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Abstract. We consider the multiplicative and exponential fragment of
linear logic (MELL) and give a Geometry of Interaction (GoI) semantics
for it based on unique decomposition categories. We prove a Soundness
and Finiteness Theorem for this interpretation. We show that Girard’s
original approach to GoI 1 via operator algebras is exactly captured in
this categorical framework.

1 Introduction and Motivation

Girard introduced his Geometry of Interaction (GoI) program in the late 80’s,
through a penetrating series of papers [10, 9, 11].

The Geometry of Interaction was the first attempt to model, in a mathe-
matically sophisticated way, the dynamics of cut-elimination. Traditional deno-
tational semantics models normalization of proofs (or lambda terms) by static
equalities: if Π, Π ′ are proofs of a sequent Γ ` A and if we have a reduction
Π � Π ′ by cut-elimination, then their interpretations − in any model denote
equal morphisms, i.e. Π = Π ′ : Γ → A . On the other hand syn-
tax contains too much irrelevant information and does not yield an independent
mathematical modelling of the dynamics of cut-elimination. Thus the goal of
GoI is to provide precisely such a mathematical model.

The first implementation of this programme was given by Girard [10], based
on the C∗-algebra of bounded linear operators on the space `2 of square summable
sequences. For a much more elaborate account of the ideas above see [10, 9, 11].

The GoI interpretation was extended to untyped λ-calculus by Danos in [7].
Danos and Regnier further extended the GoI interpretation to define a path-
semantics for proofs (=programs) and gave a detailed comparison with the λ-
calculus notions of path. The idea is that a proof net is represented by a set of
paths and the execution formula is an invariant of reduction (see [8]).

Abramsky and Jagadeesan gave the first categorical approach to GoI in [4].
Their formalisation is based on domain theory and arises from the construction
of a categorical model of linear logic. The ideas and techniques used in [4] to-
gether with the development of traced monoidal categories, introduced by Joyal,
Street and Verity [17], led to a more abstract formalisation of GoI via the notion



of GoI Situation introduced by Abramsky in [2]. GoI Situations give a categori-
cal embodiment of the essential ingredients of GoI, at least for the multiplicative
and exponential fragment. Furthermore, in his Siena lecture [2] Abramsky in-
troduced a general GoI construction. Abramsky’s programme was sketched in
[2] and completed in [12] and [3]. However, what was still missing was a tighter
connection between the abstract GoI frameworks above and the original works
of Girard et al. That is, we want our categorical models for GoI to be not only
part of well-established categorical logic, but also we want our framework to
explicitly connect with the details of the operator algebraic approach, e.g. the
execution formula, orthogonality and the notion of type, all found in the original
works but which could not be given in the generality of [3].

In this paper, we analyze how the first Girard paper GoI1 [10] fits into the
general theory of GoI situations. The idea pursued here is to restrict the abstract
traced monoidal categories in a GoI situation to a useful subclass: unique de-
composition categories [12, 13]. These are monoidal categories whose homsets are
enriched with certain infinitary sums, thus allowing us to consider morphisms as
matrices, the execution formula as an infinite sum, etc. Such categories are in-
spired from early categorical analyses of programming languages by Elgot, Arbib
and Manes, et. al. (e.g. [18] ).

The main contributions of this paper are the following:

1. We present a categorical model (implementation) for GoI and show that
it captures the original Hilbert space model proposed by Girard in [10],
including the notions of orthogonality and type.

2. We show that the execution formula at the heart of modeling computation
as cut-elimination is perfectly captured by the categorical notion of trace.

3. We prove finiteness and soundness results for our model using the categorical
properties of trace and GoI Situation.

We believe that our categorical interpretation views the original Girard GoI
model in a new light. Not only do the original constructions appear less ad hoc,
but this paper also opens the door towards accommodating other interesting
models based on different categories and GoI Situations.

The rest of the paper is organized as follows: In Section 2 we recall the
definitions of traced monoidal categories and GoI Situations, following [12, 3]. In
Section 3 we recall the definition of a unique decomposition category and give
some examples. Sections 4 and 5 are the main sections of the paper where we
discuss our categorical model for the GoI program and give the main theorems
respectively. Section 6 discusses the original model introduced by Girard in [10].
Finally in section 7 we conclude by discussing related and future work.

2 Traced Monoidal Categories & GoI Situations

We recall the definitions of symmetric traced monoidal categories and GoI Situa-
tions. For more detailed expositions, see [12, 3]. The categories introduced below



admit a highly geometric presentation, but for lack of space, we omit drawing
the pictures, and refer the reader to the above references.

Joyal, Street and Verity [17] introduced the notion of abstract trace on a
balanced monoidal category (a monoidal category with braidings and twists.)
This trace can be interpreted in various contexts where it could be called con-
traction, feedback, parametrized fixed-point, Markov trace or braid closure. The
notion of trace can be used to analyse the cyclic structures encountered in mathe-
matics and physics, most notably in knot theory. Since their introduction, traced
monoidal categories have found applications in many different areas of computer
science, for example the model theory of cyclic lambda calculi [14], categorical
frameworks for the semantics of asynchronous communication networks [19], full
completeness theorems for multiplicative linear logic via GoI models [12], analy-
sis of finite state machines [16], relational dataflow [15], and independently arose
in Stefanescu’s work in network algebra [20].

Definition 1. A traced symmetric monoidal category is a symmetric monoidal
category (C,⊗, I, s) with a family of functions TrUX,Y : C(X ⊗ U, Y ⊗ U) →
C(X,Y ) called a trace, subject to the following axioms:

– Natural in X, TrUX,Y (f)g = TrUX′,Y (f(g⊗ 1U )) where f : X ⊗U → Y ⊗U ,
g : X ′ → X,

– Natural in Y , gTrUX,Y (f) = TrUX,Y ′((g ⊗ 1U )f) where f : X ⊗ U → Y ⊗ U ,
g : Y → Y ′,

– Dinatural in U , TrUX,Y ((1Y ⊗g)f) = TrU
′

X,Y (f(1X ⊗g)) where f : X⊗U →
Y ⊗ U ′, g : U ′ → U ,

– Vanishing (I,II), TrIX,Y (f) = f and TrU⊗VX,Y (g) = TrUX,Y (TrVX⊗U,Y⊗U (g))
for f : X ⊗ I → Y ⊗ I and g : X ⊗ U ⊗ V → Y ⊗ U ⊗ V ,

– Superposing, TrUX,Y (f)⊗g = TrUX⊗W,Y⊗Z((1Y ⊗sU,Z)(f ⊗g)(1X ⊗sW,U ))
for f : X ⊗ U → Y ⊗ U and g : W → Z,

– Yanking, TrUU,U (sU,U ) = 1U .

Joyal, Street, and Verity[17] also introduced the Int construction on traced
symmetric monoidal categories C; Int(C) is a kind of “free compact closure”
of the category C. Int(C) isolates the key properties of Girard’s GoI for the
multiplicative connectives, in that composition in Int(C), which is defined via
the trace, uses an abstract version of Girard’s Execution Formula. Of course,
one of our goals in this paper is to show that in our restricted models, this is
exactly the original Girard formula.

The next problem was how to extend this to the exponential connectives. In
the Abramsky program (see [3]) this is achieved by adding certain additional
structure to a traced symmetric monoidal category. This structure involves a
monoidal endofunctor, a reflexive object, and appropriate retractions, as intro-
duced below. It was shown in [3] that this additional structure is sufficient to
generate certain linear combinatory algebras which capture the appropriate com-
putational meaning of the exponentials.

Definition 2. A GoI Situation is a triple (C, T, U) where:



1. C is a traced symmetric monoidal category
2. T : C→ C is a traced symmetric monoidal functor with the following retrac-

tions (note that the retraction pairs are monoidal natural transformations):
(a) TT � T (e, e′) (Comultiplication)
(b) Id� T (d, d′) (Dereliction)
(c) T ⊗ T � T (c, c′) (Contraction)
(d) KI � T (w,w′) (Weakening). Here KI is the constant I functor.

3. U is an object of C, called a reflexive object, with retractions: (a) U ⊗U �U
(j, k), (b) I � U , and (c) TU � U (u, v).

For examples of GoI Situations see Section 6.

3 Unique Decomposition Categories

We consider monoidal categories whose homsets allow the formation of certain
infinite sums. Technically, these are monoidal categories enriched in Σ-monoids
(see below). In the case where the tensor is coproduct and Σ-monoids satisfy
an additional condition, such categories were studied in computer science in
the early categorical analyses of flow charts and programming languages by
Bainbridge, Elgot, Arbib and Manes, et. al. (e.g. [18] ). The general case, known
as unique decomposition categories (UDC’s), are particularly relevant for this
paper, since they admit arbitray tensor product (not necessarily product or
coproduct) and traced UDCs have a standard trace given as an infinite sum. For
more facts and examples on UDCs see [12].

Definition 3. A Σ-monoid consists of a pair (M,Σ) where M is a nonempty
set and Σ is a partial operation on the countable families in M (we say that
{xi}i∈I is summable if

∑
i∈I xi is defined), subject to the following axioms:

1. Partition-Associativity Axiom. If {xi}i∈I is a countable family and if {Ij}j∈J
is a (countable) partition of I , then {xi}i∈I is summable if and only if
{xi}i∈Ij is summable for every j ∈ J and

∑
i∈Ij xi is summable for j ∈ J .

In that case,
∑
i∈Ixi =

∑
j∈J(

∑
i∈Ijxi)

2. Unary Sum Axiom. Any family {xi}i∈I in which I is a singleton is summable
and

∑
i∈I xi = xj if I = {j}.

Σ-monoids form a symmetric monoidal category (with product as tensor),
called ΣMon. A ΣMon-category C is a category enriched in ΣMon; i.e. the
homsets are enriched with an additive structure such that composition dis-
tributes over addition from left and right. Note that such categories have non-
empty homsets and automatically have zero morphisms, namely 0XY : X → Y =∑
i∈∅ fi for fi ∈ C(X,Y ). This does not imply the existence of a zero object.

Definition 4. A unique decomposition category (UDC) C is a symmetric monoidal
ΣMon-category which satisfies the following axiom:

(A) For all j ∈ I there are morphisms called quasi injections: ιj : Xj → ⊗IXi,
and quasi projections: ρj : ⊗IXi → Xj , such that 1. ρkιj = 1Xj if j = k and
0XjXk otherwise. 2.

∑
i∈I ιiρi = 1⊗IXi .



Proposition 1 (Matricial Representation). Given f : ⊗JXj → ⊗IYi in a
UDC with |I| = m and |J | = n, there exists a unique family {fij}i∈I,j∈J : Xj →
Yi with f =

∑
i∈I,j∈J ιifijρj, namely, fij = ρifιj.

Thus every f : ⊗JXj → ⊗IYi in a UDC can be represented by its components.
We will use the corresponding matrices to represent morphisms; for example
f above (with |I| = m and |J | = n) is represented by an m × n matrix [fij ].
Composition of morphisms in a UDC then corresponds to matrix multiplication.

Remark. Although any f : ⊗JXj → ⊗IYi can be represented by the unique
family {fij} of its components, the converse is not necessarily true; that is, given
a family {fij} with I, J finite there may not be a morphism f : ⊗JXj → ⊗IYi
satisfying f =

∑
ij ιifijρj . However, in case such an f exists it will be unique.

Proposition 2 (Execution/Trace Formula). Let C be a unique decompo-
sition category such that for every X,Y, U and f : X ⊗ U → Y ⊗ U , the sum
f11+

∑∞
n=0 f12f

n
22f21 exists, where fij are the components of f . Then, C is traced

and TrUX,Y (f) = f11 +
∑∞
n=0f12f

n
22f21.

Example 1.

1. Consider the category PInj of sets and partial injective functions. Define X⊗
Y = X ]Y (disjoint union); note that this does not give a coproduct, indeed
PInj does not have coproducts. The UDC structure is given as follows:
define ιj : Xj →

⊎
i∈I Xi by ιj(x) = (x, j), and define ρj :

⊎
i∈I Xi → Xj by

ρj(x, j) = x, and ρj(x, i) is undefined for i 6= j.
2. This example will provide the connection to operator algebraic models. Given

a set X let `2(X) be the set of all complex valued functions a on X for which
the (unordered) sum

∑
x∈X |a(x)|2 is finite. `2(X) is a Hilbert space and its

norm is given by ||a|| = (
∑
x∈X |a(x)|2)1/2 and its inner product is given by

< a, b >=
∑
x∈X a(x)b(x) for a, b ∈ `2(X).

Barr [6] observed that there is a contravariant faithful functor `2 : PInjop →
Hilb where Hilb is the category of Hilbert spaces with morphisms the linear
contractions (norm ≤ 1). For a set X, `2(X) is defined as above and given f :
X → Y in PInj, `2(f) : `2(Y )→ `2(X) is defined by: `2(f)(b)(x) = b(f(x)),
if x ∈ Dom(f) and 0, otherwise. This gives a correspondence between partial
injective functions and partial isometries on Hilbert spaces ([11, 1]).

Let Hilb2 = `2[Pinj]; i.e. its objects are of the form `2(X) for a set X and
its morphisms u : `2(X) → `2(Y ) are of the form `2(f) for some partial
injective function f : Y → X. Hilb2 is a (nonfull) subcategory of Hilb.
For `2(X) and `2(Y ) in Hilb2, the Hilbert space tensor product `2(X)⊗`2(Y )
and the direct sum `2(X) ⊕ `2(Y ) yield tensor products in Hilb2. Hilb2 is
a traced UDC with respect to ⊕, where the UDC structure is induced from
that of PInj; for more details see [12, 3].

3. All partially additive categories [18, 12] are examples of traced UDCs.



4 Interpretation of Proofs

In this section we define the GoI interpretation for proofs of MELL without the
neutral elements. Let C be a traced UDC, T an additive endofunctor and U an
object of C, such that (C, T, U) is a GoI Situation. We interpret proofs in the
homset C(U,U) of endomorphisms of U . Formulas (= types) will be interpreted
in the next Section 5 as certain subsets of C(U,U); however, this introduces some
novel ideas and is not needed to read the present section.

Convention: All identity morphisms are on tensor copies of U however we adopt
the convention of writing 1Γ instead of 1U⊗n with |Γ | = n. Un denotes the n-fold
tensor product of U by itself. The retraction pairs are fixed once and for all.

Every MELL sequent will be of the form ` [∆], Γ where Γ is a sequence
of formulas and ∆ is a sequence of cut formulas that have already been made
in the proof of ` Γ (e.g. A,A⊥, B,B⊥). This is used to keep track of the cuts
that are already made in the proof of ` Γ . Suppose that Γ consists of n and ∆
consists of 2m formulas. Then a proof Π of ` [∆], Γ is represented by a morphism
Π ∈ C(Un+2m, Un+2m). Recall that this corresponds to a morphism from U

to itself, using the retraction morphisms U ⊗ U � U (j, k). However, it is much
more convenient to work in C(Un+2m, Un+2m) (matrices on C(U,U)). Define the
morphism σ : U2m → U2m, as σ = s⊗· · ·⊗s (m-copies) where s is the symmetry
morphism, the 2× 2 antidiagonal matrix [aij ], where a12 = a21 = 1; a11 = a22 =
0. Here σ represents the cuts in the proof of ` Γ , i.e. it models ∆. If ∆ is empty
(that is for a cut-free proof), we define σ : I → I to be the zero morphism 0II .
Note that U0 = I where I is the unit of the tensor in the category C.

Let Π be a proof of ` [∆], Γ . We define the GoI interpretation of Π, denoted
by Π , by induction on the length of the proof as follows.

1. Π is an axiom ` A,A⊥, then m = 0, n = 2 and Π = s.
2. Π is obtained using the cut rule on Π ′ and Π ′′ that is

Π ′ Π ′′

...
...

` [∆′], Γ ′, A ` [∆′′], A⊥, Γ ′′

` [∆′,∆′′, A,A⊥], Γ ′, Γ ′′
(cut)

Define Π as follows: Π = τ−1( Π ′ ⊗ Π ′′ )τ , where τ is a permuta-
tion.

3. Π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ ′.
That is Π is of the form

Π ′

...
` [∆], Γ ′

` [∆], Γ
(exchange)



where in Γ ′ we have Ai, Ai+1. Then, Π is obtained from Π ′ by inter-
changing the rows i and i + 1. So suppose that Γ ′ = Γ ′1, Ai, Ai+1, Γ

′
2, then

Γ = Γ ′1, Ai+1, Ai, Γ
′
2 and Π = τ−1 Π ′ τ , where τ = 1Γ ′1 ⊗ s⊗ 1Γ ′2⊗∆.

4. Π is obtained using an application of the par rule, that is Π is of the form:
Π ′

...
` [∆], Γ ′, A,B
` [∆], Γ ′, A .................................................

............
.................................. B

(.................................................
............
.................................. )

Then Π = g Π ′ f , where f = 1Γ ′ ⊗ k⊗ 1∆ and g = 1Γ ′ ⊗ j ⊗ 1∆, recall
that U ⊗ U � U (j, k).

5. Π is obtained using an application of the times rule, that is Π has the form
Π ′ Π ′′

...
...

` [∆′], Γ ′, A ` [∆′′], Γ ′′, B

` [∆′,∆′′], Γ ′, Γ ′′, A⊗B
(times)

Then Π = gτ−1( Π ′ ⊗ Π ′′ )τf , where τ is a permutation and f =
1Γ ′⊗Γ ′′ ⊗ k ⊗ 1∆′⊗∆′′ and g = 1Γ ′⊗Γ ′′ ⊗ j ⊗ 1∆′⊗∆′′ .

6. Π is obtained from Π ′ by an of course rule, that is Π has the form :
Π ′

...
` [∆], ?Γ ′, A
` [∆], ?Γ ′, !A

(ofcourse)

Then Π = ((ueU )⊗n⊗u⊗u⊗2m)ϕ−1T ((v⊗n⊗1A⊗1∆) Π ′ (u⊗n⊗1A⊗
1∆))ϕ((e′Uv)⊗n ⊗ v ⊗ v⊗2m), where TT � T (e, e′), |Γ ′| = n, |∆| = 2m, and
ϕ : (T 2U)⊗n ⊗ TU ⊗ (TU)⊗2m → T ((TU)⊗n ⊗ U ⊗ U⊗2m) is the canonical
isomorphism.

7. Π is obtained from Π ′ by the dereliction rule, that is Π is of the form :

Π ′

...
` [∆], Γ ′, A
` [∆], Γ ′, ?A

(dereliction)

Then Π = (1Γ ′ ⊗ udU ⊗ 1∆) Π ′ (1Γ ′ ⊗ d′Uv ⊗ 1∆) where Id� T (d, d′).

8. Π is obtained from Π ′ by the weakening rule, that is Π is of the form:
Π ′

...
` [∆], Γ ′

` [∆], Γ ′, ?A
(weakening)



Then Π = (1Γ ′⊗uwU ⊗1∆) Π ′ (1Γ ′⊗w′Uv⊗1∆), where KI �T (w,w′).

9. Π is obtained from Π ′ by the contraction rule, that is Π is of the form :
Π ′

...
` [∆], Γ ′, ?A, ?A
` [∆], Γ ′, ?A

(contraction)

Then Π = (1Γ ′ ⊗ ucU (v ⊗ v)⊗ 1∆) Π ′ (1Γ ′ ⊗ (u⊗ u)c′Uv ⊗ 1∆), where
T ⊗ T � T (c, c′).

Example 2. Let Π be the following proof:

` A⊥, A ` A⊥, A
` [A,A⊥], A⊥, A

(cut)

Then the GoI semantics of this proof is given by

Π =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 =
[

0 Id2

Id2 0

]

where Id2 is the 2× 2 identity matrix and 0 is the 2× 2 zero matrix.

4.1 Dynamics

Dynamics is at the heart of the GoI interpretation as compared to denotational
semantics and it is hidden in the cut-elimination process. The mathematical
model of cut-elimination is given by the execution formula defined as follows:

EX( Π ,σ) = TrU
2m

Un,Un((1Un ⊗ σ) Π ) (1)

where Π is a proof of the sequent ` [∆], Γ . Pictorially this can be represented
as follows:

Note that EX( Π ,σ) is a morphism from Un → Un and it always makes
sense since the trace of any morphism in C(U2m+n, U2m+n) is defined. Since we
are working with a traced UDC with the standard trace, by Proposition 2 we
can rewrite the execution formula (1) in a more familiar form:

EX( Π ,σ) = π11 +
∑
n≥0

π12(σπ22)n(σπ21)



where Π =
[
π11 π12

π21 π22

]
. Note that the execution formula defined in this cat-

egorical framework always makes sense, that is we do not need a convergence
criterion (e.g. nilpotency or weak nilpotency). This is in contrast to Girard’s
case where the infinite sum must be made to make sense and this is achieved via
proving a nilpotency result.

We later show that formula (1) is the same as Girard’s execution formula.
The intention here is to prove that the result of this formula is what corresponds
to the cut-free proof obtained from Π using Gentzen’s cut-elimination procedure.
We will also show that for any proof Π of MELL the execution formula is a finite
sum, which corresponds to termination of computation as opposed to divergence.

Example 3. Consider the proof Π in Example 2 above. Recall also that σ = s
in this case (m = 1). Then

EX( Π ,σ) = Tr




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




=
[

0 0
0 0

]
+
∑
n≥0

[
1 0
0 1

] [
0 0
0 0

]n [0 1
1 0

]
=
[

0 1
1 0

]
.

Note that in this case we have obtained the GoI interpretation of the cut-free
proof obtained by applying Gentzen’s Hauptsatz to the proof Π.

5 Soundness of the Interpretation

In this section we shall prove the main result of this paper: the soundness of
the GoI interpretation. In other words we have to show that if a proof Π is
reduced (via cut-elimination) to its cut-free form Π ′, then EX( Π ,σ) is a
finite sum and EX( Π ,σ) = Π ′ . Intuitively this says that if one thinks of
cut-elimination as computation then Π can be thought of as an algorithm.
The computation takes place as follows: if we run EX( Π ,σ), it terminates
after finitely many steps (cf. finite sum) and yields a datum (cf. cut-free proof).
This intuition will be made precise in this section through the definition of type
and the main theorems (see Theorems 1,2).

Lemma 1 (Associativity of cut). Let Π be a proof of ` [Γ,∆], Λ and σ and
τ be the morphisms representing the cut-formulas in Γ and ∆ respectively. Then

EX( Π ,σ ⊗ τ) = EX(EX( Π , τ), σ)

Proof. Follows from naturality and vanishing II properties of trace.

We proceed to defining types. This and similar definitions are directly inspired by
the corresponding ones in [10], generalising them to our categorical framework.



Definition 5. Let f, g be morphisms in C(U,U). We say that f is nilpotent if
fk = 0 for some k ≥ 1. We say that f is orthogonal to g, denoted f ⊥ g if gf
is nilpotent. Orthogonality is a symmetric relation and it makes sense because
0UU exists. Also, 0 ⊥ f for all f ∈ C(U,U).

Given a subset X of C(U,U), we define

X⊥ = {f ∈ C(U,U)|∀g(g ∈ X ⇒ f ⊥ g)}

A type is any subset X of C(U,U) such that X = X⊥⊥. Note that types are
inhabited, since 0UU belongs to every type.

Definition 6. Consider a GoI situation (C, T, U) as above with j1, j2, k1, k2

components of j and k respectively. Let A be an MELL formula. We define the
GoI interpretation of A, denoted θA, inductively as follows:

1. If A ≡ α that is A is an atom, then θA = X an arbitrary type.
2. If A ≡ α⊥, θA = X⊥, where θα = X is given by assumption.
3. If A ≡ B ⊗ C, θA = Y ⊥⊥, where Y = {j1ak1 + j2bk2|a ∈ θB, b ∈ θC}.
4. If A ≡ B

.................................................
............
.................................. C, θA = Y ⊥ , where Y = {j1ak1 + j2bk2|a ∈ (θB)⊥, b ∈

(θC)⊥}.
5. If A ≡ !B, θA = Y ⊥⊥ , where Y = {uT (a)v|a ∈ θB}.
6. If A ≡?B, θA = Y ⊥ , where Y = {uT (a)v|a ∈ (θB)⊥}.

It is an easy consequence of the definition that (θA)⊥ = θA⊥ for any formula A.

Definition 7. Let Γ = A1, · · · , An. A datum of type θΓ is a morphism
M : Un → Un such that for any β1 ∈ θ(A⊥1 ), · · · , βn ∈ θ(A⊥n ), (β1 ⊗ · · · ⊗ βn)M
is nilpotent. An algorithm of type θΓ is a morphism M : Un+2m → Un+2m

for some integer m such that for σ : U2m → U2m defined in the usual way,
EX(M,σ) = Tr((1⊗ σ)M) is a finite sum and a datum of type θΓ .

Lemma 2. Let M : Un → Un and a : U → U . Define CUT (a,M) = (a ⊗
1Un−1)M : Un → Un. Note that the matrix representation of CUT (a,M) is the
matrix obtained from M by multiplying its first row by a. Then M = [mij ] is a da-
tum of type θ(A,Γ ) iff for any a ∈ θA⊥, am11 is nilpotent and the morphism de-
noted ex(CUT (a,M)) and defined by ex(CUT (a,M)) = TrA(s−1

Γ,ACUT (a,M)sΓ,A)
is in θ(Γ ). Here sΓ,A is the symmetry morphism from Γ ⊗A to A⊗ Γ .

Theorem 1. Let Γ be a sequent, and Π be a proof of Γ . Then Π is an
algorithm of type θΓ .

Theorem 2. Let Π be a proof of a sequent ` [∆], Γ in MELL. Then

(i) EX( Π ,σ) is a finite sum.
(ii) If Π reduces to Π ′ by any sequence of cut-eliminations and ”?” does not

occur in Γ , then EX( Π ,σ) = EX( Π ′ , τ). So EX( Π ,σ) is an in-
variant of reduction. In particular, if Π ′ is any cut-free proof obtained from
Π by cut-elimination, then EX( Π ,σ) = Π ′ .



6 Girard’s Operator Algebraic model

In this section we observe that Girard’s original C∗-algebra model (implementa-
tion) in GoI1 is captured in our categorical framework using the category Hilb2.
First, recall [3] that (PInj,N×−,N) is a GoI situation.

Proposition 3. (Hilb2, `
2⊗−, `2) is a GoI Situation which agrees with Girard’s

C∗-algebraic model, where `2 = `2(N). Its structure is induced via `2 from PInj.

We next show that Girard’s execution formula agrees with ours. Note that
in Girard’s execution formula Π and σ are both n+ 2m by n+ 2m matrices.
Also below σ̃ = s⊗ · · · ⊗ s (m-times.)

Proposition 4. Let Π be a proof of ` [∆], Γ . Then in Girard’s model above,

(1− σ2)
∞∑
n=0

Π (σ Π )n(1− σ2) = Tr((1⊗ σ̃) Π )

7 Conclusions and Further Work

In this paper we have given a categorical model for the GoI semantics of MELL
and have proven the necessary theorems. We also showed that Girard’s original
operator algebra model fits this framework. We did not discuss the work by
Abramsky and Jagadeesan [4] for the simple reason that it does not fit the
unique decomposition category framework; that is, the category of domains does
not form a UDC. This already suggests the necessity for a suitable generalization
of the ideas presented in this paper. More precisely, we observe that the necessary
ingredients for a categorical interpretation (model) are provided in the definition
of a GoI Situation. However one still needs to give general meaning to the notions
of orthogonality and type as well as provide a notion of “nilpotency”, “finite sum”
or “convergence”. Observe that these notions found natural meanings in UDCs
but a general traced category does not always have corresponding notions.

We should note that there are many concrete GoI situations based on par-
tially additive categories; thus there are many models of this paper ([13]). How-
ever, to obtain exactly Girard’s GoI 1, we also used Barr’s `2 representation of
PInj in Hilb. We do not yet know of any operator-algebra representations for
other models. That is an interesting open problem.

In [9], Girard addresses the issue of non-terminating algorithms and proves a
convergence theorem for the execution formula (note that in this case nilpotency
is out of the question). It would be interesting to see how this can be captured
in our categorical framework where all existing infinite sums make sense. The
challenge would be to have a means of distinguishing good and bad infinite sums,
that is the ones corresponding to non-termination and to divergence.

Moreover in [11], Girard extended GoI to the full case, including the additives
and constants. He also proved a nilpotency theorem for this semantics and its



soundness (for a slightly modified sequent calculus) in the case of exponential-
free conclusions. This too constitutes one of the main parts of our future work.

Last but certainly not least, we believe that GoI could be further used in
its capacity as a new kind of semantics to analyze PCF and other fragments
of functional and imperative languages and be compared to usual denotational
and operational semantics through full abstraction theorems. The work on full
completeness theorems for MLL via GoI in [12] is just a first step. Further related
results, including those of Abramsky and Lenisa (e.g. [5]), should be examined.
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