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INTUITIONIST TYPE THEORY AND THE FREE TOPOS
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Mathematics Department, McGill University, Montreal, Canada

Dedicated to Saunders MacLane on his seventieth birthday

In this article we study free toposes with the help of intuitionist type theory. Our
treatment is self-contained and aims to be accessible to both categorists and
logicians. We attempt to explain the relevant logic to the former and the categorical
applications to the latter.

Algebraically, free toposes arise as solutions to a universal problem, which
amounts to constructing a left adjoint to the forgetful functor Top— Graph. Here
“Top’’ denotes the category of small toposes, which we shall assume to possess a
natural number object, with appropriate morphisms. These are essentially the so-
called logical functors, except that we insist on them being strict functors which
preserve everything on the nose. ‘‘Graph’’ denotes the category of graphs, which we
take to be oriented, and functor-like morphisms. The adjoint functor Graph—Top
associates to each graph .  the topos 7(.#') freely generated by .. In particular,
when .#" =0 is the empty graph, we obtain the so-called free topos 7(@), which is an
initial object in Top.

Lawvere has often pointed out the strong connection between topos theory and
higher order intuitionist logic. It is precisely in the construction of the free topos
that this connection is seen most easily.

In Section 1 we present a formulation of intuitionist type theory with product
types and mention the fundamental theorem which comprises three things:

(1) the consistency of intuitionist type theory,

(2) the v-property which asserts that if pvg is provable then either p or g is
provable,

(3) The 3-property which asserts that if 3.c4 ¢(x) is provable, then ¢(a) is
provable for some term a of type A.

Our type-theoretical language contains enough terms to witness all existential
theorems; yet it does not contain too many terms, for example, it lacks a description
operator.

The fundamental theorem can be proved by several methods:

(a) the cut elimination method of Gentzen—Girard,

* The first author was supported by the Natural Sciences and Engineering Research Council of Canada
and shared a grant from the Quebec Department of Education.
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(b) the realizability method of Kleene~Friedman,

(¢) the categorical method of Peter Freyd.

In Section 2 we use the realizability method to prove the fundamental theorem and
also to extend Troelstra’s Uniformity Property to higher order arithmetic.

In Section 3 we collect all kinds of theorems from logic that deal with the
representability of functions N¥=N in intuitionist type theory. These will later -
enable us to discuss certain arrows in the free topos. Most of these results are
essentially contained in the book by Kleene.

In Section 4 we give a construction of the free topos which is based on the
language of intuitionist type theory developed in Section 1. Constructions using
somewhat different languages have been given by Coste, Fourman and Boileau; but
the first construction of the free topos is due to Volger, who used an altogether
different approach.

We also study the arrows between certain objects in the free topos, namely those
objects which correspond to types. In particular, we show that all arrows 1=/~ are
standard numerals, that all arrows N*—~N induce recursive functions N*—N and
that not all recursive functions are obtained in this way. These results have already
been found by Boileau and the Costes. We also show that all arrows Q—N and
PB—N factor through 1.

The universal property of the free topos had been shown by Volger for his
construction, only the morphisms in his category of toposes were not strict functors.
None of the other authors established the universal property for their construction
or proved it equivalent to Volger's. We therefore devote Section 5 to proving the
universal property of the present construction of the free topos. One of the present
authors had already shown that Volger’s logical functors could be made strict by
stipulating that all toposes have canonical subobjects.

Our original intention had been to use methods of mathematical logic to obtain
results in category theory, to wit, properties of the free topos. In the mean time
Peter Freyd made a fundamental breakthrough, which suggests that the more
interesting applications may be in the opposite direction. As an afterthought, we
therefore added Section 6, in which the 3-property and the Uniformity Property are
proved again, and perhaps with less effort, by Freyd’s method.

We are endebted to Michael Makkai and Andrej Scedrov for helpful comments.

1. Intuitionist type theory
We shall present a language 7, for intuitionist type theory with product types.

Definition 1.1. Type symbols are defined inductively as follows:!
() 1, N, Q are types;
(i) if A and B are types, so are A X B and PA.

It is understood that nothing is a type of 2, unless its being so follows from (i) and (ii).
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Remark. N is the type of natural numbers; © is the type of propositions or truth
values; 1 is a one element type and may also be regarded as the empty product;
A x B is the type of pairs (a,b), where a is of type A and b of type B; finally PA is
the type of all subsets of A4, that is, of all sets of entities of type A.
The language 7 contains a countably infinite set of variables of each type,
ordinary parentheses and also the following symbols:
s, el oS T Liave=;v;

Definition 1.2. Terms in 7, are defined as follows:?

(1) variables of type A are terms of type A,

(2) *is aterm of type 1;

(3) if ais a term of type A and b of type B then (g, b) is a term of type A X B,

(4) if ais aterm of type A and « a term of type PA then ae « is a term of type £2;

(5) if p(x) is a term of type £, possibly containing the free variable x of type A4,
then {xe A|p(x)} is a term of type PA;

(6) 0Ois aterm of type N;

(7) if n is a term of type N, then so is Sn;

(8) T and L are terms of type ;

(9) if p and q are terms of type £, then so are pAg, pvq and p=gq;

(10) if @(x) is a term of type Q, possibly containing the free variable x of type A,
then Vieea @(x) and e p(x) are terms of type Q2.

Remarks. Parentheses are employed as usual. The notions free variable. bound
variable and closed term are defined as usual. Terms of type Q2 are aiso called
Sormulas. As usual we write

-p forp= L,
peq for(p=q)Ng=p)
a=b forVucpalacuebeu).

%y is not just a language, but also a deductive system. For each set X of variables,
we introduce a relation p+xq between formulas p and g whose free variables are
contained in X. The relation + x is subject to four groups of axioms (and is assumed
to be the smallest such relation).

Structural Axioms

(1) +xis reflexive and transitive;

(2) if pxqgand X CY, then prry;

(3) if (»)+xu(y} w(»), where y is a variable of type B, then ¢(b)—x w(b), where
b, a term of type B, contains at most the free variables in X and & is substitutable for

yin o(y) and w(y).

21t is understood that nothing is a term of ¥ unless its being so follows from (1) to (10).
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Logical Axioms
(1) pxT;
(2 Lrxp;
(3) p~xgnarif and only if p—xq and prxr;
(4) pvgrxrif and only if p~xrand grxr;
(5) pAgrxrifand only if p—x=r;
(6) prxVyes w(y) if and only if pxu i w(v);
(7) 3ye8 w(y)xp if and only if w(y)~xuiyp.
In stating the following axioms, we write
=xp for Trxp; F=p for TrHyp.
Nonlogical Axioms
(@) Comprehension
FxViea (xe{xeAlo(x)} & p(x)).
(b) Extensionality
FVuera Vvers (Vrcalxeusexev)=u=yv);
FVsea Viep((set)=>s=1).
(c) Products
FVrel X=%;
FVicaxs Icea ayeBz =(X¥);
FVred Veea VyeB Ve ({1 =(X, V) =2(x=XAy=y)).
(d) Peano Axioms
FVxen(Sx=0= 1);
Vien Vyen (Sx=Sy=x=y);
b Vuern (D€ uAVYrenxeu=Sxeu))=Vyen Y€ U).
Remarks. The logical axioms are somewhat non-standard (see e.g. {13, p. 98]).
Following Lawvere, these axioms were obtained by considering A, =, etc. as adjoint
functors (see e.g. [15]). Logical axioms (2), (4) and (7) are redundant if 1, v and 3
are suitably defined. We have considered an alternative system elsewhere in which
all logical symbols are defined in terms of equality.

Classical type theory differs from intuitionist type theory by having one
additional axiom, the so-called Boolean axiom:

~Vieq (¢V ).
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This axiom is rejected by intuitionists, because its presence permits non-constructive
existence proofs. That such non-constructive existence proofs are avoided in the
absence of the Boolean axiom, is the fundamental theorem of intuitionist type
theory:

Theorem 1.3. In 7, we have
(1) not ~ 1;
2) if —pvq, then +~p or q;
(3) if +3veq 0(x), then —@(a) for some closed term a of type A.

Remark. There is only one closed term of type 1, to wit . The closed terms of type
N are numerals, namely 0, SO, S50, etc. The closed terms of type PA are
comprehension terms of the form {xe A |@(x)}.

The reader who is willing to accept Theorem 1.3 without proof may immediately
turn to Section 3, Section 2 being concerned with the proof of Theorem 1.3 using the
notion of realizability. Another proof will be given in Section 6.

It should be pointed out that the language »; has many variants. Originally we
had considered a language Z: which admits also projection symbols 7 and =’ and
requires a change in the statement of the product axioms. In Section 2 we shall meet
a language ¥ which lacks comprehension terms and requires a change in the state-
ment of the comprehension axiom. Of course, assertion (3) of the fundamental
theorem will not hold for Zo.

Finally, we remark that Theorem 1.3 establishes the consistency of the other
versions of type theory as well. Extending Godel’s double negation translation (see
{13] or [26]) we also obtain the consistency of classical type theory (with compre-
hension and extensionality). Now, by Godel’s Incompleteness Theorem, the above
consistency proof must use proof-theoretical methods not available in type theory.
Already in first-order arithmetic a consistency proof requires transfinite induction
on go (induction on ordinals <gg being in fact derivable). So, to formalize the above
consistency proof via the fundamental theorem (whose proof uses realizability)
presumably requires transfinite induction on quite large ordinals (see {4]).

Suppose next that we allow a variable z of type C as a ‘‘parameter’’. In other
words, we study the language .#i(z) whose closed formulas are the formulas of %]
which may contain free occurrences of z but of no other variable. An examination
of the proof of the fundamental theorem will show that it remains valid when ~ is
replaced by +, as long as C= or PB. (Here, and elsewhere, we write —; for ~(;3.)
In particular, (3) then becomes:

35 if -:Jxen 9(z,%), then +;0(z, a(z))

for some term a(z) of type A.
As a consequence of (3;) we obtain the following, which is also known as the
Uniformity Property [27].
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Theorem 14. In ¥, if C=Q or PB, then —V:.cc 3Jxen @(z,X) implies
F3ven Viec 0(2,X).

Proof. From the hypothesis we infer that +.3ycn ¢(z,x), hence by (3.) that
F: (2, a(z)), whence —V:.ec ¢(z, a(z)), from which the conclusion follows, since
a(z) must be a numeral.

We should point out that there is no hope of extending (3;) to parameters z of
arbitrary type C, at least as long as we stick to the language . For example, when
C=N and A=N we can take ¢(z,x) to mean that z>=x, but there is no way of
expressing the squaring function by a term «(z) of #;.

2. Proof of fundamental theorem

The purpose of this section is to prove the fundamental theorem of intuitionist
type theory. It is convenient to do this for a language #, which is equivalent to #,,
but has fewer names and avoids nested comprehension terms, yet still has enough
names to witness all existence theorems. On the way to introducing #,, we shall also
mention another language Zo, which is still equivalent to #;, but has no compre-
hension terms at all.

We shall prove the fundamental theorem for 7 using the profound Kleene—
Friedman method of realizability, as developed for related languages in [7,23,25].
Roughly speaking, the idea is to define a predicate R(p), meaning *‘formula p is
realizable’’, by induction on the complexity of p, and then to prove a Soundness
Theorem: if +p then R(p), from which the fundamental theorem follows.

The difficulty is that the natural definition of R(ee {xeAlp(x)}) should be
R(p(a)); however, ¢(a) may be more complicated than the original formula! To
overcome this difficulty, which is inherent in type theory, we follow Friedman in
splitting each comprehension term into many ‘‘indexed’’ comprehension terms.
This gives rise to yet another language #*, and it is in #* rather than # that
realizability is defined. Thus we are dealing with four languages:

#

/

¥* Ve
)
We believe that our treatment somewhat simplifies the details in the cited papers.

A property of #)

We begin by proving a property of ¥1. We shall write p=¢(X), where X is a set of
variables, to indicate that all free variables occurring in p are elements of X.



Intuitionist type theory and the free topos 221

Proposition 2.1. For any formula p=¢(X) in ¥\ there is a formula p* which
contains no comprehension terms and no subformulas q € a with q of type Q unless
q is a variable. Moreover, —xp e p.

The reason for the restriction on subformulas is that in the intended interpre-
tations of %; any g of type 2 corresponds to {xe1{g} under the isomorphism
Q=Ppl.

Proof. We shall call ‘““forbidden’” any occurrence of a comprehension term
{xe A|w(x)} and any occurrence of a subformula gea with g of type Q not a
variable.

Given p=¢(X), we can find a formula p’ containing fewer forbidden occurrences
than p such that ~xp'ep.

In case p contains {xe A]|w(x)}, but y(x) contains no forbidden occurrence, say
p=x ({xe A|wy(x)}), we take

P'=Tucpa WAV rea (xeus p(x)).

In case p contains q € a, q of type 2 not a variable, where ¢ contains no forbidden
occurrence, say p=x(q € a), we take

p=lico(xtea)Atsq).

[tis clear that -xp’ e pin both cases. We may obtain p? from p by eliminating the
forbidden occurrences, one at a time, in some systematic way.

The language +¢

The language /| has, in some sense, more names than necessary. We shall
construct a language ¢ which has too few names. It is like #, except that it lacks
comprehension terms {xe A |w(x)} and g€ « with a of type Q not a variable. Thus
formation rule (5) is deleted and rule (4) is restricted in case A =2 : aea will be a
term of type Q only if @ is a variable. The axioms for Z¢ are the same as those for
%1, except that the comprehension scheme is replaced by the following:

Fx Jueps Viea (xeus p(x)).
Proposition 2.2. ¥, is a conservative extension of .

Proof. Suppose p is a formula of Z;, all free variables in p are elements of X, and
xpin #1. We claim that ~xp in %o.

Suppose the proof of p in #) makes use of an instance g of the comprehension
scheme, say

G=Vrea(xe{xeA|p(x)} & p(x)).
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Then there is a proof of g+xp not using the axiom q. Replacing {xe A4 |p(x)} by a
variable u of type PA, we have

Viea(xeue p(X))-xuiu P,
hence ¢'+—xp, where
g'=3ucps Veea (xeusp(x)).

In this manner we may eliminate one instance of the comprehension scheme after
another, until we obtain a proof of ¢ p in a language whose formation rules are
those of ¥\, but whose axioms are those of Zo.

The proof of ~xp may still contain comprehension terms such as {xe 4|p(x)}.
Replacing these by variables of type PA, we obtain a proof of ~xyuyp in %y, where
U is a set of variables of type PA for some types A. Can we deduce from this that
~xpin %p? Yes, in view of the following observation:

If =xuqupin %o, where u is a variable of type PA, then —~xp in %o.

Indeed, given —xuyu}p, we have a fortiori

Vied (xeue p(x))mxuiu; o,
hence
Juera Viea (xeuepx)-xp.

Distinguishing provability in #| from provability in #p by writing ) and %
respectively, we have the following, where p and ¢ are assumed to be formulas
whose free variables are in X.

Corollary 2.3. (0) For p in »o, p'=p;
(1) For p in 41, =\ptep;
(2) For p in %o, v%p if and only if =\ p;
(3) Forpin %y, if wkp then +%p*.

Proof. (0) and (1) follow immediately from Proposition 2.1.

The direct implication in (2) holds, because the only new axiom in o, the new
form of the comprehension axiom, is derivable in ;. The converse implication in
(2) holds by Proposition 2.2.

To prove (3), suppose —kp. Then, by (1), ~%p", hence, by (2), —%p°.

The language ¥

Of course %o does not have enough names to assert the fundamental theorem.
However, we shall consider a language » intermediate between ¥ and ;. As
regards formation rules, ¥ differs from ¥, in two respects:

First, {xeAjg(x)} is only admitted when ¢(x) is in z¢ and contains no free
variables other than x.

Secondly, if & is of type PQ2, the formula p € ¢ is only admitted when p is a closed
formula of ¢ or a variable.
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The first restriction is necessary if we don’t want % to contain nested compre-
hension terms. Even free variables inside a comprehension term may lead to nested
comprehension terms after substituting comprehension terms for the variables. The
reason for the second restriction is that, in our intended interpretation for ¥, £ will
be isomorphic to Pl and p of type 2 will correspond to {xe 1|p} of type P1, which
comes under the first restriction.

The axioms for ¥ are the same as those for #| or %y, except that there are now
two comprehension schemes:

Fx Juepa Vien (xe usp(x)),
with ¢(x) in #p, and
FVyea(xe{xeAdlpx)} e ox)),

as in 7) provided ¢(x) is in o and contains no free variables other than x.
From now on +~ denotes provability in ¥, unless otherwise specified.

The language 4+

The language #* is an extension of #p like ¥, but obtained by ‘‘indexing’’ the
comprehension terms

co={xeAlp(x)}.

Thus, we shall replace ¢, by c;/, where the index denotes a subset V of [4] to be
defined presently. In view of the intended isomorphism between 2 and P1, we shall
also index closed terms p of type Q in the context pea.

The sets [4] will turn out to consist of all closed terms of type 4 in ¥ 7. They are
defined by induction on the construction of A as follows.

(1) [1] is the set consisting of the symbol .

(i) {V] is the set of all numerals 7= 5"0, which we may as well identify with the
set N of natural numbers.

(iii) [] is the disjoint union of the set of closed formulas of ¥ and the set of
theorems of Z. That is, [2] consists of all po and all g, where p is any closed
formula of ¥ and g is any theorem of Z.

(iv) [A x B] consists of all (@, b) where ae[4] and be[B].

(v) [PA] is the set of all c;,/, where co={xe A |p(x)} is a comprehension term in
# and Vis a subset of [A] satisfying two conditions:

(a) ifaeV, then ~e(a’);

(b) ifae Vand a~a’, thena'e V.

Here a” is the closed term of type A in # obtained by removing all indices. Thus

(cy=cy,, pi=p, (cl,pidy=(cnp),

etc. Moreover, ~ is an equivalence relation between elements of [A] defined as
follows:
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(i) =~ =

(i) For mn, Aae[N], m~n if and only if ri=n, thatis, m=n.

(iii) For p,, q;e[R], pi~q;if and only if i=j and +pegq.

(iv) Fora,a’e[A]and b, b'e [B], {a, by ~<a, b’y ifand only if a~a" and b~ b".

(v) For c:, csre [PA], ca‘,/~c$"if and only if V=W and +cp=cy.

We define the sets |A| of rerms of #* of type A as follows:

(i) |1} consists of * and all variables of type 1.

(ii) |N] contains 0, all variables of type N, and is closed under S, that is, if
ne |N|, then Sne |V,

(ii)) || consists of all elements of [2] and all variables of type Q.

(iv) |A x B] consists of all {a,b), where ae |A| and be |B}, and all variables of
type A X B.

(v) |PA| consists of all elements of {PA] and all variables of type PA.

Note that |4| contains [A] and all variables of type 4; but |N] is also closed
under S and |4 x B| is also closed under pairing. [A4] is now the set of closed terms
of type A.

Formulas in 7+ will not be identified with terms of type £, but are defined as
follows:

(i) T and L are formulas;

(i1) if p and g are formulas, then so are pAg, pvq, p=gq;

(i) if @(x) is a formula, with x a variable of type A, then ¥V ea @(x) and
Jrea @(x) are formulas;

(iv) if @ and « are terms of types A and PA respectively, then g€ ¢ is a formula;

(v) all terms of type Q are formulas.

There is an unexpected abundance of formulas. For example, 7, 7o, 71, 1, Lo
are formulas, although L;is not. Indeed, if # isto be containedin #*, T, L and
all variables of type 2 have to be formulas. Moreover, if we want to allow
substitution of terms of type @ for variables of type £, we must admit p; as a
formula in ¥+, for any closed formula p of #. We could reduce the number of
formulas in ¥ * somewhat by identifying pg with p, but we shall refrain from doing
$0.

We may extend the mapping ~: #*— » to all terms and formulas of #* in an
obvious way: erase all indices.

7 * will not be made into a deductive system. Instead, we introduce the notion of
realizability in 7~

Realizability

Definition 2.4. We define R(p) for closed formulas p of ~ ~ as follows:
R(T); not R(L);
R(pnq) if and only if R(p) and R{g);
R(p=q) if and only if, if R(p) and ~p~, then R(q);
R(pvq) if and only if, either R(p) and ~p~, or R(g) and +—q7;
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R(Vxea ¢(x)) if and only if R(p(a)) forallae[A];

R(3¢ea o(x)) if and only if R(¢(a)) and —p(a)” for some ae [A];

R(aecy)if and only if ae V;

R(p\1); not R(po).

For an open formula ¢(x,...,xn), R(p(xi,...,xs)) shall mean the same as
R(V.neA, Vx,,eA,, o(x1, ..., Xxn)).

Proposition 2.5. [fa~a’, then
D +a=a7;
(ID) R(a=a’);
(It1) B(a) ~ p(a’) for any term S(x) of ¥ ~;
(IV) R(p(a)s ¢(a?)) for any formula ¢(x) of # .

Proof. (I) This is immediate from the inductive definition of ~. For example, when
{(a,b)~(a’,b'y, we have a~qa’ and b~ b’. By inductional assumption, we infer that
—a =a’"and b =b"", hence that —{a,b) =(a’,b’)".

(II) We wish to show that R(Vuepalacuea’ eu)), that is, for each C;’E [PA],
that R(aec,=a’ec,), and the same for the converse implication. This follows
immediately from the fact that V'is closed under ~.

(I1I) We proceed by induction on the length of B(x). If S(x) does not contain x or
if f(x)=x, there is nothing to prove. If f(x) = Sf'(x) or f(x)= {(F'(x), 8(x)), we use
the inductional assumption on £'(x) and §"(x).

Note that the terms of type £ in ¥ are elements of [2] or variables of type 9.
For example, x € cg, though a formula in #*, is not a term of type 2 in ¥ *, whereas
(xec))y =xec,is aterm of type @ in 2.

(IV) We shall prove that R(p(a)=¢(a’)), that is, given R(¢(a)) and ~¢(a)”, we
shall show that R(p(a")). We proceed by induction on the complexity of ¢(x). By this
we shall mean the number of occurrences of A, V, =, ¥ and 3, provided c,f," and p;
are regarded as ‘‘opaque’’: their complexity is zero, even if w(x) or p should contain
one of the symbols which are being counted.

The proof will consist of an examination of the following nine cases:

(1) If ¢(x) does not contain x, there is nothing to prove.

2) If p(x)=@i1(x) A @2(x), we are given that R(p;(a)) and +—¢i(a) fori=1, 2. By
inductional assumption we may infer that R(pi(a)) and R(p3(a)), hence that
R(pi(a’) A p2(a’)).

3) If p(x)=@1(x) V p2(x), we are given that R(¢(a)) and —¢i(a) fori=1ori=2,
say the former. Then, by inductional assumption, we may infer that R(¢,(2")) and,
by (I), that ~gi(a)", hence that R(p1(a’) V ¢2(a")).

4) If p(x)=¢1(x)=p2(x), we distinguish three cases.

Case (i): not ~¢i(a)". Then also not ~¢(a’)’, by (I). It follows trivially that
R(p1(a) = p2(a)).

Case (ii): —¢1(a)” but not R(¢i(a)). Then +¢i(a?)’, by (I), and not R(p1(a")), by
inductional assumption. It follows trivially that R(¢ (@)= ¢2(a)).
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Case (iii): ~¢1(a)” and R(pi(a)). Since we are given that R(gi{a)= pa(a)), it
follows that R{¢1{a)). Since we are given that ¢(a) = ¢z(a)’, it also follows that
—@2(a)”. By inductional assumption we may infer that R(¢2(2)), hence that
R(p1(a) = ¢2(a)).

(3) If p(x)=V,ep w(xy), we are given that, for all be[B], R(w(a, b)) and
Fwla, b)". Now w(x,b) is less complex than Ve w(x,y), hence we may apply
inductional assumption and obtain R(w(a’, b)). This being so for each be[B], we
infer that R(V, e w(da, b)).

6) If p(x)=3,c8 w(x,y), we are given that, for some be[B], R(w(a b)) and
~w(a, b)". As above, we infer that R(y(a’, b)). But also ~w(a’,b)", by (I), hence
R(3ye8 w(a,y)).

(7) If p(x)=x (of type Q2), we make take a=p,; and a’=g;. Since a~ b, we have
i=jand +~peqg. Now we are given that R(p), whence i=1. Since j=i=1, we surely
have R(q)).

It only remains to discuss @(x)=p(x) € y(x), where f(x) is of type B and y(x) of
type PB. We have two possibilities for y(x), namely y(x)ac,ff’ and y(x)=x.

(8) If (p(x)Eﬁ(x)ec,Z", we are given that R(¢(a)), that is, S(a) € W, and want to
deduce that R(¢(a"), thatis, f(a’) € W. This follows from (III) and the fact that Wis
closed under ~.

9 If p(x)=p(x)ex, x of type PB, we may take asc,f,V and a'= c:,’:, where
+~cy=cy. We are given that R(g¢(a)), that is, f(a)e W, and want to deduce that
R(¢(a)), that is, B(a) e W. This follows as above.

Soundness

We shall now define a mapping ¥ — ¥*. If g is any formula of %, we define a
formula g* in ¥* by replacing every occurrence of ¢, by c(f,/(“’), where

V(p) =set of all ae {A4] such that R(g(a)) and +e(a),

and every occurrence of a closed term p of type 2 in %jin the context p € a by pip),
where
. 1 if ~pand R(p),
i) = pa )
0 otherwise.

Recall that there are no nested comprehension terms.

Note that i(p) corresponds to V() under the intended isomorphism between 2
and P1 which replaces p by p={xe 1|p}, except that we have written i(p) =0 or 1
where V(5)=0 or {*}.

It remains to check that V(g) satisfies the conditions on indices:

(a) if ae V{(p) then ~o(a);

(b) if ae V(p) and a~a’ then @’ € V(p).

Here (a) is immediate from the definition of V(¢), and (b) asserts:

if R(p(@)) and +e¢(a”) and a~a’ then R(p(a’)) and +—¢(a’”), which follows

immediately from Proposition 2.5 (IV) and (I).
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Proposition 2.6 (Soundness). If pxq in ¢, then R(p~=q~). In particular, if +p,
then R(p™).

Proof. We proceed by induction on the proof of px g to show that R(p~=q").
For example, if p=¢(x) and g=w(x), we want to show that, for all ae[A],
R(p~(a)=y "(a)).

If the last step in the proof involves a structural or logical rule, there is no
difficulty. For example, the last step may have been:

P V) =Ly W Y)
P(x, b)) wlx, b)

where b e[B]. By inductional assumption, we have R(p *(a,b)=y *(a,b)) for all
ac[A] and b€ [B], and this is what we want to show for a particular b.
To look at another example, suppose the last step in the proof was:

PN (X) = ixp X(X)
PX) ) w(x) = x(x)

We are given that R(¢ *(a)) and +~¢(a”) and want to show that R(y *(a)=x *(a)). So
let R(yw*(a)) and +w(a”) be given, we want to show that R(x*(a)). Now
R(p*(@)Aw *(a)) and +e@(a")Aw(a”), hence R(x ~(a)), in view of the inductional
assumption that R((¢ "(@)Ay (@)= x *(a)).

We shall go through the various nonlogical axioms p to show that R(p ™).

(a) Comprehension: to realize (Vrea(xe cpo (X)) ¥, i.e., since ¢ *(x) =¢(x), that
Vyealxe C:(“”ﬁ ¢(x)), we must realize, for all ae [4], ae c{“”o ¢(a). This amounts
to showing that ae V(¢) and +(a”) implies R(p(z)), and also that R(¢(a)) and
+g@(a”) implies a € V(p). Both implications follow from the definition of ¥(p).

% also inherits the comprehension axiom of #p: for ¢(x) in %o,
x Juepa Vrealxeue p(x)). To realize this, for instance in case X = {y}, we want
to realize, for each be[B], that 3J.cps Viealxcueop(b,x)). Writing
b, x)'=w(x), it suffices to realize Vxeca(xe c,f,V@ o(b,x)) and to prove
FVxealxecye (b, x)). The first is easily checked if W is the set of all e [A] such
that R(¢(b,a)) and ~¢(b",a7), and the second follows from Proposition 2.1, which
remains valid if # is replaced by %.

(b) Extensionality: to realize Vuepa Vvepa (Vieslxeus xev)=u=v), we must
realize, for each cq',/, c:,"e [PA],

4 W Vv 1%
Viea(xec,oxec,)=c,=c,.

SO we assume

(i) R(Vxea (xec, ®xec,)), and

(i) —Vxealxecpoxecy),
and want to show that R(c:= cu’f/). Now, by (ii) and extensionality, +c,=c,. By (i),
for each ae[A], R(ae c;,/aae c:,"). In particular, from ae V and ~¢(a”) follows
ae W. Now ae Vimplies —g@(a”), by the first condition on indices. Thus V' ¢ W, and
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similarly W ¢ V. Since +c,=c, and V= W, we have ¢, ~c,, hence R(cy=c}), by
Proposition 2.5 (1I).

Under the heading of extensionality we also have to realize Vseo Vieo (e )=
s=1¢). Thus, for each p; g;€[R], we must show that R((p:# q)=pi=¢q)). So we
assume R(pi®q;) and —peq, and want to show that R(p;=q). We know that
~p=q from extensionality. Suppose (= |, then R(p)) and +p, hence, from R(p;= g))
we deduce R(q,), and so j=1. Similarly j=1 implies i=1. Therefore, i=/, and so
pi~q;, hence R(p;=q,), by Proposition 2.5 (II).

(c) Products: to realize V. e1 x =, it suffices to realize »= %, which follows from
Proposition 2.5 (II).

Torealize Vicaxs Ixea yesz={xy), wetakeany (a,b)e[4xB] and need
only realize (a,b) = (a, b), which also follows from Proposition 2.5 (II), and prove
that —<a", b™) =(a", b™), which is evident.

To realize

Viea Veea Vies Vyes ({x,y) =Xy )= (x=XAy=y)),

we take any a, a’e[A] and any b, b'€ [B], and assume that R({a,b) ={a’,b’y) and
that —<(a", b7 ) =(a’",b’"). We want to show that R(a=a’) and R(b=b"). Now, for
each ye[P(A X B)], we can realize {(g,b)eye{a,b')ey, and we would like to
realize, for each a€ PA, that aeaea’ea. Thus, given R(aea) and ~a ea’, we
want to show that R(a¢’'€ &). We may take a:—:c;, then we are given that ¢e V and
+@(a”) and want to show a’e V. To this purpose take y=c,,, where

W(2)= Ixea () Az=<x5b07)),
W=set of all {a,b) €[4 xB] such that ae V.

It is easily verified that W satisfies the conditions on indices since V' does. Moreover,
it is easily seen that the given pair ¢(a,b) € W, since ae V, and that —(a b7 )e V",
since +@(a”). Since we can realize that (a,d) ec:,V=> (a,b") ecf’, it follows that
(a',b’ye W, hencea’'e V.

(d) Peano axioms: to realize Vyen (Sx=0= L), we may assume that, for a given
numeral A=S5"0, R(SAi=0) and —SA#=0, and we want to show that R( L), that is,
we want to derive a contradiction. Now R(S7=0) means that, for all c:,/e [PN],
R(SAe C:,/ﬁ Oe ca‘,/). In particular, 0 e V and —¢(0) imply SAie V. We shall deduce a
contradiction from this by a particular choice of cq‘,/. Take

p(x)=x=0, V={0},

then V' is easily seen to satisfy the conditions on indices. Moreover S7ie Vif and only
if SA=0, which is false, while 0 € V" and ~¢(0).

To realize Vien Vyen (Sx=Sy=x=y), we take any numerals /7 and # and want
to realize Sm = SA=rm =A. So suppose R(Sm =S5#A) and —Sm = SA, we want to infer
that R(rn = ). Thus we want to show that, for each c:e [PN], R(m e c::ﬁe c:,/),
and similarly for the converse. So, given 1€ V and ~¢(/m), we want to show Ae V.
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Let

@'(x)=Jyen (@(¥) A x=S8y),
V' =set of all S/ such that me V.

It is easily checked that V" satisfies the two conditions on indices because V" does.
Now, the given data translate into Se V' and ~¢'(Sm). Since R(Smec;=
SAe c;’), this implies S#ie V7, that is, Ae V.

To realize the induction axiom, take c;e [PN] and assume that R(0 e ch), that is,
0e V, and that R(‘v’xeN(xec;'=>Sxe c«',/)). We want to show that R(V,en ye c:,/),
that is, 7€ V for all . Since R(1ec,=SAec,), we know that e V and +p(A)
implies SAie V, hence, in view of the first condition on indices, that 7ie V implies
SAe V. But also 0e V, and so the desired result follows by induction.

This completes the proof of the Soundness Theorem. '

Remark. It should perhaps be pointed out that, in spite of its name, the Soundness
Theorém shows that realizability is a rather paradoxical concept: even contra-
dictions may be realized.

To see this, let p be any closed formula, then —p is short for p= | . Therefore
R(~p) if and only if R(p) and +~p implies R( L). Now R( L) is false and, by the
Soundness Theorem, +p implies R(p). Thus R(—p) if and only if not ~p. Suppose
now p is any undecidable proposition, then not ~p and not ~ —p, hence R(~p) and
R(— —p), and therefore R(—pA - —p). '

As a corollary to the Soundness Theorem we obtain the fundamental theorem
for %.

Corollary 2.7. In % we have
(1) not + L;
(2) if ~pVvq, then +~p or ~q;
(3) if —3xea 0(x), then —o(a”) for some ac[A].

Proof. For example, to show (3), suppose —3yeca @(x). Then, by the Soundness
Theorem, R(3cec4 ¢ *(x)), that is, R(¢ *(a)) and +¢(a”) for some ae[A4].

Proof of fundamental theorem for %)

We are now in a position to prove the fundamental theorem for Z,, namely
Theorem 1.3. For example, we show:

3) if ! xea (x), then +'g(a’) for some closed term a’ of type A.

Suppose —'3rea @(x). Now, by Corollary 2.3(1), i, ¢(x)e@ix), hence
! 3cea @(x). Therefore, by Corollary 2.3 (2), =% 3ca ¢'(x). Since Zo is con-
tained in %, +3ye4 @(x). Therefore, by Corollary 2.7, ~¢%(a") for some ae|A4].
Since 7 is contained in ¥, —~'¢%a”), and so ! Ivc 4 (@ (x) A x=a"). Recalling once
more that *‘ix} @(x) & @ T(x), we obtain ! I, 4 (9(x) A x=a"), and so —' p(a").
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Presence of a parameter

Let C= or PB and suppose z is a variable of type C. We shall regard z as a
parameter, that is, it will be constant throughout the present discussion; in
particular, it will never become bound. #(z) will be the language whose closed terms
and formulas may contain free occurrences of z but of no other variable. We shall
examine what happens to Section 2 if ¥ is replaced by #(2).

Z(z) contains comprehension terms {x € A |@(z, x)}; but we must remember never
to replace z by another comprehension term. The “‘closed’’ terms in [4] may now
contain occurrences of z. In particular, [PA] will contain c:,/ where
co={xeA|p(z,x)}. When C=2Q, [Q2] will contain z;; but, since not .z, we must
have i=0, and so [2] will contain only zo. The proof of Proposition 2.5 remains
valid.

In defining the mapping #(z)— %(z)*, we replace z by z0if C=Q. When C= PB,
we shall replace z by z% which we define to be cfe:, where cye:={yeB|yez}. (The
reader will check that in cyyez the first condition on indices forces V' =0.) The proof
of the Soundness Theorem remains valid. .

In view of these considerations, we have established (3.) of Section 1, hence also
the Uniformity Property for %, that is, Theorem 1.4.

It is instructive to realize that the proof of the Soundness Theorem would not
remain valid in the presence of a parameter of type C=N. Indeed, in realizing the
induction axiom, we had to show that R(V,eny e c;), which amounted to showing
that V contains all closed terms 7 of type N. This was proved by induction on #n; but
there is no way of showing that the parameter z of type N is in V.

3. Representability

In this section we discuss how to represent recursive functions in type theory.
Although most of the results are well-known, we emphasize those aspects useful in
category-theoretical applications (see Section 4).

All the languages we are dealing with contain numerals 0,1,2,.... In our
languages %o, ¥1 etc. A=S"0. -

A formula @(xi, ..., Xk, y) represents a function f: N*—N provided

©0) fimy,...,m)=n if and only if (M, ..., M, A).

It follows from this that
(1) for each my, ..., mie N there exists a unique »n such that ~e(/my, ..., Mg, 7).
One usually imposes a condition somewhat related to (1) in addition to (0):
(2) for each my,...,mceN, =3, cn o(ny, ..., Wk, p).
For example, in [13] ¢ is then said to represent f ‘“‘numeralwise’’. Sometimes one
even imposes the following in addition to (0):

(3) Vi enVien azyeN 16 ST 735 )
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In the literature fis then said to be ‘‘strongly’’ representable.
For our present purposes, ‘‘intuitionist type theory’’ will mean #| and ‘‘classical
type theory” will mean %) with the Boolean axiom added.

Remark 3.1. In intuitionist type theory, (2) implies (1).

Proof. For simplicity take k=1 and assume that ~3!,¢n @(/7,y). It follows from
the fundamental theorem that ~¢(m,7) for some neN. Moreover, if also
(A, 1), then —A=n’, hence n=n’ by consistency, which is also contained in the
fundamental theorem.

The following was discovered by Verena Huber-Dyson {11, 22].

Proposition 3.2. In classical type theory, if f is represented by a formula ¢
satisfying (2), then it is also represented by a formula w satisfyving (3), that is,
numeralwise representability implies strong representability.

Proof. For simplicity we take k=1. Suppose ¢(x, y) satisfies (2) and represents the
function f : N—N. Consider the formula ¢’(x, y) given by

P y)=3en 00X, 2) = 0(x, ).

Since Fx3J:env @6 2)=3,cn @(x,y), we may infer by classical logic that
Fe3dven (X, ), hence that =Vien 3,en 9'(x, ¥). Now let

W V)=0' (G VINY en (97X, 2) 222 ).

Applying the least number principle to ¢’, we deduce that V¥V en I!yen wix,y).
Thus y satisfies (3).

We claim that y still represents f. Indeed, f(m)=n if and only if —@(sm, 7). Since
+3:env @(7, 2) by (2), this is so if and only if ~¢’(+m, 7). Finally, this is easily seen to
be equivalent to (s, 7). Indeed, suppose +~¢’(/, 7). From (2) we have
—V:en (p(1,2)=2="F), hence VYV en (9'(,2) = 7= R), therefore —w(/m, A).

In his famous paper of 1931, Godel characterized the representable functions of
classical type theory as follows:

Theorem 3.3. [n classical type theory:
(1) every recursive function is representable,
(ii) every representable function is recursive.

For the proof see [8,13,24]. It appears in the proof that the formula ¢ repre-
senting a recursive function may be assumed to satisfy (2), hence (3).

Given a formula ¢(x,y) with x and y of type N, clearly (1) is a necessary and
sufficient condition for the existence of a function f : N— N which is represented by
. In intuitionist type theory (1) is implied by (2), in view of Remark 3.1, hence by
(3). Unfortunately, in classical type theory neither (3) nor (2) will assure that ¢(x, y)
represents a ‘‘total’”’ function.
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Example 3.4. Let p be an undecidable sentence and consider the formula ¢(x,y)
given by

e Y)=(pAy=0)V(-pAy=1).

Clearly, classically we have V¥ en* 3!yen @(x, »). Since ¢ does not contain x, any
function represented by ¢ would have to have constant value 0 or 1. In either case,
we would be able to decide p. Thus @(x, y) satisfies (3) classically, hence (2), but does
not represent a function.

The following is found in [13].

Proposition 3.5, In intuitionist type theory, suppose for each my,...,mge N there
exists neN such that \@(m,...,M,A), then there is a recursive function
flmy, ..., my) such that wo(my, ..., g, f(m, ... ,my) forall my, ..., mie N.

Proof. For simplicity we take k=1. We assume that for each me N we can find
ne N so that ¢(m, 7)) has a proof, let us say with Gédel number p. Write A ™ for the
Goddel number of 4 and let Proof(g, p) assert that p is the Godel number of a proof
of a closed formula with Godel number g. Thus, for each me N, we can find 7 and
peN so that Proof("e(/m, i), p). Now Cantor discovered a primitive recursive
“pairing’”’ function NXN—N whose converse is given by primitive recursive
functions ()o and ( )i: N—N. Thus we can find keN such that
Proof(~ (1, (k)o) ™, (k)1). If ““ux ---’* means ‘‘the least & such that ...”’, we may put

Sf(m) = (ux Proof(~e(m, (k)o) ™, (k) 1))o.

[ is easily seen to be a recursive function. Moreover, it follows that ~(m, f(m)).

Corollary 3.6. In intuitionist type theory, suppose g(x\, ..., xk,y) satisfies (1) (or (2)
or (3)), then ¢ represents a recursive function f.

Proof. From Proposition 3.5 we have +~@(/®, f(m)). Therefore, f(rm)=n implies
+o@(m, 7). Conversely, if ~e(m,a), it follows from (1) that ~f(m)=7a. Since
intuitionist type theory is consistent by the fundamental theorem, f(m)=n.

On the other hand we have the following.

Proposition 3.7. [n intuitionist type theory, not every recursive function is repre-
sentable by a formula satisfying (3), that is, strongly representable.

Proof. Let E be the set of Godel numbers of proofs of formulas of the form
Vxen 3lyen @(x,y). For any ee £ we thus have a formula ¢dx,y) such that
FVxen Iyen 0dx, ). By Proposition 3.6, there is a recursive function f, repre-
sented by ¢..

Now E is recursively enumerable, so let 4 enumerate it. Consider the function g



[ntuitionist tvpe theory and the free topos 233

such that g(m) =fam(m) + 1. Clearly g is computable, hence recursive. However, g
is not representable by a formula ¢ such that —Ven 31ven 00X, »). For, if it were,
let A(k) be the Gddel number of this theorem. Then g(m) = fauk)(m) for all m, hence
S (k) + 1= glk) =faxi(k), a contradiction.

For the idea of the above proof see {13, Chapter 14, Example 10]. Unfortunately,
we do not know an intrinsic characterization of the recursive functions represented
by a formula @(xi,...,x ) satisfying (3) in intuitionist type theory. It may be
shown that these functions properly include a version of Gdédel’s Dialectica
functionals of type NV,

The question remains: which recursive functions are strongly representable in
intuitionist type theory? For example, addition is strongly representable by the
formula o(x,y,z) which asserts that (x,y,z) belongs to all ue P(N XN xN) such
that

(1) Vienv (x,0,x) €U,

(1) VieN Vyen Vien ({61,2) €u={x,8y,52) € u).

A bit of work has to be done to show that a(x,y,z) satisfies (3), that is,
FVien Vyey Poew a(x, ¥, 2).

In the same way one can show that all primitive recursive functions are strongly
representable in intuitionist type theory. Now every recursive function f(mi, ..., mx)
can be expressed in the form

Sflmy, ...,mp) = h(ua(g(my, ..., mg,n)=0))
in terms of primitive recursive functions A(n) and g(m, ..., m, n), provided
Vo - Vm, Inglmy, ..., mg,n)=0.

We shall call fa provably recursive function if moreover g is strongly representable
by a formula ¢(xy, ..., Xk ¥, 27) so that

FVxen Vyen 3,veN o(x1, ..., Xk, 5, 0).

Proposition 3.8. If a function N¥—N is provably recursive in intuitionist type
theory, then it is strongly representable.

Proof. Assume f is provably recursive. For example, take k=1 and let & be the
identity function. Then f(m) is the least n for which g(m, n) =0, that is, ~@(/7, 4,0),
where =Vien Vyen Ilzen (6 y, 2) and =Vien Tyen (X, »,0). We claim that fis
strongly representable by y(x, y) where

w6 ) =0(x,y,0) AVen (2<y=—0p(x,2,0)).
We first verify that ¢ is decidable, that is,
Flep 2t 9061, 2) V (X 0, 2).

Indeed, given x and y, let zo be the unique z such that ¢(x,3,2). Now (z=20V
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~(2=20) and (=)=, A(mE=20="0(;»2)), hence ¢(xyz)V
79X, 5, 2).

Since ¢ is decidable, we may apply the least number principle (see [13]), and
deduce that —V env 3l en wix, y).

Why does y represent f? In view of (3), it suffices to show that f(m) =n implies
~w(rn, /). Suppose f(m)=n, then g(m,n)=0 and, for all k<n, g(m,n)#0. Thus
(1, A,0) and, for all k<n, not —p(m, k,0). Because ¢ is decidable, we deduce by
the fundamental theorem that, for all k< n, +~ —¢(m, k,0), whence =V:en (z<ii=
—@(m,z,0)), hence (M, A) as required. This completes the proof.

It seems quite reasonable to expect the converse of Proposition 3.8 to hold too.
Indeed, suppose fis strongly representable. We saw in the proof of Proposition 3.5
that

J(m) = (ui(h(m, (K)o, (k)1) = 0))o,
where

h(m, n, p) = {O if Proo.f(’(p(m,r‘z)",p),

1 otherwise.

It may be shown that 4 is primitive recursive, so it may be strongly represented by a
formula x(x,y,z,¢t) and we need only verify that ~V.en 3yenv Jzen x(x,1,2,0). In
fact, it suffices to represent the primitive recursive predicate Proof(~¢(s/m, A) 7, p) by
a formula &(x, y,2) so that —Vyen dyen e E(x, ¥, 2). Surely, the representation
can be carried out, hence, for each me N, +3,en Izen €01, 1, 7). All we require
then is to show that one proof will do for all m, that is, = J,en J:en E(x, 1, 2). If
this could be shown, the proof of the converse of Proposition 3.8 would be
complete.?

4. The free topos

In this section we study the so-called ‘“free topos’’ T(I") generated by a graph I"(at
least when " is the empty graph 9) with the help of the language #\. Constructions
of T(¥) using languages somewhat like %, were carried out by Coste, Fourman and
Boileau, although the essential idea in them goes back to an earlier, more circuitous
construction of the free topos by Volger. We shall postpone discussion of the
universal property of 7(/") until Section 5. Instead we shall concentrate on an
investigation of those arrows in T7(#) whose source and target are determined by
types of #i.

We shall require a definition of ‘‘topos’’ which is a little tighter than usual, in as
much as products and exponents are not just required to exist but are posited as part
of the structure of a topos.

3 See Appendix 1 for a proof of the converse of Proposition 3.8 along somewhat different lines.
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Predogmas

Definition 4.1. A predogma is essentially a category v with finite products and
exponentiation 24, for a given object 2 and any object A of .«/, with a natural
isomorphism ./ (A X B, 2)= .2/ (A4, 2%). More precisely, it is a category ./ with
distinguished data (1, x x,m, 7, ( ), Q, P, €, *), where

(1) 1 and € are distinguished objects;

(i) PA and A x B are objects when 4 and B are;

(ii}) *4: A=, mas: AXB—A, nl4p: AXB—B and €4: PAXA—Q are
distinguished arrows;

(iv) the following are rules for generating arrows:

f:C—-A g:C—B h: AxB—-®
gy : C—oAxB’ h*: A—>PB’

Moreover, these data are subject to the following equations, where «=+ is written
for equality between arrows in ./,

Terminal object: fe=e+ %4, forall f: A—1.
Product: n4,8(f,8) +=+1,
ma,8{f,8) +=18,
(mash,miagh) <=+ h,
forall f: C—A,g:C—Band h: C—AXB.
Exponentiation: €p{h*mn4,p,ma ) *+=1h,
(e8{gma,BmaBg))*e=1g,

forallh: AxB—Qand g : A~ PB.

Toposes

Definition 4.2. An elementary topos, or just a topos, is a predogma with a
morphism T : 1 - such that

(I) every monomorphism B ™ A has a unique characteristic morphism h : A—=Q,
which means that

A—0 0

|

B—,—B—’l

T

is a pullback;
(II) every arrow h : A—£ is a characteristic morphism, which means that the
above pullback exists. Q is called the subobject classifier.
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Furthermore, it is here understood that a topos also contains a natural number
object N equipped with arrows 0: 1—/N and §: N—N such that

(I 1 N —— N is initial in the category of diagrams | ——
A—1— A

The last condition is known as the Peano—Lawvere axiom.

The free topos generated by the empty graph
To any graph I” we shall associate a topos T(I") called the ‘‘free topos’’ generated
by I'. First we look at the special case when I" is the empty graph 0.

Definition 4.3. The objects of T(d) are closed terms ¢ in %1 of type PA for some
type A. We call @ and o’ equal if —a=c'.

The arrows f: a— f of T(@) are triples (e, |f], 8), where |f] is a closed formula of
type P(A X B) subject to two conditions:

(1) ~Vyea Vyea({x,y)>€ I_ﬂ =(xean tEﬁ)),

(2) FVxealxea= 3!)‘63 {(x,y>e lfl)

We call f=(e,|f|,8) and f'=(a,|f'), B) equal if ~a=¢', ~f=p and +|f|=If"]
We then write fe=s f".

The identity morphism 14 : a— ¢ is given by

le={z€ AXA|3rea (X, x) =2AXE )},

which may also be written as '
{{x,y>eAXA|x=yAxea}.

The composition of f: a—f and g : B—y is given by gf : @~y where
lgfl={(x,2) e AXC| e {x,y) el fIA Y, 2) €lg)}.

It is easily seen that 7(d) is a category.
To give T(d) the structure of a predogma we make the following definitions. To
avoid confusion with type symbols, | and @ are underlined.

I={+}

={teQ|t=t};
Po={uePA|Vseca (xeu=xea)};
axf={{xy)eAXBlxeaNyepB};
|*of ={{x,y)EAX]|xEQAY="2};
|Tap ={{{x,y)xYe(AXB)XAlxeaAyefAXx=X"};
|, g =similarly;
|€a| = {{Ku,x), 1) E(PAXA)XQ|(xeu)=tAxea AuePa};
KLY ={(z(xy)>eCx(AxB)|{zx) e |fIALzy) €lgl},
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where f: y—a, g: y—fand (f,8) : y—axp;
|h* ={(x,v)e AXPB|Vyes ({{x,y),yeVv)€e |h)AxeanvePB},

where A : axf—Q and h*: @—PB. We omit the calculations which show that
7(9) is a predogma. Similar calculations may be found in [16].
To give T(@) the structure of a topos, we first define T : | = by

ITI=K% T},

then proceed as follows.
(I) Given a monomorphism m : 8 » a, we define its characteristic morphism
char m : a—Q by

|char m|={{x,t)e AxQ|t=3yc8(xy)e|m|}

and check that the square

a— Q

p—1
is a pullback.
(1I) Given an arrow # : @— we obtain a monomorphism ker 4 : & = « where
B={xeA|{x, Tyelhl},
lker h|={(x,x)eAxA|{x, T)e|hi}

and again check that the above square is a pullback.
(I1I) We put

N={xeNjx=x}

and define 0 : 1-»~Nand S : N[N by
10/ ={<x0>},
IS|={<(xSx)e NxN|x=x}

and check the Peano—Lawvere axiom.
Note that T, &, 0 and § are underlined to distinguish them from the corres-
ponding symbols in the language %.

The free ropos generated by any graph

We recall that a graph, that is, an oriented graph, consists of two classes, the class
of arrows and the class of objects, and two mappings from the former to the latter,
called source and rarget. One writes f : A— B for source(f) = A4 and target(f)=B. A
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category is thus a graph with additional structure. A morphism F : '~ of graphs
sends arrows and objects of /™ to arrows and objects of /™ so that f: 4A— B implies
F(f) : F(A)—F(B).

When I is any graph, we may construct 7(/") from a language #(I") in a similar
fashion to the construction of 7(d) from %;. Primitive types of #1(I") are not only 1,
€ and N, but also all objects of I". Moreover, for any arrow f: X— Y of I"and any
term ¢ of type X, we stipulate that f¢ is a term of type Y. T(I") comes equipped with
a morphism from the graph I" into the underlying graph of T(I).

Arrows between types
With any type A of #) there is associated an object A of T(@), where
A={xeA|x=x}

is the universal set of entities of type A. An arrow A — B is determined by a formula
@(x,y) such that ~Vea I!,e8 0(x,¥).

For example, an arrow 1—=B8 is given by a formula w(y)=¢(% y), since any
variable of type 1 is provable equal to % such that ~3!,c5 w(y). By the funda-
mental theorem, there is a closed term b of type B such that ~w(b), hence
Fix 1 @(x, ¥y e y=>b. Thus the arrow is given by the explicit equation y=5.

To obtain a survey of all arrows 4— B in T(@) we observe that 4 is isomorphic to

NEXPC X+« X PCpn

and that B has the same form. Therefore we need only determine the arrows 4 =N
and 4A—PC. (Note that PC=PCand CxD=CxD.)

The arrows A — PC are dealt with most easily. Suppose —Vxea lwerc @(x, w),
then we have

w0l w) © w={zeC|Iwvepclplx,w)AzewW)}.

Hence we may replace ¢(x, w) by the explicit equation w=¢(x), where #(x) is a term
of type PC.

Since =Pl is any predogma, we can also describe arrows 4—Q explicitly.
Indeed, from V. e4 3!/e0p(x, t) one deduces, as a special case of the above, that

}—{.r,l}(ﬂ(xy t) A t=(0(x, T)

To study the arrows A— A, we shall first look at two special cases: A =N* and
A=PC. We saw in Section 3 that the arrows N¥— N are determined by formulas
which represent certain recursive functions.

Arrows PC— N are determined by formulas ¢(w, x), where =V we pc 31 e vp(W, X).
Now the uniformity property allows us to infer —3 e v Vwe pc@(w, X). Hence, by the
fundamental theorem, there is a numeral 7 such that ~Vwepce(w, ). It follows
that {w . @(w,x)ex=7, hence we may factor PC—/N as PC—1—N. In other
words, all arrows PC— N, hence also Q— /N, are constants.
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Finally, let us look at the general case 4 —N. For argument’s sake, we take m =1,
so we consider an arrow N¥x PC— N given by a formula ¢(x, w, y) such that

FVxen Vwerc 3lyeng(x, w,y). (H
Take any m e N, then

=Vwerc Ilyeno(m, w, ).
Therefore, by the uniformity property or the fundamental theorem for #i(w),

I‘_‘VWEPC(p(m’ W,mej), (2)

where f is some function N¥—N. On the other hand, substituting C for w in (1), we
obtain
}'—VXEN'I( a!ye N(ﬂ(X, C.:,}’)

Therefore, there is a representable recursive function g : N¥—N such that, for all
me N,
Fo(m, C, g(m)).

Comparing this with (2), we see that f=g is a representable recursive function.
Applying the functor "= .2/(l,—) to the arrow A—N, we see that I(4)—=>1(N)

factors as follows:

!

I(projection)

r(4) F(N*) —=— NF N—=— I(Y),

where fis a representable recursive function. Perhaps a more refined argument will
show that already the arrow A —/N factors as

projection

A N* N.

We summarize the above results in the following proposition.

Proposition 4.4, The following hold in T(9):
(1) Every arrow | = B is given by an equation y=»b, b a term of type B.
(2) Every arrow A—PC or A—Q is given by an equation w = t(x), where i(x) is a
term of type PC or Q2 respectively.
(3) Every arrow N*— N represents a recursive function NF—N.
(4) Every arrow PC—N or Q—N factors as PC—1—=>N or Q— 1N respectively.
(5) Every arrow A=N*XPC{X -+ X PCm= N is sent by I'= =/(1,—) onto

[(N*) —=— Nk —L— N —=— (),

F(A) [(projection)
where f is a representable recursive function.

(1) and (3) of the above theorem were first explicitly obtained by Boileau,
essentially by the Kleene—Friedman method of Section 2. Related results were also
asserted by the Costes, using the cut-elimination method of Gentzen—Girard. (2) is
suggested by the work of Fourman. (4) was conjectured by André Joyal; we
originally had the weaker version that I'(PC)— (V) is constant, which we proved
with the help of the Godel-Rosser incompleteness theorem.
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Arrows in the free Boolean topos

While it follows from (1) that every arrow 1—N in the free topos T(@) is given
by a standard numeral, this is not so in the free Boolean topos (see Example 3.4 with
k=0).

Not every recursive function f: N¥—N comes from an arrow N“= N in T(0) (see
Proposition 3.7); however, it does come from such an arrow in the free Boolean
topos (see Theorem 3.3(i)).

In the free Boolean topos, not every arrow N¥—N gives rise to a total function
N*—N (see Example 3.4); but if it does, then this function is recursive (see Theorem
3.3(ii)).

5. The universal property of the free topos

The free topos 7(I") generated by the graph I comes equipped with a morphism
H : I'->T(I') in the category of graphs and has the following universal property:
given any graph I” and any morphism G from I to the underlying graph of a topos
.7, there is a unique arrow F : T(I")~ .7 in a suitable category of toposes such that
FH = G. Of course, this means that T is the left adjoint of the forgetful functor from
toposes to graphs. It asserts, in the special case when " is the empty graph 9, that
T(9) is an initial object in the category of toposes.

The universal property was first obtained by Volger, for another construction of
T, with some handwaving: for him G was not a functor but only a pseudo-
functor and its uniqueness held only up to isomorphism. All this was straightened
out in [16], by confining attention to toposes with canonical subobjects.

In this section we shall establish the universal property of 7(d), as constructed
from Z,, by showing that it is an initial object in the category of toposes with
canonical subobjects.

Indeterminates

One may adjoin an indeterminate arrow x : 1= A to a predogma ./, when 4 is an
object of /. The resulting predogma .=/[x] has the expected universal property.
Moreover, each morphism ¢(x) : 1 =B in ./[x] has the form ¢(x) «=« fx, where
f: A—Bis a uniquely determined arrow of .. Here <=+ denotes equality in +/[x].
For details of this construction see [16].

If X={xt1,...,xs} is any finite set of indeterminates x; : 1 —A;, we similarly can
form v [X]. For example, if X={x,y}, we have +/[X] =[x y]= ~[x][y]. It does
not matter whether we adjoin indeterminates simultaneously or one at a time. In
fact, we could replace x : 14 and y : 1~ B by a single indeterminate z : 1> A XB
so that ./ [x,y]=.7/[z].

[t already follows that certain expressions ¢(xi, ..., xn) of the language ¥ of type
theory may be interpreted as arrows in ./ [xy, ..., xs], provided we regard variables of
type A as indeterminates 1 —A. Thus we interpret
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(1) terms r of type A as arrows £ : 1 —=A;

(2) a formula ece« as the arrow e4(a,a) : 1= Q;

(3) aterm {xe A4, p(x)} as the unique arrow 1—PA4 such that the corresponding
arrow f 1 A—Q satisfies fx =+ ¢(x), where ¢(x) has already been interpreted.

The equation in (3) is easily seen to be equivalent to

xef{xeAlp(x)} == p(x).

The presence of other free variables does not essentially change anything.

Furthermore we interpret

(4) the term * of type 1 as the arrow *; : 1 —1, which is of course the same as the
identity arrow 1;

(5) the term (a,b) of type A X B as the arrow {(g,b) : 1>A X B, where a and b
have already been interpreted as arrows 1 =4 and | — B respectively.

This interpretation can be extended to all terms of the language ¥ provided ./ is
a topos or, more generally, a ““dogma’’, which we shall not define here. It should be
pointed out though that, even when .-/ is a topos, ./ [x] is only a dogma and not a
topos.

[nterpretation in a topos

Let dc: CxX C—£2 be the characteristic morphism of (1l 1¢) : C=CxCin a
topos ./, If terms ¢ and ¢’ of type C are interpreted as arrows 1 — C, we write

c=c fordclc ).
If formulas p and g are interpreted as arrows 1 =, we write
pAq for {p,q)y=<(T,T),
p=q forpng=p,
Vieap(x) for{xedlp(x)}={xeA|T}.

As it is well-known that L, —p, pvq and Jc.19(x) may be defined in terms of the
above, we have an interpretation of all closed formulas of #; by arrows 1~ in the
topos .+, in fact, of all closed terms of type 4 in | by arrows | — A4 in ... More
generally, all terms involving variables xi, ..., x, are interpreted as arrows in the
predogma (actually dogma) .+ [x1, ..., Xn].

We shall also interpret

pl»pZ,--npn}_q

by saying that the intersection of the subobjects of 1 in -/ corresponding to the p;is
contained in the subobject corresponding to g. Similarly we interpret —x in terms of
subobjects of 1 in .»/[X]. It is well-known that the validity of

PLDP2y .., Pa—x g

in ¥ implies its validity in .-/[X] for every topos .«.
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We note that the interpretation of —x in a topos can also be explained without
mentioning subobjects. For example, if X ={x}, x of type 4,

i fox, . faxcgx

means this: for all objects C of »/ and all arrows A: C—A in ./, if flhe=+ T xcand
Srh o=+ Txc--- and foh e=« Txc, then ghe=« Txc.

The internal language of a topos

The language ¥ studied so far is pure type theory. It contains no types other than
those implied by Definition 1.1 and no terms other than those implied by Definition
1.2. Moreover, it is subject to no axioms other than those listed in Section 1. One
may also consider various applied type theories extending i by permitting
additional types, terms or axioms. In particular, the interpretation of the language
%\ in a topos ¥ may be extended to the so-called internal language of that topos.
This admits all objects of ./ as types and all arrows 1 = C in .-/ as terms. It follows
that each arrow f : A—Bin =/ allows one to form a term fa of type B for each term
a of type A. For example, if C is any object of .-/ and c and ¢’ are arrows 1= C, we
may regard dc{c, ¢’y as a term of type Q2 and write it as c=¢".

Canonical subobjects

Definition 5.1. We say that a topos has canonical subobjects if to each object A
there is associated a representative set Sub A of monomorphisms (or subobjects)
B » A with the following properties:

(i) Every monomorphism B — A is isomorphic to exactly one element of Sub A.

(ii) 14: A=A isin Sub A.

(iii) If f: B»AisinSub 4 andg: D—=CisinSub C, then fxg: BXD—-AXC
is in Sub(A x C).

(iv) If f: B—~A is in Sub 4, then Pf: PB—PA is in Sub PA.

(v) Iff: B=»AisinSub Aand g : C—Bisin Sub B, then gf : C—A isin Sub A.

Already in a Cartesian category one may define fX g as { fns,p,gn’s p). To define
Pfin a topos, we stipulate that, for an indeterminate v of type PB,

(Pfyve=e {xeA|dye(fy=xAyev)}.

We remark that all toposes occurring in nature have canonical subobjects and
that every topos is equivalent to one with canonical subobjects. Moreover, the free
topos T(I") constructed in Section 4 has canonical subobjects: with any monomor-
phism m : 8 = «a we associate the isomorphic canonical subobject m’: §° = a,
where

B'={xeA|Iyes({nx)e|m)},

m|={(x,x>eAxA|xef}.
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We recall [16] that in a topos with canonical subobjects there is a bijection
<char
Sub A —— +(4,9Q),
where char m is the characteristic morphism of m and ker h, the kernef of 4, is the
unique element m of Sub 4 whose characteristic morphism is 4. We also recall [16,
Lemma 9.1] that in a topos with canonical subobjects the following equations hold,
where we have written

PBe=+{vePB|V,e8(yev=yepf)},
B e=e€p{B*s18).

Lemma 5.2. [n a topos with canonical subobjecis,
ker(T*4)e=+14,
kerA(fx g) +=+ ker fxker g,
ker((PB)") +=+ P(ker(8"),

forallf: A=Q,g:B—Qandp: 1-PB.

Universal property

For expository purposes we shall only establish the universal property of 7(I")
when [ is the empty category. In other words, we shall show that 7T(0) is an initial
object in the category Top whose objects are toposes with canonical subobjects and
whose arrows are functors which preserve the predogma structure, the natural
number object and canonical kernels exactly. This is easily shown [16, Lemma 9.2]
10 be equivalent to saying that the functors preserve the predogma structure, the
natural number object, internal equality (hence all logical symbols) and canonical
subobjects. Very roughly speaking, the arrows in Top are the “‘logical functors” of
the topos literature, but they are defined more tightly. The universal property of
T(I) for an arbitrary graph /" may be proved in the same way.

Theorem 5.3. T(@) is an initial object in Top.

Proof. Given any topos .7 with canonical subobjects, we shall show that there is a
unique arrow F: T(@)— .7 in Top. The uniqueness of F will be made clear by
showing that its construction is forced at each stage.

First we define F(a) for any object a of 7(d). Now ¢ is a term of type PA in 71,
which may also be interpreted as an arrow 1= PA in .7, As in any predogma, this
gives rise to a unique arrow &' : A—Q in .7, We define

F(a)=Ker(a",

by which we mean the source of ker(a’).
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That this definition is forced upon us is seen as follows. Consider the canonical
monomorphism m, : ¢—A in T(@) given by

[me={{x,x)e AxA|xea}.

Its characteristic morphism may be calculated* to be the arrow «': 4-Q which
corresponds to « : 1> PA. Thus mq «=+ ker(a'), hence o =Ker(a') in T(d). Note
that the first o in this equation refers to an object of T(@), while the second « refers
to the arrow | = PA in T(d). Applying the functor F to this, which preserves kernels,
the predogma structure (hence the symbol ‘), the natural number object and all logic
symbols (hence the term &), we obtain F{a)=Ker(a') in .7,

Next, we wish to define F(f) for any arrow f : @— g in T(6). We recall that | f] isa
term of type P(A x B) such that

(1)) FVxea Vyes({xyyelfl=(xeanyep)),

(i) —Vrealxea=Ienixy)elf).

Now let x : 1 F() be an indeterminate of type F(a) = Ker(a') over 7% Put

Nge=sker(a’) in 7,

then ,
a'ngxe=+T,

that is,
xngXeoa in J{x].

Now (ii) holds in any topos, hence in ./~ Therefore
Fe3lyer{nex,yyelf] in.7{x].

By [16, Theorem 8.3], there is a unique arrow 4 : F{a)— B8 in .7 so that
Fe{neX, hxy €| f| in 7x].

Also (i) holds in any topos, hence in .7. Therefore
—chxef  in J[x],

that is, 8'hx +=+ T. hence
B'h o=+ Trra.

But Ker(8') = F(f), hence there exists a unique arrow F(f) : F(a)— F(B) such that
neF(f) +=« h.

It follows that F(f) is the unique arrow such that

Fx{nax, npF(f)x) €l f| in 7[x].
It is tedious but routine to verify that F thus constructed is a functor which
preserves the predogma structure. For example, let us show that

Fla x )= F(a) X F(8).

4 See Appendix 2.
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One easily calculates that
(@xf) e=+Na'xf"),
hence, by Lemma 5.2, that
ker((ax B)') « =+ ker(A(a'x 8')) « =+ ker(a') x ker(8').

Passing from the arrows to their sources, one obtains F{u X f)=F(a)x F(8) as
claimed.

As a special case of the above definition, let us calculate F(mq), where mq : a—A4
is ker(a'). We see that F(my) is the unique arrow F(a)— 4 in .7 so that

Fx{ngx, F(myx) € |mgl,
that is, ngx « =+ F(mg)x. It follows that
F(mg) «=+ nq. (1
We shall now prove that
F(ker h) «=« ker F(h)
forany A: A—. Let
B=Ker h={xeA|{x,T)€e|h|}
according to Section 4. Straightforward calculations show that

{mg ker Al «=«|ker h| e=q|myg|
and

Ble=-

Since sources and targets agree, we may therefore conclude that in 7(0)

|B'mg|e=+ hl.

My ker he=emyp, Bimge=1h. )
Applying the functor F to this, we obtain,

nefker h) =« ng, B'ng e =+ F(h).

These equations are utilized in checking that 8’ is the characteristic morphism of
ng ker F(h), but we omit the routine verification here. Since nq «=+ ker F(c') and
ker F(h) are both canonical subobjects, so is their composition. Therefore, in view
of (2),

ng ker F(h) «=sker (B') s =+ ng+=+ noF(ker h).

Now nq, being an equalizer, is a monomorphism, and so the result follows.

Finally, to prove the uniqueness of F, suppose that £ : 7(@d)—.7 is any functor
which preserves the predogma structure, the natural number object and kernels,
then we claim that F(f) must be as defined, that is,

b {nax, ngF(f)x) €| f]
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must hold in 7 [x] for any indeterminate x : 1 —F(e). Eliminating the symbols &
and +, from this, we thus want to show that

eaxa{|fl, (Mo, npF(f)rx) o=+ T,
that is,

EAXB({J{-{* (), <7‘a, igi U))) =
Now this equation in .7 is obtained by applying the functor F to the following
equation in 7(g):

€axg [ *a, (M Mpf)) e=o T xa.

A tedious but routine calculation shows that this equation does indeed hold in 7(8).

6. Postscript on the Freyd cover

When we presented the above results at a conference in the fall of 1978, Peter
Freyd immediately realized that the 3-property asserts the projectivity of 1 and that
the v-property asserts the indecomposability of 1 in the free topos. He then went
ahead and proved the projectivity and indecomposability of 1 directly. We shall give
a brief sketch of his ideas and show how the 3-property and V-property may be
deduced, then generalize his method to obtain also the Uniformity Property.

Definition 6.1. The Freyd cover of a topos (more generally of a category with
terminal object) is the comma category ~ = (Sets, I'), where I'=/(1, —). Its objects
are triplets (X, & 4), where X is a set, 4 an object of v and { : X—/(A) a mapping.
Its arrows from (X, &, A4) to (Y, 5, B) are pairs of arrows (p : X— Y, f: A—B)sothat
the following square commutes:

ik In
I[(A) ~z77 T(B)
+ comes equipped with a functor G :.v — .+ defined by
G(X,5,A)=A, Gl f)+=+1.

<+ is also a topos (if .+ is) and G is then a logical functor.

Here is the crux of Freyd’s argument. He observed that the terminal object T of .«
is trivially projective (and indecomposable). Now, if .~ = T(¢) is the free topos, then
there is also a unique logical functor F : v —.%/ and GF is the identity functor on .
It follows that 1 is also projective (and indecomposable) in 7(@).

We wish to check that this argument remains valid if we operate entirely in the
category Top, whose arrows are strict functors that preserve everything on the nose.
To this purpose we must present some technical details.
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With each type A of #i there is associated an object A of any topos, hence of =/
and /. To avoid confusion, we shall denote the corresponding object of “byA. In
particular, 1, & and N are the terminal object, subobject classifier and natural
number object of ./ respectively. It turns out that A = (5.4, 44, 4), where 5.4+ may be
defined by induction on A:

Si={x}, Sv=N, So=r(Q)U{T},
Saxg=SaxSs, Spa=4(A, Q).

Here XU Y denotes the disjoint union of X and Y and may be identified with
(Xx{0}U(Yx{l}). The mappings A4 :Sa—/[(A) are the obvious ones. In
particular, note the striking similarity between Ao : Sp—/(£2) and the mapping
T #*— % in Section 2.

More generally, one defines

(X, 6, A)x(Y,n,B)=(XxY,{,AXB),

where { is the compound mapping

Xx Y- F(4)x [(B) —— (A xB),

and
P(X, & A)=(7((X, & A)Q),6,PA),

where, for any arrow (4, 4) : (X, & A)— 8,
B((3, b)) o=+ "h™

is the arrow 1 — PA corresponding to 4 : A= Q in .

We wish to verify that .~/ is a predogma in the strict sense of products and
exponentiation being part of the structure and that G preserves the predogma
structure exactly. As regards objects, this follows from what has been said above.
As regards arrows, it may also be readily checked.

Next, we wish to verify that + has canonical subobjects and that G preserves
kernels. Now it is easily seen that an arrow

(u,m) : (Y, n, B)—>(X,&,A)

in ./ is a monomorphism if and only if 4 is a monomorphism in Sets and # is one in
<. Thus we are led to call (i, m) a canonical subobject in +/ precisely when u is set-
inclusion and m is a canonical subobject in .=/. Properties (i) to (v) of Definition 5.1
are easily verified.

Before discussing kernals, we must identify the arrow T :1—Q. We take
T e=e(r, T), where t(#)=(T,1) is the element of {T}x{1}. Suppose now
(L, R) : (X, & A)— . We construct its kernel as (u,m) : (Y,n,B)—(X,{ A), where
m:B—Aisthekernelof h: A—Qin v,

Y={xeX[A(x)=(T, ) Aé(x)eIml(m)},



248 J. Lambek, P.J. Scott

u is the inclusion of Y into X and n : Y—~/I(B) is given by
n(y)=I(m)~ ()

for all ye Y, noting that I'(m) is an injection. It is fairly routine to check that the
characteristic morphism of (i, m) is (4, h).

Conversely, given any canonical subobject (4, m), one may obtain its charac-
teristic morphism (A, 4) in ./ by taking A =char m in ./ and defining 4 : X—Sgq by

(hé(x),0) ifxeX-Y,

A0 = [(T, 1) if xe Y.

This allows us again to check that ./ is a topos.

Since F preserves the predogma structure and kernels, it also preserves internal
equality and therefore all logical symbols, as has already been pointed out. Since
e : A—Bis an epimorphism in a topos = if and only if ~V,e5 Iceay =ex holds in
+# [e.g. 16, Lemma 13.4], it follows that F preserves epimorphisms. This is
important in deducing the projectivity of 1 in .-/ = T(8).

Lemma 6.2. [fe: a—f is an arrow in T(@) such that

}"‘V,VGB()/Gﬂ: 3,\'6A((X,,V> € 3e5)

in ¥\, then e is an epimorphism.

Proof. Suppose f,g : f—y are such that fe +=+ ge. We shall prove that ~|f|=gl.
We argue informally thus: suppose (v,z) € | f!. By assumption on ¢, thereisanxe 4
such that (x,y) elel, hence (x,z) el fe|=ige,. Therefore, there exists y’e B such
that (¥, 2y e|gl and (x, ') ele|. But, since e is an arrow in T(#), y'=y, hence
{¥,zy€|g. Therefore |f| Clg|, and similarly (g C|f].

New proof of the 3-property

Suppose @(x) is a formula in ¥, x being a variable of type 4, and suppose
F3cea(x). Let a={xe A |p(x)} and define e : ¢—1 in T(@) by

lel={(nydeAx1]o(x)}.

By Lemma 6.2, e is an epimorphism.
Now ] is projective by Freyd’s argument, hence, e splits, that is, there is an arrow
m : 1—a such that em «=+ 1. Now |m| satisfies

F3lvealxx)e|ml,
FVxes (wx)e|mi=xea).

Writing w(x) for { xx) € |m|, we thus have 3! e aw(x)and Ve a(w(x) = p(x)).
By the lemma below, we can find a term a of type A4 so that ~(a), hence also
—o(a).
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Lemma 6.3 (3!-property). If —3licaw(x) in #1, then —w(a) for some term a of
type A.

Proof. Suppose — 3! ecaw(x). We shall prove the existence of a term a of type A
such that ~y(a) by induction on A.

IfA=1, take a=*

If A=, take a=w(T). (See the discussion of the arrows 4 —Q in Section 4.)

If A=PB, take a={ye B|3.epa(w(v) A y € v)}. (See the discussion of the arrows
A— PB in Section 4.)

If A =BxC, we are given that — 3! e gxcw(x). Therefore ~3!,e8 I:ccw ({1, 2)).
By inductional assumption, there is a term b of type B such that —3.ccw((b,2)).
Now actually —3!;ecw({b,z)). Again by inductional assumption, there is a term ¢
of type C such that —y({b,c)).

If A =N, we are given that 3! e nw(x). Then y determines an arrow f : | >N in
+=T(@), where |fl={(%x)elxN|wx)}. Now F(f):1-N is a standard
numeral in «/, hence f+=+« GF(f) : 1N is a standard numeral in ¥ = 7{(d), say
S +=+8"0. Using the definitions of S and 0 in Section 4, we see that

Feplx) © (xx)e|f] & x=8"0.

Therefore, we may take a=S"0.

We have now completed the proof of the 3!-property, hence of the 3-property.
The v-property is an easy consequence of this.

Indeed, let

p(x)=(x=0=p) A (~(x=0)=q).

Clearly, p+—¢(0) and gr~g@(l), hence p+ Irenvog(x) and g+ Jrenp(x), hence
pVg+ Ixenp(x). (Here 1=S50.)

Now suppose —pVgq, then + 3 e np(x). Therefore, by the 3-property, —¢(71) for
some numeral 7. Now either ~A=0 or +—(7=0). In the first case +~p, in the
second case +—gq.

We turn now to another proof of the Uniformity Property by looking at the Freyd
cover of a topos obtained from the free topos 7(d) by adjoining an indeterminate
arrow z : 1> C, where C=8 or PB.

It is known [10, 5.11.2] that, if C is an object of the topos ./, then the topos ¥ /C
may be regarded in some sense as the topos #/(z) obtained from & by adjoining an
indeterminate z : 1—C. This should be distinguished from the predogma (or
dogma) #/|[z] obtained in the same way. More precisely, we require a logical functor
H: #—(z) and an arrow z : 1> H(C) so that the pair (f,z) is initial in the
category of all pairs (F:« — #,c:1—F(C)). Unfortunately, when we work with
2 /C, this seems to be true only ‘‘up to isomorphism’’. Be that as it may, in the case
& = T(@) of interest to us, when C is a type in % and z : | =C an indeterminate
arrow, there is another construction of «/(z) for which the above universal property
holds in the strictest sense.



2350 J. Lambek, P.J. Scort

Recall the language #,(z) whose closed terms are the terms of ¥, containing no
free variables other than z, which we shall think of as a parameter. (See the end of
Section 2.) We now construct 7(#)(z) from #,(z) in the same way as we did 7(@)
from Zp: its objects are closed terms a(z) of type A in Z((z) and its arrows
S2) 1 a(z)— B(z) are triplets (a(z), |f(2)], B(z)), where |f(z)| is a closed formula in
#1(2) of type P(A x B), B being the type of §(z), such that

(1) F:Viea Vies(x ) e f(D)| = (xealz) A ye B(2)),
(2) F:Vrealxea@)= I, e8{xy) €| f@))).

The rest of the construction proceeds exactly as in Section 4.

In what follows, we write ./ = T(d). Clearly, there is an arrow H : .« —+/(2),
where H(a)=o and H(f)+=-f Moreover, there is an arrow z: 1—-C in %(g)
given by |z|={(%z)}. Now suppose F:./— # is an arrow in Top and ¢ : 1—
F(C)=C an arrow in .#. We claim that there is a unique arrow F’: ./(z)— # such
that

F'H=F, F(g)e=ec.

Indeed, take F(a(z)=Ker(a(c)’) and let F'(f(z)) be the unique arrow
h : Ker(a(c))—=Ker(8(c)) in .4 such that

F Cker(a(c))x, ker(B(c)Yax) € | f(c)| in #[x].}
We summarize this result as follows.

Proposition 6.4. T(0)(z) as constructed from ¥(z) is the topos obtained from
7(@) by adjoining an indeterminate arrow z : 1 >C.

We shall now look at the special case of this when .# itself is the Freyd cover of

T(@)(z) and C=Q or PB. P
First take C=Q, s0 z : 1= Q. We need only an arrow ¢ : 1=F(Q) =8 in .7(2).
Let {(#)=(z,0), then the following square commutes:

{+} —— MQU{T}

) —~ 1@
Therefore, ¢ «=+ ({,2) is an arrow 1 in .://(Z). P
By the universal property, there is a unique £’ : #/(2)— () such that FH=F
——
and F'(z) »=+ c. On the other hand, we have Freyd’s logical functor G' : #/(z)—

% The construction of F'(f(z)) is analogous to that of F(f) in the proof of Theorem 5.3. Note that a(2) is
interpreted as an arrow 1—+PA in #[z] from which we obtain a(c) in .4 by the substitution functor
sending z onto ¢; |f(c)| is explained similarly.
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7/(2) and G'F'(z) «=+ G'({,2) »=+ . Again, by the universal property, G'F’ is the
identity functor on /().

Proposition 6.5. Let 7 be a variable of type C, where C=Q or C=PB. Then

(a) T(0)z) is a retract of its Freyd cover,

(b) the terminal object of T(9)(3) is projective,

(c) all arrows from the terminal object to the natural number object in T(8)(2)
are standard numerals.

Proof. (a) has just been shown in case C= Q. In case C = PB, the problem becomes
to define # : 1— PB such that G'(f) »=+z. In other words, we want to fill in the top
row of

{#} — Ses

I~ [PB)
to make the square commutative. Thus, we want to find an element z’ e Spg such
that Apg(z) «=+ z. Now Spg=7(2)(B, &), s0 we take 7’ «=+ ({,2), where
{(s) = (z'45(s),0),
so that the following square commutes:
Sp—— NQ)U{T}
Ag Ao

I(8) g 1)

Then
Apa(2)=Aps(({,2))="2"" =2

(b) is shown as in Freyd’s argument above.
(c) is shown as in the case A =N of Lemma 6.3.

Corollary 6.6. [f C=Q or C=PB, every arrow C—N in T(@) is constant, that is,
factors through 1.

Procf. An arrow f: C—/N in T(0) gives rise to an arrow f(z) : =N in T(0)(2),
where

|f@)]={{%xx)|{zx)>e|f]}.
Now f(z) must be a standard numeral by Proposition 6.5. Thus f(z) +=+ 8" for
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some ne N. Therefore
iz {%X)€|f(2)]  x=S5"0,
from which it follows that f factors thus:

"
-1y,

New proof of the Uniformity Property

Let C=£ or PB and suppose —V:cc 3.env@(z,)), that is, - 3,enve(z,¥). Thus,
in the topos 7(#)(z) we have an epimorphism e(z) : a(z)— 1, where

a()={yeN|o(z,»)},
le(z)| = {<», *> e Nx 1]|o(z,»)}.

We proceed as in the proof of the 3-property, but with a parameter z present. It
follows that +: p(z, a(z)) for some term a(z) of type N. However, in Z((z) there are
no such terms except numerals. Thus a(z)=A, hence —V:cce(z, A1), and therefore
F3yen Vieco(z,y).

Appendix 1

We shall prove the converse of Proposition 3.8 along different lines than those
suggested at the end of Section 3. To illustrate the argument, we take k= 1.

Let T(e,m,n) be Kleene’s T-predicate, as in [13, p. 287] or [22, p. 243]. If
{felee N} is an enumeration of all partical recursive functions in one variable,
T(e,m, n) essentially asserts that »n is the Godel number of a proof that fe(m) is
defined. It is known that 7{e, m, n) is a recursive predicate, hence representable by a
formula t(w, x,») in ¥ in the sense that

if T(e, m, n), then (e, m, A),

if not T(e, m, n), then +— —1(¢, m, /).
Without loss in generality one may assume that

if T(e, m,n) and T(e, m,n"), then n=n’,

for example, by taking #~ as small as possible.

It is known that there is a primitive recursive function U such that U(n) = f.(m) in
case there exist numbers e and m so that T{e,m, n). We shall also assume that a
function symbol 4 has been adjoined to ¥ such that

—hAa=k if and only if U(n)=k.

Church’s Rule [26, p. 258] asserts that if —Vxen 3yeng(x,y), then there is a
number e such that —Vxen Iyen(T(8 X, ¥) A @(x, hy)).
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The validity of Church’s Rule has been established for second order intuitionist
arithmetic (26, p. 322] and for intuitionist type theory by Girard (see his article in
the same volume as {7].)

Proposition 7.0. Church’s Rule implies that every strongly representable function is
provably recursive,

Proof. Suppose f: N—N is strongly representable by ¢(x, y). Then

(1) —Vxen a!ye/\fW(x,y):
(2) if f(;m)=n, then ~p(m, 7).
It follows from (1) that there is a number e such that

FVxen 3yen(1(8X p) A p(x, hy)).
Now define the function g : N—N by
g(m)=U(unT(e, m, n)).

We claim that (a) g is provably recursive, (b) g=/.
This will complete the proof of the proposition.
To prove (a), we replace T by its characteristic function ¢, so that

e, m, n) = {0 if T(e,m,n),

1 otherwise.
We then have
g(m) = Ulun(t(e, m, n)=0)).

To prove that g is provably recursive, it suffices to show that #(e, m, n), regarded as a
function of its last two arguments, is strongly representable by a formula ye(x,y, z)
such that = Vren3venxdx, ¥, 0). Let xodx, v, 2)=(t(e, x, Y )Az=0)V(— (e, x, y)Az =1).
Indeed, (e, m, n) is either 0 or 1. In the first case, T(e, m, n), hence ~1(&, /7, /1), and
50 xe(rm, 7A,0). Similarly we see that, in the second case, —yx.('n, 4, 1). Moreover,

FVyen Vyen 3 YeenXel, ), 2)
holds because
FVxen Vyen(t(8,x,y) V- 1(6x))).

To complete the proof of (a), we must verify that
FVxen Iyenxe(xy,0).

This holds because
FVreny Jvent(8x,y)

in view of Church’s Rule.
To prove (b), let f(:m)=n. Then (7, 7A). Now by Church’s Rule,

FVeen Bye‘\«'(f(é, X V)N o(x, hy)).
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In view of the Fundamental Theorem, there is a number & such that
(e, m, k) A p(rn, hK).

Since ~3!,en0(1, y), we have —hk =4, hence U(k) = n=f(m). Now T(e, m, k) and
k is the smallest number with this property. (For if also T(e,m, k"), then k=k".)
Therefore, f(m) = U(k) =g(m).

This completes the proof of (b), hence of Proposition 7.0.

Appendix 2

We shall verify the claim made in the proof of Theorem 5.3 that mg «=» ker(a').
To this end we must carefully examine the translation procedure for interpreting the
language %) of intuitionist type theory in a topos ./ in case ./ = T(@) is the free
topos. We begin by giving another construction for the predogma .=/[z] in this case.

We construct the category T(@)[z] whose objects are the same as those of 7(0)
and whose arrows f(z) : a— g are triplets (e, ] f(2)], 8), where | f(2)] is a term of type
P(A X B) containing no free variables other than the ‘‘parameter’’ z of type C,
subject to the conditions (1) and (2) of Definition 4.3 with | f| replaced by |f(z)!.

7(0)[z] is easily seen to be a predogma, its predogma structure being inherited
from 7T(@). Moreover, the inclusion functor A : T(#)— T(9)[z] preserves the
predogma structure. The predogma 7(@)[z] contains the special arrow z:1—C
with |z|={{xz)}. We shall see that 7 plays the rdle of an indeterminate, so that
7(9)(z] has the same universal property as 7(@)[z], hence is isomorphic to it. We
first establish what has been called ‘‘functional completeness’’ [16].

Proposition 7.1. For every arrow f(2) : ¢~ f in T(0)[z] there is a unique arrow
g: Cxa—pfin T(9) such that g{7%a, lad «=+f(z) in T(@)[z].
Proof. Take

gl ={((z,x),y)e(CxA)xBl{x,y)e|f(D)|}
and check that the required equations holds. As for uniqueness, from
h(Z*a la) «=¢ f(2) it easily follows that s <= g.
Corollary 7.2. T(9)[z] = T(0)[z].

The corollary is an immediate consequence of the proposition in view of the
following ‘‘recognition lemma’’.

Lemma 7.3. Suppose /' is a predogma extending the predogma ./, having the same
objects as =/ and containing an arrow { : 1—C so that for every arrow f: A—~B in
/" there is a unique arrow g : CxXA—B in ./ such that g{{x4,1.4) e=+« f. Then, as
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extensions of «, &'= #(z], { corresponding to the indeterminate z ; 1= C under the
isomorphism.

Proof. It suffices to show that .¥* has the expected universal property. Suppose
F: - 4% is any functor into a predogma .# which preserves the predogma
structure exactly and ¢ : 1= F(C) is a given arrow in .4, We claim that there is a
unique functor F’: «/'— 4 preserving the predogma structure such that FFH=F
and F’({) «=+ c. (Recall that H is the inclusion functor.)

Define F’ on objects and arrows as follows:

F{AY=F(A), F'(g{{*4,1a)) e= F(g){C*ra), L Fla)).

One easily verifies that F’ has the required properties and is unique. We omit the
routine calculations.

We remark that this lemma remains valid if the word ‘‘predogma’’ is replaced by
‘‘cartesian category’’, ‘‘cartesian closed category’’ or ‘‘dogma’’.
We now return to the interpretation of #; in the free topos.

Proposition 7.4. Let t=1t(x\,...,Xn) be a term of type A in the language ¥\. [f tis
interpreted as an arrow t : 1= A in T(@)[x1, ..., Xnal, then i, .. lt]={{(x )}

Proof. We proceed by induction on the construction of .

(1) If ¢t is a variable x of type A4, then its interpretation in .=/[x] is the indeterminate
x:1—A. In particular, its interpretation in 7(9)[x] is the arrow x : 1—A4, where
[ ={<x x>}

(2) If tis = of type 1, its interpretation in Section 5 was the identity arrow 1.
According to Definition 4.3,

t—}ll|={(x,x>elxllxel}:{(*,*>}_

(3) If tis of type N other than a variable, it will be 0 or Sn for some n of type N. In
the first case, it is interpreted as 0, and |0|={<{*0)} by Definition 4.3. In the
second case, it is interpreted as Sn, where

ISn|={{x2)e I XN|Iyen({x,y) €Ay €S}
By inductional assumption and Definition 4.3,
—iSn={(x,z)el xNlx=%ALn,z>€|S|}
={(%Sn)}.

(4) If ¢ is of type A x B other than a variable, the result follows easily by

inductional assumption.

(3) If ¢t is of type © other than a variable, there are two cases: f may be a=a’ or
ae¢. In the first case we have

la=a’l=|dala,a’)
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Using the fact that
|0.4] =|char (14, 14)]
={{{(X)1)EAXAYXQ|t=(x=x)},
we easily calculate +|a=a’|={{*xa=a')}. In the second case we have
laea|=|€ea(a,a)l.

Using the definition of | e, in Definition 4.3 with @ =4, one proceeds similarly.
(6) If ¢ is of type PA other than a variable, say a= {(xe A|p(x)}, we have, by
inductional assumption,

el = {{w (X))} = {(xxea)}.
On the other hand,

Fep(x) = | €a(a,x)|

={(x1)el1 x| Jucpa({xu)elalAt=(xeu))}

after some calculation. Therefore

Frnt=@ea)  Juepa({xu)e|a|At=(xeu)).
From this we easily infer that

Fu{xudelal © u=a,

whence = || = {{»a)}.
Corollary 7.5. In the free topos T(9), mgq+=- ker(a’).

Proof. We recall that
a'e=e€q(axs,14).

(See the definition preceding Lemma 5.2.) From this one easily calculates
o= {6ty e AxX Q| Juepa(t=(xeu) A {xu) ela))}.

Using the fact that  |a| = {{x a)}, by Proposition 7.4, one then deduces that
Fla|={{xnt)e AXQ|t=(xea)}.

Hence, by Definition 4.3,
Flker al={(ax)eAxA(x,TYela}

={{x,x)eAXA|xea}=|mg.

This completes the proof.
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