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Coordinatization: von Neumann’s Continuous Geometry

I In an article in PNAS (US) (1936) “Continuous Geometry”
von Neumann says “The purpose of the investigations, the
results of which are to be reported briefly in this note, was to
complete the elimination of the notion of point (and line,and
plane) from geometry.”

I What’s left? A (complemented, modular) lattice of subspaces
of a space; a dimension function (into [0,1] or R). The
subspaces correspond to the principal right ideals of a
von-Neumann regular ring.
Ref.
https://en.wikipedia.org/wiki/Continuous geometry
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What do we want to do?

I Analog of von Neuman’s coordinatization program, using
inverse semigroups.

I Generalize AF C*-algebra techniques to develop a theory of
AF inverse monoids connecting up MV and effect algebras.

I Theorem (Coordinatization Theorem, L-S )

Let A be a denumerable MV algebra. Then there exists a boolean
coordinatizing AF inverse monoid S s.t. Ideals(S) = S/J ∼= A.

Here J is the standard relation: aJ b iff SaS = SbS



Some Mundici Examples (1991):

Denumerable MV Algebra AF C*-correspondent

{0, 1} C
Chain Mn Matn(C)

Finite Finite Dimensional
Dyadic Rationals CAR algebra of a Fermi gas

Q ∩ [0, 1] Glimm’s universal UHF algebra
Chang Algebra Behncke-Leptin algebra

Real algebraic numbers in [0,1] Blackadar algebra B.
Generated by an irrational ρ ∈ [0, 1] Effros-Shen Algebra Fp

Finite Product of Post MV-algebras Continuous Trace
Free on ℵ0 generators Universal AF C*-algebra M
Free on one generator Farey AF C*-algebra M1.

Mundici (1988), Boca (2008)
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Effect Algebras (of Quantum Effects)

Foulis & Bennet (1994): an abstraction of algebraic structure of
self-adjoint operators with spectrum in [0,1] (quantum effects).

An Effect Algebra is a partial algebra 〈E ; 0, 1,
∼⊕〉 satisfying:

∀a, b, c ∈ E (Using Kleene directed equality �� )

1. a
∼⊕ b �� b

∼⊕ a.

2. If a
∼⊕ b ↓ then (a

∼⊕ b)
∼⊕ c �� a

∼⊕ (b
∼⊕ c)

3. 0
∼⊕ a ↓ and 0

∼⊕ a = a

 PCM

4. ∀a∈E ∃!a′∈E such that a
∼⊕ a′ = 1.

5. a
∼⊕ 1 ↓ implies a = 0.

}
Orthocomplemented

Eastern European School: Dvurecenskij, Jenca, Pulmannova, . . .

Nijmegen: Bart Jacobs and his school (Effectus Theory)
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Some Basic Examples of Effect Algebras, I

I Boolean Algebras: Let B = (B,∧,∨, ( ), 0, 1) be a Boolean
algebra. For x , y ∈ B, define x ′ = x and

x
∼⊕ y =

{
x ∨ y if x ∧ y = 0

↑ else

I G. Boole [1854] in “An Investigation of the Laws of Thought”:
. . . the classes or things added together in thought should be
mutually exclusive. The expression x + y seems indeed
uninterpretable, unless it be assumed that the things
represented by x and the things represented by y are entirely
separate; that they embrace no individuals in common.
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Effect Algebras: alternative axiomatizations

An Effect Algebra is a partial algebra 〈E ; 0, 1,
∼⊕〉 satisfying:

∀a, b, c ∈ E (Using Kleene directed equality �� ) Various
axiomatizations, e.g.:

1. a
∼⊕ b �� b

∼⊕ a.

2. If a
∼⊕ b ↓ then (a

∼⊕ b)
∼⊕ c �� a

∼⊕ (b
∼⊕ c)

}
PCSemigroup

0
∼⊕ a ↓ and 0

∼⊕ a = a

3. ∀a∈E ∃!a′∈E such that a
∼⊕ a′ = 1.

4. a
∼⊕ 1 ↓ iff a = 0.

}
Orthocomplemented



Some Examples of Effect Algebras

I Interval Effect Algebras: Let (G ,G+, u) be an ordered
abelian group with order unit u. Consider

G+[0, u] = {a ∈ G | 0 6 a 6 u}.

For a, b ∈ G+[0, u], set a
∼⊕ b := a + b if a + b 6 u; otherwise

undefined. Also set a′ := u − a. e.g. [0,1] as a partial algebra.

I E.g.: Standard Effect Algebra E(H) of a quantum system.

G := Bsa(H), (self-adj) bnded linear operators on H,
G+ := the positive operators. Let O = constant zero ,
I = identity. E(H) := G+[O, I].

I A ∈ E(H) represent unsharp measurements
I Projections P(H) ⊂ E(H) represent sharp measurements

(cf. S. Gudder: Sharp & Unsharp Quantum Effects):
4 kinds of prob./measurement theories



Effect Algebras of Predicates (B. Jacobs, 2012-2015)

Predicates in C: let C be a category with “good” finite coprods
and terminal object 1. Define PredC(X ) := C(X , 1 + 1) .

Proposition (Jacobs)

If C satisfies reasonable p.b. conditions on +, PredC(X ), X ∈ C,
forms an effect algebra. (Such a C is called an “effectus”). and
Pred : Cop → Eff .

Examples:

I Predicates on Kleisli categories of various distribution monads
(e.g. Discrete, Continuous, etc.)

I Predicates on various concrete categories:
Set, SemiRingop, Ringop, DLop, (C ∗PU)op, . . . .



Effect Algebras of Predicates (B. Jacobs, 2012-2015)

Predicates in C: let C be a category with “good” finite coprods
and terminal object 1. Define PredC(X ) := C(X , 1 + 1) .

Proposition (Jacobs)

If C satisfies reasonable p.b. conditions on +, PredC(X ), X ∈ C,
forms an effect algebra. (Such a C is called an “effectus”). and
Pred : Cop → Eff .

Examples:

I Predicates on Kleisli categories of various distribution monads
(e.g. Discrete, Continuous, etc.)

I Predicates on various concrete categories:
Set, SemiRingop, Ringop, DLop, (C ∗PU)op, . . . .



Effect Algebras of Predicates (B. Jacobs) II

I Ringop
R

pred−→ 1 + 1 in Ringop

Z2 −→ R in Ring

idempotents in R

(for commutative rings, idempotents form BA).

I DLop
L

pred−→ 1 + 1 in DLop

2× 2 −→ L in DL

complementable x ∈ L

Pred(L) is a boolean sublattice of L.

In general: the effect algebras of predicates correspond to
orthogonal or complementable idempotents.



Effect Algebras of Predicates (B. Jacobs) III

Jacobs has yet more general structures which we won’t consider:

1. Effect Monoids: these are monoid objects in the category of
Effect Algebras ( = Effect algebra with multiplication
preserving 0, ⊕ (in each argument), and 1x = x = x1.)

2. Effect Modules: Given an effect monoid M and effect algebra
E , consider the category of M-actions • : M × E → E with
usual (M-set laws).



Effect Algebras: Additional Properties

Let E be an effect algebra. Let a, b, c ∈ E . Denote a′ by a⊥ or a∗.

1. Partial Order: a 6 b iff for some c , a
∼⊕ c = b.

2. 0 6 a 6 1, ∀a ∈ E .

3. a⊥⊥ = a.

4. 0⊥ = 1 and 1⊥ = 0.

5. a 6 b implies b⊥ 6 a⊥

6. (Cancellation) a
∼⊕ c1 = a

∼⊕ c2 implies c1 = c2.

7. (Positivity / conical) a
∼⊕ b = 0 implies a = b = 0



Effect Algebras: Additional Properties II

The analog of “logical subtraction” in MV-algebras.

Define a partial operation b
∼	 a by: b

∼	 a = c iff a
∼⊕ c = b. So

b
∼	 a ↓ iff a 6 b

. I a
∼⊕ (b

∼	 a) = b

I a′ = a⊥ = 1
∼	 a



MV versus MV-Effect Algebras

An MV-Effect Algebra is a lattice-ordered effect algebra satisfying

(a ∨ b)
∼	 a = b

∼	 (a ∧ b)

Proposition (Chovanec, Kôka, 1997)

There is a natural 1-1 correspondence between MV-effect algebras
and MV-algebras.

Idea: MV-Effect algebras ←→ MV-Algebras

〈E , 0, 1,∼⊕〉 7−→ 〈E , 0, 1,⊕〉, where x ⊕ y = x
∼⊕ (x ′ ∧ y)

〈E , 0, 1, ∼⊕〉 ←−p 〈E , 0, 1,⊕〉, where x
∼⊕ y = x ⊕ y

(i.e. restrict to (x , y) s.t. x 6 ¬y);



How are MV and Effect Algebras Related?
There are many criteria for equivalence. For example:

I An effect algebra satisfies RDP (Riesz Decomposition
Property) iff

a 6 b1 ⊕ b2 ⊕ · · · ⊕ bn ⇒ ∃a1, . . . , an s.t.

a = a1 ⊕ a2 ⊕ · · · ⊕ an with ai 6 bi , i 6 n

Proposition (Bennett & Foulis, 1985)

An effect algebra is an MV-effect algebra iff it is lattice ordered
and has RDP.
�

Morphisms are different!

|HomMV([0, 1], [0, 1]) | = 1, |HomMV([0, 1]2, [0, 1]) | = 2

|HomEA([0, 1], [0, 1]) | = 1, |HomEA([0, 1]2, [0, 1]) | = 2ℵ0
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Universal Groups of Effect Algebras: Mundici Anew

I If (E ,+, 0, 1) is an effect algebra with RDP, there is a
universal monoid E ↪→ ME . This (total) monoid ME is
abelian, cancellative, satisfies a universal property.

I Every cancellative abelian monoid M has a Grothendieck
group M ↪→ GM satisfying a universal property (essentially
the INT construction yielding Z from N).

Theorem (Ravindran,1996)

Let E be an effect algebra with RDP and E
γ−→ GE its universal

(Groth.) group. Then GE satisfies:

1. (i) GE is partially ordered,

2. (ii) u = γ(1) is an order unit and (iii) γ : E ∼= [0, u]GE
.

3. If E is an MV-algebra, then GE is an `-group (cf. Mundici).
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Ravindran’s Theorem–some details

Essentially an independent approach to Mundici’s theorem, via
effect algebras. Technique goes back to R. Baer (1949).

Theorem
Let E be an effect algebra satisfying RDP. Then it is an interval
effect algebra, with universal group an interpolation group.

Let E+ be the free (word) semigroup on E . Take the smallest
congruence ∼ such that the word (a, b) ∼ (a⊕ b), whenever
(a⊕ b) ↓. i.e. Take the congruence relation on words generated as:
(a1, a2, · · · an) ∼ (a1, a2, · · · , ak−1, ak ⊕ ak+1, ak+2, · · · , an),
whenever ak ⊕ ak+1 ↓. Then E+/∼ is a positive abelian monoid
(get commutativity for free!) with RDP. Its Grothendieck Group is
its universal group. If E satisfies RDP, this is the universal group
γ : E → GE of the effect algebra, which is a po-group with
u = γ(1) an order unit. If E is MV, then [0, u] is lattice and GE is
an `−group.



Matrix algebras and AF C*-algebras: Mundici II

(Notes on Real and Complex C*-algebras by K. R. Goodearl.)

I A finite dimensional C*-algebra is one isomorphic (as a
*-algebra) to a direct sum of matrix algebras over C:
∼= Mm(1)(C)⊕ · · · ⊕Mm(k)(C).

I The ordered list (m(1), · · · ,m(k)) is an invariant.

I
�

Many categories arise, with many notions of map!

I (Bratteli, 1972) An AF C*-algebra (approximately finite
C*-algebra) is a countable colimit

lim→ (A1
α1−→ A2

α2−→ A3
α3−→ · · · )

of finite-dimensional C*-algebras and *-algebra maps.

Bratteli showed AF C*-algebras have a standard form:
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Matricial C*-algebras: standard maps

A := Mm(1)(C)⊕ · · · ⊕Mm(k)(C) and
B := Mn(1)(C)⊕ · · · ⊕Mn(l)(C) .

I Define *-algebra maps A → Mn(i)(C)

(A1, · · · ,Ak) 7→ DIAGn(i)(

si1︷ ︸︸ ︷
A1, · · · ,A1,

si2︷ ︸︸ ︷
A2, · · · ,A2, · · · ,

sik︷ ︸︸ ︷
Ak , · · · ,Ak)

determined by sik ∈ N where si1m(1) + · · ·+ sikm(k) = n(i) .

I A standard ∗-map A → B is an l-tuple of such DIAGs:

(A1, · · · ,Ak) 7→ (DIAGn(1)(· · · ), . . . ,DIAGn(l)(· · · ))

determined by l × k matrix (sij) s.t.
∑k

j=1(sijm(j)) = n(i),



Bratteli’s Theorem

Theorem (Bratteli)

Any AF C*-algebra is isomorphic (as a C*-algebra) to a colimit of
a system of matricial C*-algebras and standard maps.

Bratteli introduced an important graphical language to handle the
difficult combinatorics: Bratteli Diagrams.



Bratteli’s Diagrams: a combinatorial structure
A Bratteli diagram as an infinite directed multigraph B = (V ,E ),
where V = ∪∞i=0V (i) and E = ∪∞i=0E (i).

I Assume V (0) has one vertex, the root.

I Edges are only defined from V (i) to V (i + 1).

V (i)

(Zk ,(m(1),··· ,m(k)))︷ ︸︸ ︷
m(1) m(2) · · · m(k)

V (i + 1) n(1) n(2) · · · n(l)

Draw sij -many edges between m(j) to n(i) . (Of course, for
adjacent levels, the sij must satisfy the combinatorial
conditions.)

I Vertices now assigned `ABu groups (Zk , u).

Colimits along standard maps induces colimits of associated Zk ,
called dimension groups.
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K0: Grothendieck group functors

A very general construction:

I K0: Ring→ Ab and K0 : AF→ Po-Abu

I Roughly: turn the isomorphism classes (of idempotents) in the
Karoubi Envelope into an abelian cancellative monoid and
then by INT into an abelian group.

I Tricky for AF C*-algebras: technicalities of self-adjoint
idempotents (= projections)



AF C*-algebras & Mundici’s Theorem II

Approx. finite (AF) C*-algebras classified in deep work of G. Elliott
(studied further by Effros, Handelman, Goodearl, et. al).

Theorem (Mundici)

Let `AFu = category of AF-algebras, st K0(A) is lattice-ordered
with order unit. Let MVω = countable MV-algebras.

We can extend Γ : `Gu ∼=MV to a functor Γ̂ : `AFu →MVω,

Γ̂(A) := Γ(K0(A), [1A]) = [ 0, [1A] ]K0(A)

(i) A ∼= B iff Γ̂(A) ∼= Γ̂(B)

(ii) Γ̂ is full.
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Inverse Semigroups and Monoids

Definition (Inverse Semigroups)

Semigroups (resp. monoids) satisfying: “Every element x has a
unique pseudo-inverse x−1.”

I ∀x∃!x−1(xx−1x = x & x−1xx−1 = x−1)

Fundamental Examples
I IX = PBij(X ), Symmetric Inverse Monoid. These are partial

bijections on the set X , i.e. partial functions f : X ⇀ X which
are bijections dom(f )→ ran(f ).

I For each subset A ⊆ X , there are partial identity functions
1A ∈ IX . These are the idempotents.

I f −1of = 1dom(f ) and f of −1 = 1ran(f ) , partial identities on X .

I Semisimple: = Finite Cartesian Products IX1 × · · · × IXn .
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Examples: Inverse Semigroups & Inv. Monoids

Ref: M.V. Lawson Inverse semigroups: the theory of partial
symmetries, World Scientific Publishing Co., 1998.

1. Any group (with pseudo-inverse(x) := usual inverse x−1)

2. Symmetric Inverse Monoids IX = PBij(X ).

3. Pseudogroups (arising in differential geometry): inverse
semigroups of partial homeomorphisms between open subsets
of a topological space (Veblen-Whitehead, Ehresmann).

4. Tiling semigroups associated with tilings of Rn.

5. Connections with topological groupoids (vast area).
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5. Connections with topological groupoids (vast area).
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Inverse Monoids: Basic Definitions

Let S be an inverse monoid with zero element 0. Let E (S) be the
set of idempotents of S .

I In analogy with S = IX , if a ∈ S , define
dom(a) = a−1a, ran(a) = aa−1.

I For a, b ∈ S , define a 6 b iff a = be, for some e ∈ E (S).

I S is boolean if:
(i) E (S) is a boolean algebra,
(ii) “compatible” elements have joins,
(iii) multiplication distributes over (finite) ∨’s.

I (Compatibility) For a, b ∈ S , define a ∼ b iff a−1b &
ab−1 ∈ E (S). This is necessary for a ∨ b to exist.

I (Orthogonality) a ⊥ b iff a−1b = 0 = ab−1.
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Non-Commutative Stone Duality

Boolean Inverse monoids arise in various recent areas of
noncommutative Stone Duality.

Theorem (Lawson, 2009,2011)

The category of Boolean inverse ∧-semigroups is dual to the
category of Hausdorff Boolean groupoids.

Theorem (Kudryavtseva,Lawson 2012)

The category of Boolean inverse semigroups is dual to the category
of Boolean groupoids.



Green’s Relations

Let S be an inverse monoid. Define:

1. J on S : aJ b iff SaS = SbS (i.e. equality of principal ideals).

2. D on E (S): eDf iff ∃a∈S(e = dom(a), f = ran(a), e
a−→ f )

Consider E (S)/D, S boolean. For idempotents e, f ∈ E (S), define
[e]
∼⊕ [f ] as follows: if we can find orthogonal idempotents

e ′ ∈ [e], f ′ ∈ [f ], let [e]
∼⊕ [f ] := [e ′ ∨ f ′]. Otherwise, undefined.

Proposition

Let S be a factorizable Boolean inverse monoid. Then:

I D preserves complementation and (E (S)/D,∼⊕, [0], [1]) is an
effect algebra w/ RDP.

Call these Foulis Monoids.
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Coordinatizing MV Algebras: Main Theorem

I For Foulis monoids S as in the Proposition, D = J .

I Can identify E (S)/D with the poset of principal ideals S/J .

I We say S satisfies the lattice condition if S/J is a lattice. It
is then in fact an MV-algebra (by Bennet & Foulis).

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S
satisfying the lattice condition such that S/J ∼= A, as MV
algebras.



Some Mundici Examples (1991): Coordinatizations
+ MSc. Thesis of Wei Lu

Denumerable MV Algebra AF C*-correspondent

{0, 1} C
Chain Mn Matn(C)

Finite Finite Dimensional
Dyadic Rationals CAR algebra of a Fermi gas

Q ∩ [0, 1] Glimm’s universal UHF algebra
Chang Algebra Behncke-Leptin algebra

Real algebraic numbers in [0,1] Blackadar algebra B.
Generated by an irrational ρ ∈ [0, 1] Effros-Shen Algebra Fp

Finite Product of Post MV-algebras Continuous Trace
Free on ℵ0 generators Universal AF C*-algebra M
Free on one generator Farey AF C*-algebra M1.

Mundici (1988), Boca (2008)



Towards AF inverse monoids

Methodology: redo Bratteli theory, using rook (or boolean)
matrices

I A rook matrix in Matn({0, 1}) is one where every row and
column have at most one 1. Let Rn := rook matrices.

I There’s bijection In
∼=−→ Rn: f 7→ M(f ), where M(f )ij = 1 iff

i = f (j).

Up to isomorphism, it’s possible to redo the entire theory of
Bratteli diagrams using rook matrices and In’s instead of Z’s.



Rook Matrices

1. Given A ∈ Rm,B ∈ Rn, define A⊕ B := Diag(A,B) ∈ Rm+n.

2. Define sA = A⊕ · · · ⊕ A (s times). Ditto
⊕n

i=1 siAi .

3. Interested in letter isos: those wrt a chosen total order on n.

4. Standard morphisms Rm(1) × · · · × Rm(k)
σ−→ Rn given by

(A1, · · · ,Ak) 7→ s1A1 ⊕ · · · ⊕ skAk for some si ∈ N. More
generally, Rm(1)× · · · ×Rm(k)

σ−→ Rn(1)× · · · ×Rn(l) arises via
a matrix (sij) of coefficients in N + combinatorial condn.

Lemma (Standard Map Lemma: Rough Version)

Every morphism Im(1) × · · · × Im(k)
θ−→ In(1) × · · · × In(l) factors

as β−1σα for some standard map σ and letter isos.



Bratteli Diagrams, AF Inverse Monoids and colimits of Ins

Recall B = (V ,E ) a Bratteli diagram.

V (i) m(1) m(2) · · · m(k)

V (i + 1) n(1) n(2) · · · n(l)

Draw sij -many edges between m(j) to n(i) .

Now associate

V (0) ↔ S0 = I1 ∼= {0, 1}
...

...
...

V (i) ↔ Si = Im(1) × · · · × Im(k)

Monomorphisms σi : Si → Si+1 are induced by standard maps.
Combinatorial Conditions are true

An AF Inverse Monoid I (B) := colim(S0
σ0−→ S1

σ1−→ S2
σ2−→ · · · ),

for Bratteli diagram B.



AF Inverse Monoids and colimits of Ins

Lemma
(1) Colimits of ω-chains (S0

σ0−→ S1
σ1−→ S2

σ2−→ · · · ) of boolean
inverse ∧-monoids with monos inherit all the nice features of the
factors. In particular, the groups of units are direct limits of groups
of units of the Si .
(2) Given any ω-sequence of semisimple inverse monoids and
injective morphisms, the colim(Si ) is isomorphic to I (B), for some
Bratteli diagram B.

Theorem
AF inverse monoids are Dedekind finite Boolean inverse monoids in
which D preserves complementation. Their groups of units are
direct limits of finite direct products of finite symmetric groups.



The General Coordinatization Theorem

Theorem (Coordinatization Theorem for MV Algebras: L& S)

For each countable MV algebra A, there is a Foulis monoid S
satisfying the lattice condition such that S/J ∼= A.

Proof sketch: We know from Mundici every MV algebra A is
isomorphic to an MV-algebra [0, u]G , an interval effect algebra for
some order unit u in a countable `-group G . It turns out that G is
a countable dimension group. Thus there is a Bratteli diagram B
yielding G . Take then I (B), the AF inverse monoid of B. It turns
out that I (B)/J is isomorphic to [0, u] as an MV effect-algebra,
and the latter will be a lattice, thus a Foulis monoid. So, we have
coordinatized A.



Example 1: Coordinatizing Finite MV-Algebras

Let In = IX be the inverse monoid of partial bijections on n
letters, |X | = n. One can show that all the In’s are Foulis
monoids. The idempotents in this monoid are partial identities 1A,
where A ⊆ X . Two idempotents 1AD1B iff |A| = |B|. Indeed we

get a bijection In/J
∼=−→ n+1, where n+1 = {0, 1, · · · , n}. This

induces an order isomorphism, where n+1 is given its usual order,
and lattice structure via max, min.

The effect algebra structure of In/J becomes: let r , s ∈ n+1.
r
∼⊕ s is defined and equals r + s iff r + s 6 n. The

orthocomplement r ′ = n − r . The associated MV algebra:
r ⊕ s = r + min(r ′, s), which equals r + s if r + s 6 n and
r ⊕ s equals n if r + s > n.

We get an iso In/J ∼=Mn, the  Lukasiewicz chain. But every
finite MV algebra is a product of such chains, which are then
coordinatized by a product of In’s.



Example 2: Coordinatizing Dyadic Rationals–Cantor Space

Cuntz (1977) studied C*-algebras of isometries (of a sep. Hilbert
space). Also arose in wavelet theory & formal language theory
(Nivat, Perrot). We’ll describe Cn the nth Cuntz inverse monoid.

Cantor Space Aω, A finite. For Cn, pick |A| = n. For C2, pick
A = {a, b}. Given the usual topology, we have:

1. Clopen subsets have the form XAω, where X ⊆ A∗ are Prefix
codes : finite subsets s.t. x - y (y prefix of x)⇒ x = y .

2. Representation of clopen subsets by prefix codes is not unique.
E.g. aAω = (aa + ab)Aω.

3. We can make prefixes X in clopens uniquely representable:
define weight by w(X ) =

∑
x∈X |x |. Theorem: Every clopen

is generated by a unique prefix code X of minimal weight.



Cuntz and n-adic AF-Inverse Monoids

Definition (The Cuntz inverse monoid, Lawson (2007))

Cn ⊆ IAω consists of those partial bijections on prefix sets of same
cardinality: (x1 + · · · xr )Aω −→ (y1 + · · · yr )Aω such that
xiu 7→ yiu, for any right infinite string u.

Proposition (Lawson (2007))

Cn is a Boolean inverse ∧-monoid, whose set of idempotents
E (Cn) is the unique countable atomless B.A. Its group of units is
the Thompson group Vn.

Definition ( n-adic inverse monoid Adn ⊆ Cn)

Adn = those partial bijections in Cn of the form xi 7→ yi , where
|xi | = |yi |, i 6 r . Ad2 = the dyadic inverse monoid.



Cuntz and Dyadic AF-Inverse Monoids

Theorem
The MV-algebra of dyadic rationals is co-ordinatized by Ad2.

The proof uses Bernoulli measures on Cantor spaces.

Proposition (Characterizing Ad2 as an AF monoid)

The dyadic inverse monoid is isomorphic to the direct limit of the
sequence of symmetric inverse monoids (partial bijections)

I2 → I4 → I8 → · · ·

called the CAR inverse monoid. The group of units is a colimit of
symmetric groups: Sym(1)→ Sym(2)→ · · ·Sym(2r )→ · · · .



Cuntz and Dyadic AF-Inverse Monoids: Invariant Measures

General theory of measures on Cantor Space is recent research
(Akin, Handelman, . . . ). Look at simple Bernoulli Measures.

Definition
Let S be a Boolean inverse monoid. An invariant measure is a
function µ : E (S)→ [0, 1] satisfying: (i) µ(1) = 1,
(ii) ∀s ∈ S(µ(s−1s) = µ(ss−1)),
(iii) If e, f ∈ E (S), e ⊥ f then µ(e ∨ f ) = µ(e) + µ(f ).

A good invariant measure µ is an invariant measure such that:
µ(e) 6 µ(f ) ⇒ ∃e ′[e ′ 6 f ∧ µ(e) = µ(e ′)]

Example If |A| = n and a ∈ A, let µ(a) = 1
n . If x ∈ A∗, let

µ(x) = 1
n|x|

. For prefix set X , let µ(X ) =
∑

x∈X µ(x).
(If n = 2, µ is called Bernoulli measure.)



Bernoulli Measures
A general property:

Lemma
If S is a boolean inverse monoid with a good invariant measure µ
that reflects the D relation (i.e. µ(e) = µ(f )⇒ eDf ) then S is (i)
Dedekind finite, (ii) D preserves complementation, and (iii) S/J is
linearly ordered.

Lemma
Ad2 has a good invariant measure that reflects the D relation.
Hence Ad2/J is linearly ordered.

The main coordinatization theorem in this example then follows:

M. Lawson , P. Scott, AF Inverse Monoids and the structure of
Countable MV Algebras, J. Pure and Applied Algebra 221 (2017),
pp. 45–74.



Coordinatizing Q ∩ [0, 1] : thesis of Wei Lu

Definition (Omnidivisional sequence)

A sequence D = {ni}∞i=1 of natural numbers is omnidivisional if it
satisfies the following properties.

I For all i , ni | ni+1.

I For all m ∈ N, there exists i ∈ N such that m | ni .

Example

The sequence {n!}∞n=1.

Theorem (Coordinatization of the rationals)

Let D = {ni}∞n=1 be an omnidivisional sequence. Then, the
directed colimit of the sequence

Q : In1
τ1−→ In2

τ2−→ In3
τ3−→ In4

τ4−→ . . . ,

coordinatizes Q ∩ [0, 1].
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Open Questions

I Coordinatize all the countable examples from Mundici.

I Recent work of Fred Wehrung shows that all MV algebras can
be coordinatized. But in the countable case, he does not
obtain AF inverse monoids. Can full coordinatization be done
using our methods, in the general case?

I Constructing Boolean Inverse semigroups from lattice-ordered
abelian groups (à la Wehrung). E.g. Wehrung has recent
representation theorems: for every such G , G+ arises as
(E (S)/D,⊕) in a universal way, for some Boolean Inverse S .
Lawson and I are working on new approaches to Wehrung’s
representation theorems.

I (Speculative!) Elliott’s original construction of what he calls
the “local semigroup” of an AF C*-algebra was the main
construction that our original paper parallels. In fact, Elliott
constructs an effect algebra. Are effect algebras a finer class
of invariants for certain of these C*-algebras?


