of
¥ b s =1t: A such that P’ does not contain any symmetry and such that d(P) = d(P'),
h(P") < h(P) and 7(P) = 7(P").

35

(b) If Pis aproof in T'* of ¥ > s =t : A there is a proof P in T'® of ¥ > ¢t = s : A such
that P’ does not contain any symmetry and such that d(P) = d(P'), h(P') < h(P) and
(P) = 4(P").

Proof. Use the previous claims. It is important to observe that in the second part of the
above statement, if P did not contain a symmetry then P’ can be obtained by reversing
every equation in P. O

From now on assume that our 7'* does not contain the (Symmetry) rule. We want to
show that (T'ransitivity) is also an admissible rule (in 7"%).
Lemma 7.14. Given a proof Py of X > f =g : A and a proof P> of X > g=h: A in
T'® such that d(Py),d(Ps) < d(g) = n then we can construct a proof P of X > f=h: A
in T'* such that d(P) < n and h(P) < v(g)(h(P1) + h(P2)).
Proof. By induction on v(g)(h(P1) + h(P:)). (This is a modification of Girard’s ap-
proach(Girard 1987)). Recall that our rules are: (Reflexivity), (Transitivity) (App),
(&) and (ASwub) or (USub) respectively. Let us start with the easy cases.

If one of the last rules is reflexivity just take the other proof to represent P. Obviously,
it satisfies all the requirements. We have 12 more cases.

Suppose now that the last rule in Py is (Transitivity) i.e. suppose that P is :

and suppose that P, proves g = h. We can apply the induction hypothesis on Pj5 and P,
and so we obtain a proof Py of b = h of degree < d(g) and h(P3) < v(g)(h(Pr2) + h({P)).
Applying (Transitivity) to the proof Py of f = b and to the previous proof of b = h we
obtain a proof of f = h whose degree is again < d(g) (since by assumption, d(b) < d(g))
and whose height is < max{h(Pi1),7(9)(h(Pi2) + h(P2))} + 1. It is not difficult to see
that this is < y(g)(h(P1) + h(P2)).

A similar analysis holds in the case when P, ends with a transitivity.

Now we have 5 cases left. The cases when both proofs end with (App) or with (§) are
quite easy: just use transitivity on their assumptions.

In the remaining 3 cases at least one rule ends up with (ASub) (respectively (USub)).
Assume now that P; ends with

gq{E > u; Xg |’L € QO_I (k)}kzl,...,n
Y Flup,...,u] =vw :Y

where Ty F 21 0 Xp,..o2n 0 X & Flz,0y,--,To0)] = Tpaqr) + Y and where w1 =
viwsi; and assume also that P is
Py Py

V1 =02 W1 =W2 (A)
V1w = Va2w2 pp

By the proof of the above corollary, part (b), we know that we also have a proof P;

! !
Py P;,
Vg =01 W2 =UwW1
Gawy = vy (APp)

D. Cubrié, P. Dybjer and P. Scott 36

such that Pj, Pj; and Pj, have the same characteristics as P, Py; and P», respectively.

Let us now concentrate on £¢{% > u; : X |i € o X1+ 1)} ={Z > uj; = ujp,..., 2 b
Uiy = VIW1, XD VLWL = Wiy g ,--0y 20 D UG, = u;, } in circular form. In case this circle has
only one equation, i.e. X > vyw; = vyw; we could replace the proof of this equation by the
reflexivity ¥ > vows = vows. Obviously, the new proof would satisfy all the requirements.

Assume now that the above circle of equations has at least two equations. By assump-
tion, each of these equations is proved by a proof whose degree is < d(viw1) and whose
height is < h(Py). In particular it holds for the proof P11 of u;;_, = viw; and for the
proof Pjs of vyw; = ui;,,- Now, we apply the induction hypothesis to P;; and P» and
also to Py and Pj». In that way we obtain a proof P of u; j—1 = v2wy and a proof Py of
vows = u;,,, and such that their degrees are < d(viw) and h(Ps) < 1(h(P11) + h(P2)),
h(Py) < 1(h(P12) + h(Py)). All the other equations from the above ¢ stay intact. By
one application of the rule (ASub) we obtain Fluy,...,u;] = vaws. This proof indeed has
degree < n. Its height is

< max({h(P;)+1| P; is a proof of an “intact” equation}U{h(Pi1)+h(P2)+1, h(Pi2)+h(Py)+1}).
We have to show that this height is < 1(h(Py) + h(P,)). We know that
h(P1) = max({h(P;)+1| P; is a proof of an “intact” equation}U{h(Pi;)+1, h(Pi2)+1}).

This indeed holds since h(Py) = h(P}).
The only remaining case is when both proofs end with (ASub). So we have

EXZ b owi: X |i € o (k) k1, .m
Yo F['U,l,. ..,Ul] = G[Ul+1,. .. ,'U,H_ll] Y

where Tyig =21 : X1ye oy @m0 X & Fl2p1), -+ To)] = GlTo@41)s -+ Tpaqr)] - Y and
p:{1,...,0+1'} = {1,...m}) as the last rule of P; and

Eq{Z v u;: X |i€ w'_l(k)}kzl,...,m'
Yo Gluga, - - ugr] = Hlugga, - wigrqar] 2 Y

where Ty b2y : X{,...,20, : X, DG[mfp,(l_H), ... 7m:p’(l+l’)] = H[mfp,(l+l,+1), .. "'Z.:p(l-i-l’-{-l”)] :
Y and with conditions similar to above, e.g. ' : {I+1,...,I+I'"+1"} = {1,...,m'}) as
the last rule of Ps.

The fact that for j = 1+1,...,1+1" 2,(; and ;vfp,(j) take the same places in GJ...] im-
plies that X(p(j) = X‘;,(]) We want to prove Y F[ul, T ,’U,l] = H[ul+l/+1, ce ,ul+l:+l/:] :
Y with a proof whose degree is < d(Gluiy1,...,...,w4r]) = max{d(u;) + 1|j =
I+1,...141"} or d(uzy1) depending whether GJ...] is single hole or not and with height
<1(g)(h(Py) + h(P2)) = U'(h(Py) + h(Py)).

Let us consider a pushout in Sets over ¢ -incly : {{+1,...,1+1'} = {1,...,m} and
o inedy {I+1...,14+1'} = {1,...,m'}. Denote the two newly obtained functions by I :
{1,....m}=>{1,...om"}yand I' : {1,...,m'} — {1,...,m"}. Recall that we can think
of {1,...,m"} as a set of equivalence classes on the disjoint union {1,...,m}U{1,...,m'}
generated by the relation: {p(i) ~ ¢'(é)|i =1+ 1,...,1 +1'}. Since ¢ and ¢’ preserve
the typing, it follows that the variables in the same equivalence class have the same sort

37

and that I and I' preserve the sorts. For every such sort we take a different variable and
in that way we obtain a sequence y; : Y1,...,Ym» : Y.

First we observe that if Toy, F (21 : X1,..,2m @ X > Flrgay,. .-, Zeq)] =
G[-'Eap(l—',-l); N :-'L'cp(l—',-l’)] : Y) then also Talg F (y1 Y, .o yme Yo DF[yI(Lp(l)); ceey ymp(m] =

Glyr(p@+1))s- > Yr(pu4ry)] = Y) since just some variables are identified, renamed,
and new variables are added. Similarly if Ty, F (z7 : X{,...,2,, : X,, >
G[wfp,(lﬂ),...,xfp,(Hl,)] = H[:E:p’(l+l’+1)""’x:a(l+l’+l”)] : Y) then also Ty F (y1 :

Yioooosymo s Your 0 Glyr o aiay)s -« Yo rn] = Hlyr @iy - Yr ey -
Y) We also know that G[yl((p(l-i-l))a . ,yI(q,(H_l/))] = G[yp(q,/(l_,_l)), . ,yp((p:(l_,_l/))] by
the definition of the above pushout. Since Ty, is closed under transitivity, we have T, F
W1 Yis oy yme s Yo > FlYyscoy)s -+ Yaow)] = Yo o @)y -« Yo e vey] -
Y). (Here, we are not actually using the kind of transitivity which we want to eliminate!)

We also know that {1,...,l+I'+1"} isapushout of {1,...,I+I'} and {I+1,...,I+I'+1"}
over {l+1,...,1+1'}, therefore there exists a unique function) : {1,...,l+1'+1"} —

{1,...,m"} satisfying the universal property. In other words, 1o can be defined as follows:
Ip(i) if ie{1,...1}
Y1) =< Ip(i) = I'¢'(4) ifie{l+1,...,0+1'}
I'y'(4) ifie{l+I'+1,...,l+U'+1"}
Let o : {1,....,00u{l+0I"+1,....,0+1'+1"} - {1,...,m"} denote the appropri-
ate restriction of 1y. With this notation, the above equation reads y; : Y1,...,ym~ :
lel > F[y¢(1)7 .. 7y¢(l))] = H[y¢(l+l'+1)7 .. .,y¢(1+l/+lll)] : Y. Recal] that our goal is
to prove ¥ > Fluy,...,u] = H[ui4r41,- -, ur4rr] @ Y with a proof whose degree is

< d(Gu41, - - -, uyr]) and whose height < v(g)(h(P1) + h(Ps)) = U'(h(P1) + h(P2)).
Having the above equality in T, and using the rule (ASub) it would be enough to
show that we can obtain £¢{% > u; : Vi |i € ¥~1(k)} for every k = 1,...,m" in the
“proper” way i.e. if {u;,,...,u;,} = ¥ ~1(k) then we can prove each ¥ > u;, = uj,,...
X > u;, = u;, with a proof @ whose degree is < d(G[ui4+1,---,--.,w+r]) and whose
height is < I'(h(P1) + h(P)).

First of all notice that ¢~' (k) = ¢y ' (k) N ({1,... 3 U {I+1'"+1....0+1'+1"}). In
order to maintain our assumption on ¢ ~!(k) when k is not in the image of) we need
the following additional definitions. For k ¢ I'mage(1) define o5 ' (k) to be ¢! (k) or
¢’ (k) depending whether k is in the image of I or I'; this definition is correct since
I is just inclusion on {1,...,m} — I'mage(y) and similarly for I'. In addition, I and I’
do not intersect when restricted to those sets. Recall that this means, that v Lk) is a
single term in context ¥ and of type Y;. We take this as the definition of ¥ ~1(k) as well
for such a k. There is one more case to be considered: k € Image(1pg) — Image(v)). That
means that all the u’s which got substituted instead of the k-th variable appeared only

in Glugq1,--.,u41]. We choose any such term u to represent 1)~ (k).
It is useful to visualize the situation as follows: let us call uq,...,u; “black” terms,
U415 - - -5 U4’ “gray” and UI1 41y - - oy WL 41 “white”. For each k =]., ..., we call

Eqg{ > u; - Xi |i € o 1(k)} a “black circle” (although it could be entirely made of gray
elements!), and for each k = 1,...,m' we call £¢{¥ > u; : X |i € go’_l(k)} a “white
circle” (again a white circle could be entirely gray). Each ¢, ' (s) can be considered as a

D. Cubrié, P. Dybjer and P. Scott 38

union of black and white circles. Obviously, black circles are disjoint from each other as
are the white ones (therefore, each gray element appears in exactly one black and one
white circle). One black and one white circle can have an empty intersection or they can
have several common gray elements. By the definition of the above pushout, we have that
each 15" (s) is a maximal “chain” of circles which are of interchanged colour (a chain is a
union of circles Ci,...,C, such that C; and C; 1 have common elements). From each such
chain we first want to produce a circle which may have perhaps fewer gray elements but
the black and white ones must remain the same. Let us first consider a couple of special
cases which come from our convention on 1~1(k) when k is not in the image of 4. As we
said before, if k & Image(1)g) one reflexivity will constitute the “circle” £¢{X > u: X}
and if k € Image(vo) — Image(v) then the above chain is entirely gray and we choose
an arbitrary element and reflexivity to represent this £q circle. Observe also that if a
circle in a chain consists only of one element then there are two cases: if this element is
not gray then the whole chain is actually just this “singleton” circle; if this element is
gray it is a member of another circle or again we have a chain with just one singleton
circle. Moreover, this chain can be considered as a single circle already (since otherwise,
we would have an intersection of two circles of the same colour). Now we are left with
the less trivial case that the chain is not entirely gray and that each circle in the chain
has at least two elements.

Before we analyse that let us recall that each “edge” in a circle is actually one equation
which, by the inductive assumption, is proved with a proof whose degree is < n and whose
height is < max{h(P;) — 1, h(Ps) — 1}. So, suppose that we have circles Ci, ... ,Co. We
claim that we can make such a chain into a circle where each edge will again have a proof
of degree < n and of height < 2max{h(Py) — 1, h(P2) — 1}. Let us start just with two
circles. Suppose that the first circle consists of a; = ag,...,a;-1 = ¢, ¢ = Qjy1,---,anp = A1
and the second consists of by = ba,...,bj_1 = ¢, ¢ = bjt1,....b,, = by where ¢ denotes
a common element. The new circle is going to be a1 = as,...,a;i—1 = bjt1,....bm = b1,
by = ba2,....,bj—1 = @it1,...,an = a1. To form this new circle we needed to use a;—1 = ¢
and ¢ = bjy; to obtain a;_; = bjy1 and similarly, b;_; = ¢ and ¢ = a;41 to obtain
bj—1 = ai4+1. All the other equations are left as they were. We consider two cases:

(i) GJ...] is just a single hole. In that case the middle term of transitivity is u;4+1 and
its degree is by assumption n. This has to be our ¢ since this is the only possible common
term (and in this case the maximal chain has at most two circles). By the induction
hypothesis we can obtain the new equations with proofs whose degrees are again < n
and whose heights are < 1(h(P') + h(P")) where P’ is the proof of a;—1 = ¢ and P"
is a proof ¢ = b;;1 (similarly for b’s). Recall that v(c) = 1 since c is an application or
a variable. Therefore, all the equations in the new circle have proofs of degree < n and

(ii) Assume now that GJ...] is not a single hole and that it has I’ holes (still, I’ could be
1). We can obtain the above two new equations using the two transitivity rules (and not
the induction hypothesis!) whose degrees are < d(G[ui41, - .., ui+1r] = n and the heights
of the new proofs are max{h(P'),h(P")} + 1 where P' and P" are as in the previous
case. These heights are < max{h(Py), h(P»)}.

39

If we have more than 2 circles then we do not have to consider the first case. On
the other hand we would have to repeat the step (ii) a — 1 times. In the final circle,
every equation would have been proved with a proof whose degree is < n and the height
< max{h(P;),h(P2)} + a — 2. Notice also that each application of the step (ii) reduces
the number of gray elements by 1.

After such a procedure we have ended up with a single circle which possibly contains
some gray elements. If this new circle does not contain gray elements we are done. Also,
we are done if such a circle has exactly one, even if gray, element.

If it does have at least 2 elements and at least one of them is gray, we again separate
two cases:

(a) if GJ...] was a single hole then the gray element could have “survived” the above
step (i) only if the step (i) was not even applied i.e. if one of the circles consisted of only
one gray element and in this case we considered the chain to be a single circle. So, this
circle can be represented as a1 = as,...,a;_1 = ¢, ¢ = @j41,...,a, = a1 where c is the single
gray element. We can apply the inductive assumption on a;—1 = ¢ and ¢ = a;41 to get
a;—1 = a;11 (the other equations stay intact). This proof of a;_1 = a;11 again has degree
< d(¢) = n and height < 1(h(P") + h(P")) where P’ and P" are the proofs of a;_1 = ¢
and ¢ = a;41 respectively.

(b) if Gluit1,- - -, wi+r] is not a single hole then again we would have a circle with at
most I' —a+1 gray elements such that each equation has been proved with a proof whose
degree is < n and whose height is < max{h(Py), h(P2)} + a — 2. Also, the degree of each
term in the circle is < n. Now applying at most I’ — a + 1 transitivity rules we can get
rid of all the gray elements and the proofs of final equations will be of degree < n and of
height

< (max{h(P1),h(P2)} +a—2)+ (' —a+1) = max{h(P,), h(P)} +1' — 1.

In that manner, we have shown that for each k = 1,...,m" E¢{Z b u; : Vi |i € v~ 1(k)}
can be arranged in a circle of equations whose proofs have degrees < n and whose heights
are < l'(h(Py) + h(P)).

The other cases are much simpler. m|

Remark 7.15. If we were to work “in parallel” the above v(g) in the estimate for height
could have been lowered to [log2(I')] + 1 i.e. the number of digits needed to write I’ in
base 2.

Lemma 7.16. If P is a proof of ¥ > a =05 in T, and d(P) > 0 then there is a proof P’
of L > a=binT. such that d(P') < d(P) and h(P') < h(P)Y®),
Proof. By induction on h(P) again examining all the possible last rules. |

We now restate and prove the elimination of transitivity theorem with some estimates.

Theorem 7.17. If P is a proof of ¥ a = b in T, then there ezists a transitivity free proof
P' of ¥ > a = b in T}, such that h(P') < (27)geqp)(h(P)) where (27)o(h(P)) = h(P)
and (2) 1 (h(P)) = (27)2) P,

Proof. By induction on d(P) and the previous lemma. i

