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In this article we study free toposes with the help of intuitionist type theory. Our 

treatment is self-contained and aims to be accessible to both categorists and 

logicians. We attempt to explain the relevant logic to the former and the categorical 

applications to the latter. 

Algebraically, free toposes arise as solutions to a universal problem, which 

amounts to constructing a left adjoint to the forgetful functor Top+Graph. Here 

“Top” denotes the category of small toposes, which we shall assume to possess a 

natural number object, with appropriate morphisms. These are essentially the so- 

called logical functors, except that we insist on them being strict functors which 

preserve everything on the nose. “Graph” denotes the category of graphs, which we 

take to be oriented, and functor-like morphisms. The adjoint functor Graph-Top 

associates to each graph Y- the topos 7(.r’) freely generated by s: In particular, 

when .f‘ = 0 is the empty graph, we obtain the so-called free topos 7(O), which is an 

initial object in Top. 

Lawvere has often pointed out the strong connection between topos theory and 

higher order intuitionist logic. It is precisely in the construction of the free topos 

that this connection is seen most easily. 

In Section 1 we present a formulation of intuitionist type theory with product 

types and mention the fundamental theorem which comprises three things: 

(1) the consistency of intuitionist type theory, 

(2) the v-property which asserts that if pvq is provable then either p or q is 

provable, 

(3) The 3-property which asserts that if 3.,-E.q q(x) is provable, then q(a) is 

provable for some term a of type A. 

Our type-theoretical language contains enough terms to witness all existential 

theorems; yet it does not contain too many terms, for example, it lacks a description 

operator. 

The fundamental theorem can be proved by several methods: 

(a) the cut elimination method of Gentzen-Girard, 

* The first author was supported by the Natural Sciences and Engineering Research Council of Canada 

and shared a grant from the Quebec Department of Education. 
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(b) the realizability method of Kleene-Friedman, 

(c) the categorical method of Peter Freyd. 

In Section 2 we use the realizability method to prove the fundamental theorem and 

also to extend Troelstra’s Uniformity Property to higher order arithmetic. 

In Section 3 we collect all kinds of theorems from logic that deal with the 

representability of functions N” -+N in intuitionist type theory. These will later 

enable us to discuss certain arrows in the free topos. Most of these results are 

essentially contained in the book by Kleene. 

In Section 4 we give a construction of the free topos which is based on the 

language of intuitionist type theory developed in Section 1. Constructions using 

somewhat different languages have been given by Coste, Fourman and Boileau; but 

the first construction of the free topos is due to Volger, who used an altogether 

different approach. 

We also study the arrows between certain objects in the free topos, namely those 

objects which correspond to types. In particular, we show that all arrows 1 -+-h; are 

standard numerals, that all arrows NX -+N induce recursive functions N”-+N and 

that not all recursive functions are obtained in this way. These results have already 

been found by Boileau and the Costes. We also show that all arrows R-N and 

PB-N factor through 1. 

The universal property of the free topos had been shown by Volger for his 

construction, only the morphisms in his category of toposes were not strict functors. 

None of the other authors established the universal property for their construction 

or proved it equivalent to Volger’s. We therefore devote Section 5 to proving the 

universal property of the present construction of the free topos. One of the present 

authors had already shown that Volger’s logical functors could be made strict b> 

stipulating that all toposes have canonical subobjects. 

Our original intention had been to use methods of mathematical logic to obtain 

results in category theory, to wit, properties of the free topos. In the mean time 

Peter Freyd made a fundamental breakthrough, which suggests that the more 

interesting applications may be in the opposite direction. As an afterthought, we 

therefore added Section 6, in which the 3-property and the Uniformity Property are 

proved again, and perhaps with less effort, by Freyd’s method. 

We are endebted to Michael Makkai and Andrej &“edrov for helpful comments, 

1. Intuitionist type theory 

We shall present a language 1/l for intuitionist type theory with product types. 

Definition 1.1. Type symbols are defined inductively as follows:’ 

(i) 1, N, 0 are types; 

(ii) if A and B are types, so are A x B and PA. 

’ It is understood that nothing is a type of .f, unless its being so follows from (i) and (ii). 
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Remark. h’ is the type of natural numbers; Q is the type of propositions or truth 

values; 1 is a one element type and may also be regarded as the empty product: 

A x B is the type of pairs (a, b), where a is of type A and b of type B; finally PA is 

the type of all subsets of A, that is, of all sets of entities of type A. 

The language 11 contains a countably infinite set of variables of each type, 

ordinary parentheses and also the following symbols: 

*; ( , >; E; { , 1; 0; S; T; I; A; v; =; V; 3. 

Definition 1.2. Terms in 11 are defined as follows:z 

(1) variables of type A are terms of type A; 

(2) * is a term of type 1; 

(3) if a is a term of type A and b of type B then (a, b > is a term of type A x B; 
(4) if a is a term of type A and CI a term of type PA then a~ 1y is a term of type Q; 

(5) if cp(x) is a term of type Q, possibly containing the free variable x of type A, 

then {x~il l#)} is a term of type PA; 
(6) 0 is a term of type N; 

(7) if n is a term of type N, then so is Sn; 

(8) T and _L are terms of type R; 

(9) if p and q are terms of type R, then so are pl\q, pvq and p = q; 
(10) if (D(X) is a term of type Q, possibly containing the free variable x of type A, 

then V.re.~ (D(X) and LE.-1 co(s) are terms of type Q. 

Remarks. Parentheses are employed as usual. The notions free variab!?. i~tind 

variable and closed term are defined as usual. Terms of type I;? are aiso called 

formulas. As usual we write 

lp forp- I, 

p-4 for @-4)Nq=p)9 

a=b for tluE~.-l (aEuobEu). 

i/ I is not just a language, but also a deductive system. For each set X of variables, 

we introduce a relation pkxq between formulas p and q whose free variables are 

contained in X. The relation I-_X is subject to four groups of axioms (and is assumed 

to be the smallest such relation). 

Structural Axioms 
(1) I-_X is reflexive and transitive; 

(2) if pkxq and XC Y, then pkyq; 
(3) if q(y) +-XV(~) v(y), where y is a variable of type B, then rp(b) t-x v(b), where 

6, a term of type B, contains at most the free variables in Xand b is substitutable for 

Y in VW and wti). 

* It is understood that nothing is a term of 1, unless its being so follows from (I) to (IO) 
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Logical Axioms 

(1) p+xT; 

(2) 1 +xp; 
(3) p+xqAr if and only if p+-xq and pt-,~r; 

(4) pVq+xr if and only if p+x r and qt-xr; 
(5) pAq+xr if and only if PI--X = r; 

(6) P+-XVJ~E ~01) if and only if pr-xuiJ) W(Y); 

(7) gyE~ N_Y)F-XP if and only if w(_v)+-x.~~~)p. 

In stating the following axioms, we write 

I-xp for T I--xp; k-p for Ti-tip. 

Nonlogical Axioms 
(a) Comprehension 

(b) Extensionality 

t-VUCfA VlvePA (Vxs.&EU*xE v)=u= v); 

t- VseR VlreR ((s* [J-s= t). 

(c) Products 

I-VxelX=*; 

+vtl;EAXB 3xe.A 3,“EBz=(X,y); 

+ VJEA VYEA Vl.EB V,“‘EE (o&Y) = (x’,y’> =(x=x'Ay=y')). 

(d) Peano Axioms 

~vtlx~N(sx=o” I); 

t- VxaN VyeN (sx=.sY=x=Y); 

~vtluEp,i((OEUAvxcN(XEU=SXEU))=v."E,VYEU). 

Remarks. The logical axioms are somewhat non-standard (see e.g. [13, p. 981). 

Following Lawvere, these axioms were obtained by considering A, =, etc. as adjoint 

functors (see e.g. [15]). Logical axioms (2), (4) and (7) are redundant if I, v and 3 

are suitably defined. We have considered an alternative system elsewhere in which 

all logical symbols are defined in terms of equality. 

Classical type theory differs from intuitionist type theory by having one 

additional axiom, the so-called Boolean axiom: 

k V,eQ (tv yt). 
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This axiom is rejected by intuitionists, because its presence permits non-constructive 

existence proofs. That such non-constructive existence proofs are avoided in the 

absence of the Boolean axiom, is the fundamental theorem of intuitionist type 

theory: 

Theorem 1.3. In 2 I we have 
(1) not + I; 
(2) if kpvq, then k-p or +q; 
(3) if I- %,.A C&Y), then t-p(a) for some closed term a of type A. 

Remark. There is only one closed term of type 1, to wit *. The closed terms of type 

N are nunzeruls, namely 0, SO, SSO, etc. The closed terms of type PA are 

comprehension terms of the form {xe A / cp(x)}. 

The reader who is willing to accept Theorem 1.3 without proof may immediately 

turn to Section 3, Section 2 being concerned with the proof of Theorem 1.3 using the 

notion of realizability. Another proof will be given in Section 6. 

It should be pointed out that the language 21 has many variants. Originally we 

had considered a language 2~ which admits also projection symbols rc and rc’ and 

requires a change in the statement of the product axioms. In Section 2 we shall meet 

a language YO which lacks comprehension terms and requires a change in the state- 

ment of the comprehension axiom. Of course, assertion (3) of the fundamental 

theorem will not hold for ~0. 

Finally, we remark that Theorem 1.3 establishes the consistency of the other 

versions of type theory as well. Extending Godel’s double negation translation (see 

[13] or [26]) we also obtain the consistency of classical type theory (with compre- 

hension and extensionality). Now, by Godel’s Incompleteness Theorem, the above 

consistency proof must use proof-theoretical methods not available in type theory. 

Already in first-order arithmetic a consistency proof requires transfinite induction 

on EO (induction on ordinals <EO being in fact derivable). So, to formalize the above 

consistency proof via the fundamental theorem (whose proof uses realizability) 

presumably requires transfinite induction on quite large ordinals (see [4]). 

Suppose next that we allow a variable z of type C as a “parameter”. In other 

words, we study the language UI(Z> whose closed formulas are the formulas of Y’I 

which may contain free occurrences of z but of no other variable. An examination 

of the proof of the fundamental theorem will show that it remains valid when I- is 

replaced by t-:, as long as C= Q or PB. (Here, and elsewhere, we write kZ for t-iZ).) 

In particular, (3) then becomes: 

(3:) if I-: 3.rc~ cp(z,x), then I-~&Z, a(z)) 

for some term a(z) of type A. 
As a consequence of (3:) we obtain the following, which is also known as the 

Uniformity Property [27]. 
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Theorem 1.4. In :/I, if C=Q or PB, then I-V,,c !lx,.v rp(z,x) implies 
C3VE.k v .TE c v(z, a. 

Proof. From the hypothesis we infer that C: EIV,,~ cp(:,,x), hence by (3,) that 
+-;p(:,a(~)), whence cV:,c &z,a(~)), from which the conclusion follows, since 
a(z) must be a numeral. 

We should point out that there is no hope of extending (3:) to parameters z of 
arbitrary type C, at least as long as we stick to the language 21. For example, when 
C= N and A = N we can take rp(z,x) to mean that zZ=x, but there is no way of 
expressing the squaring function by a term o(r) of 2 I. 

2. Proof of fundamental theorem 

The purpose of this section is to prove the fundamental theorem of intuitionist 
type theory. It is convenient to do this for a language Y, which is equivalent to 2 r, 
but has fewer names and avoids nested comprehension terms, yet still has enough 
names to witness all existence theorems. On the way to introducing I! 1, we shall also 
mention another language YO, which is still equivalent to YI, but has no compre- 
hension terms at all. 

We shall prove the fundamental theorem for I( using the profound Kleene- 
Friedman method of realizability, as developed for related languages in [7,23,253. 
Roughly speaking, the idea is to define a predicate R@), meaning “formula p is 
realizable”, by induction on the complexity of p, and then to prove a Soundness 
Theorem: if c-p then R@), from which the fundamental theorem follows. 

The difficulty is that the natural definition of R(a E {XE A 1 rp(x)}) should be 
R(&a)); however, q(a) may be more complicated than the original formula! To 
overcome this difficulty, which is inherent in type theory, we follow Friedman in 
splitting each comprehension term into many “indexed” comprehension terms. 
This gives rise to yet another language z!+, and it is in ir+ rather than Y that 

realizability is defined. Thus we are dealing with four languages: 

We believe that our treatment somewhat simplifies the details in the cited papers, 

A property of 2j 

We begin by proving a property of 9’1. We shall write p = p(X), where X is a set of 
variables, to indicate that all free variables occurring in p are elements of X. 
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Proposition 2.1. For any formula p=&X) in C/I there is a formula p’ which 
contains no comprehension terms and no subformulas q E a with q of type .Q unless 
q is a variable. Moreover, +xp’op. 

The reason for the restriction on subformulas is that in the intended interpre- 

tations of 2 1 any q of type Q corresponds to {XC 1 j q} under the isomorphism 

QZPl. 

Proof. We shall call “forbidden” any occurrence of a comprehension term 

{ACEA 1 u/(x)} and any occurrence of a subformula qE a with q of type $2 not a 

variable. 

Given p = p(X), we can find a formula p’ containing fewer forbidden occurrences 

than p such that k-xp’op. 
In case p contains {.YEA 1 u/(x)}, but w(x) contains no forbidden occurrence, say 

p=x ({*YEA 1 I&C))), we take 

p” 3UEPA Q(U)AV’xEA (XEU6 w(x)). 

In casep contains q E a, q of type R not a variable, where q contains no forbidden 

occurrence, say p=x(q E a), we take 

p’= 3,,ok(t~a)Atoq). 

It is clear that cxp’ep in both cases. We may obtainp’ from p by eliminating the 

forbidden occurrences, one at a time, in some systematic way. 

The language r/o 

The language C/I has, in some sense, more names than necessary. We shall 

construct a language 20 which has too few names. It is like Yt except that it lacks 

comprehension terms {SEA / w(x)) and aE a with a of type R not a variable. Thus 

formation rule (5) is deleted and rule (4) is restricted in case A = R : a E a will be a 

term of type R only if a is a variable. The axioms for 20 are the same as those for 

~1, except that the comprehension scheme is replaced by the following: 

Proposition 2.2. :/I is a conservative extension of 20. 

Proof. Suppose p is a formula of 20, all free variables in p are elements of X, and 

+xp in ~1. We claim that I-_XP in 20. 

Suppose the proof of p in 21 makes use of an instance q of the comprehension 

scheme, say 
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Then there is a proof of qk-xp not using the axiom q. Replacing {XEA 19(x)) by a 

variable u of type PA, we have 

hence @I-up, where 

In this manner we may eliminate one instance of the comprehension scheme after 

another, until we obtain a proof of k,ug in a language whose formation rules are 

those of !?I, but whose axioms are those of 20. 

The proof of k,yp may still contain comprehension terms such as {XEA 19(x)]. 

Replacing these by variables of type PA, we obtain a proof of I--xuvp in 2b, where 

U is a set of variables of type PA for some types A. Can we deduce from this that 

I-,~p in ~b? Yes, in view of the following observation: 

If I-xu(~)~ in 20, where u is a variable of type PA, then k-xp in 20. 

Indeed, given +_xu(~)~, we have a fortiori 

hence 

V.rerl (XE u*9(x))~-xu{uiP, 

3UEPA tlxeA (XEU*CO(X))+-XP. 

Distinguishing provability in YI from provability in L?b by writing ki and k$ 

respectively, we have the following, where p and q are assumed to be formulas 

whose free variables are in X. 

Corollary 2.3. (0) Forp in 10, pT=p; 

(1) Forp in YI, +L,p’op; 

(3) For p in Yo, +$p if and only if cJYp; 

(3) Forp in YI, if ä -kp then +$pr. 

Proof. (0) and (1) follow immediately from Proposition 2.1. 

The direct implication in (2) holds, because the only new axiom in JO, the new 

form of the comprehension axiom, is derivable in 2 I. The converse implication in 

(2) holds by Proposition 2.2. 

To prove (3), suppose ~-k,p. Then, by (l), c-,\.p’, hence, by (2), +$pr. 

The language 2 

Of course pro does not have enough names to assert the fundamental theorem. 

However, we shall consider a language I intermediate between 10 and I 1. As 

regards formation rules, y differs from YI in two respects: 

First, {XEA lrp(x)} is only admitted vvhen 9(s) is in 10 and contains no free 

variables other than x. 

Secondly, if LY is of type PR, the formula p E u is only admitted when p is a closed 

formula of ~0 or a variable. 
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The first restriction is necessary if we don’t want 2 to contain nested compre- 

hension terms. Even free variables inside a comprehension term may lead to nested 

comprehension terms after substituting comprehension terms for the variables. The 

reason for the second restriction is that, in our intended interpretation for Y’, Q will 

be isomorphic to Pl and p of type f2 will correspond to {xe 1 Ip} of type PI, which 

comes under the first restriction. 

The axioms for 2 are the same as those for 21 or 20, except that there are now 

two comprehension schemes: 

k-x 3UEPA VXCA (XEUorp(x)), 

with rp(x) in Ub, and 

I- VXCA (XE (xg.4 l&x)} *V(x))* 

as in Y’I provided cp(x) is in 20 and contains no free variables other than s. 

From now on + denotes provability in Y, unless otherwise specified. 

The language I/ + 

The language ii + is an extension of ?a like Y, but obtained by “indexing” the 

comprehension terms 

clp= {XEA /p(x)). 

Thus, we shall replace cV by ci, where the index denotes a subset V of [A] to be 

defined presently. In view of the intended isomorphism between R and Pl, we shall 

also index closed terms p of type 0 in the context p E cz. 
The sets [A ] will turn out to consist of all closed terms of type A in Y *. They are 

defined by induction on the construction of A as follows. 

(i) [I] is the set consisting of the symbol *. 

(ii) [N] is the set of all numerals A = 9’0, which we may as well identify with the 

set N of natural numbers. 

(iii) [Q] is the disjoint union of the set of closed formulas of 1/ and the set of 

theorems of Y. That is, [Q] consists of all po and all 41, where p is any closed 

formula of i/ and q is any theorem of 2. 

(iv) [A x B] consists of all (a, b > where a E [A] and b E [B]. 

(v) [PA] is the set of all cr, where cV= {x~A 1 p(x)} is a comprehension term in 

2 and Vis a subset of [A] satisfying two conditions: 

(a) if aE V, then +_Co(a-); 
(b) if aE Vand a-a’, then a’E V. 
Here a- is the closed term of type A in 2’ obtained by removing all indices. Thus 

(c,V)-=cV, p;=p. (&I)-= (C+%P), 

etc. Moreover, - is an equivalence relation between elements of [A] defined as 

follows: 
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(i) *- *. 

(ii) For m, it E [lyl, rh - n if and only if ti = it, that is, rn = n. 

(iii) For p,, q, E [f?], p, - q, if and only if i =j and k-p * q. 
(iv) Fora,a’~[A]andb, ~‘E[B], (a,b)-(a’,&) ifandonlyifa-a’andb-b’. 

(v) For c;, C;E [PA], c;-cw” if and only if V= Wand kcV=cw. 

We define the sets IAl of ferms of 2 + of type A as follows: 

(i) j 11 consists of * and all variables of type 1. 

(ii) ly contains 0, all variables of type N, and is closed under S, that is, if 

no INI, then SnE INI. 

(iii) IQ1 consists of all elements of [Q] and all variables of type Q. 

(iv) IA x Bj consists of all (a, b >, where a E jA j and b E IB/ , and all variables of 

type A x B. 
(v) IPAl consists of all elements of [PA] and all variables of type PA. 

Note that /Ai contains [A] and all variables of type A; but iNl is also closed 

under S and IA x BI is also closed under pairing. [A] is now the set of closed terms 

of type A. 

Formlch in 2 + will not be identified with terms of type !2, but are defined as 

follows: 

(i) T and _L are formulas; 

(ii) if p and q are formulas, then so are pl\q, pVq, p=q; 
(iii) if p(x) is a formula, with x a variable of type A, then Vxs,.t w(x) and 

3.re.4 q(x) are formulas; 

(iv) if a and cr are terms of types A and PA respectively, then a E a is a formula; 

(v) all terms of type Q are formulas. 

There is an unexpected abundance of formulas. For example, T, To, 71, I, _Lo 

are formulas, although Ii is not. Indeed, if Y is to be contained in 2 +, T, _L and 

all variables of type R have to be formulas. Moreover, if we want to allow 

substitution of terms of type 52 for variables of type R, we must admit pI as a 

formula in 2 +, for any closed formula p of Y. We could reduce the number of 

formulas in 2 * somewhat by identifying po with p, but we shall refrain from doing 

so. 

We may extend the mapping - : 2 + * 2 to all terms and formulas of Y+ in an 

obvious way: erase all indices. 

2 + will not be made into a deductive system. Instead, we introduce the notion of 

realizability in 2 -. 

Realizability 

Definition 2.4. We define R(p) for closed formulas p of 2 * as follows: 

R(T); not R( I); 
R@r\q) if and only if R@) and R(q); 
R(p=q) if and only if, if R(p) and k-p-, then R(q); 
R@vq) if and only if, either R@) and t-p-, or R(q) and +q-; 



R(V,,._r &Y)) if and only if R(rp(a)) for all LIE [A]; 

R(3,Y,,~ cp(x)) if and only if R(p(a)) and &p(a)- for some OE [A]; 

R(a E ci) if and only if a E V; 

R@I); not R(m). 
For an open formula (D(XI, . . . , x,), R(cp(_u, . . . ,x,)) shall mean the same as 

R(V’,,,A, . ..t(X.EA,(P(Xl,...,X”)). 

Proposition 2.5. If a-a’, then 
(I) t--a_=a’_; 

(II) R(a = a?; 
(III) P(a) -/?(a? for any term B(x) of :, -; 

(IV) R(p(a) 0 ~(0’)) for any formula rp(x) of Y +. 

Proof. (I) This is immediate from the inductive definition of -. For example, when 

(a, b > - (a’, 6’)) we have a-a’ and b - 6’. By inductional assumption, we infer that 

+~~=a’- and +b-=b’-, hence that t-(a,b>-= (a’,b’)-. 
(II) We wish to show that R(VuE~,4(a~uoa’~u)), that is, for each CUE [PA], 

that R(ac cr=>a’~ c:), and the same for the converse implication. This follows 

immediately from the fact that V is closed under -. 

(III) We proceed by induction on the length of p(x). If fi(x) does not contain x or 

if p(x) =x, there is nothing to prove. If /3(x) = SD’(x) or /3(x) = <~‘(x),/~“(x)), we use 

the inductional assumption on p’(x) and j?“(x). 

Note that the terms of type R in Y+ are elements of [Q] or variables of type R. 

For example, x E ci, though a formula in i/ +, is not a term of type Q in Y _, whereas 

(xE cz)-=xE cP is a term of type Q in 1/l 

(IV) We shall prove that R(p(a)acp(a’)), that is, given R(cp(a)) and +&a)-, we 
shall show that R(cp(a’)). We proceed by induction on the complexity of p(x). By this 

we shall mean the number of occurrences of A, V, =, V and 3, provided cc’and p, 

are regarded as “opaque”: their complexity is zero, even if I&) or p should contain 

one of the symbols which are being counted. 

The proof will consist of an examination of the following nine cases: 

(1) If q(x) does not contain x, there is nothing to prove. 

(2) If rp(x)=rpi(x) A v)2(x), we are given that R(p,(a)) and l-~;(a)- for i= 1, 2. By 

inductional assumption we may infer that R(cpl(a’)) and R(rpz(a’)), hence that 

R(y,~(a’) A 49267’)). 

(3) If &x)=Y,I(x) V (p2(x), we are given that R(cp~(a)) and +~;(a)- for i= 1 or i= 2, 
say the former. Then, by inductional assumption, we may infer that R(pl(a?) and, 

by (I), that I--rpi(a’)-, hence that R(rpl(u’) v e~z(a’)). 

(4) If q(x) = VI(X) * cpz(x), we distinguish three cases. 

Case (i): not k_c~~(a)-. Then also not +_cPI(o’)-, by (I). It follows trivially that 

R(P I (a? = rpz(a?). 
Case (ii): +~PI(u)- but not R(cp~(a)). Then t-PI-, by (I), and not R(rpl(a’)), by 

inductional assumption. It follows trivially that R(rp~(a’) = cpz(a’)). 
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Case (iii): +91(a)- and R(cpt(a)). Since we are given that R(9r(a)=rpl(a)), it 
follows that R(9z(a)). Since we are given that c91(a)-=,92(a)-, it also follows that 
+92(a)-. By inductional assumption we may infer that R(cpz(a)), hence that 

R(cpl(Q? = v2(4). 

(5) If ~p(x)=v,~~g 9(x,y), we are given that, for all ~E[B], R(w(u,~)) and 
1-9(a,6)-. Now 9(x,6) is less complex than tlYc~ W(X,JJ), hence we may apply 
inductional assumption and obtain R(v(a’, b)). This being so for each b E [B], we 
infer that R(VYE B ~(a’, b)). 

(6) If 9(x)= gve8 I,U(X,JJ), we are given that, for some 6~ [B], R(t,~(a,b)) and 
+9(a,6)-. As above, we infer that R(~(a’,6)). But also t-9(a’,6)-, by (I), hence 

R(3,,8 w(a’,y)). 
(7) If 9(x)=x (of type Q), we make take asp, and a’=qj. Since a-b, we have 

i= j and t-po q. Now we are given that R@,), whence i= 1. Since j = i= 1, we surely 
have R(q;). 

It only remains to discuss 9(x) E/?(X) E y(x), where /3(x) is of type B and y(x) of 
type PB. We have two possibilities for y(x), namely y(x)=cr and y(x)=x. 

(8) If 9(x)+(x)4, we are given that R(cp(a)), that is, @a)~ W, and want to 
deduce that R(yl(a’)), that is, P(U) E W. This follows from (III) and the fact that W is 
closed under -. 

(9) If 9(x) I&X) EX, x of type PE, we may take u= cr and a’= CT, where 
l-c, = Cw’. We are given that R((o(a)), that is, P(~)E W, and want to deduce that 
R(cp(a’)), that is, /?(a’)~ W. This follows as above. 

Soundness 

We shall now define a mapping %‘+ Y’+. If q is any formula of Y; we define a 

formula q+ in Y‘+ by replacing every occurrence of C~ by CL@‘, where 

V(9) = set of all a E [A] such that R(9(a)) and +9(a-), 

and every occurrence of a closed term p of type Q in Yb in the context p E ct by pi@), 
where 

i@) = 
I 

1 if !-p and R(p), 

0 otherwise. 

Recall that there are no nested comprehension terms. 
Note that i(p) corresponds to I’@) under the intended isomorphism between 52 

and Pl which replaces p by fi= {XE 1 Ip}, except that we have written i(p) = 0 or 1 
where IQ) = 0 or { *}. 

It remains to check that V(9) satisfies the conditions on indices: 
(a) if a~ V(9) then +9(a-); 
(b) if UE V(9) and a-a’ then a’~ V(9). 

Here (a) is immediate from the definition of V(9), and (b) asserts: 
if R(cp(a)) and I-~(K) and a-a’ then R(p(a’)) and +$$a’-), which follows 

immediately from Proposition 2.5 (IV) and (I). 
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Proposition 2.6 (Soundness). If p t-x q in .t, then R@ * = q ‘). In particular, if k-p, 

then R@ ‘). 

Proof. We proceed by induction on the proof of pkxq to show that R@+ =q+). 
For example, if p=rp(x) and q= w(x), we want to show that, for all aE [A], 

R(P+(Q)= w+(a)). 
If the last step in the proof involves a structural or logical rule, there is no 

difficulty. For example, the last step may have been: 

where be [B]. By inductional assumption, we have R(p+(a, 6)s t,u’(a, 6)) for all 

a E [A] and b E [B], and this is what we want to show for a particular b. 

To look at another example, suppose the last step in the proof was: 

rp(X)AW(X) k{wl X(X) 

lo(x)+{xl r&)=x(x)’ 

We are given that R(y, +(a)) and t-rp(a-) and want to show that R(t+v +(a) = x +(a)). So 
let R(v+(a)) and t-_w(a-) be given, we want to show that RQ+(a)). Now 
R(cp+(a)l\v+(a)) and +-cp(a-)r\u/(a-), hence R(;C-(a)), in view of the inductional 

assumption that R((a,+(a)All/‘(a))~~+(a)). 
We shall go through the various nonlogical axioms p to show that R@-). 

(a) Comprehension: to realize (VXE,.r(x~c,++~q?(x)))+, i.e., since rp+(x)=p(x), that 

t/r, A(x E c;@’ -s (p(x)), we must realize, for all a E [A], a E c:~)@ &a). This amounts 

to showing that aE V(cp) and i-p(a-) implies R(cp(a)), and also that R(cp(a)) and 

F&a-) implies aE V(p). Both implications follow from the definition of V(q). 

Y’ also inherits the comprehension axiom of 90: for v(x) in Yo, 

k-x guep~ VXe~(x~ u H p(x)). To realize this, for instance in case X= {JJ}, we want 

to realize, for each ~E[B], that glrep~ Vxe~(x~~orp(b,x)). Writing 

yl(b_, x)r= w(x), it suffices to realize V.rE~(x~~~oq.$b,x)) and to prove 

+Vxs~(x E c,o &b-,x)). The first is easily checked if W is the set of all a E [A] such 

that R(v(b,a)) and +-rp(b;a-), and the second follows from Proposition 2.1, which 

remains valid if %I is replaced by Y. 

(b) Extensionality: to realize V Ug~,4 Vve~,4 (V.re.-l(x~u~x~~)=r~=v), we must 

realize, for each CL, CUE [PA], 

so we assume 

(i) R(V~~A (xe cre,xc cp)), and 

(ii) t-Vxe,4(xEclp~xEcyl), 

and want to show that R(cr= cw”>. Now, by (ii) and extensionality, +crp = cw. By (i), 

for each aE [A], R(aE c:o aE cw”>. In particular, from a E V and b&a-) follows 

(IE W. Now aE Vimplies t-~(a-), by the first condition on indices. Thus v/c W, and 
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similarly WC V. Since i--cv=cw and V= IV, we have ci-c:‘, hence R(c~=c~‘), by 
Proposition 2.5 (II). 

Under the heading of extensionality we also have to realize Vsso VrEo ((so t) = 
s=t). Thus, for each pi, qi~[Q], we must show that R(@;eq;)*pi=qj). So we 
assume R@,-q,) and +-poq, and want to show that R@;=q,). We know that 
t--p = q from extensionality. Suppose i = 1, then R@,) and +p, hence, from R(p,- q;) 
we deduce R(qJ, and so j= 1. Similarly j= 1 implies i= 1. Therefore, i=j, and so 
p,- q;, hence R@;= q,), by Proposition 2.5 (II). 

(c) Producfs: to realize V.rc I A-=*, it suffices to realize *= *, which follows from 
Proposition 2.5 (II). 

To realize VZE~x~ gXE,4 3.v6~z= (x,y>, we takeany (a,b) E[A xB] and need 
only realize (a, b) = (a, b), which also follows from Proposition 2.5 (II), and prove 
that +_(a-,!~-) = (a,!?-), which is evident. 

To realize 

VXCA VYEA VycB V.v’EB ((x,y> = (x’,y’> =)(x=x’Ay=y’)), 

we take any a, a’~ [A] and any 6, b’~ [B], and assume that R((a, b) = (a’,b’)) and 
that ~-_(a; 6-) = (Q’-, b’-). We want to show that R(a = a’) and R(b = b’). Now, for 
each y E [P(A x B)], we can realize (a, b > E ye (a’, b’) E y, and we would like to 
realize, for each a E PA, that a E (Y t, 0’~ cr. Thus, given R(a E (r) and +-a-~ (r-, we 
want to show that R(a’ECr). We may take CZ=C:, then we are given that a6 Vand 
+&a-) and want to show a’~ V. To this purpose take y E cr, where 

w(z) = LA (p(x) A t = (x,67), 

W=set of all (46) E [A xB] such that aE V. 

It is easily verified that Wsatisfies the conditions on indices since Vdoes. Moreover, 
it is easily seen that the given pair (a, b) E W, since a~ V, and that +_(a; b-> E y-, 
since FQ+-). Since we can realize that (0, b > E cp= (a’, b’> E cr, it follows that 
(a’,b’) E: W, hence a’E V. 

(d) Peano axioms: to realize Vre,v (Sx= 0 = I), we may assume that, for a given 
numeral ft = S”0, R(Sit = 0) and +SA = 0, and we want to show that R( l_), that is, 
we want to derive a contradiction. Now R(Sii =0) means that, for all C:E [PM, 
R(Sii E ego 0 E CL). In particular, 0 E V and r-p(O) imply SA E V. We shall deduce a 
contradiction from this by a particular choice of ci. Take 

&x)=x=0, v= {O}, 

then V is easily seen to satisfy the conditions on indices. Moreover Sil E V if and only 
if Sit ~0, which is false, while OE V and r-p(O). 

To realize Vxe,v Vye~ (Sx= Sy=x=y), we take any numerals rft and if and want 
to realize Srfl = Srf = M = A. So suppose R(Sm = St?) and G/71 = Sii, we want to infer 
that R(m = n). Thus we want to show that, for each C:E [PM, R(rf~ E cg= A E ci), 
and similarly for the converse. So, given fi E V and i+(m), we want to show n E V. 
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Let 

9’(x)= jycN((P(Y) Ax=Su), 

V’ = set of all Sm such that r71 E V. 

It is easily checked that v’ satisfies the two conditions on indices because V does. 
Now, the given data translate into SHi E v’ and +-(p’(Sfi). Since R(Sfi~c;= 
Srf E cr), this implies SI? E v’, that is, fi E V. 

To realize the induction axiom, take CUE [Pw and assume that R(0 E c:), that is, 
OE V, and that R(V.~,N(XEC~ =,SXEC~)). We want to show that R(VYE,~ y~cz), 
that is, if E V for all rt. Since R(it E ci =Sit~ CL), we know that il E V and +9(it) 
implies Sir E V, hence, in view of the first condition on indices, that ii E V implies 
ME V. But also OE V, and so the desired result follows by induction. 

This completes the proof of the Soundness Theorem. 

Remark. It should perhaps be pointed out that, in spite of its name, the Soundness 
Theorem shows that realizability is a rather paradoxical concept: even contra- 
dictions may be realized. 

To see this, let p be any closed formula, then up is short for p= I. Therefore 
R( up) if and only if R(p) and k-p implies R( I ). Now R( J_ ) is false and, by the 
Soundness Theorem, kp implies R(p). Thus R( up) if and only if not t-p. Suppose 
now p is any undecidable proposition, then not k-p and not I- up, hence R( up) and 
R( 1 up), and therefore R( ~pr\ 11~). 

As a corollary to the Soundness Theorem we obtain the fundamental theorem 
for I/. 

Corollary 2.7. In Y we have 

(1) not I- _L ; 
(2) if kpvq, then I-P or t-q; 

(3) if I- ilXE~ 9(x), then +9(a-) for some a E [A]. 

Proof. For example, to show (3), suppose I---~~~A 9(x). Then, by the Soundness 
Theorem, R( ZixG~ 9+(x)), that is, R(rp+(a)) and 1-9(a) for some aE [A]. 

Proof of fundamental theorem for 2 1 

We are now in a position to prove the fundamental theorem for 21, namely 
Theorem 1.3. For example, we show: 

(3) if I-’ !ixc,4 9(x), then I-’ 9(a’) for some closed term a’ of type A. 

Suppose I-’ gxe,4 9(x). Now, by Corollary 2.3(l), ciXI 9(x) * 9’(x). hence 
E’ jxe~ 9’(x). Therefore, by Corollary 2.3 (2), I-’ 3.re~ 9’(x). Since 20 is con- 
tained in Y, + gxe~ 9’(x). Therefore, by Corollary 2.7, +9’(a-) for some UE [A]. 
Since Y’ is contained in Y I. t-’ 9’(a-), and so +’ gse,4 (9’(x) A x= a-). Recalling once 
more that ›1~) 9(x) b cpr(x), we obtain +-I 3,V, A (9(x) A x = a-), and so I-I 9(a). 
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Presence of a parameter 

Let C= R or PB and suppose z is a variable of type C. We shall regard z as a 
parameter, that is, it will be constant throughout the present discussion; in 
particular, it will never become bound. p’(z) will be the language whose closed terms 
and formulas may contain free occurrences of z but of no other variable. We shall 
examine what happens to Section 2 if Y is replaced by Y(Z). 

Y(Z) contains comprehension terms {XE A / cp(z,x)}; but we must remember never 
to replace z by another comprehension term. The “closed” terms in [A] may now 
contain occurrences of 2. In particular, [PA] will contain cr where 
cV= {XEA I&z,x)). When C=Q, [Q] will contain z;; but, since not I--:z, we must 
have i=O, and so [Q] will contain only ZO. The proof of Proposition 2.5 remains 
valid. 

In defining the mapping Y (z)-t Y (z) +, we replace z by zo if C= Q. When C= PB, 

we shall replace z by zO, which we define to be c;~ ;, where cVE ;= {y E B 1 y E z}. (The 
reader will check that in cIE; the first condition on indices forces V= 0.) The proof 
of the Soundness Theorem remains valid. 

In view of these considerations, we have established (3;) of Section 1, hence also 
the Uniformity Property for YI, that is, Theorem 1.4. 

It is instructive to realize that the proof of the Soundness Theorem would not 
remain valid in the presence of a parameter of type C= N. Indeed, in realizing the 
induction axiom, we had to show that R(V YE,~y~ CL), which amounted to showing 
that Vcontains all closed terms A of type N. This was proved by induction on n; but 
there is no way of showing that the parameter z of type N is in V. 

3. Representability 

In this section we discuss how to represent recursive functions in type theory. 
Although most of the results are well-known, we emphasize those aspects useful in 
category-theoretical applications (see Section 4). 

All the languages we are dealing with contain numerals O, i,2, . . . . In our 
languages Yo, 9’1 etc. rt 3 570. 

A formula ~(xi, . . . ,xk,y) represents a function f: N” --iv provided 

(O)f(rnl, .‘.1 ok) = n if and only if t-&ml, . . . , ~flk, A). 

It follows from this that 
(1) for each ~tl~, . . . , mkEN there exists a unique n such that +-(o(f?zi, . . ..rftk.A). 
One usually imposes a condition somewhat related to (1) in addition to (0): 
(2) for each ml ,..., mkEN, ,--!!,,,V@?? I,..., &=?k,y). 

For example, in [13] ~0 is then said to represent f “numeralwise”. Sometimes one 
even imposes the following in addition to (0): 

(3) FV~,~,V..* V,V~~,V ~!,vENID(X~~ ... ,xk*y). 
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In the literaturefis then said to be “strongly” representable. 

For our present purposes, “intuitionist type theory” will mean YI and “classical 

type theory” will mean Y‘I with the Boolean axiom added. 

Remark 3.1. In intuitionist type theory, (2) implies (1). 

Proof. For simplicity take k = 1 and assume that I- 3!ys~ cp(fi,y). It follows from 

the fundamental theorem that I--cp(Pr, ff) for some no N. Moreover, if also 

+-rp(rfl,n’), then +-~t =z hence n = n’ by consistency, which is also contained in the 

fundamental theorem. 

The following was discovered by Verena Huber-Dyson [ 11,221. 

Proposition 3.2. In classical type theory, if f is represented by a formula p 
satisfying (2). then it is also represented by a formula q~ satisfying (3), that is, 
numeralwise representability implies strong representability. 

Proof. For simplicity we take k= 1. Suppose p(x,y) satisfies (2) and represents the 

function f : N-N. Consider the formula @(x, y) given by 

Since +.r3;E.~ ~(x,z)= 3,,,~ (~(x,y), we may infer by classical logic that 

I--.~ 3,,,v@(x,y), hence that t-V,rc,v EIYEiv @(x,y). Now let 

Applying the least number principle to cp’, we deduce that t-Vxc~ 3!ye,~ I+Y(X, y). 

Thus v satisfies (3). 

We claim that I+Y still represents f. Indeed, f(m) = n if and only if +P(A, ii). Since 

+ !lzE~ rp(m, z) by (2), this is so if and only if +@(m, n). Finally, this is easily seen to 

be equivalent to +v(m,n). Indeed, suppose ~-#(m,fi). From (2) we have 

t-.tlielv (ul(@z)-z=fi), hence +Vzelv(@(fi,z) -ZZA), therefore I-w(m,~). 

In his famous paper of 1931, Godel characterized the representable functions of 

classical type theory as follows: 

Theorem 3.3. In classical type theory: 
(i) every recursive function is representable, 

(ii) every representable function is recursive. 

For the proof see [S, 13,241. It appears in the proof that the formula 9 repre- 

senting a recursive function may be assumed to satisfy (2), hence (3). 

Given a formula &x,y) with x and y of type N, clearly (1) is a necessary and 

sufficient condition for the existence of a function f : N-N which is represented by 

p. In intuitionist type theory (1) is implied by (2), in view of Remark 3.1, hence by 

(3). Unfortunately, in classical type theory neither (3) nor (2) will assure that &x,y) 

represents a “total” function. 
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Example 3.4. Let p be an undecidable sentence and consider the formula 9(x,y) 
given by 

rp(x,y)=(pAy=O)v (‘PAY= 1). 

Clearly, classically we have I-V~~,VC 3 f .yp~v rp(x,y). Since 9 does not contain x, any 
function represented by 9 would have to have constant value 0 or 1. In either case, 
we would be able to decide p. Thus 9(x,y) satisfies (3) classically, hence (2), but does 
not represent a function. 

The following is found in [13]. 

Proposition 3.5. In intuition& type theory, suppose for each ml, . . . , mk E N there 
exists n E N such that +9(rft1, . . . ,rRk,il), then there is a recursive function 

f(ml, . . . , mk)such that F-rp(iFiT ,..., mk,f(m~,..., m~))foraliml,..., mk~N. 

Proof. For simplicity we take k = 1. We assume that for each m E N we can find 
n E N so that 9(#1, ii) has a proof, let us say with Godel numberp. Wrire ‘A T for the 
Code1 number of A and let Proof(q,p) assert that p is the Godel number of a proof 
of a closed formula with Code1 number q. Thus, for each m E N, we can find n and 
PE N so that Proof(‘(o(rFr,n)‘,p). Now Cantor discovered a primitive recursive 
“pairing” function N x N-N whose converse is given by primitive recursive 
functions ( )O and ( )I : N-N. Thus we can find kc S such that 
Proof( ‘9(rh, (k)o) 7, (k)l). If “,Uk a..” means “the least k such that . ..“. we may put 

f(m) =f.uk Proof(‘cp(m,(k)o)‘,(k)t))o. 

f is easily seen to be a recursive function. Moreover, it follows that +p(m,f(m)). 

Corollary 3.6. In intuition& type theory, suppose 9(x1, . . . ,xk,y) satisfies (1) (or (2) 
or (3)), then 9 represents a recursive function f. 

Proof. From Proposition 3.5 we have hp(m,f(m)). Therefore, f(m) = n implies 
t-9(@ A). Conversely, if +9(m,ii), it follows from (1) that +f(m) = ff. Since 
intuitionist type theory is consistent by the fundamental theorem, f(m) = n. 

On the other hand we have the following. 

Proposition 3.7. In intuitionist type theory, not every recursive function is repre- 
sentable by a formula satisfying (3), that is, strongly representable. 

Proof. Let E be the set of Godel numbers of proofs of formulas of the form 
VXs:v 3!yE,~ 9(x,y). For any eE E we thus have a formula 9&y) such that 
kV’xe,v 3 !wa.v 9dx,y). By Proposition 3.6, there is a recursive function fe repre- 
sented by 9e. 

Now E is recursively enumerable, so let h enumerate it. Consider the function g 
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such that g(m) =fht,,,)(m) + 1. Clearly g is computable, hence recursive. However, g 

is not representable by a formula ~0 such that I-V\.~.L 3!,, I CO(X,Y). For, if it were, 

let h(k) be the Godel number of this theorem. Then g(m) =fh(k-,(m) for all m, hence 

fh(~)(k) + 1 = g(k) =fh(k)(k), a contradiction. 

For the idea of the above proof see [13, Chapter 14, Example lo]. Unfortunately, 

we do not know an intrinsic characterization of the recursive functions represented 

by a formula cp(x~, . . . . . u~,y) satisfying (3) in intuitionist type theory. It may be 

shown that these functions properly include a version of GGdel’s Dialectica 

functionals of type N.\. 

The question remains: which recursive functions are strongly representable in 

intuitionist type theory? For example, addition is strongly representable by the 

formula c&Y, z) which asserts that (x,Y, z> belongs to all K E P(Nx NX Nl such 

that 

(9 V.re.~ (x0,x) E u, 

(ii) V,,.\ Vye,hi V: E,L.((X,Y,Z)EUJ(X,SY,SZ)EU). 
A bit of vvork has to be done to show that a(x,y,t) satisfies (3), that is, 

+VXEN V~E.~ 3!,,,v (T(X,Y,Z). 

In the same way one can show that all primitive recursive functions are strongly 

representable in intuitionist type theory. Now every recursive functionf(mt, . . ..mk) 

can be expressed in the form 

f(rnl, --. 9 mk)=h0l.(g(mI,...,mk,n)=O)) 

in terms of primitive recursive functions h(n) and g(m I, . . . , mk, n), provided 

V ml .*.V,,,, 3,,g(mt ,..., mk,n)=O. 

We shall callfa provably recursive function if moreover g is strongly representable 

by a formula P(XI, . . . ,Xk,y, Z) so that 

I- VX, E JV . . . v/, E Iv 3ye.V (Dh, . . . ,xk,Y,oh 

Proposition 3.8. If a function N k-+N is provably recursive in intuitionist type 
theory, then it is strongly representable. 

Proof. Assume f is provably recursive. For example, take k= 1 and let h be the 

identity function. Thenf(m) is the least n for which g(m, n) = 0, that is, t-&m, A, 0), 

where +VXc.v Vys~ j!zc~ cp(x,y,z) and i-VXei~ !lye.v q$x,y,O). We claim that f is 
strongly representable by r@,y) where 

W(X,Y)~&X,Y,O) A vZ,N(zcY=-P(x,Z,O)). 

We first verify that rp is decidable, that is, 

~.(x,v,r}(P(X,Y,Z)Vl(P(X,Y,Z). 

Indeed, given x and y, let zo be the unique z such that rp(x,Y,z). Now (t=zo)V 
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~(z=zo) and ((;=Eo)= CP(.U,Y,Z)) A (~(z=~o)=~(~(xY,~)), hence c,D(x,,~,z) v 

~rp(X,Y,Z). 

Since ~0 is decidable, we may apply the least number principle (see [13]), and 
deduce that ~k’,~~.v 3!,,E,~ u/(.~,y). 

Why does I,Y represent f? In view of (3), it suffices to show that f(m) = n implies 
FIJI(@Z, ii). Suppose f(m) = n, then g(m, n) = 0 and, for all k< n. g(m, n) #O. Thus 
F-C&~, rf, 0) and, for all k < n, not k-(~(lfl, IF, 0). Because cp is decidable, we deduce by 
the fundamental theorem that, for all k< n, F- -lq.$r?z,E,O), whence t-YzE,v (z< ii=, 
l&m,z,O)), hence I-IJI(~, ii) as required. This completes the proof. 

It seems quite reasonable to expect the converse of Proposition 3.8 to hold too. 
Indeed, supposefis strongly representable. We saw in the proof of Proposition 3. j 
that 

where 
f(m) = &(h(m, (k)a, (k)t) = O))o, 

h(m, n, P> = 
if Proof( ‘cp(fi, rt) ‘,p), 

It may be shown that h is primitive recursive, so it may be strongly represented by a 
formula x(x,y,z, t) and we need only verify that +V,Ye,~ !lyE,v ilZE,v x(x,y,z,O). In 
fact, it suffices to represent the primitive recursive predicate Proof( ‘cp(m, n) ‘,p) by 
a formula <(x,y,z) so that ›tj,~~,v gye,v 3 iE.v t(x, y, z). Surely, the representation 
can be carried out, hence, for each rn~N, +EIYs~ 3,,,v <(m,y,z). All we require 
then is to show that one proof will do for all m, that is, F-,~ gYE~ 3zEh. <(x,y,z). If 
this could be shown, the proof of the converse of Proposition 3.8 would be 
complete.3 

4. The free topos 

In this section we study the so-called “free topos” T(f) generated by a graph f (at 
least when I- is the empty graph 0) with the help of the language 2’1. Constructions 
of T(0) using languages somewhat like 21 were carried out by Coste, Fourman and 
Boileau, although the essential idea in them goes back to an earlier, more circuitous 
construction of the free topos by Volger. We shall postpone discussion of the 
universal property of T(T) until Section 5. Instead we shall concentrate on an 
investigation of those arrows in T(0) whose source and target are determined by 
types of 2’1. 

We shall require a definition of “topos” which is a little tighter than usual, in as 
much as products and exponents are not just required to exist but are posited as part 
of the structure of a topos. 

3 See Appendix 1 for a proof of the converse of Proposition 3.8 along somewhat different lines. 
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Predogmas 

Definition 4.1. A predogma is essentially a category Y with finite products and 

exponentiation R”, for a given object R and any object A of .:A’, with a natural 

isomorphism .Y (A x B, Q)z.:/(A,Q~). More precisely, it is a category .-i with 

distinguished data (1, *, x, z, n’, ( ),R, P, E, *), where 

(i) 1 and Q are distinguished objects; 

(ii) PA and A x B are objects when A and B are; 

(iii) *,_I :A-1, n,4,B:AxB4A, 7Zk.B: AXB-B and E.A: PAxA--R are 

distinguished arrows; 

(iv) the following are rules for generating arrows: 

f:C+A g:C-+B h:AxB+R 

cf,g) : C-AxB ’ h*:A-PB’ 

Moreover, these data are subject to the following equations, where l =- is written 

for equality between arrows in .v. 

Terminal object: f . = l *A, for all f : A + 1. 

Product: 71.4, B (f, g > l = l f, 

Tlk,s(f,g) l =*g, 

(TtA.sh,n>.Bh) l =* h, 

for all f : C-A, g : C-B and h : C+A x B. 

Exponentiation: EB( h *T~A.B, T&,B) l =* h, 

(EB(gnA.B,nk,B>)*‘=‘g, 

for all h : AxB-Q andg : A+PB. 

Toposes 

Definition 4.2. An elementary topos, or just a topos, is a predogma with a 

morphism T : 1-Q such that 

(I) every monomorphism B k A has a unique characteristic morphism h : A+Q, 
which means that 

A&R 

T. i 

T 

B-l *.3 

is a pullback; 

(II) every arrow h : A-+!2 is a characteristic morphism, which means that the 

above pullback exists. R is called the subobject classifier. 
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Furthermore, it is here understood that a topos also contains a natural number 
object N equipped with arrows 0 : 1 -N and S : N-N such that 

(III) 1 0 
5 

N - N is initial in the category of diagrams 1 2 
A - A. 

The last condition is known as the Peano-Lawvere axiom. 

The free topos generated by the empty graph 

To any graph r we shall associate a topos T(T) called the “free topos” generated 
by I-. First we look at the special case when r is the empty graph 0. 

Definition 4.3. The objects of T(0) are closed terms CY in ~‘1 of type PA for some 
type A. We call (r and CZ’ equal if HI = (Y’. 

The arrows f : cr+j3 of ir(0) are triples (a, rI,/3), where IfI is a closed formula of 
type P(A x B) subject to two conditions: 

(1) +vxerl ~.“EB((X,Y)EVi=)(XE(rAtEp)), 
(2) l-vxerl cYEa= 3!,,s (x,y> E pj,. 
Wecallf=(a,VI,/I)andj-‘=(a’,If’J,/3’)equalif I--a=cx’, I--p=/?‘and I--lfl=?f’l. 

We then writef*=*f’. 
The identity morphism 1, : a+a is given by 

Ilal={z~AxAl3 XEA (<x,x> =rAxEa)), 

which may also be written as 

{<x,y)~AxAIx=yr\x~~}. 

The composition off : a-/3 and g : p-y is given by gf : 1~4 y where 

Igfl={(x,z)~AxC/3 YEB((X,Y)E~~IA(Y,Z)EI~I>}. 

It is easily seen that T(0) is a category. 
To give T(0) the structure of a predogma we make the following definitions. TO 

avoid confusion with type symbols, ! and Q are underlined. 

!={*}; 

&?={tERp=t}; 

Pcz={uEPAIV~~A (XEU=XECr)}; 

axp~{(x,Y)EAxg(x~aAy~~~; 

I*,I={(x,y)~Axllx~aAy=*); 

In,,3/ ={((x,y),x’)E(AxB)xAIxeaAyE~Ax=x’}; 

I n&pl = similarly; 

~~~l={((u,x),t)~(PAxA)xQ~(x~u)=t~x~aAu~Pa}; 

I(f,g)lr{(z,(x,y))ECx(AxB)/(z,x)ElflA(z,Y)Elgj}, 
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wheref: y+a, g : ydj?and (f,g> : y-+axP; 

jh*I~C(x,v)EAxPBI~~Es(((x,Y),YEv)E jhl)AxEaAvEPp}, 

where h : ax/?+Q and h * : a-+Pp. We omit the calculations which show that 

T(0) is a predogma. Similar calculations may be found in [16]. 

To give T(0) the structure of a topos, we first define T : 1-e by 

(TI=[(*,T)1, 

then proceed as follows. 

(I) Given a monomorphism m : /I ++ a, we define its characteristic morphism 

char m : a-Q by 

Ichar ml~{(x,t)EAxnlf=~,,~((x,y)EImI)} 

and check that the square 

a-Q 

is a pullback. 

(II) Given an arrow h : a-Q we obtain a monomorphism ker h : b >-* a where 

p={x~Al(x,T)~Ihl}, 

jkerhl~{(x,x)EAxAI(x,T)Elhl} 

and again check that the above square is a pullback. 

(III) We put 

1113 {xENlx=x} 

and define 0 : ! -y and S : N-N by 

lol={(*,0)1, 

ISI= { (x,Sx) ENxNlx=x} 

and check the Peano-Lawvere axiom. 

Note that T, @, 0 and $ are underlined to distinguish them from the corres- 

ponding symbols in the language 2 I. 

The free topos generated by any graph 

We recall that a graph, that is, an orientedgraph, consists of two classes, the class 

of arrows and the class of objects, and two mappings from the former to the latter, 

called source and target. One writesf : A + B for source(f) = A and target(f) = B. A 
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category is thus a graph with additional structure. A morphism F : r-f’ of graphs 
sends arrows and objects of I- to arrows and objects of f’ so that f : A -13 implies 
F(j) : F(A)-F(B). 

When f is any graph, we may construct T(T) from a language 21(r) in a similar 
fashion to the construction of T(0) from Y I. Primitive types of 2’1 (r) are not only 1, 
52 and N, but also all objects of f. Moreover, for any arrowf : X+ Y of r and any 
term < of type X, we stipulate thatfr is a term of type Y. T(T) comes equipped with 
a morphism from the graph r into the underlying graph of T(T). 

Arrows bet ween types 

With any type A of irt there is associated an object 4 of T(O), where 

4 = {XEA 1x=x} 

is the universal set of entities of type A. An arrow 4 -, B is determined by a formula 

9(x,y) such that +V.rs~ 3!,,~ 9(x&. 
For example, an arrow 1’4 is given by a formula 9@)=9(*,y), since any 

variable of type 1 is provable equal to *, such that I-~!,.~E I&). By the funda- 
mental theorem, there is a closed term b of type B such that Fly(b), hence 
I-(~,~J 9(x,y) *y = b. Thus the arrow is given by the explicit equation y = b. 

To obtain a survey of all arrows 4 -+@ in T(0) we observe that 4 is isomorphic to 

y”xPC,x*-xPCm 

and that 4 has the same form. Therefore we need only determine the arrows 4-N 
andA-+PC. (Note that PC=Pcand CxD=CxQ.) 

The arzws 4 +PC aredealt with most easily. Suppose kv’xeA ii! ive~~ 9(x, w), - 
then we have 

t--{x,w}(p(X,W) * W={ZEC/3w,EPC(CO(X,W’)ATEW’)}. 

Hence we may replace 9(x, w) by the explicit equation w = t(x), where t(x) is a term 
of type PC. 

Since 12s Pl is any predogma, we can also describe arrows 4-Q explicitly. 
Indeed, from t-VxE~ 3!,,o9(x, t) one deduces, as a special case of the above, that 

+-(.r./)rp(x, t) e t=q$x, T). 

To study the arrows 4 -+fi, we shall first look at two special cases: A = N” and 
A = PC. We saw in Section 3 that the arrows Nk+N are determined by formulas 
which represent certain recursive functions. 

Arrows PC-+I1/are determined by formulas 9(w,x), where +V,+,E~~3!xei~9(~,~). 
Now the uniformity property allows us to infer +-3.~s,v V,+E~c9(w,x). Hence, by the 
fundamental theorem, there is a numeral it such that ~-V~~~c~p(w,if). It follows 
that E-(,,.,~~(P(w,x)~x=A, hence we may factor PC+@ as pC-1-y. In other 
words, all arrows PC-Y, hence also Q-y, are constants. - 
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Finally, let us look at the general case 4 -$. For argument’s sake, we take m = 1, 

so we consider an arrow yk x PC-+e given by a formula e$x, w,~) such that - 

+V.reNX VWEPC 3!,“Eh.(P(X, W,Y). (1) 

Take any m E Nk, then 

t-VwePC 3!,“EIVIP(@ W,Y). 

Therefore, by the uniformity property or the fundamental theorem for ZL I(W), 

+vt/,EPc(P(% w,f(m)), (2) 

wherefis some function N”+N. On the other hand, substituting C for w in (l), we 

obtain 

+Vxe,Vc 3!vEN(P(X, C,Y>. 

Therefore, there is a representable recursive function g : Nk-+N such that, for all 

mENk, 

W(fi, G g(m)). 

Comparing this with (2), we see thatf=g is a representable recursive function. 

Applying the functor I-= .-J(!, -) to the arrow 4 +I$ we see that T(A)-+T(w 

factors as follows: 

where f is a representable recursive function. Perhaps a more refined argument will 

show that already the arrow 4 -+y factors as 

projeclion 
A- Nk- N. 

We summarize the above results in the following proposition. 

Proposition 4.4. The following hold in T(0): 
(1) Every arrow ! ‘4 is given by an equation y = 6, b a term of type 4. 
(2) Every arrow A-PC or ,j --+c is given by an equation w = t(x), where f(x) is a - - 

term of type PC or Q respectively. 
(3) Every arrow yk-+y represents a recursive function Nk-+N. 
(4) Every arrow PC-N or $?-+efactors as PC+ ! +fi or Q-1 -+N respectively. 
(5) Everyarrow~=,II”x~x...x&+N~sent byr=.J(!,-) onto 

W ) 
r(prokc~ion) r(?q - l Nk / , N _ , 

wo 

where f is a representable recursive function. 

(1) and (3) of the above theorem were first explicitly obtained by Boileau, 

essentially by the Kleene-Friedman method of Section 2. Related results were also 

asserted by the Costes, using the cut-elimination method of Gentzen-Girard. (2) is 

suggested by the work of Fourman. (4) was conjectured by Andre Joyal; we 

originally had the weaker version that r(PC)*T(i?i) is constant, which we proved - 
with the help of the Godel-Rosser incompleteness theorem. 



240 J. Lambek. P.J. Scott 

Arrows in the free Boolean topos 

While it follows from (1) that every arrow I- llJ in the free topos T(0) is given 
by a standard numeral, this is not so in the free Boolean topos (see Example 3.4 with 
k = 0). 

Not every recursive function f : Nk-N comes from an arrow I?Jk-+N in T(0) (see 
Proposition 3.7); however, it does come from such an arrow in the free Boolean 
topos (see Theorem 3.3(i)). 

In the free Boolean topos, not every arrow fl”-I~/ gives rise to a total function 
Nk-*N (see Example 3.4); but if it does, then this function is recursive (see Theorem 
3.3(ii)). 

5. The universal property of the free topos 

The free topos T(T) generated by the graph r comes equipped with a morphism 
H : f-T(f) in the category of graphs and has the following universal property: 
given any graph f and any morphism G from I- to the underlying graph of a topos 
.Y-, there is a unique arrow F : T(T)-+.7 in a suitable category of toposes such that 
FH= G. Of course, this means that Tis the left adjoint of the forgetful functor from 
toposes to graphs. It asserts, in the special case when I- is the empty graph 0, that 
T(0) is an initial object in the category of toposes. 

The universal property was first obtained by Volger, for another construction of 
T(T), with some handwaving: for him G was not a functor but only a pseudo- 
functor and its uniqueness held only up to isomorphism. All this was straightened 
out in [16], by confining attention to toposes with canonical subobjects. 

In this section we shall establish the universal property of T(0), as constructed 
from ~1, by showing that it is an initial object in the category of toposes with 
canonical subobjects. 

Indeterminates 

One may adjoin an indeterminate arrow x : 1 -A to a predogma .:J, when A is an 
object of .:1. The resulting predogma :/[x] has the expected universal property. 
Moreover, each morphism 9(x) : 1 +B in .Y/[x] has the form 9(u) l 70 fx, where 
f : A + B is a uniquely determined arrow of .d. Here l 2 9 denotes equality in .:/&I. 
For details of this construction see [16]. 

If X= {XI, . ..) x,} is any finite set of indeterminates x, : 1 -A,, we similarly can 
form s/[X]. For example, if X= (.Y,,Y~, we have ._Y[X] = ..:/[x,y] 3 -Y[x][y]. It does 
not matter whether we adjoin indeterminates simultaneously or one at a time. In 
fact, we could replace x : 1 +A and y : 1 -B by a single indeterminate z : 1 -A x B 
so that .:/[x,y] z.c/[z]. 

It already follows that certain expressions 9(_u1, . . . ,x,) of the language 2~1 of type 
theory may be interpreted as arrows in .Y[xI, . . . ,x,1, provided we regard variables of 

type A as indeterminates 1 -+A. Thus we interpret 



(1) terms f of type A as arrows f : 1 -+A ; 

(2) a formula aEu as the arrow E.A(cY,~) : l-+12; 

(3) a term {xE,~, p(x)} as the unique arrow 1 -+-PA such that the corresponding 

arrow f : A--R satisfiesJv 0;” cp(x), where &u) has already been interpreted. 

The equation in (3) is easily seen to be equivalent to 

XE {XEA If&Y)} 0,’ f&V). 

The presence of other free variables does not essentially change anything. 

Furthermore we interpret 

(4) the term *of type 1 as the arrow *I : l+ 1, which is of course the same as the 

identity arrow 11; 
(5) the term (a, 6) of type A x B as the arrow (a, 6) : 1 -A x B, where a and b 

have already been interpreted as arrows 1 -A and 1 + B respectively. 

This interpretation can be extended to all terms of the language :f I provided .ri is 

a topos or, more generally, a “dogma”, which we shall not define here. It should be 

pointed out though that, even when -1’ is a topos, Y [x] is only a dogma and not a 

topos. 

interpretation in a topos 

Let 6~ : Cx C-+-R be the characteristic morphism of ( I c, 1 C) : C-Cx C in a 

topos .d. If terms c and c’ of type C are interpreted as arrows 1 -C, we write 

c=c’ for &(c,c’). 

If formulas p and q are interpreted as arrows 1 -+R, we write 

PAq for (P,q) = (T, T), 

P=4 forPAq=P, 

V,,A(D(.Y) for {XEA l&x)} = {XEA 1 T). 

As it is well-known that I, --up, pvq and 3 .VE,-l~(~) may be defined in terms of the 

above, we have an interpretation of all closed formulas of ‘/I by arrows 1 --R in the 

topos .Y’, in fact, of all closed terms of type A in I I by arrows 1 -A in :1. IMore 

generally, all terms involving variables xi, . . . ,xn are interpreted as arrows in the 

predogma (actually dogma) .Y’[xI, . . . ,x,1. 

We shall also interpret 

Pi,P2, .*.,pn+q 

by saying that the intersection of the subobjects of 1 in 9 corresponding to the p, is 

contained in the subobject corresponding to q. Similarly we interpret +X in terms of 

subobjects of 1 in .Y[X]. It is well-known that the validity of 

Pi,P2, ... ,prl+xq 

in :! I implies its validity in .:f’[X] for every topos .Y. 
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We note that the interpretation of +,y in a topos can also be explained without 
mentioning subobjects. For example, if X= {x}, x of type A, 

f IX,f2X, . . . ,fnx+.< gx 

means this: for all objects C of 9 and all arrows h : C+A in .Y, iffih l = l T *c and 
fib .=. T*c... and fnh l =* T*c, then gh .=a T*c. 

The internal language of a topos 

The language Y I studied so far is pure type theory. It contains no types other than 
those implied by Definition 1.1 and no terms other than those implied by Definition 
1.2. Moreover, it is subject to no axioms other than those listed in Section 1. One 
may also consider various applied type theories extending :!I by permitting 
additional types, terms or axioms. In particular, the interpretation of the language 
Y I in a topos .-/ may be extended to the so-called internal language of that topos. 
This admits all objects of .Y/ as types and all arrows I -+C in .% as terms. It follows 
that each arrow f : A -*B in .:/ allows one to form a term fa of type B for each term 
a of type A. For example, if C is any object of .-i and c and c’ are arrows 1 + C, we 
may regard &(c, c’) as a term of type R and write it as c=c’. 

Canonical subobjects 

Definition 5.1. We say that a topos has canonical subobjecfs if to each object A 
there is associated a representative set Sub A of monomorphisms (or subobjects) 
B F+ A with the following properties: 

(i) Every monomorphism B k A is isomorphic to exactly one element of Sub A. 
(ii) 1~ : A-A is in Sub A. 

(iii) If f : B-A is in Sub A and g : D-C is in Sub C, then f xg : B xD+A x C 
is in Sub(A x C). 

(iv) If f : B-A is in Sub A, then Pf: PB-PA is in Sub PA. 
(v) Iff : B-+A is in Sub A and g : C-B is in Sub B, then gf : C+A is in Sub A. 

Already in a Cartesian category one may define f x g as (f7cao, gn’g.o> . To define 
Pf in a topos, we stipulate that, for an indeterminate v of type PB, 

We remark that all toposes occurring in nature have canonical subobjects and 
that every topos is equivalent to one with canonical subobjects. Moreover, the free 
topos T(f) constructed in Section 4 has canonical subobjects: with any monomor- 
phism m : p >-, (Y we associate the isomorphic canonical subobject m’ : /?’ f-t a, 

where 

/3’= {xe A j 3ye~((~,~) E/ml)}, 

Jm'l = {(x,x) E A x A lx~/l’}. 
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W’e recall [16] that in a topos with canonical subobjects there is a bijection 

.h.u 

Sub A y -/(A,Q), 

where char m is the characteristic morphism of m and ker h, the kernel of h, is the 

unique element m of Sub A whose characteristic morphism is h. We also recall [16, 

Lemma 9.11 that in a topos with canonical subobjects the following equations hold, 

where we have written 

P,B l =* {VEPBi VYE8(_YEV=yEfi)}, 

Lemma 5.2. In a topos with canonical subobjects, 

ker(T*A) l =a 1.4, 

kerA(fx g) l = l ker f x ker g, 

ker((PP)‘) l = l P(ker(P’)), 

for allf: A-Q, g : B-R andp : 1 -+PB. 

Universal property 

For expository purposes we shall only establish the universal property of T(T) 

when I- is the empty category. In other words, vve shall show that T(0) is an initial 

object in the category Top whose objects are toposes with canonical subobjects and 

whose arrows are functors which preserve the predogma structure, the natural 

number object and canonical kernels exactly. This is easily shown [16, Lemma 9.21 

to be equivalent to saying that the functors preserve the predogma structure, the 

natural number object, internal equality (hence all logical symbols) and canonical 

subobjects. Very roughly speaking, the arrows in Top are the “logical functors” of 

the topos literature, but they are defined more tightly. The universal property of 

T(T) for an arbitrary graph r may be proved in the same way. 

Theorem 5.3. T(0) is an initial object in Top. 

Proof. Given any topos .Y with canonical subobjects, we shall show that there is a 

unique arrow F : T(O)-.7 in Top. The uniqueness of F will be made clear by 

showing that its construction is forced at each stage. 

First we define F(a) for any object a of T(0). Now a is a term of type PA in 2-1, 

which may also be interpreted as an arrow 1 --PA in 7. As in any predogma, this 

gives rise to a unique arrow a’ : A-Q in .X We define 

F(a) = Ker(a’), 

by which we mean the source of ker(a’). 
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That this definition is forced upon us is seen as follows. Consider the canonical 
monomorphism m a : a-4 in T(0) given by 

Im,I={(x,x)EA xA/xca). 

Its characteristic morphism may be calculated4 to be the arrow a’ : d+Q which 

corresponds to a : l-P.+. Thus m, l = l ker(a’), hence a = Ker(a’) in r(0). Note 
that the first a in this equation refers to an object of T(0). while the second a refers 
to the arrow !-PA in T(0). Applying the functor Fto this, which preserves kernels, 
the predogma structure (hence the symbol ‘), the natural number object and all logic 
symbols (hence the term a), we obtain F(a) = Ker(a’) in .Y, 

Next, we wish to define Fcf) for any arrowf : cr-+~ in 1(O). We recall that Ifi is a 
term of type P(A x B) such that 

(i) +Vxc,4 Vyra ((,~,u,y)~lf/=,(~~aAy~P)), 
(ii) +VlE.4(xE a* 3!ve~(x,y) E IfI). 
Now let x : 1 -*F(a) be an indeterminate of type F(a) = Ker(a’) over -7, Put 

na==* ker(a’) in 7, 
then 

a’nd l 7 l T, 

that is, 
t-,ynax~a in .i[x]. 

Now (ii) holds in any topos, hence in 7. Therefore 

t-,V9!VE~(na~,y) E IfI in .Y[x]. 

By [16, Theorem 8.31, there is a unique arrow h : F(a)-+B in .Y- so that 

t--*<nax,hx) E ifi in .9[x]. 

Also (i) holds in any topos, hence in .Y-. Therefore 

t-rhx~p in .Y[x], 

that is, /?‘hx l 7 l T. hence 

pfh .=. T*F(~). 

But Ker(P’) = F(J); hence there exists a unique arrow Fcf) : F(a)--F(p) such that 

npFCf) l =- h. 

It follows that Fcf) is the unique arrow such that 

+-x (nax, npFCf)x) E IfI in -[xl. 

It is tedious but routine to verify that F thus constructed is a functor which 

preserves the predogma structure. For example, let us show that 

F(a x/l) = F(a) x F(p). 

4 See Appendix 2. 
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One easily calculates that 

245 

(a x BY l =- A(a’xp’), 

hence, by Lemma 5.2, that 

ker((a x ,8)‘) l = l ker(r\(a’x /?‘)) l = l ker(a’) x ker(a’). 

Passing from the arrows to their sources, one obtains F(a xp) = F(a) x F(J) as 

claimed. 

As a special case of the above definition, let us calculate F(m,), where ma : a--+! 
is ker(a’). We see that F(m,) is the unique arrow F(a)-+.4 in ./ so that 

I--x (&xx, F(m,)x) E lm,J, 

that is, nax l 7 l F(m,)x. It follows that 

We shall now prove that 

F(ker h) l =* ker F(h) 

for any h : ,j +$2. Let 

/?mKer h={x~Al(x,T)EIhl} 

according to Section 4. Straightforward calculations show that 

lm, ker hi l =* lker hi l =* Imp/ 

and 

i/?‘mal l =- I/?‘/ .=. lhl. 

Since sources and targets agree, we may therefore conclude that in T(0) 

ma ker h .=. mp, Pm a-=* h. 

Applying the functor F to this, we obtain, 

naF(ker h) l =* no, at& . =. F(h). 

(1) 

(2) 

These equations are utilized in checking that /3’ is the characteristic morphism of 

n, ker F(h), but we omit the routine verification here. Since na l = l ker F(u’) and 

ker F(h) are both canonical subobjects, so is their composition. Therefore, in view 

of (2), 

na ker F(h) l =- ker (p’) l =* no-=* naF(ker h). 

Now n,, being an equalizer, is a monomorphism, and so the result follows. 

Finally, to prove the uniqueness of F, suppose that F : T(O)-.? is any functor 

which preserves the predogma structure, the natural number object and kernels, 

then we claim that F(f) must be as defined, that is, 

k-r (n,x, npFU)x> E IfI 
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must hold in J[x] for any indeterminate .Y : l-F(a). Eliminating the symbols E 
and I-~ from this, we thus want to show that 

~~x~<lfl, (na,ngFCf))~) ‘5:’ T, 
that is, 

EAXB (l_I-j*~(a), (n,,npR_O)) l =* T*F(~J. 

Now this equation in .J is obtained by applying the functor F to the following 

equation in T(0): 

E+~(lfl*ar (m,,rnpf)) l =* T*a. 

A tedious but routine calculation shows that this equation does indeed hold in T(0). 

6. Postscript on the Freyd cover 

When we presented the above results at a conference in the fall of 1978, Peter 
Freyd immediately realized that the g-property asserts the projectivity of 1 and that 
the v-property asserts the indecomposability of 1 in the free topos. He then went 
ahead and proved the projectivity and indecomposability of 1 directly. We shall give 
a brief sketch of his ideas and show how the g-property and v-property may be 
deduced, then generalize his method to obtain also the Uniformity Property. 

Definition 6.1. The Freyd cover of a topos (more generally of a category with 
terminal object) is the comma category :/= (Sets, r), where r= ~‘(1, -). Its objects 
are triplets (X,&A), where Xis a set, ‘4 an object of .-/ and < : X-T(A) a mapping. 
Its arrows from (X, 5, A ) to (1; q, B) are pairs of arrows (cp : X- I”, f : A -+ B) so that 
the following square commutes: 

cp 
X-Y 

..v? comes equipped with a functor G : .J- -/defined by 

G(X,<,A)=A, G(M) l = of. 

.-i’ is also a topos (if .-i is) and G is then a logical functor. 
Here is the crux of Freyd’s argument. He observed that the terminal object i of :i 

is trivially projective (and indecomposable). Now, if .Y = T(0) is the free topos, then 

there is also a unique logical functor F : .N -.:/’ and GF is the identity functor on :I. 

It follows that 1 is also projective (and indecomposable) in T(0). 

We wish to check that this argument remains valid if we operate entirely in the 

category Top, whose arrows are strict functors that preserve everything on the nose. 
To this purpose we must present some technical details. 
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With each type A of Y’I there is associated an object A of any topos, hence of .:d 

and .$. To avoid confusion, we shall denote the corresponding object of .y’by A. In 

particular, i, fi and N are the terminal object, subobject classifier and natural 

number object of .G respectively. It turns out that A = (S.4, J.A,A), where S.-r may be 

defined by induction on A : 

SI = { *}, s,v= N, Sn=I-(G’)L’{T}, 
^^ ^ 

SA~B=SAXSB, SPA = .-J(A, Q). 

Here XU Y denotes the disjoint union of X and Y and may be identified with 

(Xx {O}U(Yx { 1)). The mappings LA : s~-+f(A) are the obvious ones. In 

particular, note the striking similarity between Ao : So-f(Q) and the mapping 
- . . 2 + - :! in Section 2. 

More generally, one defines 

where [ is the compound mapping 

Xx Y= I-(A)xT(B) 1 T(A x B), 
and 

P(X, r, A) = (.-J((X, r, A ), 6), e, P‘4 )> 

where, for any arrow (A,h) : (X,<,A)*Q, 

8((A,h)) l =- ‘h’ 

is the arrow 1 -PA corresponding to h : A-Q in .Y. 

We wish to verify that :? is a predogma in the strict sense of products and 

exponentiation being part of the structure and that G preserves the predogma 

structure exactly. As regards objects, this follows from what has been said above. 

As regards arrows, it may also be readily checked. 

Next, we wish to verify that .:? has canonical subobjects and that G preserves 

kernels. Now it is easily seen that an arrow 

in .:? is a monomorphism if and only if p is a monomorphism in Sets and 171 is one in 

.%. Thus we are led to call (JJ, m) a canonical subobject in .d precisely when ,u is set- 

inclusion and m is a canonical subobject in .r/. Properties (i) to (v) of Definition 5.1 

are easily verified. 
Before discussing kernals, we must identify the arrow T : 1-Q. W’e take 

i .=* (r, T), where T( *) = (T, 1) is the element of {T} x { 1). Suppose now 

(1.,/z) : (X,&A)-d. We construct its kernel as @,m) : (Y,q,B)+(X,&A), where 

m : B-A is the kernel of h : A-Q in -:/, 
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p is the inclusion of Y into X and q : Y-f(B) is given by 

&) = T(m) - ‘(O_H) 

for all YE Y, noting that f(m) is an injection. It is fairly routine to check that the 

characteristic morphism of (u, m) is (A., h). 

Conversely, given any canonical subobject (,~,m), one may obtain its charac- 

teristic morphism (A, h) in .$ by taking h = char m in .:/ and defining A : X+SQ by 

k(x) = (h5CG 
(r, 1) 

0) if xEX-- Y, 

if xE Y. 

This allows us again to check that .-? is a topos. 

Since F preserves the predogma structure and kernels, it also preserves internal 

equality and therefore all logical symbols, as has already been pointed out. Since 

e : A -+B is an epimorphism in a topos :/ if and only if t-VyE~ 3.rE~y = ex holds in 
.:/ [e.g. 16, Lemma 13.41, it follows that F preserves epimorphisms. This is 
important in deducing the projectivity of 1 in .? = T(0). 

Lemma 6.2. if e : IX-+/? is an arrow in T(0) such that 

t-VyefQ~fl= 3sE~((x,~~) E ,ei) 

in 2 I, then e is an epimorphism. 

Proof. Suppose J g : ,fT-+ y are such that fe l = l ge. We shall prove that t- Ifi = Ig/. 

We argue informally thus: suppose (_v, z> E ifi. By assumption on e, there is an x E A 

such that (x,,v) E lej, hence (x,~) E ifei = Igel. Therefore, there exists ~‘EB such 

that (y’, :> E igl and (xy’) E /e/. But, since e is an arrow in T(0), y’=y. hence 

(y, ; > E lg/. Therefore !fl c /g/, and similarly ;g: c ifl. 

New proof of the g-property 

Suppose (4(x) is a formula in i I, x being a variable of type A, and suppose 

+ 3.rE.-1 p(x). Let a= {XE A /p(x)} and define e : a+ ! in T(0) by 

lej~{(Xy)EAxlIcp(s)}. 

By Lemma 6.2, e is an epimorphism. 
Now 1 is projective by Freyd’s argument, hence, e splits, that is, there is an arrow 

m : !-_‘a such that em l = l 1. Now jnrl satisfies 

I- ?!.XA (3x> E: (ml, 

+V,Kc.4 ((*,x) E lmi -xE a). 

Writing u/(x) for (*,x> E Imi, we thus have I-3!!,.,4~(x)and +V.~E.~(~(x)=~(~)). 

By the lemma below, we can find a term a of type A so that t-v(a), hence also 

kq(a). 
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Lemma 6.3 (3!-property). If c-3 !XG~ w(x) in 2 I, then ~--w(a) for some term a of 
type A. 

Proof. Suppose I-3!!.,~w(x). We shall prove the existence of a term a of type A 
such that f-_w(a) by induction on A. 

If A = 1, take a= *. 
If A = Sz, take a= t&T). (See the discussion of the arrows 4-Q in Section 4.) 
If A = PB, take a E {y E B 1 3 YE~~(~(~) A y E v)}. (See the discussion of the arrows 

4 + PB in Section 4.) 
IfA=Bx C, wearegiven that I-~!~~B~c~(x). Therefore F~!,,~B 3zEcw((y,z>). 

By inductional assumption, there is a term b of type R such that + 3:,ctg((b, z>). 
Now actually I- 3!;, cw(< b, z)). Again by inductional assumption, there is a term c 

of type C such that +w((b,c)). 
If A = N, we are given that !- 3!xs~~(~). Then w determines an arrow f : ! ‘yin 

.Y/ = T(O), where 1 f I= { ( *,x> E 1 xlvl~&~)l. Now Fcf) : 1-N is a standard 
numeral in d, hence f l =* GFCf) : !+N is a standard numeral in .:/ = 7(O), say 
f l = l $"O. Using the definitions of S and O in Section 4, we see that 

l-xv(x) e (*,x>Elfl @ x=S"O. 

Therefore, we may take a = 9’0. 
We have now completed the proof of the 3!-property, hence of the 3-property. 

The v-property is an easy consequence of this. 
Indeed, let 

&x)=(x=O=p) A (1(x=0)-q). 

Clearly, pk ~(0) and q!- rp(l), hence PI- 3XE.v~(~) and qt- 3,,,vrp(x), hence 
pvqt- ~,,N(P(x). (Here 1 = SO.) 

Now suppose kpvq, then I- 3 xe,vrp(x). Therefore, by the 3-property, +&it) for 
some numeral rf. Now either t-if =0 or l- l(A =O). In the first case t-p, in the 
second case +q. 

We turn now to another proof of the Uniformity Property by looking at the Freyd 
cover of a topos obtained from the free topos T(0) by adjoining an indeterminate 
arrow z : 1--* c, where C = Q or PB. 

It is known [lo, 5.11.21 that, if C is an object of the topos d, then the topos d/C 
may be regarded in some sense as the topos d(z) obtained from d by adjoining an 
indeterminate z : l-+C. This should be distinguished from the predogma (or 
dogma) &[z] obtained in the same way. More precisely, we require a logical functor 
H : d+d(z) and an arrow z : l+H(C) so that the pair (H,z) is initial in the 
category of all pairs (F: Jcy’-’ 2, c : 1 jF(C)). Unfortunately, when we work with 
d/C’, this seems to be true only “up to isomorphism”. Be that as it may, in the case 
d = T(0) of interest to us, when C is a type in Yt and g : 1-C an indeterminate 
arrow, there is another construction of d(z) for which the above universal property 
holds in the strictest sense. 
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Recall the language 2 I(L) whose closed terms are the terms of 2 I containing no 

free variables other than z, which we shall think of as a parameter. (See the end of 

Section 2.) We now construct T(0)(<) from 31(z) in the same way as we did T(0) 
from ~1: its objects are closed terms a(z) of type A in 21(z) and its arrows 

f(z) : a(z)-/3(z) are triplets (a(z), Ifs, P(z)), where if(z)1 is a closed formula in 

i I(;) of type P(A x B), B being the type of p(z), such that 

(1:) +zV.VE.-i VyE~((,~,y)~If(~)I=)(x~a(~)Ay~P(~))), 

(2:) kV.rE~(~~a(z)= 3!.,.6(,u,y)~lf(~)l). 

The rest of the construction proceeds exactly as in Section 4. 

In what follows, we write .-/ = T(0). Clearly, there is an arrow H : .d--Y’(Z), 

where H(a) = a and H(J) l =a f. Moreover, there is an arrow 3 : 1 +C in -N’(Z) 

given by /<I = { ( *,z)}. Now suppose F : .:J -+ .A is an arrow in Top and c : l-+ 

F(C) = C an arrow in .&. We claim that there is a unique arrow F’ : .:i(<)-- .d such 

that 

F’H=F, F’(z) l =* c. 

Indeed, take F’(a(z)= Ker(a(c)‘) and let F’Cf(z)) be the unique arrow 

h : Ker(a(c)‘)+Ker@(c)‘) in .d such that 

+,Y( ker(a(c)‘)x, ker(Q(c)‘)hx) E If(c)1 in .8 [x].~ 

We summarize this result as follows. 

Proposition 6.4. T(O)(<) as constructed from 21(z) is the topos obtained from 
T(0) by adjoining an indeterminate arrow z : ! -, C. 

We shall now look at the special case of this when I itself is the Freyd cover of 

T(O)(z) and C= Q or PB. 
First take C=Q, so t : j-Q. We need only an arrow c : i--+F(Q)=a in .:?$). 

Let [( *) = (z, O), then the following square commutes: 

Therefore, c l =- ([,s) is an arrow i-d in .9%). 

By the universal property, there is a unique F’ : d(z)+&j such that F’H=F 
and F’(J) l =* c. On the other hand, we have Freyd’s logical functor G’ : .d?)- 

5 The construction of F’Cf(z)) is analogous to that of F(j) in the proof of Theorem 5.3. Note that a(z) is 
interpreted as an arrow l-PA in 4[z] from which we obtain (x(c) in .A by the substitution functor 
sending c’ onto c; if(c)1 is explained similarly. 
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Y(G) and G’F’(,-) l = l G’(c, s) l =. r. Again, by the universal property, G’p is the 

identity functor on .-i’(s). 

Proposition 6.5. Let z be a variable of type C, where C= R or C= PB. Then 
(a) T(0)(<) is a retract of its Freyd cover, 
(b) the terminal object of T(O)(<) is projective, 
(c) all arrows from the terminal object to the natural number object in T(O)(<) 

are standard numerals. 

Proof. (a) has just been shown in case C= 52. In case C= PB, the problem becomes 

to define 2 : i-+Pb such that G’(i) l =. g. In other words, we want to fill in the top 

row of 

- SPB 

i- 

to make the square commutative. Thus, we want to find an element Z’E Spg such 

that J.,(Y) l = l g. Now SUB= .&$B, fi), so we take z’ .=a (<, z’), where 

i(s) = (Z’A @(S), (99 

so that the following square commutes: 

Then 

A&? =A&([, z)) = rz’- = z. 

(b) is shown as in Freyd’s argument above. 

(c) is shown as in the case A =N of Lemma 6.3. 

Corollary 6.6. If C= Q or C= PB, every arrow C-y in T(0) is constant, that is, 
factors through 1. 

Proof. An arrow f : C-y in T(0) gives rise to an arrow f(z) : 1 +N in T(0)(t), 
where 

If(z)1 = {( *9x) I (2,x> E IfI). 

Now f(z) must be a standard numeral by Proposition 6.5. Thus f(z) l 70 s?J for 
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some n E N. Therefore 

‘{;.r} (*,x> E If(z)1 * x=S”O, 

from which it follows that f factors thus: 

New proof of the Uniformity Property 

Let C=R or PB and suppose +VzEc 3vC~~9(z,y), that is, +-; ~.vE,v~(z,Y). Thus, 
in the topos T(O)(g) we have an epimorphism e(z) : a(z)+ 1, where 

c~z)={YENI~(z,Y)I~ 

Ie(z)l= {(Y, *) ENX 1 I9(2~)1. 

We proceed as in the proof of the Sproperty, but with a parameter z present. It 
follows that F: 9(z, a(z)) for some term U(Z) of type N. However, in 2 I(Z) there are 
no such terms except numerals. Thus a(z)=it, hence +VzEc9(z,if), and therefore 

+ 3.“ES V:EC9(lrY). 

Appendix I 

We shall prove the converse of Proposition 3.8 along different lines than those 
suggested at the end of Section 3. To illustrate the argument, we take k= 1. 

Let T(e,m,n) be Kleene’s T-predicate, as in [13, p. 2871 or [22, p. 2431. If 
{fe/ eE N} is an enumeration of all partical recursive functions in one variable, 
T(e,m,n) essentially asserts that n is the Godel number of a proof that fe(m) is 
defined. It is known that T(e, m, n) is a recursive predicate, hence representable by a 
formula r(w,x,y) in Y’i in the sense that 

if T(e,m,n), then I--r(t?,m,it), 

if not T(e, m, n), then I- lr(~, rft, A). 

Without loss in generality one may assume that 

if r(e, m, n) and T(e, m, n’), then n = n’, 

for example, by taking n as small as possible. 
It is known that there is a primitive recursive function CJ such that U(n) = fe(m) in 

case there exist numbers e and m so that T(e,m,n). We shall also assume that a 

function symbol h has been adjoined to 2~1 such that 

+hA = E if and only if U(n) = k. 

Church’s Rule [26, p. 2581 asserts that if +Vxe~ 3,,,~9(x,y), then there is a 
number e such that i-VXe~ 3ve~(~(P,~, y) A 9(x, hy)). 
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The validity of Church’s Rule has been established for second order intuitionist 

arithmetic [26, p. 3221 and for intuitionist type theory by Girard (see his article in 

the same volume as [7].) 

Proposition 7.0. Church’s Rule implies that every strongly representable function is 

provably recursive. 

Proof. Suppose f : NdN is strongly representable by rp(x,y). Then 

(1) +vXEiv 3 !veNVkY), 
(2) iff(m) =n, then k-_ul(m,it). 

It follows from (1) that there is a number e such that 

+Vxaiv 3,vcdr(ex,y) A q(x, hy)). 

Now define the function g : N-N by 

g(m) = UbtT(e, m, n)). 

We claim that (a) g is provably recursive, (b) g=f. 

This will complete the proof of the proposition. 

To prove (a), we replace T by its characteristic function t, so that 

t(e, m, n) = 

We then have 

g(m) = U.h(t(e, m, n) = 0)). 

To prove that g is provably recursive, it suffices to show that t(e, m, n), regarded as a 

function of its last two arguments, is strongly representable by a formula xe(x,y,z) 

such that ~V.r~,v3yE,~~e(~,y,0). Letxe(x,y,z)=(s(e,x,y)r\z=O)v(l r(e,x,y)r\z= 1). 

Indeed, t(e, m, n) is either 0 or 1, In the first case, T(e, m, n), hence I--r(&?, PI, rf), and 

so +_x~(Pz, A, 0). Similarly we see that, in the second case, I-x?(M, A, i). Moreover, 

t-VXE‘L. V.“E‘L. 3!;,h.Xe(X,Y,Z) 

holds because 

t-VXE,V Vy,.z.(7(P,x, y) v 1 r(P,x, y)). 

To complete the proof of (a), we must verify that 

+v.re.\- 3,,.VX&Y, 0). 

This holds because 

+v,,.v 3,,,VS(P,X,Y) 

in view of Church’s Rule. 

To prove (b), letf(m) =n. Then I--(o(ri?,ir). Now by Church’s Rule, 

+V.~E.V ~,..~(T(P,x, y) A (D(x, hy)). 
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In view of the Fundamental Theorem, there is a number k such that 

I- r(P, r& F) A co(m, hF). 

Since c 3!yE,~~(lh,y). we have b-hE= A, hence U(k) = n =f(m). Now T(e, m,k) and 
k is the smallest number with this property. (For if also T(e,m, k’), then k=k’.) 
Therefore, f(m) = U(k) = g(m). 

This completes the proof of(b), hence of Proposition 7.0. 

Appendix 2 

We shall verify the claim made in the proof of Theorem 5.3 that m, .=- ker(a’). 
To this end we must carefully examine the translation procedure for interpreting the 
language Y’I of intuitionist type theory in a topos .:/ in case .r/ = T(0) is the free 
topos. We begin by giving another construction for the predogma .v’[z] in this case. 

We construct the category T(O)[<] whose objects are the same as those of T(0) 
and whose arrowsf(z) : aA/ are triplets (a, \f(z)l,P), where If(z)1 is a term of type 
P(A x B) containing no free variables other than the “parameter” z of type C, 
subject to the conditions (1) and (2) of Definition 4.3 with Ifi replaced by If(z)!. 

T(O)[,-] is easily seen to be a predogma, its predogma structure being inherited 
from T(0). Moreover, the inclusion functor H : T(0)- T(O)[<] preserves the 
predogma structure. The predogma T(O)[z] contains the special arrow z : A-c 

with /zI 3 { ( *,z)}. We shall see that z plays the role of an indeterminate, so that 
T(O)[zj has the same universal property as T(O)[z], hence is isomorphic to it. We 
first establish what has been called “functional completeness” [ 161. 

Proposition 7.1. For every arrow f(z) : a-/l in T(O)[<] there is a unique arrow 
g : Cx a--p in T(0) such that g(z*a, 1,) *=-f(z) in T(O)[z]. 

Proof. Take 

/g/~~((z,x),Y)E(CXA)xBj(X,Y)Elf(Z)/} 

and check that the required equations holds. As for uniqueness, from 

&<*a, 1 a> l = l f(z) it easily follows that h l = l g. 

Corollary 7.2. T(O)[<] z T(O)[.z]. 

The corollary is an immediate consequence of the proposition in view of the 
following “recognition lemma”. 

Lemma 7.3. Suppose .yl” is a predogma extending the predogrna .:/, having the same 
objects as .:i and containing an arrow c : l*Cso thatforeveryarrowf: A-Bin 
.v” there is a unique arrow g : Cx A+B in .?/ such that g(c*A, 1~) l = l f. Then, as 
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extensions of .-J, .d”z .-J[z], ( corresponding to the indeterminate z : 1 + C under the 

isomorphism. 

Proof. It suffices to show that .i’ has the expected universal property. Suppose 

F : ..Y’+ iA is any functor into a predogma J which preserves the predogma 

structure exactly and c : l-F(C) is a given arrow in .d. We claim that there is a 

unique functor F’ : .s/‘-2’ preserving the predogma structure such that F’H=F 
and F’(c) l =a c. (Recall that H is the inclusion functor.) 

Define F’ on objects and arrows as follows: 

F’(A)=F(A), F’(g(i*,-t, lo))*=- F(g)(c*F(/i), IF(A)). 

One easily verifies that F’ has the required properties and is unique. We omit the 

routine calculations. 

We remark that this lemma remains valid if the word “predogma” is replaced by 

“Cartesian category”, “Cartesian closed category” or “dogma”. 

We now return to the interpretation of YI in the free topos. 

Proposition 7.4. Let t = t(xl, . . . ,x,) be a term of type A in the language Y I. If t is 
interpreted as an arrow t : ! +,j in 7(0)[~1 ,..., +,I, then +(, ,,.__,. v;,}Itl={(*,t>}. 

Proof. We proceed by induction on the construction oft. 

(1) If t is a variable x of type A, then its interpretation in .:i[x] is the indeterminate 

x : 1 -A. In particular, its interpretation in T(O)[x] is the arrow ,F : i-4, where 

I$/ = { ( *,x>}. 
(2) If t is * of type 1, its interpretation in Section 5 was the identity arrow 1 I. 

According to Definition 4.3, 

t-~l!~={(X,X)ElXl]XE~}={(*,*)}. 

(3) If t is of type N other than a variable, it will be 0 or Sn for some n of type N. In 

the first case, it is interpreted as O, and iOl= {< *,O)} by Definition 4.3. In the 

second case, it is interpreted as $n, where 

lSnl={(x,z>E 1 xNj 3yE~~((~,~) E lnlA(y,z)E/S/)l. 

By inductional assumption and Definition 4.3, 

~-inI={(x,Z)ElxNlx=*A(n,Z)E,SI} 

={(*,Sn>>. 

(4) If t is of type A xB other than a variable, the result follows easily by 

inductional assumption. 

(5) If t is of type R other than a variable, there are two cases: t may be a=a’ or 

a E CY. In the first case we have 

la=a’j=lcS+(a,a’)l. 
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Using the fact that 

/6.+/ = Ichar (l+l.+)l 

={~~X,XI),t)E(AxA)xn~t=(x=~}, 

we easily calculate I- Ia = a’1 = { ( *, a = a’)}. In the second case we have 

laEal=jEA(a,a)]. 

Using the definition of j ~~1 in Definition 4.3 with a =A, one proceeds similarly. 
(6) If t is of type PA other than a variable, say a= { (SEA Iv(x)}, we have, by 

inductional assumption, 

~,l~(x)l={(*,rp(x))}={(*,xEa)}. 

On the other hand, 

+-.rCotx)=lE&V)l 

={(*,t)Elxq3 UEP~((*,U)E’I~IAf=(XEU))} 

after some calculation. Therefore 

t-{,V.I]f=(XEa) e 3 U,pA((*,u)ElalAt=(xEu)). 

From this we easily infer that 

I7,<*,u)clal 0 u=a, 

whence klal={(*,a)}. 

Corollary 7.5. In the free topos T(0), m, l = l ker(a’). 

Proof. We recall that 

a’*=* E,j(a*d, 14). 

(See the definition preceding Lemma 5.2.) From this one easily calculates 

~~~‘/={(x,~)EAxR~~.~P~(~=(xEU)A(*,U)EI~~)}. 

Using the fact that c /aI = { ( *, a)}, by Proposition 7.4, one then deduces that 

~~la’l={(x,f)~AxQ~f=(x~a)}. 

Hence, by Definition 4.3, 

I- /ker a’/ = {(x,x> E A x A j (x, T) E ja’l} 

={(x,x)EAxAIxEa}=lmul. 

This completes the proof. 
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