
Towards a Typed Geometry of Interaction

Esfandiar Haghverdi1 and Philip J. Scott2

1 School of Informatics, Indiana University
Bloomington, IN 47406, USA,

ehaghver@indiana.edu,
WWW homepage: http://xavier.informatics.indiana.edu/∼ehaghver

2 Dept. of Mathematics & Statistics
University of Ottawa, Ottawa, Ontario

Canada K1N 6N5,
phil@mathstat.uottawa.ca,

WWW homepage: http://www.uottawa.ca/site/∼phil

Abstract. Girard’s Geometry of Interaction (GoI) develops a math-
ematical framework for modelling the dynamics of cut-elimination. We
introduce a typed version of GoI, called Multiobject GoI (MGoI) for mul-
tiplicative linear logic without units in categories which include previous
(untyped) GoI models, as well as models not possible in the original
untyped version. The development of MGoI depends on a new theory
of partial traces and trace classes, as well as an abstract notion of or-
thogonality (related to work of Hyland and Schalk) We develop Girard’s
original theory of types, data and algorithms in our setting, and show
his execution formula to be an invariant of Cut Elimination. We prove
Soundness and Completeness Theorems for the MGoI interpretation in
partially traced categories with an orthogonality.

1 Introduction

Geometry of Interaction (GoI) is a novel interpretation of linear logic, introduced
by Girard in a fundamental series of papers beginning in the late 80’s [12, 11, 13]
and continued recently in [14]. One striking feature of this work is that it provides
a mathematical framework for modelling cut-elimination (normalization) as a
dynamical process of information flow, independent of logical syntax. To these
ends, Girard introduces methods from functional analysis and operator algebras
to model proofs and their dynamical behaviour. At the same time, these methods
allow GoI to provide new foundational insights into the theory of algorithms.

Girard’s original framework, based on C∗-algebras, was studied in detail in
several works of Danos and Regnier (for example in [8]) and by Malacaria and
Regnier [26]. The GoI program itself has been applied to the analysis of optimal
reduction by Gonthier, Abadi, and Lévy [9], to complexity theory [6], to game
semantics and token machines [5, 24], etc.

Let us briefly recall some aspects of Girard’s original GoI. Traditional deno-
tational semantics models normalization of proofs (or lambda terms) by static
equalities: if Π , Π ′ are proofs and if Π reduces to Π ′ by cut-elimination, then

in any appropriate model, Π = Π ′ . Instead, in his GoI program, Girard
considers proofs (or algorithms) as operators, pictured as I/O boxes: a proof of
a sequent � Γ is interpreted as a box with input and output wires labelled by
Γ . The formulas or types in Γ form the I/O-interface of the proof. Girard works
in an untyped setting, so in fact the labels of the wires range over a space U
satisfying various domain equations (see below). Now consider a proof Π of a
sequent � [∆], Γ , where ∆ is a list of all the cut-formulas used. Girard associates
to such a proof a pair of operators (u, σ), where u is a hermitian of norm at most
1, and σ is a partial symmetry representing the cuts ∆. The dynamics of cut-
elimination may now be captured in a solution of a system of feedback equations,
summarized in an operator EX(u, σ) (the Execution Formula). We remark that
our general categorical framework (based on partial traces) permits a structured
approach to solving such feedback equations and deriving properties of the Exe-
cution formula. Finally, it can be shown ([12, 17]) that for denotations of proofs
(u = Π) of appropriate types in System F, EX(Π , σ) is an invariant of
cut-elimination.

Categorical foundations of GoI were initiated in the 90’s in lectures by M.
Hyland and by S. Abramsky. An early categorical framework was given in [4].
Recent work has stressed the role of Joyal-Street-Verity’s traced monoidal cate-
gories [23] (with additional structure). For example, Abramsky’s GoI situations
[1, 15, 3] provide a basic algebraic foundation for GoI for multiplicative, exponen-
tial linear logic (MELL). Recently, we used a special kind of GoI situation (with
traced unique decomposition categories) to axiomatize the details of Girard’s
original GoI 1 paper [17].

In our previous papers, we emphasized several important aspects of Girard’s
seminal work (at least in GoI 1 and 2).

1. The original Girard framework is essentially untyped: there is a reflexive
object U in the underlying model (with various retractions and/or domain
isomorphisms, e.g. U ⊗ U � U).

2. Cut-elimination is interpreted by feedback, naturally represented in traced
monoidal categories. The execution formula, defined via trace, provides an
invariant for cut-elimination.

3. Girard introduced an orthogonality operation ⊥ on endomaps of U together
with the notion of types (as sets of endomaps equal to their biorthogonal).

4. There are notions of data and algorithm encoded into this dynamical setting,
with fundamental theorems connecting types, algorithms, and the conver-
gence of the execution formula.

Points (1) and (2) above were already emphasized in the Abramsky program, as
well as in the work of Danos and Regnier [1, 3, 17, 8]. Orthogonalities have been
studied abstractly by Hyland and Schalk [21]. The points (1)–(4) are critical to
our view of GoI in [17, 18] and to the technical developments in this paper.

Alas, Girard’s original GoI is not without its own share of syntactical bu-
reaucracy: there are domain isomorphisms (of the reflexive object U) and an
associated ∗-algebra of codings and uncodings. On the one hand, this means

the original GoI interpretation of proofs is essentially untyped (i.e. categorically,
proofs are interpreted in the monoid Hom(U, U), using the above-mentioned al-
gebra) (see [3, 17, 18]). On the other hand, this led Danos and Regnier ([8]) to
study this algebra in detail in certain concrete models, leading to their extensive
analysis of reduction paths in untyped lambda calculus.

Our aim in this paper is to move away from “uni-object GoI” to a typed ver-
sion. This permits us to both generalize GoI and axiomatize its essential features.
For example, by removing reflexive objects U , we also unlock the possibilities of
generalizing Girard-style GoI to more general tensor categories including cases
where the tensor is “product-like” in addition to “sum-like”. We shall illustrate
both of these styles in the examples below.

The contributions of this paper can be summarized as follows:

– We introduce an axiomatization for partially traced symmetric monoidal
categories and provide examples based on Vecfd, finite dimensional vector
spaces, and CMet, complete metric spaces. Our axiomatization is different
from that in [2], although related in spirit.

– We introduce an abstract orthogonality [21], appropriate for GoI, on our
models.

– We introduce a multiobject version of Girard’s GoI semantics (MGoI) in
partially traced models with orthogonality. This includes Girard’s notions of
types, datum, algorithm and the execution formula. We give an MGoI inter-
pretation for the multiplicative fragment of linear logic without units (MLL)
and show that the execution formula is an invariant of cut-elimination (see
Section 5 below). Recall that Girard’s original GoI (as presented in [3]) re-
quires a reflexive object U �= {0}, with a retraction U ⊕ U � U , which is
impossible in Vecfd.

– We prove a soundness and completeness theorem for our MGoI interpretation
of MLL in arbitrary partially traced categories with an orthogonality rela-
tion. As an application, we can also prove a completeness result for untyped
GoI semantics of MLL (see our [17]) in a traced UDC based GoI Situation;
the latter result will appear in the journal version of this paper.

It is worth remarking that GoI does not work well with units. They are not part
of the original interpretation ([12]), and fail to satisfy the properties demanded
by the main theorems. In [18] we show that the “natural” category of types and
associated morphisms in certain GoI-situations fails to have tensor and par units
act correctly. We suspect the same is true for the MGoI case introduced here.

The rest of the paper is organized as follows. In Section 2 we introduce
partially traced symmetric monoidal categories and discuss some examples. In
Section 3 we introduce the abstract orthogonality relation in a partially traced
symmetric monoidal category and discuss how it relates to the work in [21]. In
Section 4 we introduce our new semantics, MGoI, and give an interpretation
for MLL. Section 5 discusses the execution formula and the soundness theorem,
while in Section 6 we prove a completeness theorem for the MGoI interpretation
of MLL in a partially traced category with an orthogonality relation. Finally,

Section 7 contains some thoughts about possible future directions, projects and
links to related work in the literature.

Note: The full proofs of the results here will appear in the journal version of
this paper, available on our websites.

2 Trace Class

The notion of categorical trace was introduced by Joyal, Street and Verity in an
influential paper [23]. The motivation for their work arose in algebraic topology
and knot theory, although the authors were aware that such traces also have
many applications in Computer Science, where they include such notions as
feedback, fixedpoints, iteration theories, etc. For references and history, see [1,
3, 17].

In this paper we go one step further and look at partial traces. The idea
of generalizing the abstract trace of [23] to the partial setting is not new. For
example, partial traces were already studied in work of Abramsky, Blute, and
Panangaden [2], in unpublished lecture notes of Gordon Plotkin [27], work of A.
Jeffrey [22] (discussed below) and others. The guiding example in [2] is the rela-
tionship between trace class operators on a Hilbert space and Hilbert-Schmidt
operators. This allows the authors to establish a close correspondence between
trace and nuclear ideals in a tensor ∗-category. Plotkin’s work develops a theory
of Conway ideals on biproduct categories, and an associated categorical trace
theory. Unfortunately none of these extant theories is appropriate for Girard’s
GoI. So we present an axiomatization for partial traces suitable for our purposes.

Recall, following Joyal, Street, and Verity [23], a (parametric) trace in a
symmetric monoidal category (C,⊗, I, s) is a family of maps
TrU

X,Y : C(X ⊗ U, Y ⊗ U) → C(X, Y), satisfying various well-known naturality
equations. A partial (parametric) trace requires instead that each TrU

X,Y be a
partial map (with domain denoted TU

X,Y) and satisfy various closure conditions.

Definition 1 (Trace Class). Let (C,⊗, I, s) be a symmetric monoidal cate-
gory. A (parametric) trace class in C is a choice of a family of subsets, for each
object U of C, of the form

T
U
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X , Y of C

together with a family of functions, called a (parametric) partial trace, of the
form

TrU
X,Y : T

U
X,Y → C(X, Y)

subject to the following axioms. Here the parameters are X and Y and a mor-
phism f ∈ T

U
X,Y , by abuse of terminology, is said to be trace class.

– Naturality in X and Y : For any f ∈ TU
X,Y and g : X ′ → X and h : Y → Y ′,

(h ⊗ 1U)f(g ⊗ 1U) ∈ T
U
X′,Y ′

and TrU
X′,Y ′((h ⊗ 1U)f(g ⊗ 1U)) = h TrU

X,Y (f) g

– Dinaturality in U : For any f : X ⊗ U → Y ⊗ U ′, g : U ′ → U ,

(1Y ⊗ g)f ∈ T
U
X,Y iff f(1X ⊗ g) ∈ T

U ′
X,Y ,

and TrU
X,Y ((1Y ⊗ g)f) = TrU ′

X,Y (f(1X ⊗ g)).

– Vanishing I: TI
X,Y = C(X ⊗ I, Y ⊗ I) and for f ∈ TI

X,Y

TrI
X,Y (f) = ρY fρ−1

X .

Here ρA : A×I → A is the right unit isomorphism of the monoidal category.
– Vanishing II: For any g : X ⊗U ⊗V → Y ⊗U ⊗V , if g ∈ TV

X⊗U,Y ⊗U , then

g ∈ T
U⊗V
X,Y iff TrV

X⊗U,Y ⊗U (g) ∈ T
U
X,Y ,

and TrU⊗V
X,Y (g) = TrU

X,Y (TrV
X⊗U,Y ⊗U (g)).

– Superposing: For any f ∈ TU
X,Y and g : W → Z,

g ⊗ f ∈ T
U
W⊗X,Z⊗Y ,

and TrU
W⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrU

X,Y (f).

– Yanking: sUU ∈ TU
U,U , and TrU

U,U (sU,U) = 1U .

A symmetric monoidal category (C,⊗, I, s) with such a trace class is called
a partially traced category, or a category with a trace class. If we let X and Y be
I (the unit of the tensor), we get a family of operations TrU

I,I : T
U
I,I → C(I, I)

defining what we call a non-parametric trace.

Remark 1. An early definition of a partial parametric trace is due to Abramsky,
Blute and Panangaden in [2]. Our definition is different but related to theirs.
First, we have used the Yanking axiom in Joyal, Street and Verity [23], whereas
in [2] they use a conditional version of the so-called “generalized yanking”; that
is, for f : X → U and g : U → Y , TrU

X,Y (sU,Y (f ⊗g)) = gf whenever sU,Y (f ⊗g)
is of trace class. It was shown in [15] that for traced monoidal categories the two
axioms of yanking and generalized yanking are equivalent in the presence of all
the other axioms. This equivalence remains valid for the partially traced cate-
gories introduced here. In our theory sUU is traceable for all U ; on the other
hand, many examples in [2] do not have this property. Our Vanishing II axiom
differs from and is weaker than the one proposed in [2]: it is a “conditional”
equivalence. More importantly, we do not require one of the ideal axioms in [2].
Namely, we do not ask that for f ∈ T

U
X,Y and any h : U → U , (1Y ⊗ h)f and

f(1X ⊗ h) be in TU
X,Y . Indeed in the next section we prove that the categories

(Vecfd,⊕) of finite dimensional vector spaces, and (CMet,×) of complete met-
ric spaces are partially traced. It can be shown that in both categories the above
ideal axiom and Vanishing II of [2] fail and hence they are not traced in the sense
of ABP. In defense of not enforcing this ideal axiom, we observe that it is not

required for any of the trace axioms. Any partially traced category in the sense
of ABP for which the yanking axiom holds will be partially traced according to
our definition. Finally, we observe that the nonparametric version of our partial
trace is also different from the one in [2].

Other notions of categorical partial trace have been examined by Alan Jeffrey
[22] and also by various category theorists. For example, Jeffrey cuts down the
domain of the trace operator to admissible (traceable) objects U which form a full
subcategory of the original category. This is not possible for us: our trace classes
do not form subcategories. For example, in keeping with functional analysis
on infinite dimensional spaces, the ABP theory of traced ideals [2], and with
Girard’s papers on GoI, we do not wish the identity map to be traced; nor are
our trace classes necessarily closed under all possible compositions.

One is obliged to say that there are many different approaches to partial
categorical traces and ideals; ours is geared to Girard’s GoI. We should also note
that our examples will not be partially traced categories according to Jeffrey’s
definition. It is not possible to capture our traceability conditions on morphisms
using his approach, as they cannot be characterized as object properties.

2.1 Examples of Partial Traces

(a) Finite Dimensional Vector Spaces

The category Vecfd of finite dimensional vector spaces and linear transforma-
tions is a symmetric monoidal, indeed an additive, category (see [25]), with
monoidal product taken to be ⊕, the direct sum (biproduct). Hence, given
f : ⊕IXi → ⊕JYj with |I| = n and |J | = m, we can write f as an m × n
matrix f = [fij] of its components, where fij : Xj → Yi (notice the switch in
the indices i and j).

We give a trace class structure on the category (Vecfd,⊕,0) as follows. We
shall say an f : X ⊕ U → Y ⊕ U is trace class iff (I − f22) is invertible, where I
is the identity matrix, and I and f22 have size dim(U). In that case, we write

TrU
X,Y (f) = f11 + f12(I − f22)−1f21 (1)

This definition is motivated by a generalization of the fact that for a matrix A,
(I − A)−1 =

∑
i Ai, whenever the infinite sum converges. Clearly this sum con-

verges when the matrix norm of A is strictly less than 1, or when A is nilpotent,
but in both cases the general idea is the desire to have (I −A) invertible. If the
infinite sum for (I − f22)−1 exists, the above formula for TrU

X,Y (f) becomes the
usual “particle-style” trace in [1, 3, 17]. One advantage of formula (1) is that it
does not a priori assume the convergence of the sum, nor even that (I − f22)−1

be computable by iterative methods.

Proposition 1. (Vecfd,⊕,0) is partially traced, with trace class as above.

The proof of Proposition 1 uses the following standard facts from linear algebra:

Lemma 1. Let M =
[

A B
C D

]
be a partitioned matrix with blocks A (m × m),

B (m× n), C (n×m) and D (n× n). If D is invertible, then M is invertible iff
A − BD−1C (the Schur Complement of D) is invertible.

Lemma 2. Given A (m×n) and B (n×m), (Im−AB) is invertible iff (In−BA)
is invertible. Moreover (Im − AB)−1A = A(In − BA)−1.

(b) Other Finite Dimensional Examples

Proposition 1 remains valid for the category (Hilbfd ,⊕) of finite dimensional
Hilbert spaces and bounded linear maps. As discussed in Remark 1, the category
(Vecfd,⊕) is not partially traced in the sense of ABP; nor is it traced in the
sense of A. Jeffrey, since (for example) the identity is not trace class.

(c) Metric Spaces

Consider the category CMet of complete metric spaces with non-expansive
maps. Define f : (M, dM) → (N, dN) to be non-expansive iff there is a fixed
0 ≤ α ≤ 1 such that dN (f(x), f(y)) ≤ αdM (x, y), for all x, y ∈ M . Note that the
tempting collection of complete metric spaces and contractions (α < 1) is not a
category: there are no identity morphisms! CMet has products, namely given
(M, dM) and (N, dN) we define (M × N, dM×N) with dM×N ((m, n), (m′, n′)) =
max{dM (m, m′), dN (n, n′)}.

We define the trace class structure on CMet (where ⊗ = ×) as follows. We
say that a morphism f : X × U → Y × U is in TU

X,Y iff for every x ∈ X the
induced map π2λu.f(x, u) : U → U has a unique fixed point; in other words, iff
for every x ∈ X , there is a unique u, and a y, such that f(x, u) = (y, u). Note
that in this case y is necessarily unique. Also, note that contractions have unique
fixed points, by the Banach fixed point theorem.

Suppose f ∈ TU
X,Y . We define TrU

X,Y (f) : X → Y by TrU
X,Y (f)(x) = y, where

f(x, u) = (y, u) for the unique u. Equivalently, TrU
X,Y (f)(x) = π1f(x, u) where

u is the unique fixed point of π2λt.f(x, t).

Proposition 2. (CMet,×, {∗}) is a partially traced category with trace class
as above.

Lemma 3. Let A and B be complete metric spaces, f : A → B and g : B → A.
Then, gf has a unique fixed point if and only if fg does. Moreover, let a ∈ A
be the unique fixed point of gf : A → A and b ∈ B be the unique fixed point of
fg : B → B. Then f(a) = b and g(b) = a.

Proposition 2 remains valid for the category (Sets,×) of sets and mappings.
The latter then becomes a partially traced category with the same definition for
trace class morphisms as in CMet. However, this fails for the category (Rel,×),
of sets and relations: consider the sets A = {a}, B = {b, b′}, and let f =
{(a, b), (a, b′)} and g = {(b, a), (b′, a)}.

(d) Total Traces

Of course, all (totally-defined) traces in the usual definition of a traced monoidal
category yield a trace class, namely the entire homset is the domain of Tr. In
particular, all the examples in our previous work on uni-object GoI [17, 18], for
example based on unique decomposition categories, still apply here.

Remark 2. [A Non-Example]
Consider the structure (CMet,×). Defining the trace class morphisms as f
such that π2λu.f(x, u) : U → U is a contraction for every x ∈ X , does not
yield a partially traced category: all axioms are true except for dinaturality and
Vanishing II.

3 Orthogonality Relations

Girard originally introduced orthogonality relations into linear logic to model
formulas (or types) as sets equal to their biorthogonal (e.g. in the phase semantics
of the original paper [10] and in GoI 1 [11]). Recently M. Hyland and A. Schalk
gave an abstract approach to orthogonality relations in symmetric monoidal
closed categories [21]. They also point out that an orthogonality on a traced
symmetric monoidal category C can be obtained by first considering their axioms
applied to Int(C), the compact closure of C, and then translating them down
to C. Below we give this translation (not explicitly calculated in [21]), using the
so-called “GoI construction” G(C) [1, 15] instead of Int(C). The categories G(C)
and Int(C) are both compact closures of C, and are shown to be isomorphic in
[15]. Alas, we do not have the space to give the details of these constructions;
however the reader can safely ignore the remarks above and use the definition
below independently of its motivation. To understand the detailed constructions
behind the definition, the interested reader is referred to the above references.

As we are dealing with partial traces we need to take extra care in stating
the axioms below; namely, an axiom involving a trace should be read with the
proviso: “whenever all traces exist”.

Definition 2. Let C be a traced symmetric monoidal category. An orthogonality
relation on C is a family of relations ⊥UV between maps u : V → U and x :
U → V

V
u−→ U ⊥UV U

x−→ V

subject to the following axioms:

(i) Isomorphism: Let f : U ⊗ V ′ → V ⊗ U ′ and f̂ : U ′ ⊗ V → V ′ ⊗ U be such
that TrV ′

(TrU ′
((1 ⊗ 1 ⊗ sU ′,V ′)α−1(f ⊗ f̂)α))) = sU,V and TrV (TrU ((1 ⊗

1 ⊗ sU,V)α−1(f̂ ⊗ f)α))) = sU ′,V ′ . Here α = (1 ⊗ 1 ⊗ s)(1 ⊗ s⊗ 1) with s at
appropriate types. Note that this simply means that f : (U, V) → (U ′, V ′)
and f̂ : (U ′, V ′) → (U, V) are inverses of each other in G(C).
Then for all u : V → U and x : U → V,

u ⊥UV x iff TrU
V ′,U ′(sU,U ′(u ⊗ 1U ′)fsV ′,U) ⊥U ′V ′ TrV

U ′,V ′((1V ′ ⊗ x)f̂)

(ii) Tensor: For all u : V → U , v : V ′ → U ′ and h : U ⊗ U ′ → V ⊗ V ′,

u ⊥UV TrU ′
U,V ((1V ⊗ v)h) and v ⊥U ′V ′ TrU

U ′,V ′(sU,V ′(u ⊗ 1V ′)hsU ′,U)

implies (u ⊗ v) ⊥U⊗U ′,V ⊗V ′ h

(iii) Implication: For all u : V → U , y : U ′ → V ′ and f : U ⊗ V ′ → V ⊗ U ′

u ⊥UV TrV ′
U,V ((1V ⊗ y)f) and TrV

V ′,U ′(sV,U ′f(u ⊗ 1V ′)sV ′,V) ⊥U ′V ′ y

implies f ⊥V ⊗U ′,U⊗V ′ (u ⊗ y)

(iv) Identity: For all u : V → U and x : U → V

u ⊥UV x implies 1I ⊥II TrV
I,I(xu)

(v) Symmetry: For all u : V → U and x : U → V

u ⊥UV x iff x ⊥V U u

Remark 3. (i) It should be noted that for a (partially) traced symmetric monoidal
category, the axioms for Tensor and Implication are equivalent in the pres-
ence of the other axioms: by dinaturality of trace we have TrV

V ′,U ′(sV,U ′f(u⊗
1V ′)sV ′,V) = TrU

V ′,U ′(sU,U ′(u⊗1U ′)fsV ′,U)), then use the Symmetry axiom.
Thus we shall drop the Implication axiom.

(ii) Our work on GoI reveals that one needs another axiom which we observe as
the converse of the Tensor axiom and relaxation of one of the premises. This
is related to abstract computation and the notion of datum in GoI. Hence,
we shall replace the Tensor axiom by the following Strong Tensor axiom. Our
Strong Tensor axiom is similar to, but not the same as the Precise Tensor
axiom of [21]. The latter requires an additional property on the biconditional.

Strong Tensor: For all u : V → U , v : V ′ → U ′ and h : U ⊗U ′ → V ⊗V ′,

v ⊥U ′V ′ TrU
U ′,V ′(sU,V ′(u ⊗ 1V ′)hsU ′,U) iff (u ⊗ v) ⊥U⊗U ′,V ⊗V ′ h,

whenever the trace exists. It can be shown that in the presence of the Strong
Tensor, Isomorphism, and Symmetry axioms, v ⊥U ′V ′ TrU

U ′,V ′(sU,V ′(u ⊗
1V ′)hsU ′,U) implies u ⊥UV TrU ′

U,V ((1V ⊗ v)h), whenever all traces exist.

Definition 3. Let C be a traced symmetric monoidal category. A strong orthog-
onality relation is defined as in Definition 2 but with the Tensor axiom replaced
by the Strong Tensor axiom above, and the Implication axiom dropped.

In the context of GoI, we will be working with strong orthogonality relations
on endomorphism sets of objects in the underlying categories. Biorthogonally
closed (i.e. X = X⊥⊥) subsets of certain endomorphism sets are important as
they define types (GoI interpretation of formulae.) We have observed that all
the orthogonality relations that we work with in this paper can be characterized
using trace classes. This suggests the following, which seems to cover many
known examples.

Example 1 (Orthogonality as trace class) Let (C,⊗, I, T r) be a partially
traced category where ⊗ is the monoidal product with unit I, and Tr is the
partial trace operator as in Section 2. Let A and B be objects of C. For f : A → B
and g : B → A, we can define an orthogonality relation by declaring f ⊥BA g
iff gf ∈ TA

I,I . It turns out 3 that this is a variation of the notion of Focussed
orthogonality of Hyland and Schalk [21].

Hence, from our previous discussion on traces, we obtain the following examples:

– Vecfd . For A ∈ Vecfd , f, g ∈ End(A), define f ⊥ g iff I − gf is invertible.

– CMet. Let M ∈ CMet. For f, g ∈ End(M), define f ⊥ g iff gf has a unique
fixed point.

4 Multi-object GoI Interpretation

In this section we introduce the multiobject Geometry of Interaction seman-
tics for MLL in a partially traced symmetric monoidal category (C,⊗, I, T r,⊥)
equipped with an orthogonality relation ⊥ as in the previous section. Here ⊗
is the monoidal product with unit I and Tr is the partial trace operator as in
Section 2. We do not require that the category C have a reflexive object, so
uni-object GoI semantics (as in [12, 17]) may not be possible to carry out in C.

Interpreting formulae:

Let A be an object of C and let f, g ∈ End(A). We say that f is orthogonal
to g, denoted f ⊥ g, if (f, g) ∈⊥. Also given X ⊆ End(A) we define

X⊥ = {f ∈ End(A) | ∀g ∈ X, f ⊥ g}.

We now define an operator on the objects of C as follows: Given an object A,
T (A) = {X ⊆ End(A) |X⊥⊥ = X}. We shall also need the notion of a denota-
tional interpretation of formulas. We define an interpretation map − on the
formulas of MLL as follows. Given the value of − on the atomic propositions
as objects of C, we extend it to all formulas by:

– A⊥ = A
– A

..
............
................................. B = A ⊗ B = A ⊗ B .

We then define the MGoI-interpretation for formulas as follows. We use the
notation θ(A) for this interpretation.

– θ(α) ∈ T (α), where α is an atomic formula.
– θ(α⊥) = θ(α)⊥

– θ(A ⊗ B) = {a⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥

– θ(A ...
............
.................................. B) = {a ⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

3 We thank the anonymous referee for pointing out this connection.

Two easy consequences of the definition are: (i) for any formula A, (θA)⊥ = θA⊥,
and (ii) θ(A) ⊆ End(A).

Interpretation of Proofs:

We define the MGoI interpretation for proofs of MLL without units, similarly
to [17]. Every MLL sequent will be of the form � [∆], Γ where Γ is a sequence
of formulas and ∆ is a sequence of cut formulas that have already been made
in the proof of � Γ (see [12, 17]). This device is used to keep track of the cuts
in a proof of � Γ . A proof Π of � [∆], Γ is represented by a morphism Π ∈
End(⊗ Γ ⊗ ∆). With Γ = A1, · · · , An, ⊗ Γ stands for A1 ⊗· · ·⊗ An ,
similarly for ∆. We drop the double brackets wherever there is no danger of
confusion. We also define σ = s ⊗ · · · ⊗ s (m-copies) where s is the symmetry
map at different types (omitted for convenience), and |∆| = 2m. The morphism
σ represents the cuts in the proof of � Γ , i.e. it models ∆. In the case where ∆
is empty (that is for a cut-free proof), we define σ : I → I to be 1I where I is
the unit of the monoidal product in C.

Let Π be a proof of � [∆], Γ . We define the MGoI interpretation of Π ,
denoted by Π , by induction on the length of the proof as follows.

1. Π is an axiom � A, A⊥, Π := sV,V where A = A⊥ = V .
2. Π is obtained using the cut rule on Π ′ and Π ′′ that is

Π ′
....

� [∆′], Γ ′, A

Π ′′
....

� [∆′′], A⊥, Γ ′′

� [∆′, ∆′′, A, A⊥], Γ ′, Γ ′′ cut

Define Π = τ−1(Π ′ ⊗ Π ′′)τ , where τ is the permutation
Γ ′ ⊗ Γ ′′ ⊗ ∆′ ⊗ ∆′′ ⊗ A ⊗ A⊥ τ−→ Γ ′ ⊗ A ⊗ ∆′ ⊗ A⊥ ⊗ Γ ′′ ⊗ ∆′′,

3. Π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ ′.
That is Π is of the form

Π ′
....

� [∆], Γ ′

� [∆], Γ
exchange

where Γ ′ = Γ ′
1, Ai, Ai+1, Γ

′
2 and Γ = Γ ′

1, Ai+1, Ai, Γ
′
2. Then, Π = τ−1 Π ′ τ ,

where τ = 1Γ ′
1
⊗ s ⊗ 1Γ ′

2⊗∆.
4. Π is obtained using an application of the par rule, that is Π is of the form:

Π ′
...

� [∆], Γ ′, A, B

� [∆], Γ ′, A ..
...........
.................................. B

...
............
..................................

. Then Π = Π ′

5. Π is obtained using an application of the times rule, that is Π is of the form:

Π ′
....

� [∆′], Γ ′, A

Π ′′
....

� [∆′′], Γ ′′, B
� [∆′, ∆′′], Γ ′, Γ ′′, A ⊗ B

⊗

Then Π = τ−1(Π ′ ⊗ Π ′′)τ , where τ is the permutation
Γ ′⊗Γ ′′⊗A⊗B⊗∆′⊗∆′′ τ−→ Γ ′⊗A⊗∆′⊗Γ ′′⊗B⊗∆′′. This corresponds
exactly to the definition of tensor product in Abramsky’s G(C) (see [1, 15].)

Example 1. (a) Let Π be the following proof:

� A, A⊥ � A, A⊥

� [A⊥, A], A, A⊥ cut

Then the MGoI semantics of this proof is given by

Π = τ−1(s ⊗ s)τ = sV ⊗V,V ⊗V

where τ = (1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1) and A = A⊥ = V .
(b) Now consider the following proof

� B, B⊥ � C, C⊥

� B, C, B⊥ ⊗ C⊥

� B, B⊥ ⊗ C⊥, C

� B⊥ ⊗ C⊥, B, C

� B⊥ ⊗ C⊥, B
...

............
.................................. C .

Its denotation is sV ⊗W,V ⊗W , where B = B⊥ = V and C = C⊥ = W .

Proposition 3. Let Π be an MLL proof of � [∆], Γ where |∆| = 2m and |Γ | =
n (counting occurrences of propositional variables). Then Π is a fixed-point
free involutive permutation on n + 2m objects of C. That is Π : V1 ⊗ · · · ⊗
Vn+2m → V1 ⊗ · · · ⊗ Vn+2m induces a permutation π on {1, 2 · · · , n + 2m} and

– π2 = 1
– For all i ∈ {1, 2, · · · , n + 2m}, π(i) �= i.
– For all i ∈ {1, 2, · · · , n + 2m}, Vi = Vπ(i).

4.1 Dynamics

Dynamics is at the heart of the GoI interpretation as compared to denotational
semantics and it is hidden in the cut-elimination process. The mathematical
model of cut-elimination is given by the so called execution formula defined as
follows:

EX(Π , σ) = Tr⊗∆
⊗Γ,⊗Γ ((1 ⊗ σ) Π) (2)

where Π is a proof of the sequent � [∆], Γ , and σ = s⊗· · ·⊗s (m times) models
∆. Note that EX(Π , σ) is a morphism from ⊗Γ → ⊗Γ , when it exists. We
shall prove below (see Theorem 2) that the execution formula always exists for
any MLL proof Π .

Example 2. Consider the proof Π in Example 1 above. Recall also that σ = s
in this case (m = 1). Then EX(Π , σ) = Tr((1 ⊗ sV,V)sV ⊗V,V ⊗V) = sV,V .

Note that in this case we have obtained the MGoI interpretation of the cut-
free proof of � A, A⊥, obtained by applying Gentzen’s Hauptsatz to the proof Π .

5 Soundness of the Interpretation

In this section we state one of the main results of this paper: the soundness of the
MGoI interpretation. We show that if a proof Π is reduced (via cut-elimination)
to another proof Π ′, then EX(Π , σ) = EX(Π ′ , τ); that is, EX(Π , σ)
is an invariant of reduction. In particular, if Π ′ is cut-free (i.e. a normal form)
we have EX(Π , σ) = Π ′ . Intuitively this says that if one thinks of cut-
elimination as computation then Π can be thought of as an algorithm. The
computation takes place as follows: if EX(Π , σ) exists then it yields a datum
(cf. cut-free proof). This intuition will be made precise below (Theorems 2 & 3).

The next fundamental lemma follows directly from our trace axioms:

Lemma 4 (Associativity of cut). Let Π be a proof of � [Γ, ∆], Λ and σ and
τ be the morphisms representing the cut-formulas in Γ and ∆ respectively. Then

EX(Π , σ ⊗ τ) = EX(EX(Π , τ), σ) = EX(EX((1 ⊗ s) Π (1 ⊗ s), σ), τ),

whenever all traces exist. (This is essentially the Church-Rosser Property).

Definition 4. Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗iVi → ⊗iVi such that for any βi ∈
θ(A⊥

i), ⊗iβi ⊥ M and M .β1 := TrV1(s−1
⊗iVi,V1

(β1⊗1V2⊗· · ·⊗1Vn)Ms⊗iVi,V1)
exists. (In Girard’s notation [12], M .β1 corresponds to ex(CUT (β1, M)) .)

• An algorithm of type θΓ is a morphism M : ⊗iVi ⊗ ∆ → ⊗iVi ⊗ ∆
for some ∆ = B1, B2, · · · , B2m with m a nonnegative integer and Bi+1 =
B⊥

i for i = 1 · · · , 2m − 1, such that if σ : ⊗2m
j=1 Bj → ⊗2m

j=1 Bj is
⊗2m−1

j=1 s Bj , Bj+1
, EX(M, σ) exists and is a datum of type θΓ .

(Here σ is defined to be 1I for m = 0.)

Lemma 5. Let Γ = A2, · · · , An, Vi = Ai , and M : ⊗iVi → ⊗iVi, for i =
1, · · · , n. Then, M is a datum of type θ(A1, Γ) iff for every a1 ∈ θ(A⊥

1), M .a1

(defined as above) exists and is in θ(Γ).

Theorem 2 (Proofs as algorithms). Let Π be an MLL proof of a sequent
� [∆], Γ . Then Π is an algorithm of type θΓ .

Corollary 1 (Existence of Dynamics). Let Π be an MLL proof of a sequent
� [∆], Γ . Then Ex(Π , σ) exists.

Theorem 3 (EX is an invariant). Let Π be an MLL proof of a sequent
� [∆], Γ . Then,

– If Π reduces to Π ′ by any sequence of cut-eliminations, then EX(Π , σ) =
EX(Π ′ , τ). So EX(Π , σ) is an invariant of reduction.

– In particular, if Π ′ is any cut-free proof obtained from Π by cut-elimination,
then EX(Π , σ) = Π ′ .

6 Completeness

In this section we give a completeness theorem for MLL in a partially traced
category equipped with an orthogonality relation, under MGoI semantics. Recall
from Proposition 3 that the denotation of a proof Π induces a fixed-point free
involutive permutation. We now seek a converse.

Theorem 4 (Completeness). Let M be a fixed-point free involutive permu-
tation from V1 ⊗ · · · ⊗ Vn → V1 ⊗ · · · ⊗ Vn (induced by a permutation µ on
{1, 2, · · · , n}) where n > 0 is an even integer, Vi = Ai , and Vi = Vµ(i) for all
i = 1, · · · , n. Then there is a provable MLL formula ϕ built from the Ai, with a
proof Π such that Π = M .

Motivated by this result, we can also prove a completeness theorem for MLL
in any traced Unique Decomposition Category with a reflexive object, under
(uni-object) GoI semantics [17]. This will appear in the full journal article.

7 Conclusion and Future Work

In this work we introduce a new semantics called multiobject Geometry of In-
teraction (MGoI). This semantics, while inspired by GoI, differs from it in sig-
nificant points. Namely, we deal with many objects in the underlying category,
we make use of a denotational semantics to define the interpretation of logical
formulas and we develop the execution formula based on a new theory of partial
traces and trace classes. Moreover, there is an orthogonality relation linked to
the notion of trace class, which allows us to develop Girard’s theory of types,
data and algorithms in our setting. This permits a structured approach to Gi-
rard’s concept of solving feedback equations [14], and an axiomatization of the
critical features needed for showing that the execution formula is an invariant
of cut-elimination. Computationally, GoI provides a kind of algorithm for nor-
malization based on the execution formula. In future work, we hope to explore
the algorithmic and convergence properties of the execution formula in various
models, independently of the syntax.

An advantage of the approach taken here is that we are able to carry out
our MGoI interpretation in categories of finite dimensional vector spaces and the

other examples mentioned above. This is not possible for the earlier theory of uni-
object GoI (for example, Vecfd does not have non-trivial reflexive objects). Our
examples illustrate that both “sum-style” and “product-style” GoI (as discussed
in [3]) are compatible with our multiobject approach.

An obvious direction for future research is to extend our MGoI interpretation
to the exponentials and additives of linear logic: this is under active development.
As well, the thorny problem of how to handle the units (as mentioned in the
Introduction) is being explored. New directions in GoI semantics now arise with
the introduction of partial traces and abstract orthogonalities. For example, we
are pursuing the correspondence of trace class/nuclear morphisms as achieved in
[2] for their examples. We are also currently exploring MGoI interpretations in
Banach spaces and related categories, to find appropriate trace class structures.

It is natural to seek examples of traces that are induced by more general
notions of orthogonalities, especially those arising in functional analysis. We
hope this may lead to new classes of MGoI models, perhaps connected to current
work in operator algebras and general solutions to feedback equations, as in [14].

References

1. Abramsky, S. (1996), Retracing Some Paths in Process Algebra. In CONCUR 96,
Springer LNCS 1119, 1-17.

2. Abramsky, S., Blute, R. and Panangaden, P. (1999), Nuclear and trace ideals in
tensored *-categories, J. Pure and Applied Algebra vol. 143, 3–47.

3. Abramsky, S., Haghverdi, E. and Scott, P.J. (2002), Geometry of Interaction and
Linear Combinatory Algebras. MSCS, vol. 12(5), 2002, 625-665, CUP.

4. Abramsky, S. and Jagadeesan, R. (1994), New Foundations for the Geometry of
Interaction. Information and Computation 111 (1), 53-119.

5. Baillot, P. (1995), Abramsky-Jagadeesan-Malacaria strategies and the geometry
of interaction, mémoire de DEA, Universite Paris 7, 1995.

6. Baillot, P. and Pedicini, M. (2000), Elementary complexity and geometry of
interaction, Fundamenta Informaticae, vol. 45, no. 1-2, 2001

7. Danos, V. (1990), La logique linéaire appliquée à l’étude de divers processus de
normalisation et principalement du λ-calcul. PhD thesis, Université Paris VII.

8. Danos, V. and Regnier, L. (1995), Proof-nets and the Hilbert Space. In: Advances
in Linear Logic, London Math. Soc. Notes, 222, CUP, 307–328.

9. Gonthier, G., Abadi, M. and Lévy, J.-J. (1992), The geometry of optimal lambda
reduction. In Proceedings of Logic in Computer Science, vol. 9 pp. 15-26.

10. Girard, J.-Y. (1987), Linear Logic. Theoretical Computer Science 50 (1), pp. 1-102.

11. Girard, J.-Y. (1988), Geometry of Interaction II: Deadlock-free Algorithms. In
Proc. of COLOG’88, LNCS 417, Springer, 76–93.

12. Girard, J.-Y. (1989a) Geometry of Interaction I: Interpretation of System F. In
Proc. Logic Colloquium 88, North Holland, 221–260.

13. Girard, J.-Y. (1995), Geometry of Interaction III: Accommodating the Additives.
In: Advances in Linear Logic, LNS 222,CUP, 329–389,

14. Girard, J.-Y. (2004). Cours de Logique, Rome 2004. Forthcoming.

15. Haghverdi, E. A Categorical Approach to Linear Logic, Geometry of Proofs and
Full Completeness, PhD Thesis, University of Ottawa, Canada 2000.

16. Haghverdi, E. Unique Decomposition Categories, Geometry of Interaction and
combinatory logic, Math. Struct. in Comp. Science, vol. 10, 2000, 205-231.

17. Haghverdi, E. and P.J.Scott. A categorical model for the Geometry of Interaction,
to appear in Theoretical Computer Science (cf. ICALP 2004, Springer LNCS 3142).

18. Haghverdi, E. and P.J.Scott. From Geometry of Interaction to Denotational Se-
mantics. Proceedings of CTCS2004. In ENTCS, vol. 122, pp. 67-87. Elsevier.

19. Hasegawa, M. (1997), Recursion from Cyclic Sharing : Traced Monoidal Categories
and Models of Cyclic Lambda Calculus, Springer LNCS 1210, 196-213.

20. Hines, P. (2003), A categorical framework for finite state machines, Math. Struct.
in Comp. Science, vol. 13, 451-480.

21. Hyland, M and Schalk, A. (2003), Glueing and Orthogonality for Models of Linear
Logic. Theoretical Computer Science vol. 294, pp. 183–231.

22. Jeffrey, A.S.A. (1998), Premonoidal categories and a graphical view of programs.
(see the webpage: http://klee.cs.depaul.edu/premon/). Also: Electr. Notes Theor.
Comput. Sci. 10: (1997)

23. Joyal, A., Street, R. and Verity, D. (1996), Traced Monoidal Categories. Math.
Proc. Camb. Phil. Soc. 119, 447-468.

24. Laurent, O., (2001), A Token Machine for Full Geometry of Interaction. In TLCA
’01, SLNCS 2044, pp. 283-297.

25. Mac Lane, S. (1998), Categories for the Working Mathematician, 2nd Ed. Springer.
26. Malacaria, P. and Regnier. L. (1991), Some Results on the Interpretation of λ-

calculus in Operator Algebras. Proc. LICS pp. 63-72, IEEE Press.
27. Plotkin, G. Trace Ideals, MFPS 2003 invited lecture, Montreal.
28. Regnier, L. (1992), Lambda-calcul et Réseaux, PhD Thesis, Université Paris VII.

