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Categorical traces from single-photon linear optics

Peter Hines and Philip Scott

Abstract. We use a single-photon thought experiment, based on a modifica-
tion of the Sagnac interferometer, to motivate a general construction on linear
maps that has a close connection to constructions from algebraic and categor-
ical program semantics. We analyse this general construction in terms of a
category of formal power series over linear maps, and exhibit a partial cate-
gorical trace, generalising the ‘particle-style’ trace on Hilbert spaces [HS10],
that has a physical realisation based on this thought-experiment.

1. Introduction

1.1. Historical background. The Sagnac interferometer is a linear-optics
device whose theoretical origins [Lo93] predate both quantum mechanics and rel-
ativity. An experiment, described in [Sa13i, Sa13ii], claimed to ‘demonstrate the
existence of the luminiferous æther’ (“La preuve de la réalité de l’éther lumineux”)
using an interferometer that split incoming light into two counter-rotating paths
around an optical loop. Sagnac’s experiment is still a favorite of those who wish
to disprove relativity (see http://www.anti-relativity.com/ for examples). However,
as observed by Michelson [Br02], the Sagnac effect cannot discriminate between
(special-)relativistic and pre-relativistic theories1.

From essentially 19th century origins, both the Sagnac interferometer and its
modern incarnation as the ‘Ring Laser’ [St97] have become immensely important
practical tools used in, amongst other devices, highly sensitive gyroscopes and the
Sagnac effect is now a key technique in inertial and missile guidance systems (From
[St97], “Contrary to the supposed custom in research, the area ... has already
proved its commercial and (unfortunately) its military usefulness; it is the scientific
potential which has been neglected.”).

1.2. Modifying the Sagnac interferometer. In this paper, we analyse a
variant of Sagnac’s experiment from a quantum-mechanical perspective. We take a
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single-photon description, and analyse the situation where the splitting of incom-
ing light is not arbitrary (creating a quantum-mechanical ‘equal superposition’ of
paths), but dependent on a certain quantum property (i.e. the polarisation) of the
incoming light. The motivation for this is two-fold:

(1) Single-photon thought experiments in linear optics are often used as illus-
trations of quantum computation and information. By encoding quantum
bits (qubits) on either the (superposition of) paths taken by an individual
photon, or its polarisation, it is possible to implement a universal set of
quantum-computational gates [CAK05], and hence all current quantum
algorithms2 and protocols. We give explicit examples in Appendix A.

(2) In the Sagnac interferometer, the replacement of the standard beamsplit-
ter by a polarising beamsplitter (see Section 2.2 for these devices) gives a
form of ‘conditional looping’. Whether or not a photon enters the optical
loop depends on its polarisation; similarly, the exiting of a photon from
the optical loop is also dependent on its its polarisation.

Thus, our modified Sagnac Interferometer gives a paradigmatic example of ‘quan-
tum conditional iteration’. By analysing our thought-experiment in detail, in the
Hilbert space model, we demonstrate that this is very closely related to the form of
conditional iteration used in the theory of reversible computation — the ‘particle-
style’ categorical trace (see Section 8).

2. Hilbert space formalism, and the linear optics toolkit

This section presents the standard Hilbert space formalism for quantum infor-
mation and computation, together with an exposition of how single-photon exper-
iments using linear optics gates may be described within this formalism.

2.1. Basics of quantum computation and information. We use the stan-
dard Hilbert space formalism to model our thought-experiments. We emphasise
that although we take a very categorical approach, the constructions of this pa-
per live within the traditional Hilbert space formalism, rather than the abstract
categorical formalism of [AbCo05].

Definition 2.1. Given a vector space V overC, an inner product is a Hermitian
symmetric form (i.e. a map 〈 | 〉 : V × V → C that is linear in the first variable
and conjugate-linear in the second) that satisfies 〈x|x〉 ≥ 0 and 〈x|x〉 = 0 iff x = 0.
A complex Hilbert Space is then a Banach space (i.e. complete normed vector space)
over C whose norm is defined by an inner product, ‖x‖ = (〈x|x〉) 1

2 .
By the Reisz representation theorem [Har83], for every bounded linear map

L : H → K of Hilbert spaces, there exists a unique bounded linear map L∗ : K → H
such that, for all k ∈ K and h ∈ H ,

〈k|L(h)〉 = 〈L∗(k)|h〉

This is called the Hermitian adjoint of L, and is often denoted by either L†

(quantum-mechanical notation) or LH (functional-analysis notation).

2It should be emphasised that, in encodings of quantum algorithms, the resources required
grow exponentially. Thus such optical circuits are primarily useful either as demonstrations of
quantum information, and tests of underlying principles, or in quantum-mechanical communica-
tions protocols.
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We use Dirac notation for vectors, so |ψ〉 ∈ H is a linear map from C to H
defined by |ψ〉 (z) = z.ψ ∈ H. As is traditional, we abuse notation and refer to
|ψ〉 as a vector of H (see [Ab05] for this concept from a categorical perspective).
In quantum computation (especially the circuit model [NC00]), it is standard to
assume that Hilbert spaces are equipped with some fixed orthonormal basis set (the
computational basis). We use notation derived from a categorical perspective
(The l2 functor of [Ba92]), so given some set X = {xi}i∈I , the space l2(X) is the
space with a distinguished orthonormal basis {|xi〉}i∈I . Of particular interest is the
qubit space Q = l2({0, 1}) that plays an analogous role to the set of bits {0, 1}
in classical computation. The assumption that each space is equipped with a fixed
orthonormal basis allows us to use matrix representations of linear maps: these are
used heavily throughout this paper.

Composite systems are modelled using the tensor product of Hilbert spaces:
given spaces {Hk}k=1...n modelling systems S1, . . . Sn, the composite system is
modelled by the space ⊗n

k=1Hk. When each space is a copy of the qubit space
Q, tensor products of this form are called quantum registers of k qubits.

Two key differences between classical and quantum information are the phe-
nomena of superposition and entanglement. We present these mathematically, and
refer to any introductory quantum computing text (e.g. [NC00]) for physical in-
terpretations.

Definition 2.2. Given a space H with computational basis {|b0〉, . . . , |bn〉}, a
state |ψ〉 is a superposition when it is a non-trivial linear combination of compu-
tational basis vectors, |ψ〉 =

∑n
j=0 αj |bj〉. Note that this concept is basis-dependent.

Given another Hilbert space K, with computational basis {|c0〉, . . . |cm〉}, the
tensor product space H ⊗K has computational basis {|bjck〉}j=0..n,k=0..m. A state
|φ〉 =

∑
j,k αj,k|bjck〉 is entangled when it cannot be written as |φ1〉 ⊗ |φ2〉, for

any |φ1〉 ∈ H and |φ2〉 ∈ K. Note that, unlike superposition, entanglement is
basis-independent.

Physical operations on quantum systems are divided into 2 classes: measure-
ments, and coherent operations. Coherent operations are modelled by unitary maps,
and measurements are modelled by either projectors or Hermitian operators. Again,
we present these mathematically, and refer to [NC00] for physical intuitions.

Definition 2.3. A linear map between Hilbert spaces, U : H → K is unitary
when it is an inner-product preserving isomorphism3. A linear map P : H → K is
a projector when it is a self-adjoint idempotent. A measurement is determined
by a self-adjoint operator, or Hermitian matrix. By the spectral decomposition
theorem, every (finite) Hermitian matrix has a unique decomposition as the sum of
projection operators— in this way a Hermitian matrix describes a set of projections,
labelled by eigenvalues, and these are taken to be the experimental outcomes of a
measurement.

The class of all Hilbert spaces forms a category, as follows:

3A useful characterisation of unitary maps is that, given some matrix representation for
U : H → H, the conjugate transpose of this matrix is the matrix representation for U−1. It is a
straightforward exercise to show that this characterisation is basis-independent, and equivalent to
the definition given above.
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Definition 2.4. The category Hilb has all (separable) Hilbert spaces as ob-
jects, and all continuous (i.e. bounded) linear maps as arrows. An important
subcategory is HilbFD, which is simply the above category, restricted to finite-
dimensional spaces. The category Hilb has two distinct symmetric monoidal ten-
sors: the familiar tensor product ⊗, and the direct sum ⊕. In [Hal58], the
direct sum is defined for arbitrary indexed families of Hilbert spaces, as follows:
given an indexed family of spaces {Hi}i∈I , the direct sum ⊕i∈IHi has elements
given by functions α : I →

⊎
i∈I Hi such that α(i) ∈ Hi, and

∑
i∈I ‖xi‖2Hi

< ∞.
exists. The inner product of two elements α,β ∈

⊕
i∈I Hi is then given by

〈α|β〉 =
∑

i∈I〈α(i)|β(i)〉.
When the indexing set is finite, it is straightforward that the direct sum is

indeed a monoidal tensor. Infinitary direct sums can also be given a categorical
interpretation, but this is more subtle.

By contrast, the tensor product is defined for finite families only. Although
infinitary analogues have also been considered [JvN38], these more naturally live
within the theory of C∗ and von Neumann algebras, and play no part in this paper.

2.2. The optics toolkit. This section follows very closely the introduction to
linear optics given in [GK05], and in particular the single-photon case presented in
[Be05]. The basic linear optics devices we require are the Beam Splitter (BS), the
Polarising Beam Splitter (PBS), the Half Wave Plate (HWP), and the Phase Plate
(PP). These all implement coherent operations, and have standard schematics, as
shown in Figure 1.

Figure 1. The linear optics toolbox

These all have either 1 or 2 input / output channels4, and their behaviour may
be dependent on the photon polarisation – thus the quantum properties we consider
are the polarisation, and the ‘which channel?’ information.

We adopt the convention that horizontal (resp. vertical) polarisation is denoted
|H〉 (resp. |V 〉), and input (resp. output) channel j is denoted |inj〉 (resp. |outj〉).
Thus, a horizontally polarised photon in input channel 1 corresponds to the state
vector |H〉 |in1〉, and a vertically polarised photon in an even superposition of both
output channels corresponds to the state vector 1√

2
|V 〉 (|out1〉+ |out2〉).

Their action is then described by unitary maps, as follows:

4In fact, all these devices are completely reversible, and the designation of channels as either
input or output depends on the direction of the incident photon. This is important in the analyses
of Section 3.
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The beamsplitter The beamsplitter is one of the most standard linear optics
devices. An input may be in either channel 1 or channel 2, and may be either
horizontally or vertically polarized (or, of course, an arbitrary superposition of any
of these properties). Given an input in either of the input channels, the output is
a superposition of output channels (however, see Remark 2.5). We emphasise that
we are only considering the case where there is a single input photon5.

The behaviour of the beamsplitter is described by a unitary map, defined by
its action on (orthonormal) basis vectors as follows:

|H〉 |in1〉 +→ 1√
2
|H〉 (|out1〉+ |out2〉) |V 〉 |in1〉 +→ 1√

2
|V 〉 (|out1〉+ |out2〉)

|H〉 |in2〉 +→ 1√
2
|H〉 (|out1〉+ |out2〉) |V 〉 |in2〉 +→ 1√

2
|V 〉 (| |out1〉 − |out2〉〉)

Note that the action of the beamsplitter is independent of the polarisation of the
input photon.

The polarising beamsplitter This is closely related to the above example; how-
ever, its behaviour is conditional on the polarisation of the input photon. Intu-
itively, it transmits photons with horizontal polarisation and reflects (through π/2)
photons with vertical polarisation.

Using the same notation as above, the behaviour of the polarising beamsplitter
is given by the unitary map defined by:

|H〉 |in1〉 +→ |H〉 |out1〉 |V 〉 |in1〉 +→ |V 〉 |out2〉

|H〉 |in2〉 +→ |H〉 |out2〉 |V 〉 |in2〉 +→ |V 〉 |out1〉〉

The phase plate This transmits all photons on the input channel, and rotates the
phase by an angle of θ. Given an arbitrary incoming photon |ψ〉, the action of the
phase plate is simply

|ψ〉 +→ eiθ|ψ〉

The half-wave plate This again transmits all photons on the input channel, and
adds a π

4 rotation to the polarisation. The action of the half wave plate is given by
a unitary map defined by its action on basis vectors as follows:

|H〉 +→ 1√
2
(|H〉+ |V 〉)

|V 〉 +→ 1√
2
(− |H〉+ |V 〉)

Remark 2.5. A note on reflection and phases Readers familiar with the
standard optics toolkit will note that the phases in the outputs of the beamsplitters
are non-standard — in linear optics experiments, the reflected path (whether from a

5Precisely, we allow for a photon in Channel 1, or Channel 2, or a photon in a superposition
of these locations. We do not allow for an input photon in each channel – not only would this
require a more sophisticated mathematical treatment, but would also take us away from the
underlying motivation of single-particle interference. For readers familiar with the usual Fock
space description, our treatment also neglects the vacuum states, for simplicity of notation.
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mirror, beamsplitter, polarised beamsplitter, or whatever) actually picks up a phase
factor of i. We emphasise that all the devices presented can be made to behave
exactly as described, simply by using appropriately placed phase plates [CAK05].
However, we do not do this explicitly – partly for simplicity of diagrams, and partly
to make the connection with the standard circuit model of quantum computation
(given in Appendix A) more immediate.

3. The Sagnac Interferometer

Figure 2. The Sagnac interferometer

A schematic of the standard Sagnac interferometer is shown in Figure 2. Intu-
itively, its action is straightforward: incoming light is split into two counter-rotating
paths by the beamsplitter indicated. These travel around the optical loop, and re-
combine at the beamsplitter. This then produces an interference pattern at the
output. When the whole apparatus is rotated, the relative length of the respective
paths changes, shifting the interference pattern. Thus, absolute rotation is readily
detected by changes in the observed interference pattern.

This apparatus has been analysed in detail, by a number of authors, for at
least the past 100 years – we do not attempt to add yet another analysis to the
literature. A single-photon analysis is conceptually more interesting, but only in
that it requires the strongly quantum-mechanical phenomenon of single-particle
interference. Mathematically this is trivial; we allow for arbitrary superpositions
and (complex) phase differences in the ‘which path’ information for a single photon,
as in Section 2. However, the physical interpretation is more remarkable: as stated
in [PSM96],

“ In his famous introduction [FLS65] to the single particle super-
position principle, Feynman stated that, ‘. . . it has in it the heart
of quantum mechanics. In fact, it contains the only mystery.’ ”.

We leave a single-photon analysis as an interesting exercise, and refer to [PSM96]
for a demonstration of why the many (entangled) particle case is qualitatively
different to the single-photon case.

4. A modified Sagnac Interferometer

We now make the following modifications to the Sagnac interferometer, as shown
in Figure 3.

(1) We replace the beamsplitter by a polarising beamsplitter.
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Figure 3. A modified Sagnac interferometer (MSI)

(2) We introduce an arbitrary unitary operation within the optical loop that
acts non-trivially on photon polarisation as

|H〉 +→ a |H〉+ c |V 〉 , |V 〉 +→ b |H〉+ d |V 〉

for some a, b, c, d ∈ C.
(3) We post-select for experiments where the detector shown does not record

a measurement. This ensures that the input to the second PBS (and hence
the optical loop) is horizontally polarised.

Modifications 1. and 3. ensure that the only possible path traversed around
the optical loop is the counter-clockwise path. Thus, this device no longer displays
the Sagnac interferometer’s extraordinary sensitivity to rotation. However, at any
time (possibly excluding the start of the experiment), the photon will be in a non-
trivial superposition of locations — both within the feedback loop, and on the
output channel. In particular, the ‘number of times the photon has traversed the
feedback loop’ is not a well-defined quantity. Thus, although we no longer have
two distinct counter-rotating paths in the optical loop, the phenomenon of single-
particle interference still has a large part to play in any formal description.

Because of this temporal aspect, it is not immediate how to give a treatment in
terms of input and output spaces. Instead, we describe this apparatus in terms of
a unitary operator that is repeatedly applied a space describing the entire state of
the system — how to translate this into input / output behaviour, and the correct
categorical interpretation forms a substantial part of this paper.

In order to analyse the above thought-experiment, we first use the assumption
of discrete space and time — a common assumption used in (for example) the ‘toy
models’ of [Gr02] or [Pen04]. We make the further assumption that, at the very
beginning of the experiment, the output stream is empty — the single photon is
not in a superposition of input and output modes. With these assumptions, we
may draw the individual time-steps as shown in Figure 4.

Note that when we analyse this experiment using these conventions, we do
not have a unitary map from a single space to itself – rather, at each step, the
unitary evolution Fj is from space Sj to space Sj+1. This is simply a labelling
convention – however, it makes the analysis significantly simpler. From Figure 4,
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Figure 4. Input / output streams in a modified Sagnac interferometer

and the fact that input and output modes must be horizontally polarised, we may
give orthonormal bases for the spaces {Sj}∞j=0, as follows

• the space S0 has basis

{|current〉 |H〉 , |current〉 |V 〉 , |in1〉 |H〉 , |in2〉 |H〉 , |in3〉 |H〉 , |in4〉 |H〉 , . . .}

• the space S1 has basis

{|out1〉 |H〉 , |current〉 |H〉 |current〉 |V 〉 , |in2〉 |H〉 , |in3〉 |H〉 , |in4〉 |H〉 . . .}

• the space S2 has basis

{|out1〉 |H〉 , |out2〉 |H〉 , |current〉 |H〉 |current〉 |V 〉 , |in3〉 |H〉 , |in4〉 |H〉 . . .}

• . . .

Using the description of the actions of the individual components, we may write
down the unitary maps {Fi : Si → Si+1}i∈N as follows :

• F0 =





b a 0 0 . . .
d c 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .





• F1 =





1 0 0 0 . . .
0 b a 0 . . .
0 d c 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .
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• F2 =





1 0 0 0 . . .
0 1 0 0 . . .
0 0 b a . . .
0 0 d c . . .
...

...
...

...
. . .





• F3 = . . .

After T timesteps, the overall state of the system is the state in ST given by
applying the map FT−1FT−2 . . . F0 to the initial state in S0. Rather than analysing
this directly, we consider a generalisation, where a, b, c, d in the above series of
unitary maps are not simply complex numbers, but are themselves block matrices.

5. The twisted dagger construction

We now generalise the above analysis to the case where the specified unitary
operation is a block matrix, rather than simply a 2×2 complex matrix, and consider
the limit as the number of timesteps tends to infinity.

Lemma 5.1. Let L =

(
A B
C D

)
: X ⊕ U → Y ⊕ U be a unitary map, and let

the unitary maps

{Fi : Y
⊕i ⊕ U ⊕X⊕ω → Y ⊕(i+1) ⊕ U ⊕X⊕ω}∞i=1

be defined by

F0 =





B A 0 . . .
D C 0 . . .
0 0 I . . .
...

...
...

. . .




F1 =





I 0 0 0 . . .
0 B A 0 . . .
0 D C 0 . . .
0 0 0 I . . .
...

...
...

...
. . .





F2 =





I 0 0 0 0 . . .
0 I 0 0 0 . . .
0 0 B A 0 . . .
0 0 D C 0 . . .
0 0 0 0 I . . .
...

...
...

...
...

. . .





. . .

Then the composition (product of matrices) FnFn−1 . . . F1F0 has the block matrix




B A 0 0 0 . . . 0 0 0 . . .
BD BC A 0 0 . . . 0 0 0 . . .
BD2 BDC BC A 0 . . . 0 0 0 . . .
BD3 BD2C BDC BC A . . . 0 0 0 . . .
...

...
...

...
...

...
...

...
BDn−1 BDn−2C BDn−3C BDn−4C BDn−5C . . . A 0 0 . . .
Dn Dn−1C Dn−2C Dn−3C Dn−4C . . . C 0 0 . . .
0 0 0 0 0 0 I 0 . . .
0 0 0 0 0 0 0 I
...

...
...

...
...

...
...

...
. . .
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Proof. We prove this by induction. (Notation: we abbreviate the above in-
finite matrix, omitting final columns and rows denoted by dots.) As a first step,
note that

F1F0 =





B A 0 0
BD BC A 0
D2 DC C 0
0 0 0 I





as required.

Now assume that for some k ≥ 1,

FkFk−1 . . . F0 =





B A 0 0 . . . 0 0
BD BC A 0 . . . 0 0
BD2 BDC BC A . . . 0 0
BD3 BD2C BDC BC . . . 0 0
...

...
...

...
...

BDk−1 BDk−2C BDk−3C BDk−4C . . . A 0
Dk Dk−1C Dk−2C Dk−3C . . . C 0
0 0 0 0 . . . 0 I





Then direct calculation gives that Fk+1FkFk−1 . . . F0 =





B A 0 0 0 . . . 0 0
BD BC A 0 0 . . . 0 0
BD2 BDC BC A 0 . . . 0 0
BD3 BD2C BDC BC A . . . 0 0
...

...
...

...
...

...
BDk BDk−1C BDk−2C BDk−3C BDk−4C . . . A 0
Dk+1 DkC Dk−1C Dk−2C Dk−3C . . . C 0
0 0 0 0 0 . . . 0 I





Our result thus follows by induction. !

Remark 5.2. The above matrix calculations are based on a slight generalisation
of the thought experiment of Section 4 — this more general case can be thought
of as describing a single-particle interferometry experiment where the particle in
question carries a number of quantum properties in addition to the polarisation. Let
us assume that this particle may, as before, be horizontally or vertically polarised
(H or V ), and has further independent quantum properties (k1, k2, . . . , kn). Let the
‘polarisation space’ P have orthonormal basis {|H〉 , |SV 〉} and let the ‘additional
properties space’ K have orthonormal basis {|k1〉 , |k2〉 , . . . , |kn〉}. The state vector
for a single particle in such an experiment is then a member of S = P ⊗ K. We
may take a direct sum decomposition of S as

S = SH ⊕ SV where

{
SH has basis |H〉 |k1〉 , |H〉 |k2〉 , . . . , |H〉 |kn〉
SV has basis |V 〉 |k1〉 , |V 〉 |k2〉 , . . . , |V 〉 |kn〉
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and using this direct sum decomposition, give a block matrix representation for

some unitary U : S → S, as U =

(
A B
C D

)
: SH ⊕SV → SH ⊕SV . Such a matrix

may be represented schematically as

H
A !!

C
!!!

""!!
!!!

!!!
!

H

SV
D

!!
B"""

##"""""""""

SV

and using similar conventions, the polarising beam splitter is represented as

SH

$$

SV

!"
!!

SH
!! SH

SV #$
$$

SV

SH SV

(Note that in the above two schematic diagrams, lines are separated by an implicit
direct sum, rather than tensor product. Thus they should be interpreted as cate-
gorical string diagrams for the direct sum structure — an interpretation within the
quantum circuit paradigm is not appropriate).

We may now compose these two diagrams, with the output fed back into the
input as in the thought experiments of Section 4, to produce the schematic diagram
shown in figure 5. As well as structure very similar to the usual diagram for a
particle-style categorical trace, note the presence of the symmetry map for the
direct sum.

Definition 5.3. Let L : X ⊕ U → Y ⊕ U be a finite-dimensional linear map,

with block matrix L =

(
A B
C D

)
. We define the twisted dagger of L, w.r.t.

this decomposition, to be the matrix

†U (L) =





B A 0 0 0 0 0 0 . . .
BD BC A 0 0 0 0 0 . . .
BD2 BDC BC A 0 0 0 0 . . .
BD3 BD2C BDC BC A 0 0 0 . . .
BD4 BD3C BD2C BDC BC A 0 0 . . .
BD5 BD4C BD3C BD2C BDC BC A 0 . . .
BD6 BD5C BD4C BD3C BD2C BDC BC A . . .
...

...
...

...
...

...
...

...
. . .





Remark 5.4. The terminology ‘twisted dagger’ comes from the similarity of
the above construction (especially the finite approximations of Lemma 5.1) with the
Elgot dagger — up to an additional twist. Note that we do not claim the twisted
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Figure 5. A schematic diagram for a generalised Sagnac interferometer

SV

##
##

##
##

SH

$$
$$
$$
$$

SH

$$

SV

!"
!!

SH
!! SH

A !!

C
%%%

""%%
%%%

%%%
%

SH

%&

#$'(
$$

SV #$
$$

SV
D

!!
B&&&

##&&&&&&&&&

SV

%&

#$'(
$$

SH SV

dagger is, in every case, the matrix representation of a continuous (i.e. bounded)
linear map. In general, it is simply a formal matrix.

We now investigate the existence and properties of this matrix, with particular
emphasis on when it describes either a continuous, or a unitary, linear map. We
first require a trivial result:

Lemma 5.5. Given L =

(
A B
C D

)
∈ HilbFD(X ⊕ U, Y ⊕ U), and arbitrary

φ =





φ0
φ1
φ2
...




∈ U ⊕X⊕ω, let us define the formal matrix ζ =





ζ0
ζ1
ζ2
...




to be given

by the formal matrix product ζ = †U (L)(φ), so

ζn =

{
BDn(φ0) +

∑n
i=1 BDn−iC(φi) +A(φn+1) (n > 0)

B(φ0) +A(φ1) (n = 0)

Then ζn exists, for all n ∈ N.

Proof. Observe that ζn is given by a finite sum of continuous linear maps
applied to a finite vector of elements. !

Note that we do not claim that
∑∞

n=0 ‖ζn‖2 exists in general, or (equivalently)
that ζ is an element of Y ⊕ω — a sufficient condition for this is given in Theorem
5.6 below.
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Theorem 5.6. Let L =

(
A B
C D

)
: X⊕U → Y ⊕U be a linear map between

finite-dimensional Hilbert spaces. Then:

(1) A sufficient condition for †U (L) to be the matrix representation of a
bounded linear map between Hilbert spaces is that the component D is
a strict contraction (i.e. Sup‖ψ‖=1‖D(ψ)‖ < 1).

(2) When L is a unitary map, a sufficient condition for †U (L) to be unitary
is that the component D is a strict contraction.

Proof. Let the family of unitary maps {Fi}i∈N be as defined in Lemma 5.1,
and define

{Gn : U ⊕X⊕ω → Y ⊕(n+1) ⊕ U ⊕X⊕ω}∞n=0

by Gn = FnFn−1Fn−2 . . . F0. (we refer to Lemma 5.1 for explicit fomulæ for Gn).
It is immediate that Fi is a well-defined linear map for all i ≥ 0, and is unitary
exactly when L is unitary. Similarly, the maps {Gk}k∈N are bounded linear maps,
and unitary exactly when L is unitary.

We now use these preliminaries to prove (1) and (2) above:

(1) Consider arbitrary φ ∈ U ⊕X⊕ω. We now study the sequence

φ = φ(0)
F0 !! φ(1)

F1 !! φ(2)
F2 !! φ(3)

F3 !! . . .

so φ(n) = Gn(φ). We write φ(n) explicitly as

φ(n) =





φ(n)0

φ(n)1

φ(n)2

φ(n)3
...




where






φ(n+i)
n ∈ Y

φ(n)n ∈ U for all n ∈ N , i > 0

φ(n)n+i ∈ X

In particular, we make the identification φ(0)i = φi, for all i ∈ N.
From the explicit description of {Fi}i∈N, we may use standard dia-

grammatic notation for matrix composition, and draw the calculation of
the components of φ(n) as shown in Figure 6.

From either this diagram, or by direct calculation, we may inductively
calculate these components for all p, q > 0, as follows:

φ(p)q =






φ(0)q q > p

B
(
φ(p−1)
p−1

)
+A

(
φ(0)p

)
q = p− 1

D
(
φ(p−1)
p−1

)
+ C

(
φ(0)p

)
p = q

φ(q+1)
q p > q + 1
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Figure 6. Calculating components of φ(n)

φ0 φ(0)0
B !!

D

%%'
''

''
''

'
φ(1)0

1Y !! φ(2)0
1Y !! φ(3)0

1Y !! φ(4)0 . . .

φ1 φ(0)1 C
!!A

&&((((((((

φ(1)1
B !!

D

%%'
''

''
''

'
φ(2)1

1Y !! φ(3)1
1Y !! φ(4)1 . . .

φ2 φ(0)2
1X !! φ(1)2 C

!!A

&&((((((((

φ(2)2
B !!

D

%%'
''

''
''

'
φ(3)2

1Y !! φ(4)2 . . .

φ3 φ(0)3
1X !! φ(1)3

1X !! φ(2)3 C
!!A

&&((((((((

φ(3)3
B !!

D

'')
))

))
))

)
φ(4)3 . . .

φ4 φ(0)4
1X !! φ(1)4

1X !! φ(2)4
1X !! φ(3)4

A

((*********

C
!! φ(4)4 . . .

By comparing these elements with the formal matrix ζ =





ζ0
ζ1
ζ2
...




from

Lemma 5.5, it is immediate that that ζi = φ(j)i for all i < N and j > i.
By direct calculation, and the Cauchy-Bunyakovski-Schwarz inequal-

ity,

‖φ(k)k ‖ ≤ ‖Dk‖.‖φ(0)0 ‖+
k−1∑

n=0

‖Dn‖.‖C‖.‖φ(0)k−n‖

However, by assumption D : U → U is a strict contraction map, so

‖D‖ < 1. Also, φ ∈ X⊕ω and so
∑∞

i=0 ‖φ
(0)
i ‖2 < ∞. Therefore, we

deduce that
∑∞

k=0 ‖φ
(k)
k ‖2 < ∞, and hence the ‘diagonal element’

∆φ =





φ(0)0

φ(1)1

φ(2)2
...





is a member of U⊕ω. Finally, observe that

ζ =





B 0 0 · · ·
0 B 0 · · ·
0 0 B · · ·
...

...
...

. . .









φ(0)0

φ(1)1

φ(2)2
...




+





A 0 0 · · ·
0 A 0 · · ·
0 0 A · · ·
...

...
...

. . .









φ(0)0

φ(0)1

φ(0)2
...





and hence ζ ∈ Y ⊕ω, as required.
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To show that the condition ‖D‖ < 1 is not a necessary condition, con-

sider the simplest possible counterexample – the identity matrix

(
1X 0
0 1U

)
.

It is immediate that

†U (L) =





0 1X 0 0 0 . . .
0 0 1X 0 0 . . .
0 0 0 1X 0 . . .
0 0 0 0 1X . . .
...

...
...

...
...

. . .





this is clearly not unitary, but is a partial isometry – the shift map.
(2) In this part of the proof, we use the characterisation of unitary maps as,

“Partial isometries, with full initial and final subspaces”. This is imme-
diate from the definition of partial isometries [Hal58].

We know from 1/ above that †U (L) exists, for all unitary L =

(
A B
C D

)

satisfying ‖D‖ < 1. We now need to show that:

(a) †U (L) is a partial isometry,
(b) The initial and final subspaces of †U (L) are the whole of U ⊕ X⊕ω

and Y ⊕ω respectively.

These results may be seen as follows :

(a) We first define TermN : Y ⊕(N+1) ⊕ U ⊕X⊕ω → Y ⊕ω for all N ∈ N,
by

TermN





y0
...

yN−1

u
x1
...





=





y0
...
yN
0Y
0Y
...





Clearly, TermN is a linear map, and is a partial isometry, with initial
subspace Y ⊕(N+1) ⊆ Y ⊕(N+1) ⊕ U ⊕ X⊕ω. Hence, as GN : U ⊕
X⊕ω → Y ⊕(N+1) ⊕ U ⊕X⊕ω is unitary, the composite TermNGN :
U ⊕X⊕ω → Y ⊕ω is a partial isometry.
Now consider arbitrary fixed φ ∈ U ⊕X⊕ω. From part 1/ above, for
all ε > 0, there exists M ∈ N such that

‖TermM (GM (φ)) − †U (L)(φ)‖ < ε

By completeness, limN→∞TermN(GN (φ)) = †U (L)(φ), and so
in the space Hilb(U ⊕ X⊕ω, Y ⊕ω), the series of partial isometries
{TermNGN}∞N=0 converges to †U (L). By [AnCo04, AnCo05], the
set of partial isometries between spacesH1, H2 forms a smooth closed
submanifold of the spaceHilb(H1, H2) Therefore, we deduce that the
limit †U (L) is a partial isometry.
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(b) We prove that the inital subspace is full by contradiction.
Assume there exists some u ∈ U such that B(u) = 0. Then

(
A B
C D

)(
0
u

)
=

(
0

D(u)

)

However,

∥∥∥∥

(
0
u

)∥∥∥∥ = ‖u‖, and by the assumption that D is a strong

contraction,

∥∥∥∥

(
0

D(u)

)∥∥∥∥ = ‖D(u)‖ < ‖u‖. This is a contradiction

of the unitarity of L, so we deduce that B(u) /= 0, for all u ∈ U .

Now let χ ∈ U ⊕X⊕ω be in the complement of the initial subspace of
†U (L), so †U (L)(χ) = 0. As limn→∞Termn(Gn(φ)) = †U (L)(φ),
we deduce that {χ(n) = Termn(Gn(χ))}∞n=0 is a series of elements of
Y ⊕ω that converges to 0. Writing these explicitly as

χ(n) =





χ(n)
0

χ(n)
1

χ(n)
2
...





We observe from part 1. that χ(n)
n+k = χ(n)

n+2 for all k ≥ 2. Hence

χ = 0 implies that χ(n)
n+2 = 0, for all n ∈ N. However, by close in-

spection of Figure 6, this is only possible when B(u) = 0, for some
u ∈ U , contradicting the preliminary result above.

We now demonstrate that the final subspace is full
Consider arbitrary ζ ∈ Y ⊕ω, written as

ζ =





ζ0
ζ1
ζ2
...





As ζ ∈ Y ⊕ω, for all ε > 0, there exists some N ∈ N such that∑∞
i=N ‖ζi‖2 < ε. Using the adjoint of the partial isometry TermM

above, it is immediate that

Term∗
M (ζ) =





ζ0
...
ζM
0U

0X
...





and, for all M > N , ‖ζ‖2 − ‖Term∗
M (ζ)‖2 < ε. We now define

λ(M) ∈ U ⊕ X⊕ω by λ(M) = G−1
M (Term∗

M (ζ)), where the unitary
map G−1

M is given by F−1
M F−1

M−1 . . . F
−1
0 , for Fi as defined in part 1.

Since G−1
M is unitary, ‖λ(M)‖ = ‖Term∗

M(ζ)‖. By taking sufficiently
large M > N ∈ N, it follows that †U (L)(λ(M)) → ζ as M → ∞, and
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as ζ was chosen arbitrarily, the terminal subspace of †U (L) is exactly
Y ⊕ω. This then completes our proof of unitarity.

!

6. Setting initial conditions, and compositionality

The intention of this paper is to use the twisted dagger to motivate general
categorical constructions — thus, we need an appropriate setting in which such
operations give rise to arrows in a category.

As a motivating example, we consider the special case where the apparatus
of Figure 4 satisfies the further initial condition, that that the ‘internal state’ of
the optical loop is empty: at the start of the experiment, the probability that an
observation of the internal state detects a photon is 0. This will allow us to treat
the apparatus of Figure 4 (via the associated ‘twisted dagger’) as defining a map
from the input space l2({inj}∞j=0) to the output space l2({outj}∞j=0). We then
generalise this to arbitrary twisted dagger operations.

6.1. Initial conditions, and inclusion maps. In the apparatus of Figure 4,
we wish to impose the initial condition that the ‘internal state’ of the optical loop
is empty. i.e. at the start of the experiment, the probability that an observation
on the internal state detects a photon is 0.

Given a state representing an ‘input stream’ (i.e. a single photon in a super-
position of input modes),

|in〉 = α0 |in0〉+ α1 |in1〉+ α2 |in2〉+ . . . ∈ l2({inj}∞j=0)

the state in the larger space S0, describing both the input stream and (empty)
‘internal states’ is ι(|in〉) = α0 |in0〉+ α1 |in1〉+ α2 |in2〉+ . . . ∈ S0, where

ι : l2({inj}∞j=0) → S0 = l2({inj}∞j=0)⊕ l2({(Current,H), (Current, V )})
is simply the canonical inclusion map associated with the direct sum. This trivially
satisfies the measurement condition of Section 6, since

〈Current,H | · ι · |in〉 = 0 = 〈Current, V | · ι · |in〉
Thus, the input-output map associated with the apparatus of Figure 4, along

with this initial condition, is the composite

†U
(

a b
c d

)
◦ ι : l2({inj}∞j=0) → l2({outk}∞k=0)

We now generalise this intuition to the general case, for arbitrary finite-dimensional
Hilbert spaces, as follows:

Definition 6.1. Let L =

(
A B
C D

)
∈ HilbFD(X ⊕ U, Y ⊕ U) be a linear

map where †U (L) is defined (i.e. is an arrow of Hilb(U ⊕X⊕ω, Y ⊕ω)). We define
the input-output behaviour of †U (L) to be the map

∆U (L) = †U (L) · ι ∈ Hilb(X⊕ω, Y ⊕ω)

where ι : X⊕ω → U ⊕ X⊕ω is the canonical inclusion associated with the direct
sum.

The following facts about such input-output behaviours are straightforward,
but will be essential in the following sections:
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Lemma 6.2. Let L =

(
A B
C D

)
∈ HilbFD(X ⊕ U, Y ⊕ U) be a linear map

such that †U (L) ∈ Hilb(U ⊕X⊕ω, Y ⊕ω), and let ∆U (L) ∈ Hilb(X⊕ω, Y ⊕ω) be as
defined above. Then

(1) ∆U (L) is a continuous (i.e. bounded) linear map.
(2) ∆U (L) has a matrix representation of the form ∆U (L) = [Mij ], where

Mij =

{
0XY j − i < 0
pj−i j − i ≥ 0

for some family of linear maps {pk ∈ HilbFD(X,Y )}∞k=0.

Proof.

(1) This is immediate: ∆U (L) = †U (L) · ι is the composite of two arrows in
the same category, and hence is also an arrow in this category.

(2) From the explicit matrix for the twisted dagger given in Definition 5.3,
the composite ∆U (L) · ι : X⊕ω → Y ⊕ω has the following matrix:

∆U (L) =





A 0 0 0 0 0 0 . . .
BC A 0 0 0 0 0 . . .
BDC BC A 0 0 0 0 . . .
BD2C BDC BC A 0 0 0 . . .
BD3C BD2C BDC BC A 0 0 . . .
BD4C BD3C BD2C BDC BC A 0 . . .
BD5C BD4C BD3C BD2C BDC BC A . . .

...
...

...
...

...
...

...
. . .





Thus our result follows from this explicit matrix description, by taking

pk =

{
A k = 0
BDk−1C k > 0

!

6.2. Input-output behaviours, and compositionality. We now consider
how to compose the input-output behaviours, as defined above. We again motivate
this by the single-photon linear optics case, where our interpretation must corre-
spond to treating the input stream of one such experiment as the output stream
of another, as shown in Figure 7. (Note that, in this figure, we omit the detectors
and post-conditioning, for clarity. Rather, we simply assume that the input photon
is guaranteed to be horizontally polarised. Of course, from the experimental set-
up, the output of the first MSI - and hence the input of the second MSI - is also
horizontally polarised).

Trivially, the output stream of the upper MSI becomes the input stream of the
lower MSI. Thus, if the input-output behaviour of the upper MSI is P = [Pij ], and
the input-output behavior of the lower MSI is Q = [Qij ], then the input-output
behaviour of the entire apparatus is simply given by the matrix product QP .

6.3. A relevant subcategory of Hilb. We now demonstrate that bounded
linear maps with matrices satisfying the special form given in part (2) of Lemma
6.2 are the arrows of a subcategory of Hilb.
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Figure 7. Composing MSIs

Proposition 6.3. Arrows in Hilb with matrix representations of the form

Mij =

{
0XY j − i < 0
pj−i j − i ≥ 0

for some {pk ∈ HilbFD(X,Y )}∞k=0

are closed under composition, and include identity maps, and hence define a sub-
category of Hilb.

Proof. Consider arrows L ∈ Hilb(X⊕ω, Y ⊕ω) and M ∈ Hilb(Y ⊕ω, Z⊕ω)
where

Mij =

{
0XY j − i < 0
qj−i j − i ≥ 0

for some {qk ∈ HilbFD(X,Y )}∞k=0

Lij =

{
0XY j − i < 0
pj−i j − i ≥ 0

for some {pk ∈ HilbFD(X,Y )}∞k=0

Then from the standard formula for matrix multiplication,

[ML]i,k =
∞∑

j=0

[M ]i,j [L]j,k

their composite ML ∈ Hilb(X⊕ω, Z⊕ω) has matrix representation

[ML]i,k =

{
0XY k − i < 0
rk−i k − i ≥ 0

where rc =
∑

c=b+a

qbpa

and hence is of the required form. Finally, observe that the identity matrix is
trivially of this form. Thus, bounded linear maps of this form specify a subcategory
of Hilb. !

We observe the similarity between the composition in Proposition 6.3 above,
and the Cauchy product of power series. This motivates the general categorical
setting below.
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7. A categorical setting for twisted daggers

We now introduce a categorical setting for twisted daggers (or rather, their
input-output behaviours), based on the above observation that composition may
be expressed as a Cauchy product (i.e. the usual composition of single-variable
power series).

7.1. A category of formal power series.

Definition 7.1. We define the category HilbFD[z] of formal power series
over Hilb as follows:

• Objects of HilbFD[z] are finite-dimensional complex Hilbert spaces.
• The hom-set HilbFD[z](H,K) is the set of all formal power series in z
over Hilb(H,K). Thus p ∈ HilbFD[z](H,K) may be written as

p =
∞∑

n=0

pn.z
n where pn ∈ Hilb(H,K) ∀n ∈ N

We will equivalently and interchangeably refer to the formal power series

p = p0 + p1.z + p2.z
2 + . . . ∈ HilbFD[z](H,K)

and the function p : N → HilbFD(H,K) where p(k) ∈ HilbFD(H,K) is
the coefficient of zk in p0 + p1.z + p2.z2 + . . ..

• Composition is the usual Cauchy product [Ti83]. Given p ∈ HilbFD[z](H,K)
and q ∈ HilbFD[z](K,L), then their composite r = qp ∈ HilbFD[z](H,L)
is the formal power series

r = r0 + r1.z + r2.z
2 + r3.z

3 + . . .

where rc =
∑

c=b+a qbpa ∈ Hilb(H,L), for all c ∈ N.

We emphasize that these power series are formal, rather than convergent. In-
deed, we may identify them with an infinite sequence (pn)n∈N of bounded linear
operators. We do not assume that the sum p0 + p1ζ + p2ζ2 + . . . converges for any
non-zero ζ ∈ C or even that

∑∞
k=0 ‖pk‖ν converges, for any particular operator

norm ‖ ‖ν — although it may be observed that imposing such requirements defines
various subcategories of HilbFD[z].

Proposition 7.2. HilbFD[z], as defined above, is a category.

Proof. First note that, for all p ∈ HilbFD[z](H,K) and q ∈ HilbFD[z](K,L),
their composite

r = r0 + r1.z + r2.z
2 + r3.z

3 + . . . where rc =
∑

c=b+a

qbpa ∈ Hilb(H,L)

is defined, since for all k ∈ N
rk = qkp0 + qk−1p1 + . . .+ q1pk−1 + q0pk

is a finite sum of linear maps. It remains to show that composition is associative,
and has identities at each object. However, associativity of composition of formal
power series is long-established ([Ti83]), and the identity map IH at an object H
is simply the formal power series 1H +0H.z+0H .z2+0H .z3+ . . .. Thus, HilbFD[z]
is a category. !

Lemma 7.3. There exists a canonical inclusion ι : HilbFD → HilbFD[z].
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Proof. The canonical inclusion is simply given by

• Objects ι(A) = A ∈ Ob(HilbFD[z]), for all A ∈ Ob(HilbFD).
• Arrows Given f ∈ HilbFD(X,Y ), then ι(f) ∈ HilbFD[z](X,Y ) is de-
fined by

ι(f)(n) =

{
f ∈ HilbFD(X,Y ) n = 0
0X,Y otherwise.

It is immediate from the definition of composition in HilbFD[z] that this is an
injective functor. !

We are now able to identify a suitable category in which the input-output
behaviour of twisted daggers (as in Section 6.3) lives, and by extension a category
suitable for reasoning about the thought-experiment of Section 4.

Definition 7.4. Let us denote the category of Proposition 6.3 by THilb, so

• H⊕ω ∈ Ob(THilb), for all H ∈ Ob(HilbFD).
• M ∈ Hilb(H⊕ω,K⊕ω) is an arrow of THilb iff M has a block matrix
representation of the form

Mij =

{
0XY j − i < 0
pj−i j − i ≥ 0

for some {pk ∈ HilbFD(H,K)}∞k=0

Theorem 7.5. There exists an embedding of THilb into HilbFD[z].

Proof. This is immediate by mapping matrices of the form

Mij =

{
0HK j − i < 0
pj−i j − i ≥ 0

for some {pk ∈ HilbFD(H,K)}∞k=0

to power series defined by

M = p0 + p1.z + p2.z
2 + . . . ∈ HilbFD[z](H,K)

!
Remark 7.6. The intuition behind categories of power series Abstractly, an

arrow in a category f ∈ C(X,Y ) may be thought of as a process that transforms
data of type X into data of type Y . Categories of formal power series extend this
intuition by considering the time associated with such transformations, and asso-
ciating with each input-output pairing a discrete number of time-steps. Thus, the
arrow f(n) ∈ C(X,Y ) describes the input-output mappings of f that take exactly
n timesteps. Given a suitable notion of summability of arrows (as in HilbFD), the
Cauchy product of power series then has a natural interpretation: the input-output
mappings of gf that take c timesteps arise as the sum of all processes that take b
timesteps in g, and a timesteps in f , where c = b + a.

7.2. Additional structure on the category of power series. Our cat-
egory of formal power series has a natural notion of summation on its hom-sets,
derived from the familiar summation of arrows of HilbFD, as we now demonstrate:

Definition 7.7. Let {fj ∈ HilbFD[z](H,K)}j∈J be a countably indexed fam-
ily of arrows. We say that this family is summable when

∑
j∈J (fj(n)) exists

(in the sense of absolute convergence of countable families of linear maps), for all
n ∈ N.
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When the family {fj}j∈J above is summable, its formal sum

F =
∑

j∈J

fj ∈ HilbFD[z](H,K)

is the function F : N → HilbFD(H,K) given by

F (n) =
∑

j∈J

fj(n) ∈ HilbFD(H,K)

Note that, as this notion of summation is based on absolute convergence at each
power of z, we have distributivity of composition over arbitrary sums. Also, it is
straightforward from its definition in terms of absolute convergence that this notion
of summation satisfies a one-sided version of the partition-associativity axiom of
[Ha00, HS04], which itself arose from the theory of partially-additive semantics
in [MA86].

The weak partition-associativity property: Let {fi ∈ HilbFD[z](H,K)}i∈I be a
countably indexed summable family, and let {Ij}j∈J be a countable partition6 of
I. Then {fi}i∈Ij is summable for every j ∈ J , as is {

∑
i∈Ij

fi}j∈J , and

∑

i∈I

fi =
∑

j∈J




∑

i∈Ij

fi





Informally, this may be phrased as: ‘sub-families of summable families are them-
selves summable, and replacing any sub-sum by its sum neither affects summa-
bility nor changes the result’. Finally, note that, by contrast with the axioms of
[Ha00, HS04], the implication in the above property is strictly one-way.

Given this notion of summation, we may give matrix representations of such
power series, as follows:

Definition 7.8. Consider some formal power series p ∈ HilbFD[z](A,B). Fur-
ther assume that A and B are given as (finite) direct sum decompositions, so

A =
m⊕

i=1

Ai and B =
n⊕

j=1

Bj

Since the direct sum is a biproduct on HilbFD, p(t) may be written as an (m× n)
matrix, where [p(t)]x,y : Ay → Bx, for all t ∈ N. Using this matrix decomposition
for each p(t) ∈ HilbFD(A,B), we define the matrix of p ∈ HilbFD[z](A,B) to be
the n×m matrix of arrows of HilbFD[z] defined by

[p]x,y(t)
def.
= [p(t)]x,y ∈ HilbFD(Ay , Bx)

Composition of such matrices of power series is defined in the natural way, with
composition defined by the Cauchy product of power series (i.e. composition in
HilbFD[z]), and summation is as in Definition 7.7 above.

As an illustrative example, this is simply the familiar interchangeability of
formal power series whose coefficients are matrices of linear maps with matrices

6Following [MA86], we also allow countably many Ij to be empty.
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whose coefficients are formal power series of linear maps, e.g. the equivalence of
the power series of matrices

(
i 0
0 1

)
+

(
0 1
1 0

)
.z +

1√
2

(
1 1
1 −1

)
.z2

with the matrix of power series
(

i+ 1√
2
z2 z + 1√

2
z2

z + 1√
2
z2 1− 1√

2
z2

)

Proposition 7.9. The interpretation of formal power series as matrices above
is compatible with composition: the matrix of the composite is the product of the
matrices. Precisely, given

q ∈ HilbFD[z]




m⊕

j=1

Bj ,
n⊕

k=1

Ck



 and p ∈ HilbFD[z]




l⊕

i=1

Ai,
m⊕

j=1

Bj





then [q][p] = [qp].

Proof. This is a simple-index-chasing argument, that follows from comparing
the definition of matrix multiplication of Definition 7.8 with the definition of com-
position in HilbFD[z].

!

7.3. A monoidal tensor on HilbFD[z]. We use the above notion of matrices
in HilbFD[z] to provide a monoidal tensor:

Definition 7.10. We define ⊕ : HilbFD[z] × HilbFD[z] → HilbFD[z] as
follows:

• Objects Given A,B ∈ Ob(HilbFD[z]), then A ⊕ B ∈ Ob(HilbFD[z]) is
simply the direct sum of A and B, as in Definition 2.4.

• Arrows Given p ∈ HilbFD[z](H, J) and q ∈ HilbFD[z](L,M), then

(p⊕ q) : N → Hilb(H ⊕ L, J ⊕M)

is simply defined by

(p⊕ q)(k) = p(k)⊕ q(k) ∈ Hilb(H ⊕ L, J ⊕M)

Theorem 7.11. The map ⊕ : HilbFD[z] × HilbFD[z] → HilbFD[z] defined
above is a symmetric monoidal tensor.

Proof. For clarity, this proof uses matrix notation for both linear maps and
formal power series. This is justified by Proposition 7.8 above.

• compositionality Consider arrows

p =
∞∑

i=0

piz
i ∈ HilbFD[z](H, J) and q =

∞∑

j=0

qjz
j ∈ HilbFD[z](L,M)

and similarly

r =
∞∑

i=0

riz
i ∈ HilbFD[z](J,K) and s =

∞∑

j=0

sjz
j ∈ HilbFD[z](M,N)
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Then

(p⊕ q) =
∞∑

i=0

(
pi 0
0 qi

)
zi and (r ⊕ s) =

∞∑

j=0

(
rj 0
0 sj

)
zj

By definition of composition in HilbFD[z],

((r ⊕ s)(p⊕ q)) (c) =
∑

c=b+a

(
r(b) 0
0 s(b)

)(
p(a) 0
0 q(a)

)

=
∑

c=b+a

(
r(b)p(a) 0

0 s(b)q(a)

)
=

( ∑
c=b+a r(b)p(a) 0

0
∑

c=b+a s(b)q(a)

)

However, this is simply (rp⊕ sq)(c), as required.
• Identities The identity 1A ∈ HilbFD[z](A,A) is given by

1A(n) =

{
1A ∈ Hilb(A,A) n = 0
0A,A otherwise.

It is immediate from the definition that 1A⊕1B ∈ HilbFD[z](A⊕B,A⊕B)
satisfies

(1A ⊕ 1B)(n) =

{
1A⊕B ∈ Hilb(A⊕B,A⊕B) n = 0
0A⊕B,A⊕B otherwise.

• Associativity Let us denote the canonical associativity isomorphisms for
(HilbFD,⊕) by tA,B,C . The corresponding associativity isomorphisms for
HilbFD[z] are given by ι(tA,B,C), where ι : HilbFD → HilbFD[z] is given
in Lemma 7.3. It is straightforward to verify that ι : HilbFD → HilbFD[z]
is a monoidal functor, and MacLane’s pentagon condition then follows by
functoriality.

• Symmetry Similarly to the associativity isomorphisms, the symmetry
isomorphisms for HilbFD[z] are given by ι(sA,B), where sA,B is the fam-
ily of symmetry isomorphisms for HilbFD. The commutativity hexagon
again follows by functoriality.

• Units objects and arrows Finally, it is immediate that the unit object
for (HilbFD,⊕) is also the unit object for (HilbFD[z],⊕).

!

8. Partial traces in symmetric monoidal categories

The notion of categorical trace was introduced by Joyal, Street and Verity in an
influential paper [JSV96]. The motivation for their work arose in algebraic topol-
ogy and knot theory, although the authors were aware of applications in Computer
Science, where they include such notions as feedback, fixedpoints, etc. The starting
point for our investigation of the categorical structures associated with the Twisted
Dagger operation of Section 5 was the observation in Remark 5.2 that the columns
of this formal matrix bear a close similarity with the summands of the particle-style
categorical trace; for some of the history of these ideas, see [Ab96, AHS02, HS10].
There are also deep connections of traced monoidal categories with the proof the-
ory of linear logic, and Girard’s Geometry of Interaction program, as described in
[Hi98, AHS02, HS04, HS10a], which motivated the introduction of the axioms
of partial traces below.
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In categories associated with linear maps on Hilbert spaces it is more natural to
consider partial traces defined in terms of infinite sums (or, in the case of [HS10],
the invertibility of certain operators). We follow the definitions of [HS10], where a
partial particle-style trace on Hilbert spaces with direct sums is exhibited. We also
contrast this with an alternative definition of partial trace on Hilbert spaces with
tensor products given in [ABP98].

Recall, following Joyal, Street, and Verity [JSV96], a (parametric) trace in a
symmetric monoidal category (C,⊗, I, s) is a family of maps

TrUX,Y : C(X ⊗ U, Y ⊗ U) → C(X,Y ),

satisfying various naturality equations. A partial (parametric) trace requires instead
that each TrUX,Y be a partial map (with domain denoted TU

X,Y ) satisfying various
closure conditions.

The following definitions are taken from [HS10, HS10a].

Definition 8.1. Let (C,⊗, I, s) be a symmetric monoidal category. A (para-
metric) trace class in C is a choice of a family of subsets, for each object U of C,
of the form

TU
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X , Y of C

together with a family of functions, called a (parametric) partial trace, of the form

TrUX,Y : TU
X,Y → C(X,Y )

subject to the following axioms. Here the parameters are X and Y and a morphism
f ∈ TU

X,Y , by abuse of terminology, is said to be trace class.

(1) Naturality in X and Y : For any f ∈ TU
X,Y and g : X ′ → X and

h : Y → Y ′,
(h⊗ 1U )f(g ⊗ 1U ) ∈ TU

X′,Y ′ ,

and TrUX′,Y ′((h⊗ 1U )f(g ⊗ 1U )) = hTrUX,Y (f) g.

(2) Dinaturality in U : For any f : X ⊗ U → Y ⊗ U ′, g : U ′ → U ,

(1Y ⊗ g)f ∈ TU
X,Y iff f(1X ⊗ g) ∈ TU ′

X,Y ,

and TrUX,Y ((1Y ⊗ g)f) = TrU
′

X,Y (f(1X ⊗ g)).

(3) Vanishing I: TI
X,Y = C(X ⊗ I, Y ⊗ I), and for f ∈ TI

X,Y

TrIX,Y (f) = ρY fρ
−1
X .

Here ρA : A ⊗ I → A is the right unit isomorphism of the monoidal
category.

(4) Vanishing II: For any g : X ⊗ U ⊗ V → Y ⊗ U ⊗ V , if g ∈ TV
X⊗U,Y ⊗U ,

then
g ∈ TU⊗V

X,Y iff TrVX⊗U,Y⊗U (g) ∈ TU
X,Y ,

and TrU⊗V
X,Y (g) = TrUX,Y (Tr

V
X⊗U,Y⊗U (g)).

(5) Superposing: For any f ∈ TU
X,Y and g : W → Z,

g ⊗ f ∈ TU
W⊗X,Z⊗Y ,

and TrUW⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrUX,Y (f).

(6) Yanking: sUU ∈ TU
U,U , and TrUU,U (sU,U ) = 1U .
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A symmetric monoidal category (C,⊗, I, s) with such a trace class is called a
partially traced category, or a category with a trace class. If we let X and Y be
I (the unit of the tensor), we get a family of operations TrUI,I : TU

I,I → C(I, I)
defining what we call a non-parametric (or scalar-valued) trace.

In the case when the domain of Tr is the entire hom-set C(X ⊗U, Y ⊗U), the
axioms above reduce to the original notion of traced monoidal category in [JSV96].
It is also important to notice the extremely subtle “conditional” nature of Vanishing
II in the partial case.

In [HS10], there are a number of examples of such partial traces, of both
“particle” as well as “wave” style (using the terminology of [Ab96, AHS02]).
One relevant example here,with many variations is the following:

Definition 8.2. consider the symmetric monoidal category (HilbFD,⊕) of
finite dimensional complex Hilbert spaces.

We shall say an f : X ⊕ U → Y ⊕ U is trace class iff (I − f22) is invertible,
where I is the identity matrix, and I and f22 have size dim(U). In that case, we
can define

TrUX,Y (f) = f11 + f12(I − f22)
−1f21

9. Weak partial traces

We have observed the subtle ‘conditional’ nature of Vanishing II in the above
axioms for a partial trace. However, it is not uncommon to find examples that
satisfy all the axioms except the existence conditions of Vanishing II. We first
present an axiomatisation of this situation, and then a naturally occurring example
closely related to the twisted dagger construction.

Definition 9.1. Let (C,⊗, I, s) be a symmetric monoidal category. We define
a weak parametric trace class to be a parametrised family of subsets

WU
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all U,X, Y ∈ Ob(C)

together with a family of functions, called a weak (parametric) partial trace, of the
form

wTrUX,Y : WU
X,Y → C(X,Y )

. These are required to satisfy axioms (1)-(3) and (5)-(6) of Definition 8.1 above,
and the following weaker version of Vanishing II:

(3’) Weak vanishing II Let g : X ⊗ U ⊗ V → Y ⊗ U ⊗ V be an arrow in the
intersection of WV

X⊗U,Y ⊗U and WU⊗V
X,Y satisfying

TrVX⊗U,Y⊗U (g) ∈ WU
X,Y

then

wTrU⊗V
X,Y (g) = wTrUX,Y (wTr

V
X⊗U,Y⊗U (g))

Note that any partial trace is trivially a weak partial trace. Also, when the domain
of wTRU

X,Y is the entire homset C(X ⊗ U, Y ⊗ U), for all X,Y, U , then wTr is
exactly a categorical trace in the sense of [JSV96].

We may find weak partial trace classes as subsets of partial trace classes, as the
following example in the category of finite-dimensional Hilbert spaces demonstrates:
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Definition 9.2. An arrow

F =

(
a b
c d

)
∈ HilbFD(X ⊕ U, Y ⊕ U)

is (strictly) lower-right contractive (LRC) when |d| < 1 (using the operator norm).
Let us use the notation:

F ∈ LRCU
X,Y ⊆ HilbFD(X ⊕ U, Y ⊕ U)

Remark 9.3. Note that the LRC condition is exactly that required by Theorem
5.6, to ensure that the twisted dagger of a unitary map is itself unitary. For a
physical interpretation, recall the generalised interferometry experiment of Remark
5.2. in this setting, the LRC condition may be interpreted as stating that, when
prepared with a particle in state |ψ〉 that is with probability 1 within the feedback
loop of Figure 5, the probability ‖dT |ψ〉 ‖2 of observing the particle within this
loop at some later time T tends to zero, as T increases.

We now demonstrate that the LRC arrows define a weak partial trace class.

Proposition 9.4. In HilbFD, the parametric family of arrows

LRCU
X,Y ⊆ HilbFD(X ⊕ U, Y ⊕ U)

defined above, together with the parametric function wTrUX,Y : LRC(X ⊕ U, Y ⊕
U) → HilbFD(X,Y ) given by

wTrUX,Y

(
a b
c d

)
= a+

∞∑

j=0

bdjc

specifies a weak partial trace.

Proof. First recall that, in any Banach algebra B, for any element x ∈ B
satisfying limn→∞xn = 0, the element (1− x) is invertible, with inverse given by
(1 − x)−1 =

∑∞
j=0 x

j . Thus, in finite-dimensional Hilbert spaces, for any strictly

contractive map |d| < 1, the element I − d is invertible, and (I − d)−1 =
∑∞

j=0 d
j .

From this, we deduce that LRCU
X,Y ⊂ TU

X,Y , for all X,Y, U ∈ Ob(HilbFD)
(this inclusion is strict, since (IU −αIU ) is invertible, for arbitrary α > 1 ∈ C), and
for all f ∈ LRCU

X,Y ,

TrUX,Y (f) = wTrUX,Y (f) = a+ b(IU − d)−1c = a+ b




∞∑

j=0

dj



 c = a+
∞∑

j=0

bdjc

It is then almost immediate that axioms (1)-(3) and (5)-(6) for a partial categorical
trace are satisfied, and the fact that wTR and Tr coincide when both are defined
is enough to establish the equality required for the weak Vanishing II axiom of
Definition 9.1.

To see that LRC,wTr does not define a partial trace in the sense of Definition
8.1, consider the 3× 3 complex matrix

M =




−1 1 0
1 −2 1
0 1 1

2



 : X ⊕ U ⊕ V → Y ⊕ U ⊕ V

where X ∼= Y ∼= U ∼= V ∼= C.



28 PETER HINES AND PHILIP SCOTT

Then M ∈ LRCV
X⊕U,Y⊕U , and

wTrVX⊕U,Y⊕U (M) =

(
−1 1
1 0

)
∈ LRCU

X,Y

Thus the hypothesis for the (⇐) implication of Vanishing II is satisfied. However,
(

−2 1
1 1

2

)
: U ⊕ V → U ⊕ V

is clearly not strictly contractive, and thus M is not a member of LRCU⊕V
X,Y .

(The above counterexample was motivated by a similar calculation taken from
[MSS11]).

!

9.1. A weak partial trace (HilbFD[z],⊕). We now use the result of Proposi-
tion 9.4 to give a weak partial trace onHilbFD[z] satisfying the axioms of Definition
9.1 above.

Definition 9.5. For each X,Y, U ∈ Ob(HilbFD[z]), we define

WU
X,Y ⊆ HilbFD[z](X ⊕ U, Y ⊕ U)

as follows: An arrow f =

(
a b
c d

)
∈ HilbFD[z](X ⊕U, Y ⊕U) is in WU

X,Y when

the following condition is satisfied:

• For all norm-1 vectors |ψ〉 ∈ U ,

∞∑

j=0

‖dj |ψ〉 ‖ < 1

Note that the above condition implies both that dj is strictly contractive, for all
j ∈ N, and that

∑∞
j=0 d

j exists.

Given f =

(
a b
c d

)
∈ WU

X,Y , we define

wTrUX,Y (f) = a+
∞∑

j=0

bdjc

(The existence of this sum is a straightforward corollary of Proposition 9.4 above).

Remark 9.6. Note that the condition of Definition 9.5 above implies, but it is
not implied by, the condition we might assume from a physical motivation – that∑∞

j=0 ‖dj |ψ〉 ‖2 ≤ 1 for all norm-1 vectors |ψ〉. Thus, in using this as the definition
of our weak trace class, we are not simply requiring that arrows be amenable to a
physical interpretation.

Theorem 9.7. Definition 9.5 above specifies a weak partial trace on HilbFD[z],
as defined in Definition 9.1.

Proof. By direct calculation, it is relatively straightforward to verify axioms
(1)-(3) and (5)-(6) of Definition 8.1, with reference to Propositions 7.9 and 9.4. As
before, the only non-trivial point is the weak Vanishing II axiom of Definition 9.1.
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Consider some P ∈ Hilb[z](X ⊕U ⊕V, Y ⊕U ⊕V ), given explicitly in matrix form
as

P =




a b c
d e f
g h k



 : X ⊕ U ⊕ V → Y ⊕ U ⊕ V

and assume further that P is a member of both WV
X⊕U,Y ⊕U and WU⊕V

X,Y . Thus,

both
∑∞

j=0 k
j and

∑∞
j=0

(
e f
h k

)
exist.

We may give an explicit formula for wTrV (P ); however, it is more instructive
to give P itself as the following digraph:

X

a

$$

d
++

++
+

))+
++

++
++

++
+
g
!!!

!

""!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

U

b
,,
,,
,,
,,
,,
,,

**,,
,,

e

$$
h
++

++
++

++
++

++

))+
++
+

V
c""

"""

++"""
"""

"""
"""

"""
"""

"""
""

f
,,
,,
,

**,,
,,
,,
,,
,, k

$$
Y U V

and observe that the matrix of wTr(P ) may be found by summing over all paths
in the following diagram.

X

a

$$

d
++

++
+

))+
++

++
++

++
+
g
!!!

!

""!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

U

b
,,
,,
,,
,,
,,
,,

**,,
,,

e

$$
h
++

++
++

++
++

++

))+
++
+

V
c""

"""

++"""
"""

"""
"""

"""
"""

"""
""

f
,,
,,
,

**,,
,,
,,
,,
,, k

$$
Y U V!"%&

#$-
-
-
-
-
-
-
-
-
-

'(
$$
-
-

giving wTrVX⊕U,Y⊕U (P ) =

(
a+

∑∞
j=0 ck

jg b +
∑∞

j=0 ck
jh

p+
∑∞

j=0 fk
jg e+

∑∞
j=0 fk

jh

)
. Using similar

graphical notation, we draw this as

X

p

$$

r
%%%

%

,,%%
%%%

%%%
%

U

s

$$

q&&
&&

--&&&
&&&

&&&

Y U

where






p = a+
∑∞

j=0 ck
jg q = b+

∑∞
j=0 hk

jc

r = d+
∑∞

j=0 gk
jf s = c+

∑∞
j=0 hk

jf

We will now make the assumption (for the weak version of vanishing II) that
wTrVX⊕U,Y⊕U (P ) ∈ WU

X,Y , and give the following diagrammatic representation for
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wTrUX,Y

(
wTrVX⊕U,Y ⊕U (P )

)

X

p

$$

r
%%%

%

,,%%
%%%

%%%
%

U

s

$$

q&&
&&

--&&&
&&&

&&&

Y U!"%&
#$ -
-
-
-
-
-
-

'(
$$
-
-

where p, q, r, s are as above.

It is straightforward, although unenlightening, to derive an explicit formula for
wTrUX,Y

(
wTrVX⊕U,Y ⊕U (P )

)
from this diagram.

We now use the same formalism to calculate TrU⊕V
X,Y (P ). Let us draw P :

X ⊕ (U ⊕ V ) → Y ⊕ (U ⊕ V ) (together with the appropriate feedback loop) as

X

a

$$



 d
g





...

...
..

..
..

..
..

.

U ⊕ V



 e f
h k





$$

(
b c

)//
//
//
//
//
//
//
/

/////
Y U ⊕ V!" %&

000

#$-
-
-
-
-
-
-
-
-
-

'(0 0 0

$$
-

-

Let first us replace all matrix-labelled arrows by the appropriate digraphs, giving

X

a

$$

d
++

++
+

))+
++

++
++

++
+
g
!!!

!

""!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

U

b
,,
,,
,,
,,
,,
,,

**,,
,,

e

$$
h
++

++
++

++
++

++

))+
++
+

V
c""

"""

++"""
"""

"""
"""

"""
"""

"""
""

f
,,
,,
,

**,,
,,
,,
,,
,, k

$$
Y U!"%&

#$ -
-
-
-
-
-
-
-
-
-

'(
$$
-
-

V!"%&

#$-
-
-
-
-
-
-
-
-
-

'(
$$
-
-

We may then sum over all paths from X to Y , giving an explicit formula for
TrU⊕V

X,Y (P ). It may be verified – either by diagrammatic manipulations, or convert-
ing these into explicit calculations, that under the existence conditions imposed by
the weak version of Vanishing II, that TrUX,Y (Tr

V
X⊕U,Y⊕U (P )) = TrU⊕V

X,Y (P ). !

Note that this weak trace of formal power series has a useful interpretation as
the weak trace of Proposition 9.4, where components are ‘split up’ according to the
number of iterative cycles they require.
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9.2. Relating the trace and the thought-experiment. We are now able
to relate the weak categorical trace on HilbFD[z] to the thought-experiment of
Section 4 and its generalisation given in Section 5. Consider a unitary map

L =

(
a b
c d

)
: X ⊕ U → Y ⊕ U

where d is strictly contractive. Using the interpretation of categories of formal power
series given in Remark 7.6, we assume that a single application of this unitary map
takes a single timestep. Thus, we consider the formal power series

p = 0 + L.z + 0.z2 + 0.z3 + . . .

We observe that p ∈ HilbFD[z](X ⊕ U, Y ⊕ U) ∈ WU
X,Y , and by definition

wTrUX,Y (p) = 0.z0 + a.z1 + bc.z2 + bdc.z3 + bd2c.z4 + . . .

Now compare this to the formal matrices of Lemma 6.2, and the embedding of
Theorem 7.5. We observe that the input-output behaviour of the general form of
our thought-experiment is given by the weak trace on HilbFD[z]. However, the
trace has an additional leading zero (the component of z0). This fits in well with
the intuition of formal power series as ‘timing’ iteration. A non-zero coefficient of
z0 interprets as a computation (or physical process) that takes no time at all. Due
to the labelling conventions of Section 4, this is not immediately apparent from a
straightforward analysis, but drops naturally out of the categorical description.

10. Conclusions and applications

It is perhaps unsurprising that the theory of conditional iteration, whether in
the quantum or the classical setting, should be related to the theory of categorical
traces. What is more unexpected is that not only is this apparent from minor mod-
ifications to a 100 year old experiment, but that this gives a previously unobserved
decomposition of the usual particle-style categorical trace. Moreover, we still find
it slightly mysterious that there should be an apparent connection with the Elgot
dagger.

In terms of applications, quantum circuits that implement the operations of
Lemma 5.1, and thus provide finitary approximations to the twisted dagger in the
quantum circuit model, are used heavily in [Hi09]. Given the original motivation for
the twisted dagger in terms of a simple linear optics experiment, and the encoding
of the standard circuit model into this optical framework presented in Appendix A,
it is not unreasonable to suppose that the (rather complicated) circuits of [Hi09]
have a simple, almost trivial, realisation in terms of similar experiments.

From a more mathematical point of view, a great deal of theory remains to be
developed. The construction of a category of formal power series from HilbFD is
clearly a special case of a general categorical construction. This is developed further,
in a much more general framework, in [Hi10]. However, although the analogous
construction in [Hi10] is shown to be functorial, its interaction with monoidal
tensors is not considered. Many other questions remain open. The general theory
of partially traced categories considered above (from [HS10]) is developed in detail
in the thesis of Octavio Malherbe [Mal10] with an eye towards models of quantum
programming languages. Such partial traces are completely characterized in the
paper [MSS11].
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Finally, this paper has been phrased very concretely in terms of physical exper-
iments. Similarly, the applications proposed above are very concrete constructions
involving quantum circuits. Despite this, we should not forget the motivation from
the Geometry of Interaction program in linear logic [HS10, HS10a], which at-
tempts to model the invariants for the dynamics of normalization (rewriting) of
formal proofs.
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Appendix A: linear optics devices as quantum logic gates

This appendix is expository, and details how the optics toolkit presented in Sec-
tion 2 may be used to implement a universal set of quantum logic gates7. For a fuller
treatment, and applications (including linear optics circuits for teleportation), we
refer to [CAK05]).

Recall that — for single-photon experiments — the basic optics devices in Section 2
are modelled by unitary operations on a 4-dimensional Hilbert space. By consider-
ing this 4-dimensional space as the tensor product of two 2-dimensional spaces, we
may give a treatment in terms of qubits, and the standard quantum computational
logic gates.

The quantum information is encoded on:

(1) The choice of channel.
(2) The photon polarisation.

Thus, we consider the first qubit to be encoded on the choice of channel, with
channel 1. (resp. channel 2.) corresponding to |0〉 (resp. |1〉). Similarly, the
second qubit is encoded on the photon polarisation, with horizontal (resp. vertical)
polarisation corresponding to |0〉 (resp. |1〉).

This then gives a straightforward encoding of 2-qubit states, e.g.

• The pure state |0〉 |1〉 corresponds to a vertically polarised photon in chan-
nel 1.

7We emphasise, as noted in Section 1.2, this encoding is not efficiently scalable.
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• The superposition 1√
2
(|0〉+ |1〉) |0〉 corresponds to a horizontally polarised

photon in a superposition of channels 1. and 2.
• The entangled state 1√

2
(|00〉+ |11〉) corresponds to a photon that is in a

superposition of horizontal polarisation in channel 1. and vertical polari-
sation in channel 2. This is the highly important Bell state, used in both
quantum teleportation and cryptography [NC00].

This encoding also gives a neat realisation of the standard quantum logic gates in
terms of linear optics devices, as in the following examples:

• The Hadamard gate
The action of the beamsplitter is simply to apply a Hadamard gate H =

1√
2

(
1 1
1 −1

)
to the first qubit (encoded on the choice of channel) and

leave the second one (encoded on the polarisation) alone. In the standard
quantum circuit formalism, this is drawn as:

‘channel’ qubit H ‘channel’ qubit

‘polarisation’ qubit ‘polarisation’ qubit

• The controlled-not gate

The polarised beamsplitter applies a NOT gate X =

(
0 1
1 0

)
to the

channel qubit when the polarisation qubit is |1〉, and leaves the channel
qubit unchanged otherwise. This is the controlled-not, or CNOT gate,
drawn in the standard circuit formalism as

‘channel’ qubit )*+,-./0 ‘channel’ qubit
‘polarisation’ qubit • ‘polarisation’ qubit

• The phase shift gate
By placing a phase plate in the second channel only of such an experiment,

a phase shift gate Rk =

(
1 0

0 e2πi/2
k

)
may be implemented. Note also

that this has no effect on the polarisation. In the standard circuit formal-
ism, this is drawn as:

‘channel’ qubit Rk ‘channel’ qubit

‘polarisation’ qubit ‘polarisation’ qubit

Using this encoding, it is easy to verify that the Bell state 1√
2
(|00〉+ |11〉) may

be produced by introducing a horizontally polarised photon into channel 1. of the
apparatus shown in Figure 8.
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Figure 8. Linear-optics apparatus to produce the Bell state

Once the Bell state has been produced, it is a short step to an implementation of
quantum teleportation. The theoretical details of how to implement teleportation
using linear optics are given in [CAK05].
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