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NEW PROOFS OF SOME INTUITIONISTIC PRINCIPLES

by J. Lamsek in Montreal (Canada) and P. J. Scort in Ottawa (Canada)')

0. Introduection

In this note we shall give short proofs of various metarules of intuitionistic higher-
order logic, the rules of Existence, Disjunction, Uniformity and Independence of
Premisses among others. Our method is a modification of FrREYD’s {2] proof of the
Existence and Disjunction rules, which was further developed by us [5, 6], yet it also
resembles our original method. It should be somewhat more congenial to logicians;
rather than translating each rule into its algebraic equivalent, e.g., some statement
about projectives, we use the internal logic of the Freyd cover of the free topos [5, § 6].
Whereas FREYD’s proof uses essentially the KLEENE-FRIEDMAN method (see [9]), as
did the original proofs by BomLeau [1] and us [5], the proof here involves a higher-
order version of the ““ Aczel slash’ (see § 2 below) and is more perspicuous.

This paper is a continuation of [7]; at the same time, the use of the internal logic
of Freyd covers simplifies our presentation. We had begun the computation of this
internal logic in [7, Corollary 4.4]. Theorem 2.2 helow completes the picture; we are
endebted to MArRTIN HyLaND for pointing out the relationship with the Aczel slash.

1. Type theory and the free topos

The language & of pure intuitionistic type theory has been described in detail else-
where [5, 6]. We shall briefly outline the formation rules for a version of % based on
equality. We are given a hierarchy of pure types consisting of three primitive types:
1 (a one-point set), N (the set of natural numbers) and £ (the set of truth-values),
as well as two rules for generating new types from old ones: from 4 and B form 4 x B
(the Cartesian product) and PA (= 24, the power-set of 4). In addition to countably
many variables of each type, we have the following terms, each listed under its type:

I‘N |Q ‘AxB‘PA

0 (a,b) | {zed|o)}
Sn

a=a
aEx

*

where the displayed terms satisfy: » has type N, o has type PA, ¢(x) has type Q,
a and o' have type 4 and b has type B.
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It is well-known how all logical symbols may be defined in terms of equality (see
eg. [6]):
T (true) = * = =,
prg  =Lp, =T, T),
pP=4 =PpPAg=D,
szAtp(x) = {x € A l (P(’U)} = {T EA l T}’
1 (false) = V,of,

pvqg  =Vlllp=>t)Alg=1)=>1),
axeA(p(z) = Vteﬂ(vxeA(q)(x) = t) = t) ’
—p =p= 1,

3!:lre.4¢(x) = ax’eA{x €A | 99(23)} = {-)3 ed Ix = .L"}.

We stipulate a deducibility relation I" -y @ between finite sets of formulas " (possibly
I' = ¢) and formulas ¢, where the free variables of I" and ¢ are contained in X. The
axioms and rules of inference governing Fy are essentially those of intuitionistic pred-
icate calculus, augmented by extensionality, comprehension, PEaNo0’s axioms and
obvious axioms for » and {a, b). For details see [6] or Appendix I.

It is also well-known how to interpret intuitionistic type theory % in any topos &
(see, e.g. [5], [3]): the pure type A is interpreted as the object A of & with the same
name and a closed term @ of type 4 is interpreted as an arrow a: 1 - 4. Thus * is
interpreted as the only arrow 1 = 1, 0, S» and {a, b) as the arrows 1 > N, 1 - N
and 1 - 4 x B usually so denoted, a = a’ as the arrow 6,{a,a’): 1 >4 x 4 - Q,
where §, is the characteristic arrow of the monomorphism {1,,1,>: 4 - 4 x 4,
and a € & as the arrow g,{xx,a): 1 - PA x A > Q, where g, is the usual evaluation.
Finally, {x € A | @(x)} is the arrow 1 — PA corresponding to the unique arrow
f: A - Q in o for which @(z)-=-fr in &/[x], the predogma obtained from .o/ by
adjoining an indeterminate arrow x: 1 — A. (A predogma is essentially & Cartesian
closed category, except that no powers are stipulated other than 24 = P4.) For a
sentence p of ¥ we write of F p (& salisfies p) to mean p-=-T as arrows 1 —» 2
in .&7. .

In the language £ of pure type theory it was tacitly understood that there are no
other types and terms than those obtainable from the indicated formation rules. It was
also understood that the deducibility relation Iy discussed in Appendix I is the
smallest relation satisfying the stated axioms and rules of inference. By contrast,
when we remove these tacit restrictions, we obtain many applied type theories. Among
them there is the tnternal logic £ (/) of a topos &. Its types are the objects of &
and its terms of type A are the arrows @: 1 - 4 in /. Furthermore, the deducibility
relation Fy for £ (&) is defined as follows. Without loss in generality we may assume
that X contains just a single variable z of type A. (For we may replace variables

Zy, ..., o, of types 4,,..., 4, by a single variable x of type 4 = 4, x...x 4,))
Moreover, we may write p; as fx and g as gz, where f, and g are arrows 4 — 2. Then
Pis---»PmFx g means that, for all objects C and all arrows h: C > 4 in &, if
fih-=-T for i =1,...,n then also gh-=-T in &/. In particular, when # = 0 and
m = 0 (hence A = 1), we interpret F¢ as ¢-=-T in .27, for which we also write

& k q. Clearly # (o) is an extension of &.
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The closed term model of .£ can be made into a topos &, the so-called free topos,
actually the topos freely generated by the empty graph. & is initial in the category
of toposes (with canonical subobjects) and strict logical morphisms. We assume that
all toposes contain a natural numbers object. Briefly, the construction of & is as
follows: the objects are the names of “sets” in %, i.e. closed terms of type PA for
arbitrary pure types 4; the morphisms are names of “provably functional relations”,
i.e. closed terms of type P(4 x B) which are provably (in .£) the graphs of functions
between objects. Equality of objects and morphisms means provable equality in %.

Freyd used the universal property of the free topos to give an ingenious proof of
the following fundamental principles:

(EP) If F3,_.@(x) then Fgla) for some closed term a of type A.
(DP) If tpv q then Fp or tq.

For details and history of these results see [5] and for generalizations see [, 7). Briefly,
FRrREYD’s proof proceeds as follows:

(i} Translate (EP) and (DP) into algebraic properties of the free topos, namely that
the terminal object 1 of % is projective and indecomposable.

(ii) Given a topos &7, construct its “ Freyd cover” o , see § 2 below. There is always
a strict logical functor .o/ — .&; moreover, in .o7, 1 is an indecomposable projective.

(iii) Being initial, & is a retract of % ; hence the required algebraic properties of
F are inherited from its Freyd cover.

In spite of its conceptual elegance and clarity, FREYD’s proof is not particularly
short when all the details are carefully worked out [5]. Indeed, a logician might find
two objections: First, one must translate syntactical questions into their algebraic
equivalents, and in some situations this can be quite delicate [7]. Secondly, the logi-
cians’ realizability proofs are more immediate: once the inductive clauses of realiz-
ability are known, syntactic results like (EP) and (DP) follow immediately. As it turns
out, a version of realizability due to Aczel (8] describes the internal logic of Freyd
covers, leading to shorter proofs of (EP) and (DP). The logic of Freyd covers is de-
seribed in § 2 below, with applications in § 3, and § 4.

2. Freyd eovers and their logic

The Freyd cover of a category .« is the comma category o = (Sets, r'y,), where
I'y =41, —): & — Sets. Its objects are triplets (X, &, 4), where X is a set, 4 an
object of o/ and &: X —» I'(4) a mapping. Morphisms (X, £, 4) - (Y, 9, B) are
" pairs of arrows @: X - ¥, f: 4 —» B such that the square

X ———Y

I'd) ——— I'(B
(4) 0 (B)
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commutes. & is a topos with natural numbers whenever & is. In addition there is

a strict logical functor G: o - s/, where Q(X, &, A) = A on objects and (@, f) = |
on arrows.

The objects A of Ry lying over objects 4 of & have the form 4 = (S,, 4, 4),
where S is defined by induction on 4:

Sy=1{s}, Sn=N, Sos=28,x85 Spa=A4,0
and
Bo =T (2)v{T}=(,2) x {0hv({T} x {1}).
Moreover, 4, is the obvious mapping S, — I"(4).
A closed term 4 of type 4 in % (.& ) is interpreted in o as an arrow d: 1 — 4. Clearly

then d is given by a commutative square:

G,
s} ——— 8,
Ay

where a - =-G(d). For typographical reasons we have omitted the hat * on the sub-
script 4 in S, 0, and A,.

In particular, T: 1~ 0 is obtained by setting o(%) = (T, 1). For a sentence ¢ of
,?(.22 ), if its interpretation $ in o is

{*} —UL—’ Sg
Ag.
() Q)

then we have:
(1) if o,(s) = (T, 1) then o k p, (2) o,(*) = (T, 1) if and only if . k 5.
~ -
The evaluation é,: PA x 4 — £ has the form:

O¢
Spa X S ——— 8,

g

F(PAXA)F—(E)—-)F(.Q)

where 0,(®D, b), x) = ®(x) is given by evaluation in Sets.
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We recall the interpretation of equality in Freyd covers:

Proposition 2.1. If d and b are closed terms of type A in ,7(49), then of F G = b of
and only if a,(x) = a,(*).

Proof. See [7, Proposition 4.3].

From the interpretation of equality follows the entire internal logic of .
Theorem 2.2. (internal logic of ,z;).

(1) A EPAGif and only if ok pand 7 F§.

(@) Lk p=§if and only if (i) L F p = q, (ii) if o £ P then o F §.

@) & £ —p if and only if (i) & F —p, (ii) not (o F P).

3) AEpviifandonlyif ZEpor LEG.

(4) o F Veea® () if and only if (i) of k¥, @), (ii) for all é: 1> Adined, oIk @(d).

(5) ok JxeaP () if and only if, for some d: 1 4in o, o E Pld).

In clauses (1) to (5), reference is made to the internal language of o, (see § 1 above).

Proof. For (1) and (2) see [7, Corollary 4.4]. We now prove (4), from which (3),
(5) will follow below. Let ¢(x) be a formula of Z(.;f ) with « a free variable of type 4.
As in [4, p. 125; 5] we can 1nterprete @(x) in the dogma 1% [x]with an indeterminate
x of type A. In particular, in </[x] we can write ¢(x) =" fr, where f: A - @ in o,
and in o/[x] we can write @(x)-=- fx, where f: 4 - .Q in .o/. Then f7: 1o (rA)~

interprets {x € 4] ¢(x)} in o and ditto Tf1: 1 —» P4 in /. Moreover, "f 7 must be of
the form:

() 2, g,

Apa

From the definition of V in & or ,?(;1 ) (see § 1), we have:
A E VY eap(@) it and only if S F{we d|¢@)} = {eed| T} ie. LEFV =770,
where 0,: 4 - 1 is the terminal arrow in 7. By Proposition 2.1, this is the case if
and only if

O y(*) = 6r10,~(%).

Now or-;(x) = (D, f) € Sp,, where @: 8, - S, and f: 4 » Q. Hence the displayed
equation holds if and only if @(x) = (T,1)foralla €S, and f-=-TO,: 4 51> Q
in &/. The second condition asserts that {zr € 4 | ¢(x)} =" {x € 4| T} in o7, that is,
& FVyeqp(x). We shall now prove that the first condition holds if and only if
Mkae"f" that is, o7 k ¢(d), for all d: 1-4.

32  Ztschr. f. math. Logik
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Indeed, the arrow d is given by the eommutative square
* b
) 225, 8,
A4
')y —— I'4
M) @) (4)

and is completely determined by « € S,. Hence quantification over arrows d is equiv-
alent to quantification over « e€S,. Moreover, AEde T if and only if
e, "f1, @) -=- T, that is, the composite

{*} M& Sey xS, _.__l_’s__>Sn
Fﬂ)mﬁ]’(f’fl x 4) -—IE)——)P(.Q)

is equal to T. Since the top row determines the rest, this is the case if and only if
o (o ;o (*), &) = (T, 1), thatis, @(x) = (T, 1), since o-,4(*) = (P, f). This completes
the proof of (4).

Both (3) and (5) of Theorem 2.2 follow from (4), which has just been proved. For
example, we shall show (5).

Indeed, we recall from § 1 that o E 3,e4p() if and only if o E Vel Viea(P(®) = t) = 1)
In view of (4), this holds if and only if

B A Feaple)
and
(i)  for every p: 10 ¢ Viea(@@) = P) = P.
We have to show that the conjunction of (i) and (ii) is equivalent to:
(iii) For some d: 1 » A, o k ¢(d).
By applying the logical functor o - oA to (iii), we see that (iii) implies (i). Also clearly
(iii) implies (ii). Conversely, assume (i) and (i) and let § be the commutative square

(o) x> (T,0) s,

Using (2) of Theorem 2.2, we infer from (ii) above that
(iv) if o FV,4(@®) = P) then o F P,
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Now, by choice of $, it is not true that ok p. Therefore, it is not true that
A E Vaxea(@(®) = P). Again, using (4), by Theorem 2.2, we conclude that either not
oA F Vyealp(®) = T) or, for some d: 1- 4, not «/F ¢(d) = p. Since obv1ous]y
o E VxEA( (r) = T), it follows from (2) that there is an d: 1 — 4 such that o F ¢(d)
but not &/ k $. Thus (iii) holds, as was to be shown, and our proof is complete.

The inductive clauses of the internal logic of o had previously been discussed in
connection with realizability and Kripke models and are known as the Aczel slash
[8, p. 338]. Logicians are referred to Appendix II for a comparison between our version
of the Aczel slash and related concepts in the literature.

Since .Sf(.s;’) extends %, we omit the hat * in formulas coming from the pure
language % in what follows.

3. Appliecations

We can now efficiently reprove many of our previous results in [5, 7] and obtain
several new ones. We first give new proofs of (DP) and (EP) based on Theorem 2.2.

(DP) If +pv q then Fp or Hq.

Proof. Suppose +p v ¢. Then, in particular, FE p Vv q. By the theorem, FE p or

FEq Applying the logical functor G: F — F, we find that F k p or F k g, that
is, Fp or Fq.

(EP) If F,.4@() then F(a) for some closed term a of type A.

Proof Suppose FIceap(®), then F F 3,.49(x). So, by the theorem, for some

1= 4, Fk @(d). Applying the logical functor G: F > F and writing G(4) = a,
we find that there is an arrow @: 1 - A such that & Fk ¢(@). To deduce from this
that Fg(a) for a term a of type A, some work has to be done. While the arrow 4 is
given by a term g of the language, this is of type P(1 x 4) and denotes a provable
functional relation. We still have to eliminate the description term “the unique x € 4
such that (*,z) €p”, that is, we must show that g = {(*,2) €l x 4 |« = a} for
a term a of type A. That this can be done for the language % has been shown else-
where [5, Lemma 6.3; 7, § 2].

Next we shall look at (EP) with parameters. Suppose +V, , 3,.50(%, y), that is,
Fdes®(®, ), where x is a variable of type 4. We shall now assume that 4 = Q, but
the case 4 = PC may be treated quite similarly. Consider the topos % (x) obtained
from the topos # by adjoining an indeterminate arrow 2: 1 — £2. In its Freyd cover
F(x)" there is an arrow £: 1 — © given by the commutative square:

= (2, 0)

{*} —————-—) Sq
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By the universal property of #(x), there is a unique logical functor F(x) —» F ()"
mapping © onto £. Since F, 3, p@(x, y), we have F(x)" F 3,.30(#, y), the variable x
being interpreted by the arrow £. It follows from (5) of Theorem 2.2 that F(x)" k
E @(2, f(z)), where §(x): 1 - B in F(x)". Hence #(z) F @(z, f(x)), where p(z): 1 > B
in F(x).

In the special case B = N, the arrow f(z): 1 - N must correspond to a standard
numeral, hence f(x) is of the form 8"0 = @ [5, Lemma 6.5]. Therefore tV . p(x, 7)
for some # € N. We have thus proved TroELSTRA’s Uniformity Rule:

(UR) If FVe Hyequ(x’ y) then F3pen Vrea®(; ) -

(UR) also holds if £2 is replaced by a pure type of the form PC, the argument being
similar.

A curious result, which is proved in a similar fashion, is the following:

Indecomposability of Q. If PV  olg(®) v p(x)) then bV  qp(@) or YV, qp(x).

Proof. Suppose FV,o(p(z) v p(x)), that is, F,@(x) v p(x). Then F(x)" F p(£) v p(£).
By Theorem 2.2 (3), F(x)" F @(£) or F(x)* F p(£). Hence F(x) E ¢(x) or F(x) F p(x),
that is, F,@(x) or k,p(z), from which the result follows.

Again, the result also holds if Q is replaced by PC. These two rules state that
and PC are indecomposable objects in the free topos.

The Existence Property Modulo p is the following rule, valid for certain closed for-
mulas p:

If p 3, ,@(x) then p & pla) for some closed term a of type A.

In [7] this rule was carefully examined and shown to be equivalent to the follow-
ing {7, Corollary 3.4]:

Ip) If tp =3, @) then FI,_ (p = @(x)).

An interesting (and still open!) question is to characterize those formulas p for
which (IP) holds. Algebraically, this says that p determines a projective subobject
of 1 in the free topos #. We had made some progress on this problem in [7] and shall
now reconsider our results in the light of Theorem 2.2.

We shall require the notion of the free fopos F[p on the assumption p. It may be
constructed syntactically just like the free topos &, except that we use the lan-
guage ¥, whose deduction relation is p b, that is, deduction on the assumption p.

We recall |7, § 6].

Definition 3.1. (i) p is Freydian if (#/p)" F p or, equivalently, F/p is a r(itract
of (F[p)*. (i) p is hereditary if, for all nondegenerate toposes &, if o/ k p then o7 F p.

Proposition 3.2. If p is Freydian then p satisfies (IP).

Proof. Suppose p  3,.,¢(2). If p is Freydian, (¥/p)" F p, hence (F/p)" F 3, 4p(x).
By Theorem 2.2 (5), (¥F/p)" F ¢(d) for some arrow d: 1 > 4 in (&F[p)". Hence

F[pF @(@), where d: 1 - 4 in F[p. We would like to replace the arrow a by a term
a of type 4, so that F/p F ¢(a), that is, p I @(a). To do this we must prove a syn-
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tactical lemma on eliminability of description. By [7, Lemma 2.11 it suffices to show
that arrows 1 — N in &#/p correspond to standard numerals. Now, since p is Freydian,
F|p is a retract of (F/p)* and so .F[p inherits this property from (F/p)"

We recall the following:

Proposition 3.3. (i) If p is hereditary then either F—p or p is Freydian. (i) If p
13 hereditary then p satisfies (IP).

Proof. See [7].

The hereditary formulas are easier to handle than the Freydian ones; e.g., they
are closed under the inductive clauses of Harrop Formulas [7, Theorem 6.3).

Proposition 3.4. (i) L is hereditary. (i) If p and q are hereditary, then so is p A q.
(iii) If q is hereditary, then so is p = q for any p. (iv) If @(x) is hereditary, then so is

Veeap(x). Here @(x) is called hereditary promded for any nondegenerate topos s/ and
every d: 154 in &/ if o F @(a) then ok p(d), where a = G(d), G being the logical
functor oA > oA

Proof. The only new assertion here is (iv). Suppose @(x) is hereditary and
oA EVeeap(x), o being nondegenerate. We claim that o E \7’xE 4p(x). In view of The-
orem 2.2 (4), we need only check that, for any d: T4, o/F @(d). Since ¢(x) is he-
reditary, this follows from &/ F @(a), a consequence of the assumption.

The set of Freydian formulas does not have such nice properties; for example, it is
not closed under conjunction. However, we do have the following:

Proposition 3.5 (FREYD). (i) —p is Freydian if and only if not F——p. (i) p = ¢
is Freydian if not (p = q) b p.
Proof. See [7, Theorem 6.2].

We remark that both Propositions 3.4 and 3.5 establish (IP) for “stable” p, that is,
for those propositions p for which F——p => p. Clearly, the set of stable formulas has
the closure properties of Proposition 3.4. One may ask whether there are any heredit-
ary formulas which are not stable.

Unfortunately, the sets of Freydian and hereditary formulas are not directly com-
parable.

Proposition 3.6. (i) L is hereditary but not Freydian. (ii) ——f = f§ is Freydian
but not hereditary, where 3 is the Boolean axiom

B =Vo(mt=1).

Proof. (i) L is hereditary by Proposition 3.4. It cannot be Freydian, else the Freyd
cover (F/L)" would be degenerate; but no Freyd cover is degenerate.

(i) ——f = f is Freydian by Proposition 3.5, since not ——f = f + ——. To prove
this, suppose ——f =>fF ——f. Since —fF——f =7, it would follow that
—f F ——p, that is, F——8. This is known to be false.

As for the fact that ——f = B is not hereditary, note that Sets F ——f = . How-
ever, we claim that not Sets* F ——f = . To this end recall [7, Proposition 5.4] that
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Sets” = Sets2. Using Theorem 2.2 (2’) above, one easily verifies that Sets? F —1—f,
whereas not Sets? k p, as Sets? is known to be not Boolean. Therefore, it is not true
that Sets? k ——f = .)

4. Markov’s Rule
By Markov’s Rule at type A we mean the following rule:
MR(4) If b Yea(pl@) v —(@) and b=V, (@) then H, ().
The usual form of Markov’s Rule is MR(N) and may be proved as follows.

Suppose +F—V, nTIp(x), then Sets F —V, y—@(x). Since Sets is Boolean, Sets F
F3.n@(x). Therefore Sets k @(7), where # = 870, for some n € N. Hence not (7).
Now suppose FY, n(@(x) v —@(x)), then Fe(@) v —g(s), hence hte(fl) or F—p(#),
by (DP). Therefore F(7), and so F3, np().

We shall prove that MarKOV’s Rule holds at any pure type 4. First note that any
pure type (regarded as an object in the free topos) is isomorphic to a type of the form

Ne x PA) x ... x P(4,), (=20, n=0)

since £2 =~ P(1). Now N¥ 2 1 or N*¥ = N. Moreover, P(4) is injective in any topos
and any product of injectives is injective. Therefore every pure type is isomorphic
to @ or N x @ where @ is injective. If n = 0, then Q@ ~ 1.

Lemma 4.1. In the free topos F, injective pure types are indecomposable, that is, if
FV eo(@(x) v p()) then FY o@(x) or BV op(x).

Proof. Suppose @ is an injective pure type, regarded as an object of #. Then the
singleton morphism ¢5: @ — P(Q) splits, that is, there is an arrow e: P(Q) — @ in F
such that ey, -=-1,. Now suppose HY, ,{p(®)v p(r)). Let y: 1 - P(Q) be an in-
determinate arrow, then #(y) F @(e(y)) v p(e(y)). Since P(Q) is indecomposable (see
§3), we have F(y)F gle(y)) or Fly)F yple(y)), hence F(x)F ple(tgr)) or F(z)E
E y(e(tgr)). Since ety -=- 1, it follows that LV, o@(x) or FV, ().

Proposition 4.2. MR(A4) holds for all pure types A.

Proof. We consider two cases, MR(Q) and MR(N x @), where @ is injective, hence
indecomposable.

MR(@). Suppose FY, o(p(x) v —ip(z)), then FV, op(x) or MY, o—¢(r). Now suppose
F—V, o @(x), then the second alternative is out, and so FV, o@(x). Let ¢ be a term
of type @, then Fg(t), hence F3, ().

MR’(N X Q) Suppose *-VxeN vyeQ(q)(x’ ?/) v ﬁ‘i’(x» ?/)) and }'__‘vxeN VyeQﬂ(p(‘T') y)
It follows from the second assumption that Sets F 3,y 3,09, y), and therefore
there is a numeral 7 = S"0 such that Sets F 3, ,¢(#, y), hence not FV, ,—@(#, y).
It follows from the first assumption that FV,(@(%, ¥) v —p(R, )), and so, since @

) A false assertion crept into [7, Example 7.6]. Contrary to the claim there, it is not true that
Sets? £ —18. In fact, Sets?  —1 —18; for Sets? x Sets”, and, by Theorem 2.2 Sets” ¢ —1 8 if and
only if Sets E = —1, which is true. Nonetheless, the nonconstructive proof in the example, using
=171 = B, is correct.
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is indecomposable, that FV,.o@(@, ) or FV,.o—¢(7, y). Since the second alternative
has already been ruled out, the former must hold. Let ¢ be a term of type @, then
Fo(7, t), hence I,y J,o@(, ¥). as was to be proved.

Appendix I. Rules for intuitionistic type theory based on equality

1. Structural rules

pExp;
I'ryp I''phxq I'tyq I'rxq
Thyq © Tipkxqg’  Thegpmq’

I'(y) Fxo ) 9)
I'(b) Fx g(b)

2. Pure equality rules

[assume b free for y in ¢(y) and I'(y)].

Fxa = a;
a=0>5, @)y pb) [assume a and b free for x in @(x)];

Iioptxq; Fqbxp
I'typ=gq '

3. Other logical rules

Ihy yplr) =>zex
I'ry{eedlgp@)} =a

{a,b) = {c.d) Fxa =c; {a,b) =, dd by b =d.
4. Other product rules

b = * [assume z of type 1];

I,z =, y) by yn9(2)
', @(2) ’

5. Peano’s rules

Sz =0+, p; Sr =8y by =y;

't g0); I', g(z) b p(S2)
T+, pla) '

Appendix IL. Comparison of our version of the Aeczel slash with the literature

The original version of the Aczel slash [8, p. 332] was meant to describe the logic
of certain Kripke models for first order logic and arithmetic. To obtain a higher order
analogue, we write

I p for (FIIN"Fp,
where F /I is the free topos ““‘with assumptions I"”, that is, the term model of the

language of pure types with deducibility relation I" k. Using Theorem 2.2 above, we
see that I'| p satisfies exactly the usual clauses of the Aczel slash {8, p. 333], except,
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of course, that the atomic formulas are handled somewhat differently in higher order
logic.

In both the Kleene slash and the Aczel slash for first order logic, an important
role is played by those formulas p for which p | p. In our theory these formulas are

also important; for, by the above, p | p if and only if (F/p)" F p, that is, p is Freydian
(see Definition 3.1).

It follows from Propositions 3.2 and 3.3 that (IP) holds not only for the Freydian
formulas, but also for the hereditary ones. It is only the latter class which contains
all Harrop formulas.

Finally, S¢EprROV and Scorr [9] showed that FrREYD’s proof of (EP) and (DP) is
virtually the same as the proof based on FRIEDMAN’s realizability [5]. Indeed, our |p,

that is, F p, is equivalent to “p is Kleene-Friedman realizable and Fp”.
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