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§o. Introduction

In this article we shall be talking about our formulation of intuitionist type

theory, two versions of which have been described elsewhere [LSI, LS2] To make the

present discussion more accessible, we shall briefly describe the formation rules of

this language L
I

. However, for the precise axioms and rules of inference the reader

should look at the cited references.

We have a hierarchy of types consisting of three primitive types: I (thought of

as a one-point set), N (the type of natural numbers) and Q (the type of truth-values or

propositions), and two rules for creating new types from old ones: from A and B one may

form AXB (the Cartesian product) and from A one may form PA (=nA
, the power-set of A).

Each term of LI will belong to some type. In addition to a countable list of vari-

ables of each type, there are the following terms, each listed under its type:

I

*

N

o
Sn

a=a'
aE(X

<a,b>

PA

{xEAIq,(x)}

where the following type assignments are assumed: n has type N, a,a' have type A, b has

type B, c has type PA, and q,(x) has type Q

This is the version of L
l

given in [LS2] In [LSl] equality is defined in terms

of the usual logical symbols T, A, =>, and ';j However, these may be defined in terms

of equality as follows, where p, q, and q,(x) are of type Q :

T - * = *

P A q - <p,q> = <T,T>

\j q, (x) - {xEAI q, (x) } = {XEAIT}
XEA

p=>q - P A q = P

It is well-known how the remaining symbols may be obtained [p]

.1 - ';j tEQ t

P v q - "J tEQ( «p => t) A (q => t.) => t) ,

3
XEAq,(x) - ';j tEQ (';JxEA (q, (x) => t) => t.)
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p => .1

3! <P(x)
xEA

3, ({XEAI<p(x)} = {xalx=x'})
x EA

The axioms and rules of inference in terms of equality may be a little unfamiliar,

but in terms of T, A, => and "I they are as in the usual intui tionistic predicate calculus,

augmented by extensionality, comprehension, Peano's axioms and the obvious axioms govern-

ing * and <a,b>. For details the reader is referred to [LS1] or [LS2].

The term model of L
l

can be made into a topos F, the so-called free topos, actually

the topos freely generated by the empty graph. F is an initial object in the category

of toposes and logical morphisms. (We shall here assume that a topos contains a natural

numbers object.) The objects of F are closed terms of type PA for different types A

modulo provable equality. The morphisms are names of provably functional relations

modulo provable equality.

Various metatheorems about L
l

' e.g. the disjunction rule, the existence rule

and the uniformity rule, are equivalent to algebraic properties of the free tapas. We

originally used realizability methods to prove these metatheorems and deduced proper-

ties of F from them. However, Peter Freyd discovered an ingenious direct algebraic

method for proving the algebraic theorems [Frl], from which the metatheorems then follow

see [LS1] ).

In the present paper we shall continue this program. In particular, we are inter-

ested in closed formulas p for which one has independence of premisses [T], that is,

from l- p => 3 XEA<p (x) one can infer f- 3 XEA (p => <P (x) ) It turns out that this property

of p is equivalent to a strong form of projectivity of the associated object {xEl!p}

in F It is also equivalent to strong projectivity of the object 1 in the

"free topos on the assumption p" , an initial object in the category of all toposes in

which P holds.

There are two other properties of closed formulas which imply strong projectivity:

"Freydian" [Fr2] and "hereditary". By investigating which closed formulas p have these

stronger properties, we obtain two proofs (the first following Freyd) of the fact that

any "stable" p (for which !-."p => p ) satisfies independence of premisses. As yet our

results concerning independence of premisses are not as complete as those obtained by

Troelstra for second order arithmetic [T]. The reason for this is that the correspond-

ing properties of open formulas are being left to a future investigation.

§l. The free topos modulo p

Let p be a closed formula in intuitionistic type theory, say the language L
l

in

[LS1], then we can define the language L
p

just like 1.
1

but with "r-x " replaced by

"prx" Thus the terms of L
p

are the same as those of L
l

' but deducibility is now

"on the assumption p" or "modulo p". Let F be the topos constructed from L just as
p p

the free topos F was constructed from L
l

in [LS1]. Thus the objects of Fp are closed

terms of type PA, where A is any type, and equality between objects is prOVable equality

from the asstlmption p : Cl 8
p

if and only if pf-Cl=8
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The morphisms f: a ->- S of Fp are triples (0., I fl ,S ) r where 0. is of type PA, S is of

type PB and I fl is a closed term of type P(AXB) such that

(2)

(1) pr-II II B «X,Y>E I f ] => (XECY. II yES))
XEA yE

Pr-IIXEA(XEa => ]!YEB<X,Y>Elfl)

Again, equality is defined modulo p

f
p

g if and only if

Note, in particular, that L
l

= L
r

and F F
r

An examination of the syntactic con-

struction of the free topos F (actually, the free topos generated by the empty graph)

in [LSI) shows that everything still works in Lp • In particular, we have

PROPOSITION 1.1. Fp is a topos with canonical subobjects.

is easily verified that Fp is a strict logical functor.

equality, while the latter is the equivalence class of 0. modulo p Similarly

each morphism (a, If I ,S) of F onto a morphism of Fp with the same name. It

Thus we have:

sends

At this point we pause to recall that for us a topos is understood to have canoni-

cal finite products and power-sets and also a natural numbers object. The free topos

is an initial object in the category TOP whose objects are toposes with canonical subob-

jects [L, Section 9J and whose morphisms are strict logical functors, that is, functors

which preserve everything on the nose (including canonical subobjects) .

There is an obvious functor Fp : F ->- Fp which sends the object 0. of F onto the object

a of Fp. Actually the former is the equivalence class of the closed term a modulo

provable

F
p

LEMMA 1.2. The "obvious" functor Fp:F ->- Fp is the unique strict logical functor

from F to Fp .

Each type A of Ll gives rise to an object AA of each topos A. To avoid heavy nota-

tion, we omit the subscripts on objects. Also, in each topos A we can interpret any

closed term a of type A of Ll as an arrow a
A:

1 ->- A , in particular, any closed formula

p of Ll
as an arrow PA: 1 .... II In [LSI] the subscripts were suppressed; but here we

shall be more pedantic, omitting the subscripts only from such constants as *, O,T, etc.

means

in A. The theorems of Ll
then Al= q.

Fp 1= q if and only if

Therefore qF' =·T
p

, that is, pt- q.

in Fp .

{<*,T>}

Now recall from [LSI, Prop. 7.4J

to this, and recalling from LEMMA 1.2

q .=·T in Fp .
FI'

the functor Fp

I qF 1= {<* ,q> }
p

is, =Fp , that

also that

FpFP

F F q means that
p

{<*,q>} in F. ApplyingIqF 1 =
F = FF ' we obtain

p p
{<* ,q>} ={<*,T>} in

Proof:

In particular,

PROPOSITION 1.3. If P and q are closed formulas of Ll ,

If L: A .... B is a strict logical functor between toposes with canonical subobjects,

then clearly L(aA) .=. a
B

. In particular, if FA : F .... A is the unique strict logical

functor, we see that FA(aF ) .=. aA .

We shall write AF p for pA .=. T and say that p holds

hold in all toposes. More generally, if A p and p f-q

that

that

that
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This well-known result is a kind of completeness theorem. In fact, everything we

have said up to now remains valid if we replace the closed formula p by any set of closed

formulas. The corollary then looks like the usual completeness theorem in logic.

PROPOSITION 1.5. Fp is an initial object in the full subcategory of TOP consisting

of those toposes A with canonical subobjects for which AI= p.

Proof: We must show that there is a unique strict logical functor G: Fp + A in

case AJ::. p. Consider the diagram

where G is defined on objects by G(a) = FA (a) and on morphisms by G(f) = FA (f). To see

that G is well-defined, we must show that a p 13 implies FA(a) = FA(B) , and similarly

on morphisms. We shall carry out the argument for objects and leave the morphisms to the

reader.

Suppose a p 13 r that is, Since AI= p, it follows that Af::a=B.

Now let aA : I + PA be the interpretation of a in A ,then it follows that aA·=·B A
(recalling the slogan that internal equality implies external equality [L]). Now the

arrowa
A;

1 + PA corresponds to a
A'

: A + ll, and so we have aA(·=-BA( Recall

from [LSI, Section 5] that FA (a) was by definition the canonical subobject of A for

which a( is the characteristic morphism. It then follows that FA (a) = FA (B)

It is easily checked that G is a strict logical functor and that it is unique.D

There are two other ways in which the free topos modulo p can be constructed. Let

us recall from [LS3] that given an object A of a topos A with canonical subobjects, it

is always possible to adjoin an indeterminate arrow x: 1 + A to A and obtain a new

topos A(x) with canonical subobjects and with the expected universal property. More-

over, A(x) is equivalent to the slice category A/A by a result of Grothendieck, Ver-

dier, Joyal [GV] ,[LS3]. In particular, given an object a of the free topos F, that

is, a closed term of some type PA in the language L
l

, we can adjoin an indeterminate

x: I + a to form F(x). This comes equipped with a strict logical functor H: F + F(x)

so that for each topos A with canonical subobjects and each arrow a: 1 + FA(a) in

A, there is a unique strict logical functor G: F(x) + A such that GH FA and

G(x) ",.. a •

Look now at the special case when a = {xEI[p} .

according to the definition of FA [LSI, Section 5],

Then FA(a) = Ker(aA(j = Ker(PA)

so that we have a pullback:
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1
Since there is a canonical monomorphism FA(a) + 1

is unique whenever it exists. When does it exist?

in A , the arrow a: 1 + FA(a)
In view of the pullback if and

only if PA"=·T r that is, AFP

Thus, if F(x) is obtained from F by adjoining an indeterminate arrow

x: 1 + {xEl! p}, F(x) is also an initial object in the category of all toposes A
with canonical subobjects such that AF p . Since initial objects are unique up to iso-

morphism, we have thus established the following:

PROPOSITION 1.6. F is isomorphic to F(x) , with x:l + {xEl!p} , and
p

equivalent to F/{xEllp}

§2. Description modulo p

If this is so for all types A, we say the 3 I-rule holds

The 3!-rule for L at type A asserts:
p

some closed term a of type A.

if , then pl- <jl (a) for

for Lp . In the language of Kleene [K] , this means that, in the absence of parameters,

descriptions are eliminable in Lp not just by contextual but by explicit definitions.

Whether the 3!-rule holds for Lp depends On the formula p. For example, when

p _ T then L
T

Ll is ordinary intuitionist type theory, for which the 3!-rule was

proved in [LS1. Lemma 6.3J. As we shall see later, the 3!-rule holds for a large

class of formulas, the strongly projective ones. On the other hand, if p is the

Boolean axiom S = 'Iftd, (t v n e) , then the 3 ! -property fails.

To see this, let y be Godel's classically undecidable sentence and put

<jl(x) = (x=0 * y) A (x+0 * ,y)

In classical type theory LS ' clearly s 3 N<jl(x)XE
Let

w(x) = <jl(x) A 'If N(<jl(y) * XSy)
yE

then clearly S 3 ! W(x) However, there is no closed term t of type N in Lo such
XEN "

that S W(t) For the only closed terms of type N are the standard numerals 0, SO,

S(SO) , If a standard numeral t were to satisfy W , hence <jl , then we would

be able to decide Godel's sentence, depending on whether twas 5 or not.

We may say that W defines a nonstandard numeral, the unique x for which

which happens to have no name in the language L
S'

Note that Wgives rise to an arrow

f: 1 + N in FS with If I ={<*,x>lw(x)} which is not of the form 0, SO, S(SO),

5(5(50)), • etc.

The above discussion shows that the 3!-rule may fail for L because nonstandard
p
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numerals are definable. In fact, this is the only thing that can go wrong.

PROPOSITION 2.l. The 3!-rule holds for Lp if and only if it holds at type N,

that is, all the arrows 1 +N in Fp are induced by standard numerals.

Proof: The proof for Ll [LSI, Lemma 6.3J by induction on types remains valid

at types 1, II, BXC and PB, and so the only difficult case is type N, which we assume.D

If the 3!-property does not hold for L
p

, we may restore it by introducing a

description operator. As we have seen, it suffices to introduce a minimization opera-

tor ]J Given any formula ¢(x) with x of type N such that

(*) p 1- 3 (¢ (x) A \;j (¢ (y) => x='y» ,
xEN yEN

we adjoin the term ]J¢ = ]JXEN¢(x) together with the additional axiom:

p ]- ¢(f1¢) A \;j N(¢(y) => f1¢='y)
yE

The resulting language will be called Note that the 3!-rule holds in Lp if

and only if = Lp

One may be tempted to assume in place of (*) above merely that

(**)

and hope that (*) is a consequence of (**). The implication (**) => (*) is the so-

called "least number principle" on the assumption p. It holds for some p, e. g., if

P is the Boolean axiom, but not for others, e. g., when p = T

§3. Projective formulas

We shall call the closed formula p of Ll projective if the associated subobject

of 1, namely {xEllp} , is a projective object in the topos F in the usual sense, that

is, if all epimorphisms a + {xcllp} split. For example, we know from [LSIJ that T is

projective. As we shall see, there are plenty of other projective formulas.

In the following, let a and S be closed terms of types PA and PB respectively.

LEMMA 3.1. An arrow a + S in the free topos F is an epimorphism if and only if

it is "provably surjective," that is, \-I;J B (YES => 3 ( <x , Y>E Ie I) )
yE XEA

e
See [LSI, 6.2J f

Consider the diagram a ---...;,) S II
g

Proof: (<=

(=>

where f and g are defined as follows. Put

Im(e) = {YEB!::l «x,Y>Elel)}
xEA

and let im(e): Im(e) + S be the canonical monomorphism with

lim(eJI - {<y,y>E BXBIYEIm(e)}

Put f·=· char(im(e» and Then, by [ LS 1, Section 4J ,

If I = {<y,t.>EBXlllt=3ZEB«y,z>Elim(e) I)}

Straightforward calculations now show that
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{<y,t>EBXnlt= T " YEI3}

whence it is easy to compute that Ife I= Ige I, hence fe' =. ge Since e is an epimor-

phism, f'='g, and so Ifl=lgl From this it follows that

1-1;/ B(YEI3 => 3 «x,y>Elel)s« XEA

as was to be proved.

LEMMA 3.2. If A is an object of the tapas A , A is projective if and only if the

terminal object is projective in A/A

Proof: The result follows immediately from the following two observations:

(a) e: B + A is an epimorphism in Aif and only if the commutative square

is an epimorphism in A/A;

(b) the former splits if and only if the latter does.

THEOREM 3.3. The following statements are equivalent:

Pf- 3
XEAq,(X)

then pf-q,(a)

Note that, in case the

(i)

(ii)

(iii)

the terminal object is projective in Fp
p is projective, that is. {xEllp} is projective in f

the 3-rule holds in ,that is, for any type A in ,ifP P
for some closed term of type A.

3!-rule holds for Lp ' in the above theorem may be

replaced by Lp

Proof: By Lemma 3.2, {xEllp} is projective in F if and only if the terminal

object is projective in the slice topos F/{xEllp} Moreover, by Proposition 1.6,

the latter topos is equivalent to Fp. Thus (i) (ii). We shall now prove that

(ii) # (iii) .

Suppose (ii) and assume that pI- 3
XEAq,(X)

13 _ {YEllp} , and define e: a + 13 by

Put a - {XEAIq,(x)} and

By Lemma 3.1 and hypothesis, e is an epimorphism. Since 13 is projective, e splits,

that is, there is an arrow m: 13 + a

F, we have

such that Since m is a morphism in

(1) => (p" xcc) ,

(2) f-P=>3!XEA«*,X>Elml)

If we put *(x) <*,x>Elml ,these two conditions may be rewritten as follows:

rl;/XEA (*(x) => ep (x) ,

pf-3 !XEA*(X) •
In view of the 3!-rule for LIl

P
, it follows from (2( that there is a closed term a



and so (ii) "*

of type A in LIl such thatp

(iii) ,

p!-¢(a)

198

Therefore it follows from (1)' that pf.- ¢ (a)

Conversely, suppose (iii) and assume that e: a S = {yEllp} is an epimorphism

in F To deduce (ii) , we want to show that e splits. Now, by Lemma 3.1,

\- if 1 (yES "* 3 «x ,y> E Ie I) ,
yE XEA

that is,

Pf.- 3
XEA«X,*> E lei)

By (iii), there is a closed term a in Lp such that

Since e: 0. S is a morphism in F , it follows that P aEo. Now define m: S a

by putting Iml = {<*,a>lp} and check that em'=' lS

proof is complete.D

Thus (iii) "* (ii), and our

Theorem 3.3 explains, among other things, why we ought to be interested in pro-

jective formulas. Intuitionists are fond of introducing assorted new axioms into

mathematics, and we may ask: which closed formulas may conceivably be adopted as

axioms? Since the 3-rule is a matter of dogma for intuitionists, a necessary condi-

tion for a closed formula to be an axiom candidate is surely that it be projective.

COROLLARY 3.4. If P is a closed formula of L
l

the following statements are

equivalent:

(0) the terminal object is projective in Fp and all arrows 1 N in f p

are (induced by) standard numerals;

the 3-rule holds for L
p

p satisfies independence of premisses, that is, for any type A, from

(i)

(ii)

(iii)

p is projective and the 3 i-rule holds for L
p

"* 3
XEA¢(X)

one may infer 1-3
XEA(P"*

¢(x)) .

Proof: That (o) follows immediately from Theorem 3.3 and Proposition 2.l.

Similarly follows from Theorem 3.3. We shall now prove that (ii) "* (iii).

Then I-p "* 3
XEA¢(x)

,hence \-3
XEA(P"*

¢(x))

L
l

[LS1, Theorem 1.3 J ,we obtain \- P "* ¢ (a)

Therefore p f- ¢ (a) ,and so (iii) "* (ii).

Suppose (d i.) and I- p "* 3
XEA¢(x)

for some closed term a of type A in L
l

\-3
XEA(P"*

¢(x)) Thus (Li ) "* (iii).

Suppose (iii) and p 3 x/;A¢ (x)

by (iii). Applying the 3-rule for

for some term a of type A.

Then P\-3
XEA¢(X)

by (ii). Therefore

hence p!- ¢ (a)

I- p "* ¢ (a) ,hence

If the equivalent conditions of Corollary 3.4 are satisfied, we shall c&ll the

closed formula p and also the associated object {xEllp} of F strongly projective.

PROPOSITION 3.5. If P is strongly projective then p is indecomposable, that is,

from p J-.q v r one may infer that either p f- q or p r r
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Proof: If p ], q v r then surely we have

If P is strongly projective, there is then a standard numeral n so that

pI- (n=O A q) v (nj-O A r)

But we can check whether n=O or ntO. In the first case p 1- q , in the second r l- r .

§4. The Freyd cover of a tapas

Peter Freyd [Fl] discovered an algebraic method of proving the strong project-

ivity of objects in the free tapas. As we saw from Theorem 3.3, this leads to new

proofs of syntactic properties of intuitionistic type theory and has already been ex-

plaited in [LSI] In this section we give a brief review of the Freyd cover of a

tapas, which is crucial to his method, and make some detailed calculations that will

prove useful in establishing strong projectivity of closed formulas later.

A
DEFINITION 4.1. The Freyd of a tapas A is the comma category A = (Sets ,fA)'

where fA A(l,_): A Sets. Its objects are triples where X is a set, A an

object of A and X fA(A) a mapping. Its arrows (Y,n,B) are pairs of

arrows X Y, f: A B) such that the following square commutes:

If A is a topos (with natural numbers object) having canonical subobjects, then

so is A. We shall describe some of the structure of 1:'.
We recall that every type A in LI gives rise to an

tapas A. We wish to calculate the corresponding object
A

plained in [LSI, Section 61 , we have A = (SA'''A ,A)

induction on A:

object A = AA in each

-A' = At in As ex-

, where SA is defined by

A(A,m

The mappings "A: SA fA (A) are the obvious ones.

More generally, products and power objects in A are defined as follows:

(X,i;,A) x (Y,n,B) = (xxY AXB) ,

where is the compound mapping X x Y rA(A) x rA (B) r A(AXB) ,and

A A
P = (A( ,Q) ,a,PA)
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where for any arrow (A,h): + we have 8(A,h)

to h: A + Q •

1 + PA , corresponding

[FrlJ

Freyd covers are of interest because of the following observation made by Freyd

, which is easily checked:

LEMMA 4.2. If A is any topos, the terminal object I in A is strongly projective,

in the sense that I is projective in

standard numerals.

"A and all arrows "I + N in A are induced by

The remainder of this section will be devoted to the question: how are closed

terms of L
I

interpreted in , given their interpretation in A ?

First observe that, for any topos A with canonical subojects, there is a logical

functor GA: A+ A given by A ,GA(¢,f) ·=·f Note that = FA
where FA: F + A is the unique strict logical functor from the initial object F of TOP.

Recall that every closed term a of L
l

has an interpretation aA in each topos A.

If L: A + B is a strict logical functor, L(a
A)

'='aB In particular, FA(aF) = aA'

hence GA(aA) .=. GAFA(aF) .=. FA (aF) .=. aA It follows that aA is given by a commutative

square:

this commutative square is expressed by the equation

Clearly, Sa and may be recaptured from

should all carry a subscript or superscript A

a+ (Actually, the symbols S,A and +

, but this would make the notation too

heavy. )

We shall calculate a+ in some cases, but a complete determination would have to

proceed by induction on the length of a and involve discussion also of open terms,

which we shall not carry out in this paper. The followmg cases are immediate conse-

quences of et):
we also note the equation

which has been utilized already in Section 6J. Some less obvious cases are con-

tained in Proposition 4.3 and Corollary 4.4 below.

First note that, if p is any closed formula, p+ is an element of SQ =

In the latter case the equationhence must have the form (PA'O) or (T,l)

AQ(p+) .=. PA tells us that PA .=. T ,that is

and only if t\= P

AFP Also note that p+ .=. (T,l) if

A

PROPOSITION 4.3. If a and b are closed terms of type A, then AI=-a=b ,that
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is, (a=b)+.=. (T,l) if and only if + +
a ·=·b

Proof: Recall that (a=b}A,=,oA<aA,b
A>

,where 0A: AXA + is the character-

istic morphism of the diagonal <lA' IA>: A ----4 AXA. We want to calculate this with A

replaced by Using the description of the characteristic morphism in given in

[LSI, Section 6J r we find that 0A in is given by the commutative square:

S x S a )A A

AAXAl
f4.(oA)

fA (AxA) . ) fA (Q)

where, for x,y S
A

Now we calculate
+ +

a .=·b

«T,l) if x.=.y

a(x,y) .=.
l(OA<AA(x) ,AA (y) > ,0) otherwise

(a=b)+.=.S (*) ·=·a<s ,S >(*).=. (a+,b+) .=, (T,l) if and only if
a=b a b

q are closed formulas, then

only if and ,that is, (p I, q)+'='(T,l)

COROLLARY 4.4. If P and

"(i) AF p " q if and

if and only if P+'='q+'=' (T,l)

"(ii) A!=p=>q if and " "only if Al=p=>q and AFP implies ,thatis,

A!=p=>q and P+.=.(T,l) implies q+'='(T,l}

Proof: (i) is clear. (ii) Since p => q may be defined as (p" q) = p, we ob-

tain from Proposition 4.3: (p => q}+.=. (T,l) if and only if (p" q}+.=.p We may

assume the necessary condition Al=p => q ,that is, (p => q)A'='PA ,whenever re-

quired. We now distinguish two cases:

In case p+ ,t· (T ,1)

«(p " q)A'O) .=. (p " q)+ •

In case p+.=. (T,l)

,also (p" q)+.,j,. (T,l) , by (i), hence p+.=. (PA' O) .=.

, that is,

, by (i). The proof is now complete.

It would seem to be of interest to calculate a+ and p+ in all remaining cases.

If A = F , the assignment bears a remarkable resemblance to the mapping

L + L + appearing in Friedmann's adaptation of Kleene' s realizability (see [LSI, Sec-

tion 2] ), while AA corresponds to the mapping L+ L used there.

5. Iterated Freyd covers

In this section we shall consider what happens if the construction of the Freyd

cover is repeated. For typographical reasons we write A" for the Freyd cover of the

topos A We define

A"n+l = (A"n)"

We shall obtain an explicit characterization of the tapas A"n.
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In what follows, n is the n-element chain regarded as a category. Put

fA = A(l,-}: A + Sets and let [setsll,fAJ be the category defined as follows. Its

objects are triples (Xn,n,A) , where Xn X
n

+ X
n_ l

+ ...... Xl is an object of

SetsD A is an object of A and n: Xl + fA (A) is a mapping. This object may be

depicted by the diagram: x
n

X
n_ l

Xl ... fA(A} A morphism from this to the

object depicted by Yn '" Y
n

- l Y
l

fA(B) is given by an (n + I)-tuple of

mappings (<pn'<Pn_ l"" ,<Pl,f) , where <Pi: Xi ... Y i and f: A + B are such that the

obvious diagram commutes.

PROPOSITION 5.1. For each natural number n;;' 1, Alln", [setsll,fAJ •

Proof: We argue by induction on n. For n=l this is the definition of the Freyd

cover. Assume the result for n, then we want to show that

n II n+l
[Sets ,fA] '" [sets---,fAJ

Now an object of the LHS is a triple (Xn+l,I;,A') , where A' = (Xn,n,A) as above

and Xn+ l ... f(A'} We have omitted the subscript on f , which should be A

Thus f(A'} is the set of all (n + I)-tuples (¢n'¢n-l"" '¢l,f) such that the

following diagram commutes:

(t)

{*} --? {*}----7

'·1 "-1
• -----;0 Xl ----+ fA (A)

Clearly, $ , $1 ' and f: 1 ... A may be computed in terms of ¢n and the
n-l

given mappings in the bottom row, hence f(A') consists essentially just of pairs

(A' '¢n) ,with <Pn: {*} ... Xn Now ¢n(*) is just any element of Xn' and so

is determined by a mapping X
n+ l

... X
n

Therefore (X
n+ l'

,A') may be depicted by

the diagram: X
n+ l

... X
n

..... , ... Xl ... rA(A) which also depicts an object of the RHS of

(t) We thus have a bijection between the objects of the LHS and the objects of the

RH5 of (t) , and one may easily obtain a functorial bijection between the corresponding

Hom-sets. 0

The isomorphism of Proposition 5.1 is one between categories, perhaps with termi-

nal objects. It becomes an isomorphism between toposes if we define the topos structure

of [SetsD,rAJ appropriately.

We wish to apply Proposition 5.1 to the case where A is a degenerate topos.

PROPOSITION 5.2. If A is any topos, the following statements are equivalent:

(L) AI= .1

(ii) 0 '" 1 in A ,
(iii) there is an arrow 1 + 0 in A ,
(iv) for any pair of objects A,B of A there is an arrow A ... B ,

(v) for any pair of Objects A,B of A there is at most one arrow A+B ,



203

(vi) all objects of A are isomorphic

Proof: Most of the fOllowing implications are obvious: (v) (i) # (ii)

(iii) (iv) , (Lv) A (vi). We shall extablish only the less obvious ones.

(i) (ii). In any topos the initial object 0 is given by the equalizer diagram

o -+ Q. If then T·=·1. in A ,hence 0 1 (ii) (i). If 0 1
1.

the characteristic morphisms of 0 -+ 1 and 1 -+ 1 must coincide, hence T.=·1. in A

that is, AI= 1. (iii) (ii). Composing the arrows 0 -+ 1 and 1 -+ 0 both ways,

we get the identity arrow each time. (i) (v). Since AF 1. A1= If XEAfx qx ,

Therefore f'='g in A , in view of the slogan that internal equality implies external

equality.

COROLLARY 5.3. Up to isomorphism there is only one topos satisfying the equivalent

conditions of Proposition 5.2, namely F1.

We shall call F1. the degenerate topos. Note that it is a terminal Object in TOP.

PROPOSITION 5.4. (F )An =Setsn for all .
1.

Proof: This is a consequence of Proposition 5.1 if we think of both sides as cate-

gories. If we think of them as toposes, one should also verify that the isomorphism

preserves the topos structure. We skip the details.

§6. Conditions implying projectivity

In this section we shall study a number of conditions which entail strong projecti-

vity, yet are easier to verify.

PROPOSITION 6.1. Given a closed formula p of Ll the following statements are

equivalent:

(i)

(ii)

(iii)

/I
Fp is a retract of Fp , that is,

there is a strict logical functor
/I
Fpl= p

{F)/I in TOP;
p

F: Fp -+

By proposition 1.2, there is a unique strict logical functor

(i) asserts that there are strict logical functors

is the unique logical functor, which must be the

and

(ii) .

to this, we getApplying F

GF: Fp -s- Fp
(i).OThus (iii)identity.

Proof:
/I

G: Fp -+ Fp such that GF is the identity functor on

Suppose (ii). Since Fp 1= p , we have PF .=. T
/I p
FpF p. Thus (ii) (iii).PFp.=.T , that is,

Suppose (iii)

F: Fp -+ Hence

When p satisfies the equivalent conditions of Proposition 6.1, we shall call p,

or the associated object {xEl!p} Freydian. This concept (though not the name) is

due to Peter Freyd [Fr2]

We record some obvious facts.

(1) Provable Freydian. For theorems hold in every topos, in particular in



204

Freyd covers.

(2) strongly projective. For suppose F is a retract of t, then it
p P

inherits from t the two important properties: 1 is projective and all arrows 1 + N
P

are induced by standard numerals (see Lemma 4.2).

The following result was first announced by Peter Freyd [Fr2]

THEOREM 6.2. If P and q are closed formulas of Ll, then

(i) 'p is Freydian if and only if it is not refutable;

(ii) p q is Freydian if p q does not entail p.

Proof: (i) Suppose,p is Freydian, but

holds in every topos, in particular in t,p
Since ."p is provable, it

II
Therefore F,p is degenerate. But

no Freyd cover is degenerate, as is easily seen, for example, by observing that there

is no arrow from {*} + fAll) to fA(O) This proves the implication one way.

The converse follows from (ii) by taking q

In

if and only

A sufficient condition is therefore
II

strict logical functor + Fp_q

p - qThe formula(ii) is Freydian if and only if q

F Fp q by Proposition 1. 3, this happens

'"FP=>g or q does.

that p does not hold in Fp_q ,in view of the

that is, that P q does not entail p, in view of Proposition 1.3.0

view of Corollary 4.4, since

if either p does not hold in

Unfortunately, the set of Freydian formulas does not have nice closure properties;

for example, it is not closed under conjunction. For let y be Godel's undecidable sen-

tence, then ., y and "y are both Freydian by Theorem 6.2, yet their conjunction is
II

equivalent to , which is not Freydian, as it fails to hold in that is, in Sets.

We therefore investigate a related notion. A closed formula p of Ll , or its

P is hereditary and it holds in

associated object {x llp}

toposes A ,whenever A F p

toposes if and only if

in

then

F , will be called hereditary if, for all nondegenerate

F p Clearly, AFp implies Af: p for all
II

'" Sets

We now continue the list of implications begun earlier in this section.

(3) Hereditary _ Freydian or refutable. For let P be hereditary and take
II

A Fp Then unless Fp is degenerate, that is, ,that is,

(4) Hereditary and true in Sets true in SetsU for all n O. For let p be

hereditary and true in A = Sets Then setslll= p r ••• etc. Use Proposition 5.4.

(5) Provable or refutable hereditary. Clear.

(6) Hereditary strongly projective. For let p be hereditary. If p is re-

futable, it is equivalent to strongly projective. If p is not refutable,

use (3) and (2).

The class of hereditary closed formulas has some nice closure properties, reminis-

cent of the Harrop formulas [Du].

THEOREM 6. 3.

(i) is hereditary

(ii) If P and q are hereditary, so is p " q.

(iii) If q is hereditary, then so is p q for any closed formula p whatsoever.
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(i) is obvious, as i cannot hold in a nondegenerate topos.

(ii) Suppose p and q are hereditary, A is nondegenerate and
/I /I /I

and A q ,hence Af= p and A1= q ,and so A1= p /\ q

(iii) Suppose q is hereditary, A nondegenerate and Af p =>,q

=>q In view of Corollary 4.4, we must show that

So suppose

We

implies

Ai: p /I q •

in view of the strict logical functor
/I

Therefore Al=q ,as q is hereditary.

then

q , alsoSince

AI= p

Proof:

claim that
/I
Al=q
/I
A-A

Then

§7. Some counterexamples

We summarize the implications established in Section 6 and Proposition 3.5 in the

following picture:

Freydian strongly projective

provable heredi tary and true
in Sets

hereditary projective and
indecomposable

t n
true in Sets-, for all

We shall now exhibit some examples to show, among other things, that most of these

implications cannot be reversed.

7.1. Strongly projective t Freydian.

Clearly, i is strongly projective. It also holds in F
i

; so, if it were Freydian,
/I

it would also hold in F
i

Sets, in view of Proposition 5.4.

EXAMPLE 7.2. Freydian true in Sets.

Take any closed formula of the form,p which is false in Sets yet not refutable, e.g.,

'Y , where Y is Godel's classically undecidable sentence. Then,p is Freydian, by

Theorem 6.2.

EXAMPLE 7.3. Hereditary Freydian.

For instance, i is hereditary, by Theorem 6.3, but not Freydian, by Theorem 6.2.

EXAMPLE 7.4. Hereditary and true in Sets provable.

,,1 ='1 => i is hereditary, by Theorem 6.3, yet it is not provable. Else Y would be

provable classically, contradicting Godel.

EXAMPLE 7.5. True in SetsU for all n 0 indecomposable.

Let 0 = (Y => ,y) v (,y => y) Then 0 holds in Setsll for all however it is

not indecomposable. For otherwise either 0 Y => , Y or 0 f-,Y => Y Now 0 is a

is the Boolean axiom. Therefore,tautology, so

=>'y or

,where S =I;!tEn(t v n t.)

=> Y ,that is, or Y , contradicting Godel.

EXAMPLE 7.6. Freydian and true in Sets true in for all , thus

Freydian hereditary and so strongly projective +hereditary. A direct calculation

shows that'S is true in , hence "S is an example of a formula

#
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as required; however the following nonconstructive argument is quite amusing. Either
2"a is true in Sets- or not. If not, then has the required properties as mentioned

above. On the other hand, should "a actually be true in sets l , consider the formula

',a =>a· This formula holds in Sets but not in else the latter would be Boolean

using the hypothesis above. Furthermore ,'a => a is Freydian, for by Theorem 6.2 it

suffices to show that "a => a does not entail "a. If it did, since ',a => a , it

would follow that 'a ,'a r that is, r which is known to be false.

At the time of writing the following questions are open: to find examples of

formulas showing that true in for all n f projective and that projective or

indecomposable strongly projective. However we haven't really given much thought

to these questions and the answers may be quite easy. It is known, for example, that

N (not a subobject of 1) is projective but not strongly projective (for fiN has non-

standard numerals).

It is clear that not all objects of F can be projective, else the full axiom of

choice would hold in F. But then F would be Boolean, by Diaconescu's Theorem [DiJ,

and therefore all toposes would be Boolean, contrary to fact. It is a little more

difficult to point out a specific nonprojective object. It can be shown that the

object of Dedekind reals is not projective, although the proof uses techniques not

discussed here. More interesting in the present context is a nonprojective subobject

of 1

EXAMPLE 7.7. The Boolean axiom a is not projective.

It is clear that a is not strongly projective, since, by Godel's Theorem, it is not

indecomposable. Therefore the 3-rule does not hold in La' We assert more: the

3-rule does not hold in , that is, even if a description operator is thrown in.

Indeed, if the 3-rule did hold in , one would hardly be justified in criticizing

classical mathematics for being nonconstructive

To say that a is not projective is to assert for some open formula that

at-- 3 (x) but not a (a) for any closed term a of type A (the type of x) in
XEA ..,

In particular, take _ 3
XEAI/>

(x) => I/> (x) then clearly af- so it suffices

to find I/> (x) such that a, 3 I/> (x) I/> (a) for no closed term a of type A.
XEA

To this end let B be a high enough type so that the set of Dedekind real numbers

may be constructed as an element of PB. Now take 1\ =: P (BxB) and let I/> (x) =: x is a

well-ordering of the reals. We claim that there is no closed term a of type A

i. e. in classical type theory with description, such that S, 3 AI/> (x) 1/1 (a)
XE

can interpret in Zermelo-Fraenkel set theory with axiom of choice so that 3 XEAI/> (x)

becomes provable, yet I/>(a) is not provable for any closed term a, that is, there is no

definable well-ordering of the reals, as was proved by Feferman [FeJ (See also [FB,

pages 68-69J).

( ¥febeYp:{got "

New Proofs of Int . Principles
"

,
ZFLCI 983 )

-
#f-
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