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Lambekfest 2013

Lambek has spent considerable time thinking about the
foundations and philosophy of mathematics. I will focus today on
some themes surrounding computability.

What is a computable function?

What are natural recursion theories?

Can we reconcile the various philosophies of mathematics?

What is truth and what are Gödel’s Incompleteness Theorems?
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What is a computable function?

Definition (Primitive Recursion)

The primitive recursive functions is the smallest class Prim of
numerical functions generated by:
(i) Basic Functions (e.g. Zero function, Successor, Projection)
(ii) Closed under two rules:
- Composition
- Primitive Recursion: if g(~x), h(~x , y , u) ∈ Prim then so is f :

f (~x , 0) = g(~x), f (~x ,S(y)) = h(~x , y , f (~x , y)) .

Underlying idea goes back to Dedekind [1888].

Primitive Recursive Arithmetic (PRA): Thoralf Skolem [1923].

Further developed: R. Péter, Hilbert-Bernays, Goodstein.

Functions in Prim were used by Gödel in his Incompleteness
Theorem [1931]. (and there is Incompleteness even for PRA)
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So, does Computable = Primitive Recursive?

Alas, no: Cantor’s diagonal argument.

So what is a computable function? This was taken up in a
remarkable development 1931–1937 (at Princeton, mostly).

A. Church (1932-34) & students (Kleene, Rosser) developed
(untyped) lambda calculus. Church Formulated Church’s
Thesis (1936): the intuitively computable numerical functions
are exactly those you can compute in λ-calculus. Originally
not believed by Gödel.

Kleene [1934-35] developed µ-recursive functions: add to
Prim the scheme: we can form f (~x) = µy .g(~x , y) = 0 (for
total functions, add the proviso: provided ∀~x∃y .g(~x , y) = 0).

Gödel-Herbrand [1934]: An equation calculus to define
“computable” functions.
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Church-Turing Thesis

Turing [1936] introduced Turing machines: an abstract
mechanical computing device. He gave a convincing analysis
of the meaning of being “computable” with no restrictions on
space or time. So now we had: Church-Turing thesis.

Note: CT is not a mathematical statement: it is an
experimental statement, identifying an intuitive class (=
“computable” numerical functions) with a precise
mathematical class of (partial) functions. Evidence???

Church, Kleene, Turing [1936-37]: carefully proved the
equivalence of the above models of computability: all notions
give exactly the same class of computable functions! Gödel
was now convinced of the truth of the Church-Turing thesis.
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Some Newer Models of Computability

E. Post [1943], A. A. Markov [1951]: computability based on
string rewriting grammars. (cf. Thue [1914]). Can be proved
equivalent to Turing computability.

Another important period: 1960-61 (simultaneously and
(almost) independently): Unlimited Register Machines.

J. Lambek, Z. Melzak, M. Minsky, J. Shepherdson & J.
Sturgis:

Lambek’s paper (How to Program an Infinite Abacus) was by
far the simplest to read and used a highly graphical syntax.
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Infinite Abacus

Locations: X , Y , Z , · · · (arbitrary capacity)

Counters: Unlimited supply of (indistinguishable) pebbles.

Elementary Instructions:

Start
↓

↓
Stop

↓
X +

↓

↓
Y−

↙ ↘

(If Y 6= ∅,
take one pebble
away and go to
the left; else go
to right)

Programs are finite number of instructions, arranged in a flow
chart (directed graph), with feedback loops.

Such flowcharts can be naturally represented in a free symmetric
traced category with ⊗ = coproduct.
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What are computable functions in categories?

When I first came to McGill as a postdoc in 1976-78, I asked Jim
“shouldn’t we learn about what the recursion theorists are doing?”

Jim said: No. We have our own natural notions of computation:
the function(al)s computable in various free categories, e.g. in free
cartesian categories, free ccc’s, the free topos, etc. First let’s do
that, then we can compare.

Definition (Lawvere)

A Natural Numbers Object (NNO) in a cartesian closed category is

a diagram 1
0−→ N

S−→ N initial among diagrams 1
a−→ A

h−→ A.
i.e., there exists a unique Iah : N → A satisfying:

Iah0 = a , IahS = hIah

Existence, without uniqueness, of Iah called weak NNO
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Primitive Recursion with parameters (weak NNO’s)

Lawvere’s NNO (for CCC’s)

1
0

- N
S

- N

A

Iah

? h
-

a

-

A

Iah

?

In Sets
Iah(0) = a
Iah(n + 1) = h(Iah(n))

Parametrized NNO: For A
g−→ B,B

f−→ B, ∃ k : N × A→ B.

A
〈0!, 1A〉- N × A

S × 1A- N × A

B

k

? f
-

g

-

B

k

?

In Sets
k(0, a) = g(a)
k(n + 1, a) = f (k(n, a))
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Representing Numerical Functions in Categories

Definition (L-S, 1986)

Let C be a category with a weak NNO 1
0−→ N

S−→ N.
f : Nk → N is representable in C if there is an arrow F : Nk → N
such that F 〈n̄1 · · · n̄k〉 = f (n1, · · · , nk), where n̄ = Sn0.

A category is Cartesian if it has finite cartesian products.

Theorem (L. Roman, 1989)

The representable numerical functions in the free cartesian
category Fc with parametrized NNO are exactly Prim.

Hence the unique representation functor Fc −→ Set has image =
the subcategory of sets with objects = powers Nn and whose maps
are tuples of primitive recursive functions.
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Aside: NNO’s in Monoidal Categories?

Cartesian categories, as deductive systems, correspond to the
conjunction calculus L = {∧,>}. What about if we want to move
to a substructural, or linear, logic L = {⊗, I}? (Cf. interesting
paper, Paré-Roman: Studia Logica, 1989.)

Don’t even assume symmetry (or permutation) A⊗ B
σ−→ B ⊗ A.

Get Left and Right NNO’s.

Definition ( Left Parametrized NNO: )

For A
g−→ B,B

f−→ B, ∃ ! k : N ⊗ A→ B.

I ⊗ A
0⊗ 1A- N ⊗ A

S ⊗ 1A- N ⊗ A

A

∼=

? g
- B

k

? f
- B

k

?
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Paré-Roman

Similarly for right NNO’s. Although one might think projections
(weakening) are necessary to define functions in Prim, that’s not
the case:

Theorem (Paré-Roman)

(i) The primitive recursive functions are representable in any
monoidal category with LNNO.
(ii) Indeed, the free monoidal category with LNNO exists and is
isomorphic to the free cartesian category with parametrized NNO.

Thus, again we get Prim.

How do we get more? Increase the logical strength (the types)
from the logic of {∧,>} to {∧,⇒,>}, as follows.
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Free CCC with N

The free CCC with N is generated from simply typed lambda
calculus, with iterators.

Objects: A,B ::= 1 |N |A× B |A⇒ B

Arrows: generated by lambda terms. For example: typical terms

1 N A× B A⇒ B

∗ 0 〈a, b〉 λx : A.ϕ(x)
Sn

together with variables, evaluation ev(f , a) (where f : A⇒ B and
a : A) and iterators of every type Ita,h : N → A.

Equations: add the minimal amount needed to have a CCC with
weak NNO.
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Representable Functions in the Free CCC with N

The following is a theorem in simply typed lambda calculus,
translated into the language of ccc’s by our equivalence (cf. earlier
work by M-F Thibault, a student of Lambek):

Theorem (L-S, 1986)

In the free ccc C with weak NNO N, we have

1 All primitive recursive functions and the Ackerman function
are representable (in fact, if there’s a strong NNO, by their
usual free variable equations)

2 We represent a proper subclass of the total recursive functions.

In fact, we used this to get an analog of Gödel’s Incompleteness:

Theorem (A version of Incompleteness or 1 is not a generator)

There is a closed term F : N ⇒ N such that for each numeral n̄,
F ‘ n̄ = 0, but F is not the constant zero function, λx : N.0.
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Which functionals are representable in the free ccc?

We can identify arrows in the free ccc with N with closed lambda
terms, modulo β, η, equivalently (by Curry-Howard-Lambek), as
denoting proofs in {∧,⇒,>}-logic.

We can represent exactly the provably total functions of
classical (first-order) Peano Arithmetic, i.e. those satisfying
` ∀x∃!yA(x , y). These correspond to the ε0-recursive
functions, a proper subclass of the total recursive functions.

The closed lambda terms represent a version of Gödel’s
Dialectica Functionals (= the primitive recursive functionals of
finite type).

They have been very influential in the Foundations of
Constructive Analysis., e.g. Bishop, Troelstra, et. al. (most
recently: Mart́ın Escardó (MFPS’13) gave new proofs of
continuity of functionals of type 2.)

Can we get still more numerical functions and functionals?
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Higher Order Intuitionistic Logic: Full Type Theory

We can consider higher order intuitionistic logic with Peano’s
axioms: this is the internal language of toposes with NNO’s.

Types: 1 Ω N ΩA A× B

Terms: ∗ a = a′ 0 {x : A | ϕ(x)} 〈a, b〉
a ∈ α Sn

In [LS86] we gave an axiomatization based on equality,
comprehension, extensionality, and Peano’s axioms. Following
Russell, Henkin, and Prawitz, we base the logic on equality:
> := ∗ = ∗
p ∧ q := 〈p, q〉 = 〈>,>〉 where p, q : Ω
p ⇒ q := p ∧ q = p
∀x :Aϕ(x) := {x : A | ϕ(x)} = {x : A | >} where ϕ(x) : Ω
⊥ := ∀x :Ωx
¬p := ∀x :Ω(p ⇒ x)
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Higher Order Intuitionistic Logic: Full Type Theory

p ∨ q := ∀x :Ω(((p ⇒ x) ∧ (q ⇒ x))⇒ x)

∃x :Aϕ(x) := ∀y :Ω(∀x :A((ϕ(x)⇒ y)⇒ y))

Definition (Generated Toposes T (L))

The topos T (L) generated by the type theory L has as objects
“sets” (closed terms α of type ΩA , modulo provable equality).
Morphisms α→ β, where α : ΩA and β : ΩB , are “provably
functional relations”, i.e. closed terms ϕ : ΩA×B (modulo provable
equality) such that:

`L ∀x :A(x ∈ α⇒ ∃!y :B(y ∈ β ∧ (x , y) ∈ ϕ))

T (L) is the category of “sets” and “functions” formally definable
in higher-order logic L.

For L0 = pure type theory, T (L0) is called the free topos.
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Computable functions and the free topos

Lambek and I have spent a lot of time trying to convince people
that the free topos is a perfect universe for moderate intuitionists.

Now the class of computable functions changes radically depending
on whether we use classical or intuitionistic logic.

Theorem (LS86)

(i) The representable (= provably total) functions N → N in pure
intuitionistic type theory are recursive.
(ii) Not all recursive functions so arise (by diagonalizing out of the
class of all ∀∃!-proofs.)

Question: is there a nice characterization of these functions?
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The free Boolean Topos and classical type theory

The free Boolean topos is like the free topos, but generated from
classical type theory. So we add the the law of excluded middle to
pure type theory: ∀p : Ω(p ∨ ¬p). (Alas, the free Boolean topos is
not an ideal universe for classical mathematicians.)

Now the class of computable functions changes radically depending
on whether we use classical or intuitionistic logic. Gödel first
examined a weak form of representability (using numerals, instead
of variables) in classical type theory.

Theorem (LS86)

(i) The numeral-wise representable functions in classical type
theory are exactly the total recursive functions (Gödel).
(ii) The provably total functions of classical type theory coincide
with the numeralwise representable ones (V. Huber-Dyson), when
they define total functions.
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Approaches to representing partial recursive functions

Unfortunately, the free Boolean topos has non-standard numerals

1
f−→ N. This suggests maybe partial functions are better...

In [LS86] we observed that Gödel’s notion of weak or numeralwise
representability was perhaps more appropriate to the free topos:

Theorem

A partial numerical function is numeralwise representable in pure
type theory (i.e. the free topos) iff it is partial recursive.

There are other, more interesting recent categorical approaches to
partial recursive functions via partial map (restriction- and Turing-)
categories (Cockett-Hofstra) but we haven’t yet developed that
work here.

But I’d like to mention a recent, relevant talk of Plotkin (for the
Abramsky fest), since this also uses a Lambek Lemma.
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Plotkin: another use of Lambek’s Lemma

Recall Lambek’s Lemma, often used in Domain Theory (cf. work
of Peter Freyd. ) One has a functor T : C → C and we define a T
algebra to be a map TA→ A. We may form the category T − Alg
of T -algebras, by having maps = commutative squares. An initial
T -algebra is one which has a unique map to any other T -algebra.

Lemma (Lambek)

If TA
f−→ A is an initial T -algebra, then f is an isomorphism.

N is an NNO in Sets (following Lawvere). We look at the functor
T (−) = 1 + (−). A natural number object is an initial algebra for
this: a map TN → N = a map (1 + N)→ N is a pair of maps:

1
0−→ N and N

S−→ N, initial amongst all such diagrams.
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Plotkin’s Theorem

In Sets, Lambek’s Lemma would say the familiar fact:
1 + N α−→ N is an iso , for α = [0,S ].

As we know: Initiality of α gives us primitive recursion. What
about if we turn things around, and ask for the finality
α−1 : N→ 1 + N ? It turns out this gives exactly Kleene
µ-recursion for partial functions.
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Plotkin’s Theorem

Theorem (Plotkin,2013)

Let C be a monoidal category with (right distributive) binary sums

and a weak left (or right) natural numbers object I
0−→ N

S−→ N
such that [0,S ] is an isomorphism and (N, [0,S ]−1) is a weakly
final natural numbers coalgebra. Then all partial recursive
functions with recursive graphs are strongly representable in C
(assuming that S oc 6= 0, for all c : I → N).

I find the above more pleasing than moving to Untyped systems,
like untyped lambda calculi.
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What are some different philosophies of mathematics?

Lambek has always been interested in foundations of mathematics.
There are various famous philosophies of mathematics:

Logicism: (Frege) the primacy of symbolic logic: mathematics is
reduced to logic. Numbers can be defined in terms of logic (e.g.
Russell).

Platonism: basic mathematical objects exist, independently of the
human mind. E.g. numbers are abstract, necessarily existing.

Intuitionism: (Brouwer) Proofs and mathematical objects are
mental constructions. Aristotle’s law of excluded middle is not
valid.

Formalism: (Hilbert) Mathematics can be considered as a formal
game with symbols, manipulated according to certain rules.
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Constructive Nominalism?

Lambek-Couture[1991] introduced this notion to discuss merging
“moderate” adherents of the above philosophies. Lambek and I (in
[LS86] and our recent work) and Lambek in many recent papers,
have been pushing the idea:

The free topos is an ideal universe for a moderate intuitionist,
which also encodes many aspects of the previous philosophies:

– Platonists, because as an initial object it is unique up to
isomorphism;

– Formalists, or even nominalists, because of its linguistic
construction;

– Constructivists, or moderate intuitionists, because the underlying
type theory is intuitionistic and it satisfies numerous constructive
principles.
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Constructive Nominalism?

– Logicists, because this type theory is a form of higher order logic,
although it must be complemented by an axiom of infinity, say in
the form of Peano’s axioms.

Although there might be some objections:

Unlike the pure logicists, we adjoin the Peano Laws.

While most mathematicians accept impredicative type theory
as legitimate, not followers of Martin-Löf’s type theories (e.g.
recent work on univalent foundations & homotopy lambda
calculus, by Voevodsky, Awodey, Coquand, et. al.)

Many technical intuitionists want laws or axioms, whereas the
free topos is only closed under rules: e.g. the Rule of Choice.
(Alas, the full Axiom of Choice ⇒ Booleaness).
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Some properties of the free topos/pure type theory

Pure intuitionistic type theory L0 has many interesting properties,
which translate into algebraic properties of the free topos:

Consistency: not ( `⊥) .
Disjunction Property: If `L0 p ∨ q , then `L0 p or `L0 q.
Existence Property: If `L0 ∃x :Aϕ(x) then `L0 ϕ(a) for some closed

term a of type A.
Troelstra’s Uniformity principle for A = ΩC : If

`L0 ∀x :A∃y :Nϕ(x , y) then `L0 ∃y :N∀x :Aϕ(x , y).
In the free topos F , the uniformity principle says the
arrows ΩC → N are constant.

Independence of premisses: If `L0 ¬p ⇒ ∃x :Aϕ(x) then
`L0 ∃x :A(¬p ⇒ ϕ(x)).

Markov’s Rule: If `L0 ∀x :A(ϕ(x) ∨ ¬ϕ(x)) and `L0 ¬∀x :A¬ϕ(x),
then `L0 ∃x :Aϕ(x).

The Existence Property with a parameter of type A = ΩC : if
`L0 ∀x :A∃y :Bϕ(x , y) then `L0 ∀x :Aϕ(x , ψ(x)), where
ψ(x) is some term of type B.
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What is Gödel’s Incompleteness Theorem?

Jim has been thinking about Incompleteness Theorems for quite
some time. Two publications include:

(i) A proof in his book with W. Anglin, The Heritage of Thales.

(ii) L-S (2011): Reflections on a categorical foundations of
mathematics.

I want to talk a bit about some of Lambek’s recent ideas.
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ω-Rules and truth

One very interesting concept Lambek recently thought about is the
ω-rule (semantic form) (here we stick to models whose only terms
t : N are numerals).

A(n̄) true, for all n ∈ N
∀x : N.A(x) true

Classically, note this rule is equivalent to a semantic version of the
existence property:

∃x : N.B(x) true

B(n̄) true, for some n ∈ N

Of course, these are not intuitionistically equivalent (formally).
Suppose we want to analyze this in a deeper way.

A famous question of Pontius Pilate: “What is truth?”
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What is truth in intuitionism?

Interesting paper: “Conceptions of truth in intuitionism”, P.
Raatikainen, History & Philosophy of Logic, 2004.

Examines carefully many published viewpoints (from Brouwer,
Heyting, to Dummett). “It is argued that each account faces
difficult problems. They all either have implausible consequences or
are viciously circular”

1 (Summarizing many quotes of Brouwer): a proposition is true
only if it has been actually proved, and an object exists only if
it has been actually constructed.

2 Brouwer sometimes equates truth with provability in principle.
At first he was obsessed with absolutely unsolvable problems,
but later in 1950’s liberalized his view.
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What is truth in intuitionism?

3 Brouwer (and Heyting) oscillated between two views (called
‘actualist’ vs. ‘possibilist’): does truth = actual possession of
a proof or does truth = possibility of constructing a proof.

4 Dummett (1982): it seems better to represent a constructivist
theory of meaning for mathematical statesments as dispensing
with notion of truth altogether.

Anyway, suppose we accept, following Lambek, intuitionistic truth
= “knowable” = “provable”.

Then for the classically equivalent ω-rules (for truth), things split:
the second rule becomes the ∃-property. And the latter is actually
a derivable rule (Lambek and I gave three proofs of ∃- and ∨-
properties for intuitionist HOL.)
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What is truth in intuitionism?

But (even for classical logic) the first ω-rule (for provability) fails,
as we saw for free ccc:

` A(n̄) for all n ∈ N
` ∀x : N.A(x)

This is a consequence of the proof of Gödel’s Incompleteness
Theorem.

Let’s sketch this now.
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Gödel’s Incompleteness Theorem

Suppose we look at models satisfying the semantic ω-rule.

Theorem (Gödel)

Suppose L0 is consistent. Then there is a formula G true in any
model satisfying the ω-rule, but not provable.

Proof: Enumerate the sets (the terms of type ΩN or P(N)), which
are comprehension terms {x : N | A(x)}. Call them α1, α2, · · · ..
Enumerate the formal proofs in L0: π1, π2, · · · .
Let R(m, n) := πn proves m̄ ∈ αm.
This is a recursive predicate. Gödel showed us how to represent
this formally in the language. So there is a formula F such that

R(m, n) ⇒ ` F (m̄, n̄)

¬R(m, n) ⇒ ` ¬F (m̄, n̄)

Let αg := {x : N | ¬∃y : N.F (x , y)}.
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Gödel’s Incompleteness Theorem II

Let αg := {x : N | ¬∃y : N.F (x , y)}. So

` ḡ ∈ αg ↔ ¬∃y : N.F (ḡ , y)}.

Let G = ḡ ∈ αg . Suppose ` G . Then for some n, πn proves G . So
R(g , n). So ` F (ḡ , n̄). So ` ∃y : N.F (ḡ , y). Therefore,
` ¬¬∃y : N.F (ḡ , y), even intuitionistically.
So even intuitionistically, ` ¬G . Contradiction, since L is
consistent.

So, 6` G . Hence, for all n, πn is not a proof of G . so
∀n ∈ N,¬R(g , n). Hence ∀n ∈ N, ` ¬F (ḡ , n̄) Exercise:
∀y : N¬F (ḡ , y) is not provable, even intuitionistically. It is,
however, true.

With a technical condition (ω-consistency), one can even prove
also 6` ¬∀y .¬F (ḡ , y). Hence 6` ¬G also. So neither G nor ¬G is
provable.

Philip Scott University of Ottawa [2ex] (Lambekfest, September 21, 2013 CRM, U. de Montréal )From Gödel to Lambek: Studies in the Foundations of Mathematics



Gödel’s Incompleteness Theorem III

Jim and I understood a model to be a non-trivial topos satisfying
the disjunction and existence property (1 is an indecomposable
projective). By an analytic type theory we mean one which is a
quotient of the free language L0. The following is true for both
intuitionistic and classical systems.

Theorem (LS,2011)

If L is a consistent analytic type theory whose theorems are r.e.,
there is a proposition q satisfying: if L has at least one model in
which the numerals are standard, then neither q nor ¬q is a
theorem.

Has many corollaries, e.g. the set of true statements of L0 (in
those Boolean toposes in which 1 is a generator and in which
numerals are standard) cannot be r.e.
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