
Theoretical Computer Science 318 (2004) 121–137
www.elsevier.com/locate/tcs

Realizability models for BLL-like languages
M. Hofmanna ;∗;1 , P.J. Scottb;2

aInstitut f�ur Informatik, Ludwig-Maximilians-Universit�at M�unchen, Oettingenstrasse 67,
D-80538, M�unchen, Germany

bDepartment of Mathematics & Statistics, University of Ottawa, 585 King Edward,
Ottawa Ont., Canada K1N6N5

Abstract

We give a realizability model of Girard–Scedrov–Scott’s Bounded Linear Logic (BLL). This
gives a new proof that all numerical functions representable in that system are polytime. Our
analysis naturally justi5es the design of the BLL syntax and suggests further extensions.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Linear logic; Complexity lambda calculus; Finite model theory

1. Introduction

Bounded Linear Logic (BLL) [5] was an early attempt to provide an intrinsic
notion of polynomial time computation within a logical system. That is, the aim was
not merely to express polynomial time computability in terms of provability of certain
restricted formulas, but rather to provide a typed logical system in which computation
via cut-elimination or proof normalization is inherently polytime. Since the appearance
of this paper, several di?erent typed functional systems for analyzing ptime computabil-
ity have appeared in the literature [4–8,12,13]. For deeper foundational purposes, we
should mention Girard’s light linear logic (LLL) [4] as a major improvement of the
syntax of BLL, in that it eliminates the explicit polynomial I=O size-bounds, but at

∗ Corresponding author.
E-mail addresses: mhofmann@informatik.uni-muenchen.de (M. Hofmann), phil@mathstat.uottawa.ca

(P.J. Scott).
1 Research partially supported by EPSRC Grant No. GR/N28436.
2 Research supported by an operating grant from the Natural Sciences and Engineering Research Council

of Canada.

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.10.019

mailto:mhofmann@informatik.uni-muenchen.de
mailto:phil@mathstat.uottawa.ca

122 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

the expense of introducing more subtle typing distinctions. Moreover, while capturing
the same extensional class of polytime functions, it appears to be less Gexible than
BLL in terms of expressing concrete algorithms. Furthermore, BLL has its own
merits: from the viewpoint of computer science, BLL is a natural polymorphically
typed functional language in which bounded storage can represent bounded calls to
memory.
The main theorem in [5] is that the number-theoretic functions representable in BLL

are polytime. The proof of this result used sophisticated techniques from the proof
theory of linear logic, notably a very detailed analysis of normalization of proof nets
with boxes. The normalization strategy itself was of a special kind, inspired from
Girard’s Geometry of Interaction program. In this paper, we give a direct, semantic
proof of this main result which does not involve any notion of reduction, term rewriting,
or cut-elimination. Rather, we assign polytime algorithms to proofs in a compositional,
syntax-directed manner. We use realizability to relate these algorithms to the intended
set-theoretic meaning of the proofs themselves. All this is presented in the form of a
concrete categorical model of BLL which interprets BLL-formulas as sets with some
additional structure and proofs as functions witnessed by polytime algorithms operating
on this additional structure. At the same time, our analysis gives a natural interpretation
of the BLL syntax which justi5es the 5ne points of its design and might suggest further
extensions. For example, our analysis encompasses an aIne variant of BLL.
Our proof is constructive, in the sense that it can be formalized in an extensional

version of the calculus of inductive constructions [3]. This provides a new compilation
method for turning BLL proofs into equivalent polytime algorithms. Of course, in
practice, one would not use such a formalization, but rather derive the compilation
algorithm by hand directly from our proof.
Our interpretation bears an intriguing relationship to approaches based on 5nite model

theory, such as [6]. Namely, the polytime functions we obtain are of the form of
Goerdt–Gurevich’s total global functions: they take one extra argument which is inter-
preted as a bound on the size of all the actual inputs. However, unlike Goerdt’s system
which is a 5nite model interpretation of GJodel’s system T–hence the successor func-
tion is not injective—BLL supports the usual semantics, including Peano’s axioms, thus
can be seen as a meaning-preserving annotation to standard functional programming.
We hope that this relationship can be used to transfer Goerdt’s characterizations of
LOGSPACE and PSPACE to a similar setting.
It would be interesting to see whether our techniques can be adapted to Girard’s

aformentioned system LLL in order to get a new proof of the fact that all of its
representable functions are polytime computable. Our direct attempts at doing so have
so far not succeeded which is due to the considerable di?erences in syntax, for ex-
ample the self-dual modality section which has no obvious counterpart in BLL. An
interesting possibility might be to modify Baillot’s [2] recent denotational model for
LLL according to the methods in this paper; that is putting polytime constraints into
the morphism while maintaining closure of the model under the required rules. We
remark in this context that the original model of Baillot as well as the phase se-
mantics of LLL [11] do not guarantee the polytime computability of representable
functions.

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 123

2. Bounded linear logic

We introduce the theory BLL of bounded linear logic, 5rst proposed in [5].

2.1. Resource polynomials

Resource polynomials [5] are 5nite sums of products of binomial coeIcients, i.e.∑
j6q

∏
i6p

(xij
nij

)
where, for any 5xed j, the variables xij are distinct and nij are non-

negative integer constants.
Resource polynomials are closed under sum, product, and composition. Given such

polynomials p; q write p6q to denote that q− p is a resource polynomial. If p6p′

and q6q′, then their composites satisfy q ◦ p6q′ ◦ p′.

2.2. Syntax of BLL

Formulae are given by the following general syntax:

A; B ::= �(p̃) | A⊗ B | A(B | ∀�:A | !x¡pA:

Here atomic formulae have the form �(p0; : : : ; pn−1), where � is a second-order vari-
able of given 5nite positive arity n and p̃=(p0; : : : ; pn−1) denotes a list of resource
polynomials of length n. We assume that there are in5nitely many second-order vari-
ables of each 5nite arity.
The formula ∀�:A denotes second-order universal quanti5cation, while !x¡pA is

bounded storage, where p is a resource polynomial not containing x and x is bound
in !x¡pA.
Positive and negative occurrences of resource terms in formulae are de5ned by

induction as usual: in !x¡pA, p occurs negatively. The pi and their subterms oc-
cur positively in an atomic formula �(p̃). The connectives ⊗ and ∀� are monotone;
the connective (is antitone in its 5rst and monotone in its second argument so that
for example, p occurs positively in ∀�(!y¡p(�(y)(�(y + 1))⊗ �(0))(�(p).
Let the free resource variables x0; : : : ; xn−1 occur only positively in B. Then

�x0; : : : ; xn−1:B is a (second-order) abstraction term, say T . A[� := T] denotes the
result of substituting T for � in A, i.e. of replacing the atoms �(p0; : : : ; pn−1) in A by
B[x0:=p0] : : : [xn−1:=pn−1].
Given types A and A′, write A6A′ if A and A′ only di?er in their choice of resource

polynomials, and
(i) for any positive occurrence of resource polynomial p in A, the homologous p′ in

A′ is such that p6p′,
(ii) for any negative occurrence of resource polynomial p in A, the homologous p′ in

A′ is such that p′6p.

If � and �′ are 5nite multisets of formulae, �6�′ i? it is true componentwise.
Proofs are given by Gentzen sequents, as follows.

124 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

2.3. BLL sequents

Sequents have the form � �B, where � is a 5nite (possibly empty) multiset of
formulae. In order to avoid mentioning the permutation rule, the formulae in � are
considered indexed but not ordered. In what follows, p; q; w (possibly with subscripts)
range over resource polynomials.

Axiom (Waste of Resources) A�A′, where A6 A′

(Special case: A�A).

Cut
� �A �; A�B

�; ��B

⊗L �; A; B�C
�; A⊗ B�C

⊗R � �A ��B
�; ��A⊗ B

(L
� �A �; B�C
� , �; A(B�C

(R
�; A�B

� �A(B

∀L �; A[� := T]�B
�;∀�:A�B

∀R � �A
� �∀�:A

(provided � is not free in �)

(!W) Weakening
� �B

�; !x¡wA�B

(!D) Dereliction
�; A[x := 0]�B

�; !x¡1+wA�B

(!C) Contraction

�; !x¡pA; !y¡qA[x := p+ y]�B

�; !x¡p+q+wA�B

where p+ y is free for x in A.

(S!) Storage
!z¡q1(x)A1[y := v1(x) + z] ; : : : ; !z¡qn(x)An [y := vn(x) + z] �B

!y¡v1(p)+w1A1; : : : ; !y¡vn(p)+wnAn � !x¡pB,

where vi(x) + z is free for y in Ai, where vi(x) =
∑

z¡x qi(z) and where all
formulae to the left of the � have the indicated form.

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 125

Remark 1.
• The rules of BLL are written in such a way that given any proof � of a sequent

� �A and given any �′6� and A6A′ then a simple change of resource parameters
will yield a proof �′ of �′ �A′ without altering the structure of the proof.
Note that the “waste” w in each of the rules associated with storage can without

loss of generality be assumed 0 as the general case can be recovered by cutting with
appropriate axioms. In this paper we are not interested in cut elimination, therefore,
we will adopt this simpli5cation.

• We also introduce a unit for ⊗, denoted I . The ordinary LL rules for I are as
follows:

� �B
�; I �B � I .

• The data type of tally natural numbers of size at most x is

Nx = ∀� !y¡x(�(y)(�(y + 1))((�(0)(�(x)):

Moreover, there are proofs � 0 :N0 and S :Nx �Nx+1 representing “zero” and
“successor”, resp. (see [5]).

• The data type of dyadic lists of size at most x is

N2
x = ∀� !y¡x(�(y)(�(y + 1))(!y¡x(�(y)(�(y + 1))((�(0)(�(x)):

There are proofs � :N2
0 and S0; S1 :N2

x �N2
x+1 representing zero and the two successor

functions, resp. (see [5]).

The following two rules are not contained in the de5nition of BLL [5], and as far as
we can see are not admissible in BLL.

(Func)
A�B

!x¡pA� !x¡pB
(Mon)

!x¡pA⊗!x¡pB� !x¡p(A⊗ B)

These rules express functoriality and monoidalness of !x¡p. Note that they can be
subsumed under the following generalization of (Func):

(Func-⊗) A1; : : : ; An �B
!x¡pA1; : : : ; !x¡pAn � !x¡pB

Our semantics validates these rules, so as a result their addition does not increase
the computational strength of BLL. We note that in their presence the storage rule can
be replaced by the following axiom:

!y¡∑x¡p q(x)A �!x¡p!z¡q(x)A

[
y := z +

∑
�¡x

q(�)

]

126 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

3. Main result

We shall assume that our ambient set theory is constructive, so that we shall have a
set (of sets) U containing the natural numbers N, closed under product, function space,
and U-indexed products [10]. We discuss this point in more detail below in Section 5.
This allows us to interpret types as sets in the following way: given a formula A
and an environment � which assigns sets to type-variables, we obtain a set-theoretic
interpretation <A=� as follows:

<�(p̃)=� = �(�);

<A⊗ B=� = <A=� × <B=�;
<A(B=� = <A=� ⇒ <B=�;

<∀�A=� =
∏

C∈U

<A=�[� �→C];

<!x¡pA=� = <A=�:

Notice that this interpretation of types ignores the resource polynomials.
To every proof � of a sequent A1; : : : ; An �B and environment �, we can assign a

set-theoretic function

<�=� : <A1 ⊗ · · · ⊗ An=� → <B=�

by induction on derivations, in the obvious way. Observe that

<Np= =
∏

C∈U

(C ⇒ C)⇒ (C ⇒ C)

There is a pair of functions � :N→ <Np= and : <Np=→N satisfying ◦ �= idN,
de5ned as follows:

�(n)C(f; z) = fn(z);

 (x) = xN(S)(0);

where in the de5nition of , the symbols S and 0 are the usual successor and zero on
N. Note that <0==0 and ◦ <S= ◦ �=S.
Our main goal is to give a new proof of the following theorem, which is equivalent

to Theorem 5.4 in [5].

Theorem 2. Let � be a proof of �Nx(Np(x), where p does not contain any other
free resource variables except x. Let f :N→N be the function

f(n) = (<�=(�(n))):

Then f(n) is computable in polynomial time in n. Moreover, f(n)6p(n) and an
algorithm for f can be eAectively obtained from the proof �.

An analogous result holds for the type of dyadic lists, as in Theorem 5.3 of [5].

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 127

4. A realizability model for BLL

We now introduce a re5ned model B for BLL based on realizability and ideas from
[7]. This will allow us to obtain the above theorem as a direct corollary of soundness
of the interpretation. See the proof after Theorem 23.

4.1. Preliminaries

For x∈N, we write |x|=log2(x+1)� for the binary length of x. We 5x a linear time
computable pairing function 〈 · ; · 〉 :N2→N satisfying |〈x; y〉|= |x|+ |y|+O(log(|x|)).
We should also remark that the inverses of the pairing function are assumed to be

linear time computable.
Let X be a 5nite set of variables. We write V(X) for NX—the elements of V(X) are

called valuations (over X). If $∈V(X) and c∈N then $[x �→ c] denotes the valuation
which maps x to c and acts like $ otherwise. We assume some reasonable encoding
of valuations as integers allowing them to be passed as arguments to algorithms.
We write P(X) for the set of resource polynomials over X . If p∈P(X) and

$∈V(X) we write p($) for the number obtained by evaluating p with x �→ $(x)
for each x∈X .
Let X; Y be 5nite sets of variables. A substitution from X to Y is a function

' :Y →P(X). We may write a substitution from X to Y ={y0; : : : ; yn−1} in the form
'=[X ;y0 :=p0; y1 :=p1; : : : ; yn−1 :=pn−1]. This is de5ned if pi∈P(X) and in this
case we have '(yi)=pi. If the domain X is clear from the context, we may simply
write '=[y0 :=p0; y1 := p1; : : : ; yn−1 := pn−1].
A substitution ' from X to Y induces functions '(−) :V(X)→V(Y) and

−['] :P(Y)→P(X) in the obvious way, i.e., ('($))(y) def= '(y)($) and p['] def=
p[y0 :='(y0)] : : : [yn−1:='(yn−1)].
We assume the known untyped lambda calculus as de5ned e.g. in [1]. An untyped

lambda term is aBne linear if each variable (free or bound) appears at most once (up
to �-congruence). E.g. �x�y:yx and �x�y:y and �x:xy are aIne linear; the term �x:xx
is not. Notice that such a term t is strongly normalisable in less than |t| steps where
|t| is the size of the term. The runtime of the computation leading to the normal form
is therefore O(|t|2). We will henceforth use the expression aBne lambda term for an
untyped aIne linear lambda term which is in normal form. If s; t are aIne lambda
terms then their application s t is de5ned as the normal form of the lambda term s t.
Notice that the application s t can be computed in time O((|s|+ |t|)2).
If s; t are aIne lambda terms we write s⊗t for the aIne lambda term �f:fst. If

t is an aIne lambda term possibly containing the free variables x; y then we write
�x⊗y:t for �u:u(�x�y:t). Notice that (�x⊗y:t)(u⊗v)= t[x:=u][y:=v].
More generally, if (ti)i¡n is a family of aIne lambda terms, we write

⊗
i¡n ti

for �f:ft0t1 : : : tn−1 and �
⊗

i¡n xi:t for �u:u(�x0�x1 · · · �xn−1:t). Again, (�
⊗

i¡n xi:t)
(
⊗

i¡n ti)= t[x0:=t0] : : : [xn−1:=tn−1].
Tally natural numbers may be encoded as aIne lambda terms by p0q=(�xy:x) ⊗

(�xy:x) and pn+1q=(�xy:y)⊗ pnq. Dyadic lists may be encoded as p�q=(�xyz:x)⊗
(�xy:x) and p0wq = (�xyz:y)⊗ pwq and p1wq = (�xyz:z)⊗ pwq.

128 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

We notice that pnq, resp. pwq can be computed in linear time from n, resp. w, and
vice versa. Of course, only a few functions f on natural numbers or dyadic lists can
be represented by aIne terms t in the sense that tpwq=pf(w)q. To begin, by the
time bound on application any such function will be computable in quadratic time.
Moreover, we believe that any such function can only inspect a constant-size pre5x of
its argument. For example, a function on dyadic lists which permutes the 5rst 5ve bits
is representable in this way.
We write +a for the set of closed aIne lambda terms. Our subsequent development

will be modular in the sense that +a can be replaced by any other polynomial-time
computable BCK-algebra in the sense of [8]. For example, we can take Turing machines
with the application de5ned by ex={e}(x) if this result can be obtained in time at most
˝(d(‘(e) + ‘(x))) and 0 otherwise. Here ‘ is a length function de5ned inductively by
‘(〈x; y〉)=‘(x)+‘(y)+1, ‘(x)= |x| otherwise. The defect d is ‘(e)+‘(x)−‘({e}(x))
and we additionally require ‘({e}x)6‘(e)+ ‘(x). Finally, ˝ is a monotone, sublinear
function satisfying ˝(‘(x))6|x|. For example, ˝(x)=Cx1+� for arbitrary �¿0 and
appropriate C, see [7].

4.2. Realizability sets

De#nition 3. Let X be a 5nite set of resource variables. A realizability set over X is a
pair A=(|A|; ||−−−

A
), where |A| is a set and ||−−−

A
⊆ V(X)×+a×|A| is a ternary relation

between valuations over X , aIne lambda terms, and the set |A|. We write $; t||−−−
A

a

for ($; t; a)∈||−−−
A
.

The intuition behind $; t||−−−
A

a is that a is an abstract semantic value, $ measures

the abstract size of a, and the aIne lambda term t encodes the abstract value a.

Example 4. The following are some useful examples of realizability sets, cf. Section 5
of [4]:
(i) The realizability set Nx over {x} of tally natural numbers (“of size at most x”)

is de5ned by |Nx|=N and

$; t||−−−
Nx

n if t=pnq and $(x)¿ n:

(ii) The realizability set N2
x over {x} of dyadic lists (“of length at most x”) is de5ned

by |N2
x |={0; 1}∗ and

$; t||−−−
N2

x

w if t=pwq and $(x)¿ lh(w)

(iii) The realizability set I over ∅ is de5ned by |I |={∗} and ∅; �x:x||−−−
I

∗

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 129

(iv) Given a substitution ' from X to Y , and a realizability set A over Y , then a new
realizability set A['] over X is de5ned by: |A[']|= |A| and

$; t||−−−
A[']

a i? '($); t||−−−
A

a

The realizability sets Nx and N2
x will turn out to be retracts of the denotations of

the eponymous BLL formulas in our model. More precisely, the mediating functions
� and described in the beginning of Section 3 are shown to be morphisms between
realizability sets in the proof of Theorem 2.
In order to model the notion of positive occurrence of a resource variable in BLL

formulas we introduce a corresponding concept for realizability sets.

De#nition 5. Let A be a realizability set over X . We say that x∈X is positive (resp.
negative) in A, if for all $; $′∈V(X); t∈+a; a∈|A| where $ and $′ agree on X \{x}
and $(x)6$′(x) (resp. $(x)¿ $′(x)) then $; t||−−−

A
a implies $′; t||−−−

A
a.

We notice that x is positive in Nx and N2
x .

De#nition 6. Let A; B be realizability sets over some set X . A morphism from A to B
is a function f : |A|→ |B| satisfying the following condition:

There exists a function e :V(X)→+a such that e($) is computable in time q($) for
some resource polynomial q and for each $∈V(X), t∈+a, a∈|A|, we have

$; t||−−−
A

a implies $; e($)t||−−−
B

f(a) (1)

In this case we say that e witnesses f and write A −→fe B where in the notation the
algorithm e is presumed to exist.

Example 7. The following are some useful examples of numerical-valued morphisms:
• A morphism f :Nx →Nx is a function f :N→N that is computable in time polyno-
mial in the input n (not in |n|). Moreover, it satis5es f(n)6n (by letting $(x)=n).

• Similarly, a morphism f :N2
x →N2

x is a function f : {0; 1}∗ →{0; 1}∗ that is polytime
computable (in the usual sense) and moreover satis5es lh(f(w))6lh(w).

• Let p(x) be a unary resource polynomial in x and let ' be the substitution
[{x}; x :=p].

A morphism f :Nx →Nx['] is a function f :N→N that is polytime computable
in the input (as above) for which f(n)6p(n). Composed with the above-mentioned
retractions, these morphisms will be denotations of closed proofs of �Nx(Np(x).
The following lemma illustrates how realizability sets model the syntactical iteration

lemma for BLL (cf. Lemma 6.2 of [5]).

Lemma 8 (Iteration lemma). Let T be a realizability set over {x} such that x is
positive in T . Let z : I →T [x :=0] be a morphism (over ∅) and let s :T →T [x := x+1]

130 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

be a morphism (over {x}). The function f :N→|T | deDned by f(n)=sn(z(∗)) is a
morphism from Nx to T .

Proof. The witnesses of z; s give rise to an element ez∈+a and to a function
es :N→+a such that

[x �→ 0] ; ez||−−−
T

z(∗)

and for each n∈N,
[x �→ n] ; t||−−−

T
v ⇒ [x �→ n+1] ; es(n)t||−−−

T
s(v)

This is because by de5nition of substitution we have

∅; t||−−−
T [x:=0]

v ⇐⇒ [x �→ 0] ; t||−−−
T

v

[x �→ n]; t|| −−−
T [x:=x+1]

v ⇐⇒ [x �→ n+1]; t||−−−
T

v

We now have

[x �→N] ; es(N − 1)(es(N − 2) : : : (es(N − n)ez) : : :)||−−−
T

f(n)

whenever n6N . This follows by induction on n and the fact that x is positive in T .
We de5ne e :N→+a recursively by

e(0) = ez;
e(N + 1) = �b⊗r:b ez (es(N) (e(N) r)):

It follows that

[x �→N]; e(N)pnq||−−−
T

f(n)

provided that n6N .
By induction on N one shows that the size of e(N) is O(N · p(N)) where p(N)

bounds the size of es(N). This in turn shows that the primitive recursive de5nition of
e yields a polytime algorithm.
Therefore, $ �→ e($(x)) witnesses the function f(n)=sn(z(∗)).

The following analogous version for dyadic lists (cf. Lemma 6.2 of [5]) is proved
similarly.

Lemma 9 (Iteration lemma for dyadic lists). Let T be a realizability set over {x}
such that x is positive in T . Let z : I →T [x := 0] be a morphism (over ∅) and
let s0; s1 :T →T [x := x + 1] be morphisms (over {x}). The function f : {0; 1}∗ →|T |
deDned by f(�)=z and f(iw)=si(f(w)) is a morphism from N2

x to T .

We remark that one can also prove more general versions of the preceding iteration
lemmas allowing for extra resource variables in T as parameters.

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 131

Proposition 10. Let X be a Dnite set (of resource variables). Realizability sets over
X and morphisms between them form a category B(X) such that the mapping
A=(|A|; ||−−−

A
) �→ |A| extends to a functor from B(X) to the category Set of sets.

This means that composition in B(X) is given by ordinary set-theoretic composition
of functions.

Proof. The identity function id : |A| −→ |A| is witnessed by the algorithm e($)=�x:x
which is clearly polytime computable.
If A0 −→fe0 A1 and A1 −→ge1 A2 then the composition g◦f : |A0| −→ |A2| can be witnessed

by

e($) = �z:e1($)(e0($)z) = B e1($) e0($);

where B=�xyz:x(yz). Now e is polytime using the fact that application in +a is
polytime.

Recall the de5nition in Example 4 of the realizability set A['] over X when A is a
realizability set over Y and ' is a substitution from X to Y .

Proposition 11. Let ' be a substitution from X to Y . The assignment A �→ A[']

extends to a functor −['] :B(Y)→B(X) with f['] def= f.

Proof. We have to show that if A −→fe B then we can 5nd e′ so that A['] −→fe′ B['].
Unfolding the de5nitions reveals that e′($)=e('($)) does the job.

This allows us to consider morphisms between realizability sets over di?erent sets
of resource variables. Namely, if X ⊆ Z we have a “weakening substitution” weakX;Z

from Z to X given by weakX;Z(x)=x. Thus, if A is a realizability set over X and
B is a realizability set over Y we can consider morphisms from A[weakX;X∪Y] to
B[weakY;X∪Y]. Such a morphism is a function f : |A|→ |B| such that there exists an
algorithm e :V(X ∪ Y)→+a such that e($) is computable in time q($) for some
resource polynomial q and

$|X ; t||−−−
A

a implies $|Y ; e($)t||−−−
B

b

where $|X denotes the restriction of $ to X . We shall sloppily refer to such morphisms
as being morphisms from A to B. In this sense, the only morphism from Nx to Ny

where x �= y is the constant zero function.
The following is immediate.

Lemma 12. Suppose that A∈B(Y) is a realizability set and '; '′ :X →Y are sub-
stitutions. Suppose furthermore that '(y)6'′(y) if y occurs positively in A, that
'(y)¿ '′(y) if y occurs negatively in A, and that '(y)='′(y) otherwise. Then the
identity function is a morphism from A['] to A['′].

132 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

4.3. The category of realizability sets

We will now show that the categories B(X) have the appropriate categorical structure
to model the BLL connectives.

De#nition 13. We de5ne the following monoidal structure on B(X):
• I=(|I |; ||−−−

I
) , where |I |={∗} and $; t||−−−

I
∗ for t=�x:x and $ arbitrary.

• If A1; A2 are realizability sets over X we de5ne A1 ⊗ A2 by |A1 ⊗ A2|= |A1| × |A2|
and $; t||−−−−−

A1⊗A2
(a1; a2) i? t= t1⊗t2, where $; ti||−−−

Ai

ai for i=1; 2.

Proposition 14. Let f :A→B be a B(X) morphism, C∈B(X). Then
(i) The function f ⊗ C : |A⊗ C|→ |B⊗ C| deDned by (f ⊗ C)(a; c)=(f(a); c) is a

morphism from A⊗ C to B⊗ C.
(ii) The canonical set-theoretic maps |A⊗(B⊗C)|→ |(A⊗B)⊗C|, |A⊗B|→ |B⊗A|,

and |A⊗ I |→ |A| induce isomorphisms between the associated objects.
(iii) For appropriately typed substitution I [']= I and (A1 ⊗ A2)[']=A1[']⊗ A2['].
This says in particular that B(X) is a symmetric monoidal category, and the
forgetful functor B(X)→ Set is a monoidal functor. Clause (iii) states that
substitution is a monoidal functor. This says that the collection of the cate-
gories B(X) forms a Dbred (indexed) symmetric monoidal category (cf. [16],
Section 2.5(3)).

Proof. Ad (i). If e witnesses f then we de5ne e′($)=�x⊗y:e($)x⊗ y. Obviously, e′

witnesses f⊗C and, since e′($)=P e($) for some P∈+a the function e′ is polytime.
The other cases are analogous.

Proposition 15. For any two objects A; B∈B(X), there is a linear function space
object A(B∈B(X), where
(i) |A(B|= |A| ⇒ |B|,
(ii) $; t||−−−−−

A(B
f iA whenever $; t′||−−−

A
a then $; t t′||−−−

B
f(a).

This structure makes B(X) a symmetric monoidal closed category, i.e. there is a nat-
ural bijection B(X)(C⊗A; B) ∼= B(X)(C; A(B). Moreover, (A(B)[']=A['](B[']
so that −['] is a monoidal closed functor.

Proof. The evaluation map |A⊗(A(B)|→ |B| given by (a; f) �→f(a) is witnessed by
e($)=�x⊗y:yx. If C⊗A −→fe B then �(f) :C −→A(B given by �(f)(c)(a)=f(c; a) is
witnessed by e′($)=�xy:e($)(x⊗y). Just as in Proposition 14(i) we have e′($)=P e($)
for some P∈+a, which establishes that e′ is polytime.

We notice that the forgetful functor B(X)→ Set is also monoidal closed, i.e. sends
⊗ to × and (to ⇒.

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 133

De#nition 16. Given a polynomial p∈P(X) and a realizability set A over X ∪ {x}
where x �∈X then we de5ne a realizability set !x¡pA over X (i.e. x is “bound” by
!x¡p) by
• |!x¡pA|= |A|,
• $; t||−−−−−

!x¡pA
a if

◦ t=
⊗

i¡p($) ti for some family (ti)i¡p($),
◦ $[x �→ i]; ti||−−−

A
a for each i ¡ p($).

Whenever we write !x¡pA in the sequel we implicitly assume that x does not occur
in p.

Proposition 17. If f :A→B∈B(X ∪{x}) is a morphism then !x¡p(f)
def= f is a mor-

phism !x¡pA→ !x¡pB. This says that !x¡p extends to a functor from B(X ∪ {x}) to
B(X) which is mapped to the identity by the forgetful functor to Set.

Proof. If A −→fe B then we can witness f : !x¡pA→ !x¡pB by

e′($)=�
⊗

i¡p($)
xi:

⊗
i¡p($)

e($)xi:

We notice that

e′($) = P e($) : : : e($)︸ ︷︷ ︸
p($) times

for some P∈+a so that e′($) is computable in time O((p($)q($))2) if e($) is
computable in O(q($)). Note that this is a rather generous estimate.

We now show that we have the appropriate categorical structure to interpret the rules
of BLL.

Proposition 18. The following are morphisms:

�A : !x¡1A→A[x := 0] where �A(a) = a;

eA : !x¡0A→ I where eA(a) = ∗;
dA : !x¡p+qA→ !x¡pA⊗!y¡qA[x := p+ y];

where dA(a) = (a; a);

:A : !y¡
∑

x¡p
q(x) A→ !x¡p!z¡q(x)A

[
y := z +

∑
�¡x

q(�)

]
;

where :A(a) = a and p∈P(X); q∈P(X ∪ {x})
and x; y are fresh;

;A;B : !x¡pA⊗ !x¡pB→ !x¡p(A⊗ B);

where ;A;B(a; b) = (a; b);

wA : !x¡pA→ !x¡qA where wA(a) = a and q6p:

134 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

Proof. The map �A can be witnessed by e($)=�
⊗

i¡1 xi:x0. The map eA may be
witnessed by e($)=�y:�x:x. The map dA may be witnessed by

e($) = �
⊗

i¡(p+q)($)
xi:

(⊗
i¡p($)

xi

)
⊗
(⊗

j¡q($)
xj+p($)

)
:

To see this, assume $; t||−−−−−−−−−−
!x¡p+qA

a, i.e., t =
⊗

i¡(p+q)($) ti and $[x �→ i]; ti||−−−
A

a. Then

for each i¡p($) we have $[x �→ i]; ti||−−−
A

a, so $;
⊗

i¡p($) ti||−−−−−−−−−−
!x¡p A

a. Moreover, for

each j¡q($) we have $[x �→ j+p($)]; tj+p($)||−−−
A

a, hence $[y �→ j]; tj+p($)||−−−−−−−−−−
A[x:=p+y]

a.

Therefore, $;
⊗

j¡q($) tj+p($)||−−−−−−−−−−−
!y¡qA[x:=p+y]

a, so the result follows.

Next, :A may be witnessed by

e($) = �
⊗

j¡
∑

i¡p($)
q($[x �→ i])

xj:
⊗

i¡p($)

⊗
j¡q($[x �→ i])

xj+
∑

k¡i
q($[x �→ k]):

The veri5cation is similar to the one of dA.
Finally, ;A;B may be witnessed by

e($) = �u⊗ v:u

(
�x1x2 : : : xp($)−1:v

(
�y1y2 : : : yp($)−1:

⊗
i¡p($)

xi ⊗
⊗

i¡p($)
yi

))
:

We omit the “waste” morphism wA, which is obvious.

4.4. Interpreting the syntax in B

We shall now give the details of the interpretation of the syntax of BLL in terms
of realizability sets and morphisms between them.

De#nition 19. Let X be a set of resource variables. A second-order environment over
X is a partial function � which assigns to a second-order variable � of arity n a pair
(l; C) such that
• l=(y0; : : : ; yn−1) is a list of n pairwise di?erent resource variables not occurring in

X ,
• C is a realizability set over X ∪ {y0; : : : ; yn−1} in which the yi are positive.
For second-order environment � we write |�| for the mapping � �→ |C| when
�(�)=(l; C).

If ' :X →Y is a substitution and � is a second-order environment over Y we de5ne a
second-order environment �['] over X by �['](�)=(l; C[']) when �(�)=(l; C). We
assume here that the variables in l are not contained in Y . Otherwise, the substitution
cannot be de5ned.
Recall the set-theoretic semantics < − = de5ned in Section 3. From now on, we

will write < − =Set for this set-theoretic semantics to distinguish it from a realizability
semantics < − =B which we now de5ne.

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 135

Let A be a BLL formula with free resource variables in X and � be an environment
over X de5ned on all free second-order variables occurring in A. We assume, without
loss of generality, that all bound variables in A and in � are distinct from each other.
By induction on A we de5ne a realizability set <A=B� such that

|<A=B� | = <A=Set|�| :

The de5ning clauses are as follows:

<�(p̃)=B� = C['];

where �(�) = ((y0; : : : ; yn−1); C) and p̃ = (p0; : : : ; pn−1) and '(yi) = pi,

<A⊗ B=B� = <A=B� ⊗ <B=B� ;

<A(B=B� = <A=B�(<B=B� ;

<!x¡pA=B� =!x¡p<A=B�[weakX∪{x};X];

<∀�A=B� =

(∏
C∈U

<A=Set|�|[� �→C] ; ||−−−−−
<∀�A=B�

)
;

where

$; t||−−−−−
<∀�A=B�

f ⇐⇒ $; t||−−−−−−−−−−
<A=B�[� �→ (l;C)]

f|C| for all (l; C) as in De5nition 19:

The following lemmas are immediate by structural induction.

Lemma 20. Let ' be a substitution from X to Y ={y0; : : : ; yn−1} and let A be a BLL
formula with free resource variables from Y and let � be an environment over Y such
that �['] is deDned. Then

<A[y0 := '(y0); : : : ; yn−1 := '(yn−1)]=B�[']: = <A=B� [']:

Lemma 21. Let A be a BLL formula possibly containing the second-order variable �
of arity n. Let B be a BLL formula containing free resource variables {y0; : : : ; yn−1}
which do not occur in A. Then

<A[� := �y0 : : : �yn−1B]=B� = <A=�[� �→((y0 ;:::;yn−1) ; <B=B�)]:

Lemma 22. Let A be a BLL formula in which resource variable x occurs positively
(resp. negatively) and � be an appropriate second-order environment. Then x is pos-
itive (resp. negatively) in <A=B� .

Theorem 23 (Soundness). Let � be a proof of a sequent A1; : : : ; An �B involving
resource variables from X . Let � be a second-order environment binding all the
second-order variables occurring in the sequent. Then the set-theoretic function

<�=Set|�| : <A1 ⊗ · · · ⊗ An=Set|�| → <B=Set|�|

136 M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137

is a morphism of realizability sets from <A1 ⊗ · · · ⊗ An=B� to <B=B� . Recall that <A1
⊗ · · · ⊗ An=Set|�|= |<A1 ⊗ · · · ⊗ An=B� | and <B=Set|�| = |<B=B� |.

Proof. By induction on BLL derivations using Lemma 12 for the axiom; using Propo-
sitions 14, 15, 17, 18 for the term formers associated with ⊗; (; !x¡p, and using
the above three lemmas for universal application and abstraction. We also make use of
obvious translations of syntactic constructs into categorical combinators, e.g. application
into evaluation and composition or storage into a combination of :; ;, and functoriality
of !x¡p.

Proof of Theorem 2. Applying the iteration principle (Lemma 8) to the denotations of
0 and S shows that the function � :N→ <Nx=Set is a morphism in B({x}) from Nx to
<Nx=B. Similarly, the function : <Np(x)=Set→N is a morphism in the other direction
by instantiating the second-order variable � with Nx and afterwards applying it to
the zero and successor of the realizability set Nx. Thus the function f= ◦ <�=Set ◦
� in the theorem is a morphism. The result follows by the analysis in Example 7.
We proceed analogously in the case of dyadic lists, using the corresponding iteration
principle.

5. Additional remarks

We notice that for any realizability set A over X the unique function |A|→{∗} is
a morphism A→ I of realizability sets witnessed by e($)=�y:�x:x. In particular, this
gives projections for ⊗. This shows that we can model an aIne variant of BLL which
has the following additional rule

Weak :
� �B

�; A�B

In particular, we see that this rule does not add computational strength.
Recall that we assumed the existence of a universe U in our ambient set theory

which is closed under U-indexed products. As is well-known, no such universe exists
in classical ZF set theory but it is consistent with constructive set theories [10,15]. We
found it convenient to assume the existence of such a U because it allows the use of
informal set-theoretic arguments (provided they are constructive). For the reader who
feels uneasy about such sleight-of-hand, we o?er the following ways of making this
rigorous (all of which, however, complicate the argument):
• Formalize the entire discussion in the Calculus of Inductive Constructions [3].
• Formalize the entire discussion in a realizability topos [7,15]. More explicitly, we
can stipulate that the carrier sets of realizability sets must be a subquotient (by a
per, i.e. by a partial equivalence relation) of the set of untyped lambda terms (not
necessarily linear!). And furthermore, a morphism between realizability sets must be
uniformly tracked by an untyped lambda term, in the obvious sense. This would
allow one to interpret polymorphic quanti5cation as intersection of pers, in the
familiar manner.

M. Hofmann, P.J. Scott / Theoretical Computer Science 318 (2004) 121–137 137

References

[1] H.P. Barendregt, The Lambda Calculus, North-Holland, Amsterdam, 1984.
[2] P. Baillot, Strati5ed coherent spaces: a denotational semantics for light linear logic, Tech. Report EDI-

INF-RR-0025 submitted, available from Informatics Division Report Series, University of Edinburgh,
August 2000, http://www.informatics.ed.ac.uk/publications/report/0025.html

[3] T. Coquand, C. Paulin-Mohring, Inductively De5ned Types, in: Lecture Notes in Computer Science,
Vol. 389, Springer, Berlin, 1989.

[4] J.-Y. Girard, Light linear logic, Inform. and Comput. 143 (1998).
[5] J.-Y. Girard, A. Scedrov, P.J. Scott, Bounded linear logic, Theoret. Comput. Sci. 97 (1992) 1–66.
[6] A. Goerdt, Characterizing complexity classes by higher-type primitive recursive de5nitions, Theoret.

Comput. Sci. 100 (1992) 45–66.
[7] M. Hofmann, Linear types and non-size-increasing polynomial time computation, Inform. Comput. 183

(1999) 57–85.
[8] M. Hofmann, Type systems for polynomial-time computation, Darmstadt University of Technology,

Habilitationsschrift, 1999, appears as Tech. Report ECS-LFCS-99-406, Department of Computer Science,
University of Edinburgh, A revised and abridged version has appeared as “Safe recursion with higher
types and BCK algebra” in Ann. Pure Appl. Logic 104 (2000) 113–166.

[9] M. Hofmann, Programming Languages capturing complexity classes, SIGACT News (Logic Column
9), ftp.research.bell-labs.com/dist/riecke/hofmann.ps.gz

[10] M. Hyland, A small complete category, Ann. Pure Appl. Logic 40 (1988) 135–165.
[11] M. Kanovich, M. Okada, A. Scedrov, Phase semantics for light linear logic, Theoret. Comput. Sci. 294

(2003) 525–549 (extended abstract in ENTCS, Vol. 6, 1997).
[12] D. Leivant, Strati5ed functional programs and computational complexity, Proc. 20th IEEE Symp. on

Principles of Programming Languages (POPL’93), Charleston, South Africa, 1993.
[13] D. Leivant, J.-Y. Marion, Lambda calculus characterisations of polytime, Fund. Inform. 19 (1993)

167–184.
[14] S. Mac Lane, Categories for the Working Mathematician, 2nd Edition, Springer, Berlin, 1998.
[15] A. Pitts, Polymorphism is set-theoretic, constructively, in: D.H. Pitt (Ed.), Category Theory

and Computer Science, Lecture Notes in Computer Science, Vol. 283, Springer, Berlin, 1987,
pp. 12–39.

[16] R. Seely, Linear logic, ∗-autonomous categories, and cofree coalgebras, in: J. Gray, A. Scedrov,
(Eds.), Categories in Computer Science and Logic, Contemporary Mathematics, Vol. 92, American
Mathematical Society, Providence, RI, 1989.

http://www.informatics.ed.ac.uk/publications/report/0025.html
http://ftp.research.bell-labs.com/dist/riecke/hofmann.ps.gz

	Realizability models for BLL-like languages
	Introduction
	Bounded linear logic
	Resource polynomials
	Syntax of BLL
	BLL sequents

	Main result
	A realizability model for BLL
	Preliminaries
	Realizability sets
	The category of realizability sets
	Interpreting the syntax in B

	Additional remarks
	References

