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0. Introduction 

In this note we shall give short proofs of various metarules of intuitionistic higher- 
order logic, the rules of Existence, Disjunction, Uniformity and Independence of 
Premisses among others. Our method is a modification of FREYD’s [2] proof of the 
Existence and Disjunction rules, which was further developed by us [5, 61, yet it also 
resembles our original method. It should be somewhat more congenial to logicians; 
rather than translating each rule into its algebraic equivalent, e.g., some statement 
about projectives, we use the internal logic of the Freyd cover of the free topos [5, 5 61. 
Whereas FREYD’S proof uses essentially the KLEENE-FRIEDMAN method (see [9]), as 
did the original proofs by BOILEAU [I] and us [5], the proof here involves a higher- 
order version of the “Aczel slash” (see ! 2 below) and is more perspicuous. 

This paper is a continuation of 171; a t  the same time, the use of the internal logic 
of Freyd covers simplifies our presentation. We had begun the computation of this 
internal logic in [7, Corollary 4.41. Theorem 2.2 below completes the picture; we are 
endebted to MARTIN HYLAND for pointing out the relationship with the Aczel slash. 

1. Type theory and the free topos 

The language Y of pure intuitionistic type theory has been described in detail else- 
where [5, 61. We shall briefly outline the formation rules for a version of 2’ based on 
equality. We are givcn a hierarchy of pure types consisting of three primitive types: 
1 (a one-point set), N (t,he set of natural numbers) and 9 (the set of truth-values), 
as well 8s two rules for generating new types from old ones: from A and B form A x B 
(the Cartesian product) and PA (= Q A ,  the power-set of A ) .  In addition to countably 
many variables of each type, we have the following terms, each listed under its type: 

a = a’ (a,  b )  {x E B I ~ ( z ) }  
* j a t a  1 1 
where the displayed terms satisfy: n has type N, cx has type PA, ~ ( x )  has type Q, 
a and a’ have type A and b has type B. 

l )  The authors wish to acknowledge support from the Natural Sciences and Engineering Research 
Council of Canada, the Quebec Department of Education, the Social Sciences and Humanities 
Research Council of Canada, and the hospitality of the University of Oxford. 
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It is well-known how all logical symbols may be defined in terms of equality (see 
e.g. IS]): 

T (true) = * = *, 
P A q  
p = q  = P A q = P ,  
V,,,cp(~) 
I (false) = V,&, 

P " q = V,€*(((P = t )  A (q  => 0) = t ) ,  

~ X E A Q ) ( X )  = V t A ' x e A ( ~ ( x )  => t )  * t )  9 

T P  = p a l ,  
3!xoAy(x) E 3,,,,{x E A 1 ~ ( x ) }  = {.E E A 1 x = .d>. 

= ( P , @  = (T, T), 

{x E A I cp(a)} = {x E A I T}, 

We stipulate a deducibility relation I' kx y between finite sets of formulas I' (possibly 
I' = 0) and formulas y ,  where the free variables of r and y are contained in X .  The 
axioms and rules of inference governing kx are essentially those of intuitionistic pred- 
icate calculus, augmented by extensionality, comprehension, PEANO'S axioms and 
obvious axioms for * and ( a ,  b) .  For details see [6] or Appendix I. 

It is also well-known how to interpret intuitionistic type theory 9 in any topos d 
(see, e.g. [5], [3]): the pure type A is interpreted as the object A of A? with the same 
name and a closed term a of type A is interpreted as an arrow a:  1 + A .  Thus * is 
interpreted as the only arrow 1 -+ 1, 0, Sn and ( a ,  b )  as the arrows 1 --+ N, 1 + N 
and 1 -+ A x B usually so denoted, a = a' as the arrow da(a, a ' ) :  1 -P A x A + Q, 
where 6, is the characteristic arrow of the monomorphism ( la ,  la): A -+ A x A ,  
and a E 01 as the arrow is the usual evaluation. 
Finally, { x  E A 1 y (x ) )  is the arrow 1 + PA corresponding to the unique arrow 
f :  A + Q in d for which y(x)  . = *  fx in d [ x ] ,  the predogma obtained from d by 
adjoining an indeterminate arrow x: 1 -+ A .  (A predogrna is essentially a Cartesian 
closed category, except that no powers are stipulated other than OA = PA.) For a 
sentence p of 9 we write d C p (d satisfies p )  to mean p -=. T as arrows 1 -+ 52 
in d. 

In  the language 2' of pure type theory it was tacitly understood that there are no 
other types and terms than those obtainable from the indicated formation rules. It was 
also understood that the deducibility relation k x  discussed in Appendix I is the 
smallest relation satisfying the stated axioms and rules of inference. By contrast, 
when we remove these tacit restrictions, we obtain many applied type theories. Among 
them there is the internal logic 3(d) of a topos d. Its types are the objects of d 
and its terms of type A are the arrows a:  1 + A in d. Furthermore, the deducibility 
relation kx for 9(d) is defined as follows. Without loss in generality we may assume 
that X contains just a single variable x of type A .  (For we may replace variables 
x , ,  . . ., x, of types A , ,  . . . , A , ,  by a single variable x of type A = A ,  x . . . x A,,,.) 
Moreover, we may write p i  as fix and q as gx, where f i  and g are arrows A + 9. Then 
p l ,  . . . , p,,, t, q means that, for all objects C and all arrows h:  C + A4 in d, if 
fih . = a  T for i = 1, . . . , n then also gh a = .  T in d. In particular, when I L  = 0 and 
nz = 0 (hence A = l) ,  we interpret k q  as y .=. T in .d, for which we also write 
d t q. Clearly 9(d) is an extension of 9. 

a )  : 1 -+ PA x A -+ 52, where 
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The closed term model of 9 can be made into a topos F, the so-called free topos, 
actually the topos freely generated by the empty graph. F is initial in the category 
of toposes (with canonical subobjects) and strict logical morphisms. We assume that 
all toposes contain a natural numbers object. Briefly, the construction of P is as 
follows: the objects are the names of “sets” in 9, i.e. closed terms of type PA for 
arbitrary pure types A ; the morphisms are names of “provably functional relations ”, 
i.e. closed terms of type P(A x B) which are provably (in Y )  the graphs of functions 
between objects. Equality of objects and morphisms means provable equality in 9. 

Freyd used the universal property of the free topos to  give an ingenious proof of 
the follon ing fundamental principles : 

(EP) 

(DP) 
For details and history of these results see [5] and for generalizations see [5, 71. Briefly, 
FREYD’S proof proceeds as follows: 

(i) Translate (EP) and (DP) into algebraic properties of the free topos, namely that 
the terminal object 1 of 3 is projective and indecomposable. 

(ii) Given a topos at, construct its “Freyd cover” 2, see 8 2 below. There is always 
a strict logical functor &‘ + d; moreover, in .d, 1 is an indecomposable projective, 

(iii) Being initial, S is a retract of @; hence the required algebraic properties of 
F are inherited from its Freyd cover. 

In spite of its conceptual elegance and clarity, FREYD’S proof is not particularly 
short when all the details are carefully worked out [5 ] .  Indeed, a logician might find 
two objections : First, one must translate syntactical questions into their algebraic 
equivalents, and in some situations this can be quite delicate [7j. Secondly, the logi- 
cians’ realizability proofs are more immediate : once the inductive clauses of realiz- 
ability are known, syntactic results like (EP) and (DP) follow immediately. As it turns 
out, a version of realizability due to  Aczel [8] describes the internal logic of Freyd 
covers, leading to shorter proofs of (EP) and (DP). The logic of Freyd covers is de- 
scribed in 9 2 below, with applications in 9 3, and $ 4. 

If ksxsAp(x) then t-v(a) for Some closed term a of type A .  

If I-p v q then I-p or I-q. 

- 

2. Frcyd covers and their logic 

The Freyd cover of a category at is the comma category at = (Sets,T&), where 
r, = d ( 1 ,  - ) :  d --f Sets. Its objects are triplets ( X ,  6, A ) ,  where X is a set, A an 
object of d and 5 :  X + r , ( A )  a mapping. Morphisms [ X ,  6, A )  + ( Y ,  B) are 
pairs of arrows 43: X + Y ,  f :  A + B such that the square 

d, 
x - Y  
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commutes. 2 is a topos with natural numbers whenever d is. In  addition there is 
a strict logical functor G: c2 --f d,  where Q ( X ,  5,  A )  = A on objects and G(@, f )  = f 
011 arrows. 

The objects d of 2 lying over objects A of d have the form a = (S,, I , ,  A ) ,  
where 8, is defined by induction on A : 

and 
S ,  = {*I, S N  = N, S A x B  = SA x S,, SPA = s?(A,Q 

s, = r;(Qn) 0 {TI = Vd(Q)  x (0)) v ({TI x (11,. 

Moreover, I, is the obvious mapping S, + T J A ) .  

A closed term 6 of type A in ~ ( 2 )  is interpreted in 2 as an arrow ci: i + A. clearly 
then d is given by a commutative square: 

where a . =. G(d). For typographical reasons we have omitted the hat 
script A in #,, a, and &.  

2(2), if its interpretation 

on the sub- 

In  particular, 7: i' -+ fi is obtained by setting cT(*) = (T, 1). For a sentence 3 of 
in 2 is 

then we have: 

(1) if C T ~ ( * )  = (T, 1) then d k p, (2) cp(*) = (T, 1) if and only if 2 k $. 
A 

The evaluation 6,: P A  x A^ -+ a has the form: 

where uz((@, h), a )  = @(or) is given by evaluation in Sets. 
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We recall the interpretation of equality in Freyd covers : 

Propos i t ion  2.1. If 6 and 6 are closed terms of type A in 2(2), then 2 

Proof ,  See [7, Proposition 4.31. 

From the interpretation of equality follows the entire internal logic of 2. 
Theorem 2.2. (internal logic of 2). 

6 = 6 if 
and only if ua(*) = ub(*). 

(1) 2 t @ A @  if and only if 2 t fi and GG b i j .  
( 2 )  2 j j  =- if anxi only if (i) F p =- q, (ii) if 2 t 4 then 2 4. 
(2') 2 i j j  if and only if (i) d b i p ,  (ii) not (2 t $1. 
(3) 2 b ~ V G  if and only if 2 t fi or 2 t g .  
(4) 2 k v,,~#(x) if and only if (i) .& F. ~,..~q(z), (ii) for all ci : i -+ A in  2,2 t tjj(6). 
(5 )  2 t 3,,A#(.) if and onZy i f ,  for some &:  1 --+ 2 in a?,2 
I n  clauses (1) to (5), reference is made to the internal language of 2, (see 9 1 above). 

Proof. For (1) and ( 2 )  see [7, Corollary 4.41. We now prove (4), from which (3), 
(5) will follow below. Let @(x) be a formula of 2(2) with x a free variable of type A .  
As in [4, p. 125; 53 we can interprete @(x) in the dogma &x]with an indeterminate 
x of type A. In  particular, in 21x1 we can write @(x) .=.fx. where f: d -+ in 2, 
and in d [ x ]  we can write p{x) .=. fx ,  where f :  A --+ Qxin d. Then r f l :  1' + (PA) 
interprets {x E A J #(z)) in .a? andrditto rp: 1 -+ PA in d. Moreover, rfl must be of 
the form: 

@(c i ) .  

From the definition of V in 9 or 2(2) (see 9 l ) ,  we have: 

2 1 VxEA@(2)  if and only if 2 b {X E A  ̂ I @(x)} = {x E A  ̂ I T} i.e. 2 t r p  = r'?oAl, 

where 0, : A  ̂ -+ is the terminal arrow in 2. Bj7 Proposition 2.1, this is the case if 
and only if 

urn(*)  = 'JTTO,T(*). 

Now arf-,(*) = (0, f )  E Spa, where @: S, + S, and f :  A + a. Hence the displayed 
equation holds if and only if @(a) = (T, 1) for all LY E S, and f .=- TO,: A -+ 1 + SZ 
in d. The second condition asserts that {x E ,4 1 Q~(x)} - = *  (x E A I T) in d, that is, 
d F VXeA~(x). We shall now prove that the first condition holds if and only if 
2 t d E rf1, that is, d P @(a), for all 6: 1 + d. 

32 Zkchr. f. math. Logik 
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Indeed, the arrow ci is given by the commutative square 

*t+a 
(*> - ' A  

I I I 
and is completely determined by a E S,. Hence quantification over arrows 6 is equiv- 
alent to quantification over a E S,. Moreover, 2 C 6 E rp if and only if 
e,<rfq, a} * =. f , that is, the composite 

is equal to ?. Since the top row determines the rest, this is the case if and only if 
ce(arJ,(*), a) = (T, I ) ,  that is, @(a) = (T, I ) ,  since arz,(*) = (@, 1). This completes 
the proof of (4). 

Both (3) and (5) of Theorem 2.2 follow from (44, which has'just been proved. For 
example, we shall show (5). 

Indeed, we recall from $ 1  that 2 k 3,,,@(~) if and only if 2 t Vte&!xeA($(~) => t )  * t ) .  
In view of (4), this holds if and only if 

(i) Jd b L 4 V ( " ) 3  

(ii) 

and 

for every 9: i -+ 0, 2 t vXeA(+(x) 

For some 6: i --+ A ,  2 i= $(d). 

$3) * jj. 
We have to show that the conjunction of (i) and (ii) is equivalent to: 

(iii) 

By applying the logical functor 2 d to (iii), we see that (iii) implies (i). Also clearly 
(iii) implies (ii). Conversely, assume (i) and (ii) and let @ be the commutative square 

Using (2) of Theorem 2.2, we infer from (ii) above that 
(iv) if 2 k VxeA(@(z) $) then 2 b  $3. 
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Now, by choice of f3, i t  is not true that 2 I= $. Therefore, i t  is not true that 
s? I. VxEA(@(x) 3 9). Again, using (4), by Theorem 2.2, we conclude that either not 
LZ’ I. VxEA(q(x) =- T)  or, for some 4: ‘i -+ A ,  not 2 k @(d) * 9. Since obviously 
at’ k V X E A ( q ( x )  T), it follows from (2) that there is an &: ‘i + d such that A? C @(&) 
but not d k 8. Thus (iii) holds, as was to be shown, and our proof is complete. 

A 

A 

The inductive clauses of the internal logic of d had previously been discussed in 
connection with realiztlbility and Kripke models and are known aa the Aczel slash 
[8, p. 3331. Logicians are referred to Appendix 11 for a comparison between our version 
of the Aczel slash and related concept,s in the literature. 

in formula8 coming from the pure Since U ( 2 )  extends 9, we omit t,he hat 
language 9 in what follows. 

3. Applications 

We can now efficiently reprove many of our previous results in [5, 71 and obtain 
several new ones. We first give new proofs of (DP) and (EP) based on Theorem 2.2. 

(DP) 
Proof. Suppose I-p v q. Then, in particuIar, @ I= p v q. By the theorem, @ C p or 

@ I= q. Applying the logical functor G: .& -+ F, we find that F t p or 9 I= q, that 
is, I-p or I-q. 

(EP) 

Proof .  Suppose t-3,,,9(s), then > I= 3,,,y(x). So, by the theorem, for some 
&: 1 -P d, * I= ~ ( 6 ) .  Applying the logical functor G: $ + F and writing G(d) = ii, 
we find that there is an m o w  ii;: 1 + A such that 9 I= q(ii;). To deduce from this 
that kq(a) for a term a of type A,  some work has to  be done. While the arrow ii is 
given by a term e of the language, this is of type P(l x A)  and denotes a provable 
functional relation. We still have to eliminate the description term “the unique x E A 
such that (*, x) EQ”,  that is, we must show that I-@ = ((*, s) E 1 x A I z’= a} for 
a term a of type A. That this can be done for the language 9 has been shown else- 
where [5, Lemma 6.3; 7, § 21. 

Next we shall look a t  (EP) with parameters. Suppose kVxeA 3yEB~(z ,  y), that is, 
I - x 3 r E B ~ ( ~ ,  y), where x is a variable of type A. We shall now assume that A = Q, but 
the case A = PC may be treated quite similarly. Consider the topos F(z) obtained 
from the topos F by adjoining an indeterminate arrow x: 1 -+ 9. In  its Freyd cover 
. F ( X ) ~  there is an arrow 2 :  1 

If I-p v q then I-p or I-q. 

If t3,,,q(z) then I-q(a) for some closed term a of type A .  

0 given by the commutative square: 

32* 
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By the universal property of .F(x), there is a unique logical functor F ( x )  -+ F(z)" 
mapping .c onto 2. Since l-x3y,Bq(n, y), we have F ( x ) "  k 3,,Bq(& y), the variable x 
being interpreted by the arrow 2. It follows from (5) of Theorem 2.2 that .F(z)" k 

C ~ ( 2 ~  b(x)), where &x): -+ B in . F ( x ) " .  Hence .F(x) k g?(z, P(x)), where p(x): 1 -+ B 
in F(E). 

In the special case B = N, the arrow B(x): 1 + N must correspond to  a standard 
numeral, hence P ( x )  is of the form SnO = 6 [5, Lemma 6.51. Therefore kVxEDg?(x7 6) 
for some n E N. We have thus proved TROELSTRA'S Uniformity Rule: 

(UR) I f  kvx~x.n 3 y ~ N F ( x ,  y) then F j y e N  V x s ~ 3 ] ( * ~ ,  9 ) .  

(UR) also holds if Q is replaced by a pure type of the form PG, the argument being 

A curious result, which is proved in a similar fashion, is the following: 

Indecomposab i l i t y  of Q. If kVxEfl(p(z) v y(z)) then FVx,fly(x) or l-V,,,y(x). 

Proof.  Suppose tVxex.n(p(x) v ~(z)) ,  that is, k,p(x) v y(z). Then 9 ( z ) "  C p(5) v ~(2). 
By Theorem 2.2 (3). F(.E)" C q(&) or 9( . r ) "  C y ($ ) .  Hence 9 ( z )  k ~ ( x )  or S(z) C y (x ) ,  
that is, t,g?(x) or t ,y(x),  from which the result follows. 

Again, the result also holds if Q is replaced by PC. These two rules state that Q 
and PG are indecomposable objects in the free topos. 

The Existence Property Modulo p is the following rule, valid for certain closed for- 
mulas p :  

similar. 

If p I- 3,,p(x) then p I- p(a) for some closed term a of type A .  

In  [7] this rule was carefully examined and shown to be equivalent to the follow- 
ing [7, Corollary 3.41 : 

(IP) I f  kP * 3,,,v(z) then %A(?) p(4).  

An interesting (and still open!) question is to  characterize those formulas p for 
which (IP) holds. Algebraically, this says that p determines a projective subobject 
of 1 in the free topos 9. We had made some progress on this problem in [7] and shall 
now reconsider our results in the light of Theorem 2.2. 

We shall require the notion of the free topos F / p  on the assumption p .  It may be 
constructed syntactically just like the free topos S, except that we use the lan- 
guage 9, whose deduction relation is p k X ,  that is, deduction on the assumption p .  

We recall [7, 3 61. 

Defin i t ion  3.1. (i) p is Freydian if ( F / p ) "  C p or, equivalently, S / p  is a retract 
of ( F / p )  ". (ii) p is hereditary if, for all nondegenerate toposes d,  if A? C p then 2 C p .  

Propos i t i on  3.2. If p is Freydian then p satisfies (IP). 

Proof .  Suppose p I- 3,,,p(z). If p is Freydian, ( P / p ) "  k p ,  hence (@/p)"  C 3xEap(~) .  
By Theorem 2.2 (5 ) ,  ( F / p ) "  C p(8) for some arrow 4: 1 + A  in ( F / p ) " .  Hence 
F / p  C q(?i), where 6: 1 -+ A in 9 / p .  We would like to replace the arrow 6 by a term 
a of type A ,  so that F I p  C g?(u), that is, p t p(a). To do this we must prove a syn- 
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tactical lemma on eliminability of description. By 17, Lemma 2.11 it suffices to  show 
that arrows 1 + N in S / p  correspond to standard numerals. Now, since p is Freydian, 
P / p  is a retract of ( $ / P O )  " and so . 9 / p  inherits this property from ( S I P )  ' . 

We recall the following: 

P ropos i t i on  3.3. (i) If p i s  hereditary then either k i p  or p i s  Freydian. (ii) If p 

Proof .  See [7]. 
The hereditary formulas are easier to  handle than the Freydian ones; e.g., they 

are closed under the inductive clauses of Harrop Formulas [7, Theorem 6.31. 
Propos i t ion  3.4. (i) I is hereditnry. (iil If p and q are hereditary, then so is p A q. 

(iii) If q i s  hereditary, then so i s  p q fw a n y  p .  (iv) If p(x) is  hereditary, then so is 
VxEAp(x) .  Here p(x) is called hereditary provided, for a n y  nondegenerate topos d and 
every c i :  1 + A in 2, if b p(a) then 2 b y(&) ,  where a = G(B),  G being the logical 
functor 2 + .d. 

Proof. The only new assertion here is (iv). Suppose p(z) is hereditary and 
.d k VxeAy(x),  d being nondegenerate. We claim that d k VxEAv(x).  I n  view of The- 
orem 2.2 (4), we need only check that, for any & :  + A ,  e~ 1 y(d) .  Since y ( ~ )  is he- 
reditary, this follows from A? I= p(a), a consequence of the assumption. 

The set of Freydian formulas does not have such nice properties; for example, it is 
not closed under conjunction. However, we do have the following : 

i s  hereditary then p satisfies (IP). 

,. 

Propos i t ion  3.5 (FREYD). (i) i p  i s  Freydian if and only if not b l i p .  (ii) p * q 
is Fwydian  if not ( p  3 q )  I- p .  

Proof. See [7, Theorem 6.21. 

We remark that both Propositions 3.4 and 3.5 establish (IP) for "stable" p ,  that is, 
for those propositions p for which I - l i p  * p .  Clearly, the set of stable formulas has 
the closure properties of Proposition 3.4. One may ask whether there are any heredit- 
ary formulas which are not stable. 

Unfortunately, the sets of Freydian and hereditary formulas are not directly com- 
parable. 

Propos i t ion  3.6. (i) I i s  hereditary but not Freydian. (ii) l i p  =+@ is Freydian 
but not hereditary, where p is the Boolean axiom 

p = V t s n ( l l t  * t ) .  

Proof .  (i) I is hereditary by Proposition 3.4. It cannot be Freydian, else the Freyd 
cover ($/I)" would be degenerate; but no Freyd cover is degenerate. 

(ii) i i p  b is Freydian by Proposition 3.5, since not --: ip @ I- l i p .  To prove 
this, suppoqe l i p  =+ p I- l i b .  Since i p  k l i p  =+ p,  i t  would follow that 
i b  b i i / j ,  that is, I - i i / 3 .  This is known to be false. 

As for the fact that l i p  e- /l is not hereditary, note that Sets 1 l i b  * /3. How- 
ever, we claim that not Sets" I. l i b  * p.  To this end recall [7, Proposition 5.41 that 



502 J .  LAMBEK AND P. J. SCOTT 

Sets" z Setss. Using Theorem 2.2 (2') above, one easily verifies that Sets? k l i p ,  
whereas not Sets2 k /3, as Sets: is known to be not Boolean. Therefore, it is not true 
that Sets2 t l i p  * p . ' )  

4. Markov's Rule 

By Markov's Rule at type A we mean the following rule: 

MR(A) I f  I- VX€A(P(X) v l V ( 4 )  and k-, ,AlV(~) then t-3,,,&4. 

The usual form of MARKOV'S Rule is MR(N) and may be proved as follows. 

Suppose t i V x e N i r p ( z ) ,  then Sets k i V x E N i ~ ( x ) .  Since Sets is Boolean, Sets k 
kiIxeNp(z). Therefore Sets k p(fi), where ii = S"0, for some n E N. Hence not k i p ( i i ) .  
Now suppose kVxeN(cp(x) v icp(x)), then l-cp(fi) v ip(fi), hence l-rp(W) or l-~p(fi), 
by (DP). Therefore l-p(ii), and so k3,,Np(z). 

We shall prove that MARKOV'Y Rule holds a t  any pure type A .  First note that any 
pure type (regarded as an object in the free topos) is isomorphic to a type of the form 

N k  x P(A,)  x . . . x P(A,), (k 2 0, n 2 0) 

since i2 G P(1). Now Nk z 1 or Nk G N. Moreover, P(A) is injective in any topos 
and any product of injectives is injective. Therefore every pure type is isomorphic 
to Q or N x Q where Q is injective. If n = 0, then Q 

Lemma 4.1. I n  the free topos 9, injective pure types are indecompable, that is ,  if 
b V x e Q ( ~ ( x )  v ~ ( z ) )  then I-v,eQ~(x) or t -vxEQ~(x).  

Proof .  Suppose Q is an injective pure type, regarded as an object of F. Then the 
singleton morphism 1,: Q -+ P(Q) splits, that is, there is an arrow e :  P(Q) -+ Q in .9 
such that el, - = a  1,. Now suppose kVxeQ(cp(x) v y ( x ) ) .  Let y :  1 + P(Q) be an in- 
determinate arrow, then F ( y )  k p ( e ( y ) )  v y ( e ( y ) ) .  Since P(Q) is indecomposable (see 
5 3). we have F ( y )  k q ( e ( y ) )  or , F ( y )  k y(e(y)) ,  hence S(z)  k p(e(r,s)) or S ( x )  I. 
t y(e(c,x)). Since elQ * = .  1,.  i t  follows that l -VxeQ~(x)  or l-VXEQ~(z). 

1 .  

Propos i t ion  4.2. MR(A) holds for at1 pare types A .  

Proof.  We consider two cases, MR(Q) and MR(N x Q ) ,  where Q is injective, hence 
indecomposable. 

MR(Q). Suppose I-V,,,(p(z) v i y ( x ) ) ,  then kVxeQp(z) or kVxEQicpfx). Now suppose 
l - i V x E Q i p ( x ) ,  then the second alternative is out, and so t-VxEQp(x). Let t be a term 
of type Q,  then l-q(t), hence l-3xeQp(.r). 

It follows from the second assumption that Sets k gXEN 3yeQcp(z, y), and therefore 
there is a numeral ii = X"0 such that Sets k 3yEQ~( f i ,  y ) ,  hence not t V Y , , i ~ ( f i ,  y ) .  
It follows from the first assumption that l-VyE,(~(%, y )  v ip(f'i, y ) ) ,  and so, since Q 

MR(N x Q)- Suppose ~ V X ~ N  VyEQ(q(z, Y) v T 'P(~> Y)) and ~ Y V ~ E N  V y s Q l ~ ( ~ 7  Y ) .  

' ) A false assertion crept into "7, Example 7.61. Contrary to the claim there, it is not true that 
Setsz b i B .  In fact, Sets2 Sets", and, by Theorem 2.2 Sets" k i i , 9  if and 
only if Sets c i i p ,  which is true. Nonetheless, the nonconstructive proof in the example, using 
i i p  - f i ,  is correct. 

i i p ;  for SetsZ 
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is indecomposable, that t V Y E Q ~ ( i i ,  y) or tVYJyEaiy(ii, y). Since the second alternative 
has already been ruled out, the former must hold. Let t be a term of type Q, then 
t-p(fi, t ) ,  hence tjxsN YYEQq(.c, y), as was to be proved. 

Appendix I. Rules for intuitionistie type theory based on equality 

1.  S t r u c t u r a l  ru les  

P b x P ;  

r k x P  r, P t X Q  . r t x q  . r t x Q  . 
r t - x q  ' r, P k x  Q ' r b x u { Y l Q  ' 

2 .  P u r e  e q u a l i t y  ru l e s  

Fxa = a ;  

a = b ,  ~ ( a )  k X  cp(b) [assume a and 6 free for 2 in pl(z)]; 

r , P t - , q ;  r , Q t x p  

3. Other  logical  ru l e s  

1' ~ X U { X ) ' W  * E a . 
r t x ( " E A  IgJ(2)) = a  . 
( a ,  b )  = ( c .  d )  k X  a = c : ( a ,  b )  = ( c ,  d )  Ex b = d . 

4. Other  p r o d u c t  ru l e s  
t-g = * [assume x of type 11; 

Appendix 11. Comparison of our version of the Aezel slash with the literature 

The original version of the Aczel slash [S, p. 3321 was meant to  describe the logic 
of certain Kripke models for first order logic and arithmetic. To obtain a higher order 
analogue, we write 

f'( p for (F/r)" k p ,  

where SIT is the free topos "with assumptions r", that is, the term model of the 
language of pure types with deducibility relation r I-. Using Theorem 2.2 above, we 
see that I' I p satisfies exactly the usual clauses of the Aczel slash [S, p. 3331, except, 
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of course, that the atomic formulas are handled somewhat differently in higher order 
logic. 

I n  both the Kleene slash and the Aczel slash for first order logic, an important 
rCJe is played by those formulas p for which p 1 p .  In  our theory these formulas are 
also important; for, by the above, p [ p if and only if ( F / p )  k p ,  that is, p is Freydian 
(see Definition 3.1). 

It follows from Propositions 3.2 and 3.3 that (IP) holds not only for the Freydian 
formulas, but also for the hereditary ones. It is only the latter class which contains 
all Harrop formulas. 

Finally, S ~ E D R O V  and SCOTT [9] showed that FREYD’S proof of (EP) and (DP) is 
virtually the same as the proof based on FRIEDMAN’S realizability [ 5 ) .  Indeed, our lp ,  
that is, F k p ,  is equivalent to “ p  is Kleene-Friedman realizable and kp”. 
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