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Précis

I Mundici (1986) surprisingly connected up MV-algebras
(arising from  Lukasiewicz many-valued logics, first discovered
in the 1920’s) with G. Elliott’s classification program of AF
C*-algebras via countable dimension groups. Mundici and his
school also developed MV-algebras into a major area of
mathematics.

I In 1990’s, the algebraic theory of quantum effects and
quantum measurement theory in physics led to Effect
Algebras developed by Bennett & Foulis, Eastern European
school: Jencova, Pulmannova, etc.

I Recently: major categorical advances by Bart Jacobs
(Nijmegen) and his school, leading to Effectus Theory.
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What do we want to do?

I Encompass both frameworks using Inverse Semigroup Theory.

I Connect with noncommutative Stone-Duality, étale groupoids,
pseudogroups, tilings, etc. via Boolean Inverse monoids
(Lawson, Lenz, Kellendonk, Resende)

I Generalize AF C*-algebra techniques to develop a theory of
AF inverse monoids connecting up MV and effect algebras.

I Theorem (Coordinatization Theorem, L-S)

Let A be a denumerable MV algebra. Then there exists a boolean
coordinatizing AF inverse monoid S s.t. Ideals(S) = S/J ∼= A.

Here J is the standard relation: aJ b iff SaS = SbS

M. Lawson , P. Scott, AF Inverse Monoids and the structure of Countable

MV Algebras, J. Pure and Applied Algebra 221 (2017), pp. 45 – 74



 Lukasiewicz many-valued logics

 Lukasiewicz (1878-1956) introduced many-valued logics in the
1920’s. Studied by the Polish school, e.g. Tarski. What are they?

I “Fuzzy” logics L with (infinitely-many) truth values in [0,1]
(& related ones: truth values in Q ∩ [0, 1] or QDyad ∩ [0, 1]).

I Finite-valued  Lukasiewicz logics Ln, with truth values in
{0, 1

n−1 ,
2

n−1 , · · · ,
n−2
n−1 , 1}.



 Lukasiewicz Logics and their algebras: every 30 years

I 1920’s: Polish school:  Lukasiewicz , Lesniewski/Tarski , Post.

I 1950’s: R. McNaughton, C.C. Chang (MV Algebras)

I 1980’s: D. Mundici, et.al.
I MV-Algebras: rich algebraic, topological, & geometric theory.
I Closely related to (AF) C*-algebras (Bratteli, Elliott).
I Deep connections with analysis and operator algebras.

I 2010–:
I Sheaf Representation: Dubuc/Poveda (2010), Gehrke (2014).
I Topos Theory & MV-algebras (Caramello: 2014–),
I  Lukasiewicz µ-calculus, M. Mio & A. Simpson (2013)
I Coordinatization (Lawson-Scott, Wehrung, Mundici ) (2015-)



What are MV Algebras?
MV algebras are structures M = 〈M,⊕,¬, 0〉 satisfying:

I 〈M,⊕, 0〉 is a commutative monoid.

I ¬ is an involution: ¬¬x = x , for all x ∈ M.

I 1 := ¬0 is absorbing: x ⊕ 1 = 1 , for all x ∈ M.

I ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

Example: a Boolean algebra B = (B,∨, ( ), 0), where we define
x ⊕ y := x ∨ y and ¬x = x . The last equation says: x ∨ y = y ∨ x

Proposition An MV algebra is a Boolean algebra iff it satisfies
∀x(x ⊕ x = x).
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What are MV Algebras, via LL?

MV algebras are structures M = 〈M,⊕,¬, 0〉 satisfying:

I 〈M,⊕, 0〉 is a commutative monoid.

I ¬ is an involution: ¬¬x = x , for all x ∈ M.

I 1 := ¬0 is absorbing: x ⊕ 1 = 1 , for all x ∈ M.

I ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

Use LL notation: x −◦ y := ¬x ⊕ y . The last equation says:

I (x −◦ y) −◦ y = (y −◦ x) −◦ x
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Further MV Structure I

Define:
x −◦ y := ¬x ⊕ y

x ⊗ y := ¬(¬x ⊕ ¬y)

x 	 y := x ⊗ ¬y

x 6 y iff for some z , x ⊕ z = y

Facts: (i) 6 is a partial order.

(ii) ⊗ is left adjoint to −◦:
x ⊗ y 6 z iff x 6 (y −◦ z)

(iii) 	 is left adjoint to ⊕:
x 	 z 6 y iff x 6 y ⊕ z
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 Lukasiewicz’ Axiom, again

I The  Lukasiewicz axiom can be written:

x 	 (x 	 y) = y 	 (y 	 x)

For example, for sets X ,Y ∈ P(U),

X \ (X \ Y ) = X ∩ Y = Y ∩ X = Y \ (Y \ X ).

Lattice Structure (“Additives”)

An MV algebra forms a distributive lattice with 0, 1, with:

x ∨ y := (x ⊗ ¬y)⊕ y = (x 	 y)⊕ y
x ∧ y := ¬(¬x ∨ ¬y)
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Fundamental Example of an MV Algebra: [0, 1]

For x , y ∈ [0, 1], define:

1. ¬x = 1− x

2. x ⊕ y = min(1, x + y)

3. x ⊗ y = max(0, x + y − 1)

Other models: similarly consider the same operations on:

I Q ∩ [0, 1] and Qdyad ∩ [0, 1].

I Finite MV algebras Mn = {0, 1
n−1 ,

2
n−1 , · · · ,

n−2
n−1 , 1}

(subalgebras of [0,1]). Note: M2 = {0, 1}.

Fact (Barr)

([0, 1],⊗,⊕, 1, 0,¬) also forms a *-autonomous poset.

Moreover, it has products (∧) and thus coproducts (∨).
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Example 2: Lattice-Ordered Abelian Groups

I Let 〈G ,+,−, 0,6〉 be a partially ordered abelian group, i.e.
an abelian group with translation invariant partial order.

I If G is lattice-ordered, call G an `-group, G+ its positive cone.

I If G is an `-group and t ∈ G , then t + ( ) preserves ∨ and ∧.

I If G is an `-group, an order unit u ∈ G is an Archimedian
element: ∀g ∈ G , ∃n ∈ N+ s.t. g 6 nu.

I If G is an `-group with order unit u, define

[0, u]G = {g ∈ G | 0 6 g 6 u} (just a poset)

Example: Γ(G , u) = ([0, u]G ,⊕,⊗, ∗, 0, 1) is an MV algebra, via:

x ⊕ y := u ∧ (x + y)

x∗ := u − x

x ⊗ y := (x∗ ⊕ y∗)∗

0 := 0G and 1 := u
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G -interval MV algebras

G an `-group. Γ(G , u) = ([0, u]G ,⊕,⊗, ∗, 0, 1) is an MV algebra:

x ⊕ y := u ∧ (x + y)

x∗ := u − x

x ⊗ y := (x∗ ⊕ y∗)∗

0 := 0G and 1 := u
All previous examples
are special cases

Special Cases:

I Γ(R, 1) = [0, 1],

I Γ(Q, 1) = Q ∩ [0, 1],

I Γ( 1
n−1Z, 1) =Mn = {0, 1

n−1 ,
2

n−1 , · · · ,
n−2
n−1 , 1} (called a

 Lukasiewicz chain).

I Γ(Z, 1) =M2 = {0, 1}.
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Let MV = the category of MV-algebras and MV-morphisms.
`Gu = the category of `-groups and order-unit preserving homs.

Theorem (Mundici, 1986)

Γ induces an equivalence of categories `Gu ∼=MV : G 7→ [0, u]G

∴ For each MV algebra A, there exists `-group G with order unit u,
unique up to iso, s.t. A ∼= [0, u]G and |G | 6 max(ℵ0, |A|).
Warning!!
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Lattice-Ordered Abelian Groups

Examples of MV algebras Γ(G , u) = ([0, u]G ,⊕,⊗, ∗, 0, 1):

I Γ(R, 1) = [0, 1],

I Γ(Q, 1) = Q ∩ [0, 1],

I Γ( 1
n−1Z, 1) =Mn = {0, 1

n−1 ,
2

n−1 , · · · ,
n−2
n−1 , 1} (called a

 Lukasiewicz chain).

I Γ(Z, 1) =M2 = {0, 1}.
Let MV = the category of MV-algebras and MV-morphisms. Let
`Gu be the category of `-groups and order-unit preserving homs.

Theorem (Mundici, 1986)

Γ induces an equivalence of categories `Gu ∼=MV
In particular, for every MV algebra A, there exists an `-group G
with order unit u, unique up to isomorphism, such that
A ∼= Γ(G , u), and |G | 6 max(ℵ0, |A|).



Some Theorems for Infinite  Lukasiewicz logic

Theorem (Chang Completeness, 1955-58)

1. Every MV algebra is a subdirect product of MV Chains.

2. An MV equation holds in [0, 1] iff it holds in all MV algebras.

Corollary (Existence of Free MV-Algebras)

The free MV algebra Fκ on κ free generators is the smallest
MV-algebra of functions [0, 1]κ → [0, 1] containing all projections
(as generators) and closed under the pointwise operations.

Theorem (McNaughton, 1950: earlier than Chang!)

The free MV algebra Fn is exactly the algebra of McNaughton
Functions: continuous, piecewise (affine-)linear polynomial
functions (in n vbls, with integer coefficients): [0, 1]n → [0, 1].

Corollary: an MV equation holds in [0, 1] iff it holds in [0, 1] ∩Q
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Some Theorems for Infinite  Lukasiewicz logic

Theorem (Mundici, 1987)

Satisfiability in infinite  Lukasiewicz logic is NP complete.

Proof uses interesting features of “differential semantics”, based
on calculus of several variables (gradients, partial derivatives,
tangent planes, etc) over McNaughton Functions, together with
careful numerical approximations.
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Some Algebra of MV algebras

1. An ideal of MV-algebra A is a subset I ⊆ A containing 0,
down-closed (wrt 6), and closed under ⊕.

2. Usual theory of ideals/kernels/congruence/HSP theorems, etc.

3. A is a subdirect product A�
∏

i∈I Ai iff there is a family of
ideals {Ji | i ∈ I} s.t. (i) Ai

∼= A/Ji and (ii)
⋂

i∈I Ji = {0}.
4. Fn, the free MV-algebra on n generators is given by MV-terms

in n-free variables. An algebra A is finitely presented iff
A ∼= Fn/I , for some finitely generated (≡ principal) ideal I .

5. Rad(A) = the intersection of all maximal ideals of A. A is
semisimple iff Rad(A) = {0}. All MV algebras are semisimple,
and hence have no infinitesimals (in a suitable sense).

6. Tensor Products, colimits, spectral spaces, etc.



Some Geometry of MV-Algebras

Mundici & colleagues (Marra, Cabrer, Spada, et.al.) have shown
deep connections to algebraic geometry and topology.

1. If P ⊆ Rn, the convex hull
conv(P) = {

∑
i rivi | vi ∈ P, ri ∈ R+,

∑
i ri = 1}.

2. P is called:

2.1 convex iff P = conv(P).
2.2 a polytope iff P = conv(F ), F ⊆ Rn finite.
2.3 a rational polytope iff it’s a polytope and F ⊆ Qn.
2.4 a (compact) polyhedron iff it’s a union of finitely many

polytopes in Rn.
2.5 a rational polyhedron iff it’s a union of finitely many rational

polytopes. (These are subsets of Rn definable by MV-terms.)

What about maps between rational polyhedra?



Some Geometry of MV-Algebras

I For P ⊆ Rn, f : P → R is a Z-map if it’s a McNaughton
Function over R (instead of [0, 1])). Ditto, if P,Q ⊆ Rn,

P
f−→ Q is a Z-map if its components are. (These are the

continuous transformations of polyhedra definable by tuples of
MV terms!)

Theorem (Marra& Spada, APAL, 2012)

The category of finitely presented MV-algebras and homs is dually
equivalent to the opposite of the category of rational polyhedra
and Z-maps: MVfp

∼= Polyop
Q

There’s a huge and sophisticated literature of these types of
results. Interestingly, there is a strong analogy with a remarkable
independent series of papers by the algebraic topologist W. M.
Beynon (1974-77) on related topological dualities for `-groups.



Typical Beynon Theorem

Theorem (Beynon, 1977)

The full subcategory of the category of finitely generated
lattice-ordered Abelian groups consisting of projective
lattice-ordered Abelian groups is equivalent to the dual of the
category whose objects are rational Euclidean closed polyhedral
cones, and whose morphisms are piecewise homogeneous linear
maps with integer coefficients.

1. W. M. Beynon, Combinatorial aspects of piecewise linear
maps, J. London Math. Soc. (2) (1974), 719-727.

2. W. M. Beynon: Duality theorems for finitely generated vector
lattices, Proc. London Math. Soc. (3) 31 (1975), 114-128.

3. W. M. Beynon, Applications of Duality in the theory of finitely
generated lattice-ordered abelian groups, Can.J. Math, 1977
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MV 

Chang's Theorem (1959) [22J Weinberg's Theorem (1963) [102J 

The variety of MV algebras The variety of i-groups is 
is generated by [0,11 n Q. generated by Z. 
(Corollary 3.3.) (Corollary 5.5.) 

McNaughton's Theorem (1951) [67J Beynon's Theorem, I (1974) [13J 

Every McNaughton function Every i-function of n 
of n variables belongs to Mn. variables belongs to An. 
(Theorem 8.1.) (Subsection 4.4, passim.) 

Free representation (1951-59) [22,67} Free representation (1963-74) [102, 13} 

Mn is the free MV algebra An is the free i-group 
over n free generators, over n free generators, 
i.e. projection functions. i.e. projection functions. 
(Subsection 3.1, passim.) (Subsection 4.4, passim.) 

MV Nullstellensatz (1959) [104, 22J i-Nullstellensatz (1975) [14J 

TFAE: TFAE: 
1. A is fin. gen. semisimple. 1. G is fin. gen. Archimedean. 
2. H(V(J)) = J if A Mn/J. 2. H(V(o)) = 0 ifG 
(Theorem 3.2.) (Subsection 4.4, passim.) 

W6jcicki's Theorem (1973) [103} Baker's Theorem (196B) [9J 

Every finitely presented Every finitely presented 
MV algebra is semisimple. i-group is Archimedean. 
(Theorem 3.4.) (Subsection 4.4, passim.) 

? ? Beynon's Theorem, II (1977) [IS} 

? Every finitely presented 
i-group is projective. 

(Cf. footnote 22.) (Subsection 4.4, passim.) 

Table 1. A synopsis of the geometric representation theory of MV algebras and i-groups. 
The references in parentheses should aid the reader in locating statements within the body 
of this paper. 



Next Lecture

In the next lecture, we will introduce Effect Algebras, Mundici’s
Theorem II, and our Coordinatization Program (joint work with
Mark Lawson).


