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Abstract

We consider the multiplicative and exponential fragment of linear logic (MELL) and give a geometry of interaction (GoI) semantics
for it based on unique decomposition categories. We prove a soundness and finiteness theorem for this interpretation. We show that
Girard’s original approach to GoI 1 via operator algebras is exactly captured in this categorical framework.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Girard introduced his Geometry of Interaction (GoI) program in the late 1980s. The first proposal appeared in [10],
followed by a penetrating series of papers [11,9,12] developing the detailed program.

The GoI was the first attempt to model, in a mathematically sophisticated way, the dynamics of cut-elimination.
Traditional denotational semantics models normalization of proofs (or lambda terms) by static equalities: if � and �′
are proofs of a sequent � � A and if we have a reduction � � �′ by cut-elimination, then their interpretations � − �
in any model denote equal morphisms, i.e. ��� = ��′� : ��� → �A�. On the other hand syntax contains too much
irrelevant information and does not yield an independent mathematical modeling of the dynamics of cut-elimination.
Thus the goal of GoI is to provide precisely such a mathematical model.

The first implementation of this program was given by Girard for system F in [11], based on the C∗-algebra of
bounded linear operators on the space �2 of square summable sequences. For a much more elaborate account of Girard’s
work, see [11,9,12].

The GoI interpretation was extended to untyped �-calculus by Danos in his thesis [7] and further investigated in the
thesis of Regnier [27]. Danos and Regnier further developed the GoI interpretation to define a path-semantics based
on untyped nets, together with a detailed comparison with many �-calculus notions of “path” arising from various
operational semantics of lambda calculus. The basic reference for their work, with connections to �2-models, is in [8].
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Further study of the operator algebra interpretation of �-calculus and connections with Girard’s GoI 2 is in Malacaria
and Regnier [24]. In particular, they study the �2-convergence of the execution formula.

Abramsky and Jagadeesan gave the first categorical approach to GoI in [4]. Their formulation is based on domain
theory and arises from the construction of a categorical model of linear logic. The ideas and techniques used in [4]
together with the development of traced monoidal categories, introduced by Joyal et al. [22], led to more recent abstract
formalizations of GoI. Early work connecting traced monoidal categories, compact closedness and GoI was presented
in lectures by Hyland and by Abramsky. Our treatment here proceeds via the notion of GoI Situation introduced
by Abramsky [2]. GoI Situations give a categorical embodiment of the essential ingredients of GoI, at least for the
multiplicative and exponential fragment. Furthermore, in his Siena lecture [2] Abramsky introduced a general GoI
construction, equivalent to the Int construction of Joyal et al. (see [13]), which yields a category whose composition
is essentially given by Girard’s execution formula. Abramsky’s program was sketched in [2] and completed in [13,3].
However, what was still missing was a tighter connection between the abstract GoI frameworks above and the original
works of Girard et al. That is, we want our categorical models for GoI to be not only part of well-established categorical
logic, but also we want our framework to explicitly connect with the details of the operator algebraic approach, e.g. the
execution formula, orthogonality and the notion of type, all found in the original works but which could not be given
in the generality of [3].

In this paper, we analyze how the first Girard paper GoI 1 [11] fits into the general theory of GoI Situations. The idea
pursued here is to restrict ourselves to a useful class of traced monoidal categories in a GoI Situation, namely unique
decomposition categories (UDCs) [13,14]. These are monoidal categories whose homsets are enriched with certain
infinitary sums, thus allowing us to consider morphisms as matrices, the execution formula as an infinite sum, etc. Such
categories are inspired from early categorical analyzes of programming languages by Elgot, Arbib and Manes, et al.
(e.g. [25]).

The main contributions of this paper are the following:

(1) We present a categorical model (implementation) for GoI and show that it captures the original Hilbert space model
proposed by Girard in [11], including the notions of orthogonality and type.

(2) We show that the execution formula at the heart of modeling computation as cut-elimination is perfectly captured
by the categorical notion of trace.

(3) We prove finiteness and soundness results for our model using the categorical properties of trace and GoI Situation.

We believe that our categorical interpretation views the original Girard GoI model in a new light. Not only do the
original constructions and proofs appear less ad hoc, but this paper also opens the door towards accommodating other
interesting models based on different categories and GoI Situations.

The rest of the paper is organized as follows: in Section 2 we recall the definitions of traced monoidal categories
and GoI Situations, following [13,3]. In Section 3 we recall the definition of a UDC and give some examples. Sections
4 and 5 are the main sections of the paper where we discuss our categorical model for the GoI program and give the
main theorems, respectively. Section 6 discusses the original model introduced by Girard in [11]. Finally in Section 7
we conclude by discussing related and future work.

2. Traced monoidal categories and GoI Situations

We recall the definitions of traced symmetric monoidal categories and GoI Situations. For more detailed expositions,
see [13,3]. The categories introduced below admit a diagrammatic presentation accompanied with a sound and complete
diagrammatic reasoning that can be found in the references above and [21]. Though we will not need diagrammatic
reasoning in this paper.

Joyal et al. [22] introduced the notion of abstract trace on a balanced monoidal category (a monoidal category
with braidings and twists). This trace can be interpreted in various contexts where it could be called contraction,
feedback, parametrized fixed-point, Markov trace or braid closure. The notion of trace can be used to analyze the
cyclic structures encountered in mathematics and physics, most notably in knot theory. Since their introduction, traced
symmetric monoidal categories have found applications in many different areas of computer science, for example the
model theory of cyclic lambda calculi [16], categorical frameworks for the semantics of asynchronous communication
networks [28], full completeness theorems for multiplicative linear logic via GoI models [13,15], analysis of finite state
machines [18], relational dataflow [17], and independently arose in Stefanescu’s work in network algebra [29].
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Definition 1. A traced symmetric monoidal category is a symmetric monoidal category (C, ⊗, I, s) with a family of
functions TrUX,Y : C(X ⊗ U, Y ⊗ U) → C(X, Y ) called a trace, subject to the following axioms:

• Natural in X, TrUX,Y (f )g = TrU
X′,Y (f (g ⊗ 1U)) where f : X ⊗ U → Y ⊗ U , g : X′ → X.

• Natural in Y , g TrUX,Y (f ) = TrU
X,Y ′((g ⊗ 1U)f ) where f : X ⊗ U → Y ⊗ U , g : Y → Y ′.

• Dinatural in U , TrUX,Y ((1Y ⊗ g)f ) = TrU
′

X,Y (f (1X ⊗ g)) where f : X ⊗ U → Y ⊗ U ′, g : U ′ → U .

• Vanishing (I,II), TrIX,Y (f ) = f and TrU⊗V
X,Y (g) = TrUX,Y (TrVX⊗U,Y⊗U(g)) for f : X ⊗ I → Y ⊗ I and

g : X ⊗ U ⊗ V → Y ⊗ U ⊗ V .

• Superposing, TrUX,Y (f ) ⊗ g = TrUX⊗W,Y⊗Z((1Y ⊗ sU,Z)(f ⊗ g)(1X ⊗ sW,U )) for f : X ⊗ U → Y ⊗ U and
g : W → Z.

• Yanking, TrUU,U (sU,U ) = 1U .

Joyal et al. [22] also introduced the Int construction on traced symmetric monoidal categories C; Int (C) is a kind of
“free compact closure” of the category C. For a traced symmetric monoidal category C, composition in Int (C), which
is defined via the trace, is closely related to Girard’s Execution Formula. Indeed, one of our goals in this paper is to
show that in an appropriate class of models, the categorical execution formula is exactly the original Girard formula.
In addition, the existence of an object U of C with U ⊗ U � U essentially captures the GoI interpretation for the
multiplicatives.

The next problem was how to extend this to the exponential connectives. In the Abramsky program (see [3]) this is
achieved by adding certain additional structure to a traced symmetric monoidal category C. This structure involves a
monoidal endofunctor T : C → C, a reflexive object U , and appropriate monoidal retractions, as introduced below. It
was shown in [3] that this additional structure is sufficient to guarantee that the endomorphism monoid C(U, U) forms
a linear combinatory algebra. Such combinatory algebras model a Hilbert-style presentation of MELL, capturing the
essence of the exponentials of Linear Logic.

Definition 2. A GoI Situation is a triple (C, T , U) where:

(1) C is a traced symmetric monoidal category.
(2) T : C → C is a traced symmetric monoidal functor with the following retractions (note that the retraction pairs

are monoidal natural transformations):
(a) T T � T (e, e′) (Comultiplication),
(b) Id � T (d, d ′) (Dereliction),
(c) T ⊗ T � T (c, c′) (Contraction),
(d) KI � T (w, w′) (Weakening). Here KI is the constant I functor.

(3) U is an object of C, called a reflexive object, with retractions: (a) U ⊗ U � U (j, k), (b) I � U , and (c) T U � U

(u, v).

Of course, as indicated by the terminology above, the functor T is used to interpret the Exponential rules in linear
logic [3].

Before introducing examples of GoI Situations in the next section, we note that currently there are two “styles” of
models for GoI in the literature: Sum style and Product style. These are determined by the form of the tensor in the
underlying TMC. Roughly, in sum style the tensor ⊗ is given by a disjoint union on objects; in product style, it is
related to a cartesian product. In this paper we exclusively consider sum style models, corresponding to Girard’s GoI 1.
Sum style GoI admits a semantics based on “particles flowing through a network”. For further discussion, see [3,13].
For readers interested in product style (e.g. domain-theoretic models), further information is contained in for example
works of Honsell and Lenisa [19].

We now consider an appropriate categorical framework for such sum style GoI.

3. Unique decomposition categories

We consider monoidal categories whose homsets allow the formation of certain infinite sums. Technically, these
are monoidal categories enriched in �-monoids (see below). In the case where the tensor is coproduct and �-monoids
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satisfy an additional condition, such categories were studied in computer science in the early categorical analyzes of
flow charts and programming languages by Bainbridge, Elgot, Arbib and Manes, et al. (e.g. [25]). The general case,
known as UDCs introduced in [13], are particularly relevant for this paper, since they admit arbitrary tensor product
(not necessarily product or coproduct) and traced UDCs have a standard trace given as an infinite sum. For more facts
on UDCs see [14].

Definition 3. A �-monoid consists of a pair (M, �) where M is a non-empty set and � is a partial operation on the
countable families in M (we say that {xi}i∈I is summable if

∑
i∈I xi is defined), subject to the following axioms:

(1) Partition-Associativity Axiom. If {xi}i∈I is a countable family and if {Ij }j∈J is a (countable) partition of I , then
{xi}i∈I is summable if and only if {xi}i∈Ij

is summable for every j ∈ J and {∑i∈Ij
xi}j∈J is summable. In that

case,
∑

i∈I xi = ∑
j∈J (

∑
i∈Ij

xi).
(2) Unary Sum Axiom. Any family {xi}i∈I in which I is a singleton is summable and

∑
i∈I xi = xj if I = {j}.

�-monoids form a symmetric monoidal category (with product as tensor), called �Mon. A �Mon-category C is a
category enriched in �Mon; i.e. the homsets are enriched with an additive structure such that composition distributes
over addition from left and right. Note that such categories have non-empty homsets and automatically have zero
morphisms, namely 0XY : X → Y = ∑

i∈∅ fi for fi ∈ C(X, Y ). However, having zero morphisms does not imply the
existence of a zero object. A key fact about �-monoids is that there are no additive inverses: if

∑
i∈I xi = 0 then for

all i ∈ I , xi = 0.
Intuitively the terms built from elements in a �-monoid represent computational paths in a model of computation

(Turing Machine, Lambda Calculus, fragments of linear logic, etc.). Infinite sums capture iterative behavior which is
potentially unbounded, for example a repeat or while command in an imperative language or an infinite reduction
of a lambda term. The fact that there are no additive inverses reflects the property of computational processes in which
no computational paths are cancelled; this is in contrast to the paradigm of quantum computing [26] where one can
have destructive interference where computational paths cancel each other. In the following we introduce the notion
of UDC, first introduced in [13]. These are motivated by the partially additive categories (PAC) of Manes and Arbib
[25] and models in GoI. UDCs are more general than PACs in precisely the following senses: they work with any
monoidal tensor product whereas PACs are restricted to coproducts and they have less restrictive demands on the
additive structures on homsets (see Example 8). The price one pays for this generality is that a UDC may not have a
trace whereas a PAC always has a trace which is induced by an iteration operator (Elgot dagger). Incidentally all UDCs
that we study in this paper are traced with the standard trace (see Proposition 6).

Definition 4. A unique decomposition category (UDC) C is a symmetric monoidal �Mon-category which satisfies
the following axiom:

(A) For all j ∈ I there are morphisms called quasi-injections: �j : Xj → ⊗IXi , and quasi-projections:
�j : ⊗IXi → Xj , such that

(1) �k�j = 1Xj
if j = k and 0Xj Xk

otherwise.
(2)

∑
i∈I �i�i = 1⊗I Xi

.

Proposition 5 (Matricial representation). Given f : ⊗J Xj → ⊗I Yi in a UDC with |I | = m and |J | = n, there exists
a unique family {fij }i∈I,j∈J : Xj → Yi with f = ∑

i∈I,j∈J �ifij�j , namely, fij = �if �j .

Thus every f : ⊗J Xj → ⊗I Yi in a UDC can be represented by its components. We will use the corresponding
matrices to represent morphisms. Composition of morphisms in a UDC then corresponds to matrix multiplication.

For example f above (with |I | = m and |J | = n) is represented by an m × n matrix [fij ],

f =
⎡
⎢⎣

f11 . . . f1n

...
...

...

fm1 . . . fmn

⎤
⎥⎦ .

Given f : ⊗KXk → ⊗J Yj and g : ⊗J Yj → ⊗IZi , let h = gf . Then hik = �ih�k = �i (gf )�k = �ig(
∑

j∈J �j�j )

f �k = ∑
j∈J (�ig�j�j )f �k = ∑

j∈J (gij�j f �k) = ∑
j∈J gij fjk.
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Remark. Although any f : ⊗J Xj → ⊗I Yi can be represented by the unique family {fij } of its components, the
converse is not necessarily true; that is, given a family {fij } with I, J finite there may not be a morphism f : ⊗J Xj →
⊗I Yi satisfying f = ∑

ij �ifij�j . However, in case such an f exists it will be unique.

Proposition 6 (Standard trace formula, Haghverdi [13]). Let C be a unique decomposition category such that for
every X, Y, U and f : X ⊗ U → Y ⊗ U , the sum f11 + ∑∞

n=0 f12f
n
22f21 exists, where fij are the components of f .

Then, C is traced and TrUX,Y (f ) = f11 + ∑∞
n=0 f12f

n
22f21.

The trace formula above is called the standard trace, and a UDC with such a trace is called a traced UDC with
standard trace. Note that a UDC can be traced with a trace different from the standard one. In this paper all traced UDCs
are the ones with the standard trace. Before proceeding to examples of UDCs, we shall illustrate the trace formula in
Proposition 6.

Example 7 (Calculating traces). Let C be a traced UDC. Then given any f : X ⊗ U → Y ⊗ U , TrUX,Y (f ) exists.
For example,

• Let f : X ⊗ U → Y ⊗ U be given by
[

g
h

0
0

]
. Then

TrUX,Y (f ) = TrUX,Y

([
g
h

0
0

])
= g + ∑

n 00nh = g + 0h = g + 0 = g.

• Let f : X ⊗ U → Y ⊗ U be given by
[

g
0

0
h

]
. Then

TrUX,Y (f ) = TrUX,Y

([
g
0

0
h

])
= g + ∑

n 0hn0 = g + 0 = g.

We now give a series of examples of GoI Situations. For the exact analysis of Girard’s GoI 1, the main examples are
the first two: PInj and Hilb2. We end with a list of other models, which are partially additive categories in the sense of
Manes and Arbib [25].

Example 8 (Partial injections). The category PInj of sets and partial injective functions forms a GoI Situation. We
outline the proof; for full details, see [13].

In PInj we let ⊗ = 
, i.e. disjoint union, where we define X 
 Y = {1} × X ∪ {2} × Y . The tensor unit is the empty
set ∅. Note that disjoint union is not a coproduct; indeed PInj does not have coproducts. The UDC structure is given as

follows: quasi-injections Xj

�j−→ ⊎
i∈I Xi are defined by �j (x) = (j, x), and quasi-projections

⊎
i∈I Xi

�j−→ Xj are
defined by �j (j, x) = x and �j (i, x) is undefined for i �= j .

We define a countable family of partial injective functions {fi}i∈I to be summable iff they have pairwise disjoint
domains and codomains. Then (

∑
i∈I fi)(x) = fj (x) iff x ∈ Dom(fj ), for some j ∈ I , otherwise undefined.

As for the GoI Situation structure, define the endofunctor T = N × −, with T = (T , �, �I ), which is a symmetric
monoidal functor with natural isomorphism �X,Y : N×X
N×Y → N× (X
Y ) given by (1, (n, x)) 
→ (n, (1, x))

and (2, (n, y)) 
→ (n, (2, y)). � has an inverse defined by (n, (1, x)) 
→ (1, (n, x)) and (n, (2, y)) 
→ (2, (n, y)).
Also, �I : ∅ → N × ∅ given by 1∅ is clearly an isomorphism. T is additive, indeed let {fi}i∈I be a summable family
in PInj (X, Y ), then

(1N × ∑
I fi)(n, x) =

{
(n, fj (x)) if there exists a j ∈ I such that x ∈ Dom(fj );
undefined else

but this is exactly the definition of (
∑

I (1N × fi))(n, x) for all (n, x) ∈ N × X. Therefore, N × − is an additive
functor and thus it is also traced, see [13]. In other words, given f : X 
 U → Y 
 U we have 1N × TrUX,Y (f ) =
TrN×U

N×X,N×Y
(�−1(1N × f )�).

We show that N is a reflexive object.

• N
N�N(j, k) is given as follows: j : N
N → N, j (1, n) = 2n, j (2, n) = 2n+1 and k : N → N
N, k(n) =
(1, n/2) for n even, and (2, (n − 1)/2) for n odd. Clearly kj = 1N
N. Define j1 = j �1, j2 = j �2, k1 = �1k,
k2 = �2k where �i and �i are as defined above.
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• ∅ � N using the empty partial function as the retract morphisms.
• N × N � N(u, v) is defined as: u(m, n) = 〈m, n〉 = (m+n+1)(m+n)

2 + n (Cantor surjective pairing) and v as its
inverse, v(n) = (n1, n2) with 〈n1, n2〉 = n. Clearly, vu = 1N×N.

We next define the necessary monoidal natural transformations.

• N × (N × X)
eX−→ N × X and N × X

e′
X−→ N × (N × X).

N×(N×X)
eX−→ N×X is defined by eX(n1, (n2, x)) = (〈n1, n2〉, x). Given f : X → Y , (1N×f )eX(n1, (n2, x)) =

(〈n1, n2〉, f (x)) = eY (1N × (1N × f )(n1, (n2, x))) for all n1, n2 ∈ N and x ∈ X proving the naturality of eX.
e′
X(n, x) = (n1, (n2, x)) where 〈n1, n2〉 = n. e′

XeX(n1, (n2, x)) = e′
X(〈n1, n2〉, x) = (n1, (n2, x)) for all n1, n2 ∈

N and x ∈ X.

• X
dX−→ N × X and N × X

d ′
X−→ X.

dX(x) = (n0, x) for a fixed n0 ∈ N. Given f : X → Y , (1N × f )dX(x) = (n0, f (x)) = dY f (x) for any x ∈ X,
proving the naturality of dX.

d ′
X(n, x) =

{
x if n = n0;
undefined else.

d ′
XdX(x) = d ′

X(n0, x) = x for all x ∈ X.

• (N × X) 
 (N × X)
cX−→ N × X and N × X

c′
X−→ (N × X) 
 (N × X).

cX =
{

(1, (n, x)) 
→ (2n, x);
(2, (n, x)) 
→ (2n + 1, x).

Given f : X → Y , (1N × f )cX(1, (n, x)) = (2n, f (x)) = cY (1N × f 
 1N × f )(1, (n, x)) for all n ∈ N and
x ∈ X. Similarly (1N × f )cX(2, (n, x)) = (2n + 1, f (x)) = cY (1N × f 
 1N × f )(2, (n, x)) for all n ∈ N and
x ∈ X, proving the naturality of cX.

c′
X(n, x) =

{
(1, (n/2, x)) if n is even;

(2, ((n − 1)/2, x)) if n is odd.

Finally, c′
XcX(1, (n, x)) = c′

X(2n, x) = (1, (n, x)) and c′
XcX(2, (n, x)) = c′

X(2n + 1, x) = (2, (n, x)).

• ∅ wX−→ N × X and N × X
w′

X−→ ∅.
Let wX and w′

X both be the empty partial function. Clearly for any f : X → Y , (1N × f )wX = w′
X1∅, proving the

naturality of wX. Clearly w′
XwX = 1∅.

Example 9 (Hilb2). This example will provide the connection to operator algebraic models. Given a set X let �2(X) be
the set of all complex valued functions a on X for which the (unordered) sum

∑
x∈X |a(x)|2 is finite. �2(X) is a Hilbert

space and its norm is given by ‖a‖ = (
∑

x∈X |a(x)|2)1/2 and its inner product is given by 〈a, b〉 = ∑
x∈X a(x)b(x)

for a, b ∈ �2(X).

Barr [6] observed that this construction can be made into a functor, �2. 2 There is a contravariant faithful functor
�2 : PInjop → Hilb where Hilb is the category of Hilbert spaces and linear contractions (norm �1). For a set X,
�2(X) is defined as above and given f : X → Y in PInj, �2(f ) : �2(Y ) → �2(X) is defined by

�2(f )(b)(x) =
{

b(f (x)) if x ∈ Dom(f );
0 otherwise.

2 Our presentation here is slightly different from Barr’s original one in [6].
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This yields an embedding of partial injective functions into partial isometries on Hilbert spaces [12,1], as in the following
chart. Observe that the converse is not true, that is to say not every partial isometry on Hilbert spaces is the image of a
partial injective map under the functor �2.

PInj(X, Y ) Hilb(�2(Y ), �2(X))

f �2(f )

Partial injective function Partial isometry
Total Isometry
Total and surjective Unitary
X = Y and f is identity on Dom(f ) Projection

It can be shown that �2(X × Y )��2(X) ⊗ �2(Y ), where ⊗ is the tensor product of Hilbert spaces, see [23]. Also
�2(X 
 Y )��2(X) ⊕ �2(Y ) where ⊕ is the direct sum of Hilbert spaces. To see this, let a ∈ �2(X) and b ∈ �2(Y ),
define qa,b : X 
 Y → C by qa,b(1, x) = a(x) and qa,b(2, y) = b(y); clearly qa,b ∈ �2(X 
 Y ). The linear
transformation U : �2(X 
 Y ) → �2(X) ⊕ �2(Y ) given by U(qa,b) = (a, b) is an isomorphism.

Let Hilb2 = �2[PInj]; i.e. its objects are of the form �2(X) for a set X and its morphisms u : �2(X) → �2(Y ) are
of the form �2(f ) for some partial injective function f : Y → X. Hilb2 is a (non-full) subcategory of Hilb which is
naturally equivalent to PInj.

For �2(X) and �2(Y ) in Hilb2, both the Hilbert space tensor product �2(X)⊗�2(Y ) and the direct sum �2(X)⊕�2(Y )

yield monoidal structures (tensor products) in Hilb2. This follows from the isomorphisms �2(X) ⊕ �2(Y )��2(X 
 Y )

and �2(X) ⊗ �2(Y )��2(X × Y ) and the fact that X 
 Y and X × Y are tensor products in PInj. Notice, however, that,
although �2(X) ⊕ �2(Y ) is the direct sum (biproduct) of the Hilbert spaces �2(X) and �2(Y ) in Hilb, it fails to be so
in Hilb2, as otherwise this would imply that X 
 Y is the coproduct in PInj of X and Y , a contradiction.

Hilb2 is a traced UDC with respect to ⊕, where the UDC structure is induced from that of PInj as follows. We
take ⊕ as the (monoidal) tensor product with unit �2(∅). We define a sum for operators in Hilb2(�2(X), �2(Y )). Given
a family {�2(fi)}I ∈ Hilb2(�2(X), �2(Y )) with {fi}I ∈ PInj(Y, X), we say that {�2(fi)} is summable iff {fi} is
summable in PInj and in that case

∑
i �2(fi) =def �2(

∑
i fi). Clearly, this definition makes �2 an additive functor.

Quasi-injections and projections are the �2 images of quasi-projections and injections in PInj, respectively. Clearly
Axiom (A) holds. As for the trace, given u : �2(X)⊕�2(U) → �2(Y )⊕�2(U), Tr(u) = �2(TrUY,X(f )) where u = �2(f )

with f : Y 
 U → X 
 U .
Let �2 = �2(N). We claim that (Hilb2, �

2 ⊗ −, �2) is a GoI Situation. The proof is taken from [13].
Clearly the functor �2⊗− : Hilb2 → Hilb2 is a symmetric monoidal functor. Also, observe that �2⊗�2(X)��2(N×

X) and 1�2 ⊗ �2(f )��2(1N × f ). Moreover, �2 ⊗ − is an additive and hence a traced functor. This follows from the
fact that N × − is an additive symmetric monoidal endofunctor on PInj.

Also, we have that �2 ⊕ �2��2(N 
 N) � �2(N) (�2(k), �2(j)), {0} = �2(∅) � �2, and finally �2 ⊗ �2��2
(N × N) � �2(N) (�2(v), �2(u)) for j, k, u, v as the case of PInj above. This proves that �2 is a reflexive object
in Hilb2.

As for the monoidal natural transformations:

• �2 ⊗ (�2 ⊗ �2(X)) � �2 ⊗ �2(X) (�2(e
′
X), �2(eX)) for eX, e′

X as in the case of PInj above.
• �2(X) � �2 ⊗ �2(X) (�2(d

′
X), �2(dX)) for dX, d ′

X as in the case of PInj above.
• (�2 ⊗ �2(X)) ⊕ (�2 ⊗ �2(X)) � �2 ⊗ �2(X) (�2(c

′
X), �2(cX)) for cX, c′

X as in the case of PInj above.
• {0} � �2 ⊗ �2(X) (�2(w

′
X), �2(wX)) for wX, w′

X as in the case of PInj above.

The naturality of the morphisms above follows from the underlying structure of PInj and functoriality of �2.

Example 10 (Partially additive categories). Any partially additive category (following Manes and Arbib [25]) forms
a traced UDC, with trace given by the formula in Proposition 6. The homsets in a partially additive category are
�-monoids that in addition have to satisfy a finiteness axiom: an infinite family is summable iff all its finite subfamilies
are summable. This yields a more restrictive additive structure compared to � monoids. In addition, a partially additive
category has to have countable coproducts and the sum and coproduct have to satisfy some compatibility axioms. The
extra structure present in a PAC, on the other hand, guarantees the existence of a standard trace which is induced by
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an iteration (Elgot dagger) operation. See [13] for more details on PACs and the relationship between trace and dagger
operators. The following partially additive categories actually form GoI Situations. We only sketch the constructions,
which are either similar to the above examples, or may be found in [3,13].

Rel+ (sets and relations). Here ⊗ = 
 (disjoint union, which is a biproduct). In Rel+, all countable families are
summable, and

∑
i∈I Ri = ⋃

i Ri .

Pfn (sets and partial functions), with ⊗ = 
. Define a countable family of partial functions {fi}i∈I to be summable
iff they have pairwise disjoint domains. Then (

∑
i∈I fi)(x) = fj (x) iff x ∈ Dom(fj ), for some j ∈ I , otherwise

undefined.

The above two examples yield GoI Situations (Rel+, T , N) and (Pfn, T , N) with T = N × −.

SRel, the category of stochastic relations. Here the objects are measurable spaces (X, FX) and maps f : (X, FX) →
(Y, FY ) are stochastic kernels, i.e. f : X × FY → [0, 1] which are bounded measurable in the first variable and
subprobability measures in the second. For f as above and g : (Y, FY ) → (Z, FZ), composition gof (x, C) =∫
Y

g(y, C)f (x, dy), where f (x, −) is the measure for integration. This category has countable coproducts (which
form the tensor). A family {fi}i∈I in SRel((X, FX), (Y, FY )) is summable iff

∑
i∈I fi(x, Y )�1 for all x ∈ X.

(SRel, T , NN) forms a GoI Situation, where T (X, FX)=(N×X, FN×X) and FN×X is the �-field generated by
⊎

N X.

4. Interpretation of proofs

In this section we define the GoI interpretation for proofs of MELL without the neutral elements. Let C be a traced
UDC, T an additive endofunctor and U an object of C, such that (C, T , U) is a GoI Situation. We interpret proofs in
the homset C(U, U) of endomorphisms of U . Formulas (= types) will be interpreted in the next section (Section 5) as
certain subsets of C(U, U); however, this introduces some novel ideas and is not needed to read the present section.

Convention: All identity morphisms are on tensor copies of U , however, we adopt the convention of writing 1�
instead of 1Un with |�| = n. Un denotes the n-fold tensor product U ⊗· · ·⊗U (n times). The retraction pairs are fixed
once and for all using the names in Definition 2.

Every MELL sequent will be of the form � [	], � where � is a sequence of formulas and 	 is a sequence of cut-
formulas that have already been made in the proof of � � (e.g. A, A⊥, B, B⊥). This is used to keep track of the cuts
that are already made in the proof of � �. Suppose that � consists of n and 	 consists of 2m formulas. Then a proof
� of � [	], � is represented by a morphism ��� ∈ C(Un+2m, Un+2m). Recall that this corresponds to a morphism
from U to itself, using the retraction morphisms U ⊗ U � U (j, k). However, it is much more convenient to work in
C(Un+2m, Un+2m) (matrices on C(U, U)). Define the morphism � : U2m → U2m, as � = s ⊗ · · · ⊗ s (m-copies)
where s is the symmetry morphism, the 2 × 2 antidiagonal matrix [aij ], where a12 = a21 = 1; a11 = a22 = 0. Here �
represents the cuts in the proof of � �, i.e. it models 	, it is there to rearrange the cut-formulas so that when we close
the loop (see the execution formula in the next section) every cut-formula gets connected to its dual formula. If 	 is
empty (that is for a cut-free proof), we define � : I → I to be the identity morphism 1I = 0II as I is the zero object.
Note that U0 = I where I is the unit of the tensor in the category C.

Let � be a proof of � [	], �. We define the GoI interpretation of �, denoted by ���, by induction on the length of
the proof as follows. There is a corresponding pictorial representation of each morphism in the graphical calculus of
boxes and wires where the denotation of a proof � of the sequent � [	], � is represented as in Fig. 1.

The pictorial representations for the GoI interpretations of axiom, cut, times, of course and contraction rules are
collected in Appendix A.

(1) � is an axiom � A, A⊥, then m = 0, n = 2 and ��� = s.

(2) � is obtained using the cut rule on �′ and �′′ that is

�′ �′′
...

...

� [	′], �′, A � [	′′], A⊥, �′′

� [	′, 	′′, A, A⊥], �′, �′′ (cut)
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Γ

∆

Γ

∆
[Π]

Fig. 1. Pictorial representation of a sequent � [	],�.

Define ��� as follows: ��� = 
−1(��′� ⊗ ��′′�)
, where 
 : �′ ⊗ �′′ ⊗ 	′ ⊗ 	′′ ⊗ A ⊗ A⊥ → �′ ⊗ A ⊗ 	′ ⊗
A⊥ ⊗ �′′ ⊗ 	′′ is a permutation.

(3) � is obtained using the exchange rule on the formulas Ai and Ai+1 in �′. That is � is of the form
�′

...

� [	], �′
� [	], � (exchange)

where in �′ we have Ai, Ai+1. Then, ��� is obtained from ��′� by interchanging the rows i and i +1. So suppose
that �′ = �′

1, Ai, Ai+1, �′
2, then � = �′

1, Ai+1, Ai, �′
2 and ��� = 
−1��′�
, where 
 = 1�′

1
⊗ s ⊗ 1�′

2⊗	.

(4) � is obtained using an application of the par rule, that is � is of the form:
�′
...

� [	], �′, A, B

�[	], �′, A ...................................................
.............
............................... B

(
...................................................

.............

............................... )

Then ��� = g��′�f , where f = 1�′ ⊗ k ⊗ 1	 and g = 1�′ ⊗ j ⊗ 1	, recall that U ⊗ U � U (j, k).

(5) � is obtained using an application of the times rule, that is � has the form:

�′ �′′
...

...

� [	′], �′, A � [	′′], �′′, B

� [	′, 	′′], �′, �′′, A ⊗ B
(times)

Then ��� = g
−1(��′� ⊗ ��′′�)
f , where 
 : �′ ⊗ �′′ ⊗ A ⊗ B ⊗ 	′ ⊗ 	′′ → �′ ⊗ A ⊗ 	′ ⊗ �′′ ⊗ B ⊗ 	′′ is
a permutation. f = 1�′⊗�′′ ⊗ k ⊗ 1	′⊗	′′ and g = 1�′⊗�′′ ⊗ j ⊗ 1	′⊗	′′ .

(6) � is obtained from �′ by an of course rule, that is � has the form:
�′

...

� [	], ?�′, A
� [	], ?�′, !A (of course)

Then ��� = ((ueU )⊗n ⊗ u ⊗ u⊗2m)�−1T ((v⊗n ⊗ 1A ⊗ 1	)��′�(u⊗n ⊗ 1A ⊗ 1	))�((e′
Uv)⊗n ⊗ v ⊗ v⊗2m),

where T T � T (e, e′), |�′| = n, |	| = 2m, and � : (T 2U)⊗n ⊗ T U ⊗ (T U)⊗2m → T ((T U)⊗n ⊗ U ⊗ U⊗2m)

is the canonical isomorphism.
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(7) � is obtained from �′ by the dereliction rule, that is � is of the form:
�′
...

� [	], �′, A
� [	], �′, ?A

(dereliction)

Then ��� = (1�′ ⊗ udU ⊗ 1	)��′�(1�′ ⊗ d ′
Uv ⊗ 1	) where Id � T (d, d ′).

(8) � is obtained from �′ by the weakening rule, that is � is of the form:
�′
...

� [	], �′
� [	], �′, ?A

(weakening)

Then ��� = (1�′ ⊗ uwU ⊗ 1	)��′�(1�′ ⊗ w′
Uv ⊗ 1	), where KI � T (w, w′).

(9) � is obtained from �′ by the contraction rule, that is � is of the form:
�′

...

� [	], �′, ?A, ?A
� [	], �′, ?A

(contraction)

Then ��� = (1�′ ⊗ ucU(v ⊗ v) ⊗ 1	)��′�(1�′ ⊗ (u ⊗ u)c′
Uv ⊗ 1	), where T ⊗ T � T (c, c′).

Example 11. Let � be the following proof:

� A, A⊥ � A, A⊥

� [A⊥, A], A, A⊥ (cut).

Then the GoI semantics of this proof is given by

��� =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦ =

[
0 Id2

Id2 0

]
,

where Id2 is the 2 × 2 identity matrix and 0 is the 2 × 2 zero matrix. Now consider the following proof:

� B, B⊥ � C, C⊥

� B, C, B⊥ ⊗ C⊥

� B, B⊥ ⊗ C⊥, C

� B⊥ ⊗ C⊥, B, C

� B⊥ ⊗ C⊥, B
...................................................

.............

............................... C.

Its denotation is given by

[
0 j1k1 + j2k2

j1k1 + j2k2 0

]
.



262 E. Haghverdi, P. Scott / Theoretical Computer Science 350 (2006) 252 –274

U2m U2m

Un Un

σ
[Π]

Fig. 2. Pictorial representation of the execution formula.

4.1. Dynamics

Dynamics is at the heart of the GoI interpretation as compared to denotational semantics and it is hidden in the
cut-elimination process. The mathematical model of cut-elimination is given by the execution formula defined as
follows:

EX(���, �) = TrU
2m

Un,Un((1Un ⊗ �)���), (1)

where � is a proof of the sequent � [	], � and � models 	. Pictorially this can be represented as in Fig. 2.
Note that EX(���, �) is a morphism from Un → Un, and it makes sense since the trace of any morphism in

C(Un+2m, Un+2m) is well-defined. Since we are working with a traced UDC with the standard trace, by Proposition 6
we can rewrite the execution formula (1) in a more familiar form:

EX(���, �) = �11 + ∑
n�0

�12(��22)
n(��21),

where ��� =
[

�11
�21

�12
�22

]
. Note that in general the execution formula defined in this categorical framework always

makes sense; that is, we do not need a convergence criterion (e.g. nilpotency or weak nilpotency). This is in contrast to
Girard’s works where the infinite sum must be made to make sense and this is achieved via proving a nilpotency result.

We later show that formula (1) is the same as Girard’s execution formula with Hilb2 as the underlying category.
The intention here is to prove that the result of this formula is what corresponds to the cut-free proof obtained from �
using Gentzen’s cut-elimination procedure. We will also show that for any proof � of MELL the execution formula is
a finite sum, which corresponds to termination of computation as opposed to divergence.

Example 12. Consider the proof � in Example 11. Recall also that � = s in this case (m = 1). Then

EX(���, �) = Tr

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

=
[

0 0
0 0

]
+ ∑

n�0

[
1 0
0 1

] [
0 0
0 0

]n [
0 1
1 0

]
=

[
0 1
1 0

]
.

Note that in this case we have obtained the GoI interpretation of the cut-free proof obtained by applying Gentzen’s
Hauptsatz to the proof �.

5. Soundness of the interpretation

In this section we shall prove the main result of this paper: the soundness of the GoI interpretation. In other words
we have to show that if a proof � is reduced (via cut-elimination) to its cut-free form �′, then EX(���, �) is a finite
sum and EX(���, �) = ��′�. Intuitively this says that if one thinks of cut-elimination as computation then ��� can be
thought of as an algorithm. The computation takes place as follows: if we run EX(���, �), it terminates after finitely
many steps (cf. finite sum) and yields a datum (cf. cut-free proof). This intuition will be made precise in this section
through the definition of type and the main theorems (see Theorems 20, 21).
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Lemma 13 (Associativity of cut). Let � be a proof of � [	, 
], � with |	| = 2m′, |
| = 2m′′ and � and 
 be the
morphisms representing the cut-formulas in 	 and 
, respectively. Then

EX(���, � ⊗ 
) = EX(EX(���, 
), �)

= EX(EX((1 ⊗ s
U2m′

,U2m′′ )���(1 ⊗ s
U2m′′

,U2m′ ), �), 
).

Proof.

EX(EX(���, 
), �) = TrU
2m′

((1 ⊗ �) TrU
2m′′

((1 ⊗ 
)���)) definition of EX formula

= Tr(Tr((1 ⊗ � ⊗ 1)(1 ⊗ 
)���)) naturality of trace

= TrU
2(m′+m′′)

((1 ⊗ � ⊗ 
)���) vanishing II property of trace

= EX(���, � ⊗ 
).

As for the second equality: (we drop the subscripts for s, as there is no danger of confusion!)

EX(EX((1 ⊗ s)���(1 ⊗ s), �), 
)

= TrU
2m′′

((1 ⊗ 
) TrU
2m′

((1 ⊗ �)(1 ⊗ s)���(1 ⊗ s))) def. of EX formula

= Tr(Tr((1 ⊗ 
 ⊗ 1)(1 ⊗ 1 ⊗ �)(1 ⊗ s)���(1 ⊗ s))) naturality of trace

= Tr(Tr((1 ⊗ 
 ⊗ �)(1 ⊗ s)���(1 ⊗ s))) functoriality of tensor

= Tr(Tr((1 ⊗ s)(1 ⊗ � ⊗ 
)���(1 ⊗ s))) naturality of symmetry

= Tr(Tr((1 ⊗ � ⊗ 
)���)) dinaturality of trace

= TrU
2(m′+m′′)

((1 ⊗ � ⊗ 
)���) vanishing II property of trace

= EX(���, � ⊗ 
). �

We proceed to defining types. This and similar definitions are directly inspired by the corresponding ones in [11],
generalizing them to our categorical framework.

Definition 14. Let f, g be morphisms in C(U, U). We say that f is nilpotent if f k = 0 for some k�1. We say that f

is orthogonal to g, denoted f ⊥ g if gf is nilpotent. Orthogonality is a symmetric relation and it makes sense because
0UU exists. Also, 0 ⊥ f for all f ∈ C(U, U).

Given a subset X of C(U, U), we define

X⊥ = {f ∈ C(U, U)|∀g(g ∈ X ⇒ f ⊥ g)}.
A type is any subset X of C(U, U) such that X = X⊥⊥. Note that types are inhabited, since 0UU belongs to every type.

Definition 15. Consider a GoI Situation (C, T , U) as in the beginning of Section 4 with j1, j2, k1, k2 components of
j and k, respectively. Let A be an MELL formula. We define the GoI interpretation of A, denoted �A, inductively as
follows:

(1) If A ≡ � that is A is an atom, then �A = X an arbitrary type.
(2) If A ≡ �⊥, �A = X⊥, where �� = X is given by assumption.
(3) If A ≡ B ⊗ C, �A = Y⊥⊥, where Y = {j1ak1 + j2bk2 | a ∈ �B, b ∈ �C}.
(4) If A ≡ B

...................................................
.............
............................... C, �A = Y⊥, where Y = {j1ak1 + j2bk2 | a ∈ (�B)⊥, b ∈ (�C)⊥}.

(5) If A ≡ !B, �A = Y⊥⊥, where Y = {uT (a)v | a ∈ �B}.
(6) If A ≡?B, �A = Y⊥, where Y = {uT (a)v | a ∈ (�B)⊥}.
It is an easy consequence of the definition that (�A)⊥ = �A⊥ for any formula A.

Definition 16. Let � = A1, . . . , An. A datum of type �� is a morphism M : Un → Un such that for any �1 ∈
�(A⊥

1 ), . . . , �n ∈ �(A⊥
n ), (�1 ⊗· · ·⊗�n)M is nilpotent. An algorithm of type �� is a morphism M : Un+2m → Un+2m

for some non-negative integer m such that for � : U2m → U2m defined in the usual way, EX(M, �) = Tr((1 ⊗ �)M)

is a finite sum and a datum of type ��.
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Lemma 17. Let M : Un → Un and a : U → U . Define CUT (a, M) = (a ⊗ 1Un−1)M : Un → Un. Note
that the matrix representation of CUT (a, M) is the matrix obtained from M by multiplying its first row by a. Then
M = [mij ] is a datum of type �(A, �) iff for any a ∈ �A⊥, am11 is nilpotent and the morphism ex(CUT (a, M)) =
TrA(s−1

�,A
CUT (a, M)s�,A) is in �(�). Here s�,A is the symmetry morphism from � ⊗ A to A ⊗ �.

We shall need the following lemmas for the proof of Lemma 17.

Lemma 18. Let f, g : Uk → Uk for some positive integer k. Then (f + g) is nilpotent iff f is nilpotent and∑
n�0 gf n is nilpotent.

Proof. The proof of this lemma is implicit in [11, p. 242, Lemma 5]. Let n be a positive integer and q ⊆ {1, 2, . . . , n}
and define �n,q = �1�2 · · · �n where �i = g if i ∈ q and �i = f otherwise. Hence for a fixed n, (f + g)n = ∑

q �n,q ,
a sum with 2n summands. Clearly (f +g) is nilpotent iff there is an m such that �m,q = 0 for all q. Now suppose f and∑

n�0 gf n are nilpotent. Thus there exists a k such that f k = 0 and there is a p such that (g+gf +· · ·+gf k−1)p = 0.
Then we claim that (f + g)kp is zero, note that a term of (g + gf + · · · + gf k−1)p is of the form �i1,{1} · · · �ip,{1} with

ij ∈ {1, . . . , k}, for j = 1, . . . , p. Also note that this latter term itself is of the form �a,b for some a and b. The 2kp

terms in (f +g)kp can be generated using f k and the �a,b by pre- and post-compositions with f and g and are all null.
Hence �kp,q = 0 for all q and so (f + g) is nilpotent.

Conversely suppose (f +g) is nilpotent, then there exists m such that �m,q = 0 for all q, in particular �m,∅ = f m = 0
and so f is nilpotent. Also all the terms in (g + gf + · · · + gf m−1)m are null and thus the desired result follows. �

Lemma 19. Let M : U ⊗ U → U ⊗ U be given by the matrix M =
[

a
c

b
d

]
. Then M is nilpotent iff a is nilpotent and

Tr(sMs) = d + ∑
n�0 canb is nilpotent.

Proof. Let M1 =
[

a
0

0
d

]
and M2 =

[
0
c

b
0

]
. Clearly M = M1 + M2. Now M is nilpotent iff M1 and

∑
n�0 M2M

n
1

are nilpotent by Lemma 18. Now M1 is nilpotent iff a and d are nilpotent and
∑

n�0 M2M
n
1 =

[
0∑
n can

∑
n bdn

0

]
,

is nilpotent iff
∑

n,m canbdm is nilpotent. Finally note that Tr(sMs) = d + ∑
n�0 canb is nilpotent iff d and∑

n,m canbdm are nilpotent. Hence the desired result. �

Proof (Lemma 17). Consider the simple case where � is a single formula B, the more general case follows using a

similar argument in higher dimension. So M is a 2 × 2 matrix, say M =
[

�
�

�
�

]
.

Suppose M is a datum of type �(A, B). Then for any a ∈ �(A⊥) and b ∈ �(B⊥), the matrix P =
[

a�
b�

a�
b�

]
is

nilpotent and thus so is a� by Lemma 19.
Let �′ = ex(CUT (a, M)), then b�′ = b TrA(sA,BCUT (a, M)sB,A) = b � + ∑

n�0 b �(a�)na�. Note that b�′ =
Tr(sP s) and hence is nilpotent by Lemma 19. Hence �′ ⊥ b, so �′ ∈ �(B).

Conversely, suppose a ∈ �(A⊥) and b ∈ �(B⊥), note that by assumption a� is nilpotent and �′ = ex(CUT (a, M)) ∈
�(B) and so b�′ is nilpotent. But b�′ = Tr(sP s) and so by Lemma 19, P is nilpotent. So (a ⊗ b)M is nilpotent and M

is a datum of type �(A, B).

Theorem 20. Let � be a proof of � [	], �. Then ��� is an algorithm of type ��.

Proof. The main ideas behind the proof parallel those in [11]. However, the techniques used are different and we have
included all the cases in detail.

• � is an axiom, where � = A, A⊥, then we need to prove that EX(���, 0) = ��� is a datum of type ��. That is,

for all a ∈ �A⊥ and b ∈ �A, M = (a ⊗ b)��� =
[

0
b

a
0

]
must be nilpotent. Observe that Mn =

[
(ab)n/2

0
0

(ba)n/2

]
for n even and Mn =

[
0

(ba)(n−1)/2b
(ab)(n−1)/2a

0

]
for n odd. But a ⊥ b and hence ab and ba are nilpotent. Therefore

M is nilpotent.
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• Suppose � is obtained by applying the cut rule to the proofs �′ and �′′ of � [	′], �′, A and � [	′′], A⊥, �′′,
respectively. We assume first that 	′ and 	′′ are empty and �′ = B ′ and �′′ = B ′′ are single formulas. Then we must
show that ��� is an algorithm of type �(B ′, B ′′); that is to say EX(���, �) (with � = s) is a finite sum and for all b′ ∈
�(B ′⊥) we must have that the 11th entry of CUT (b′, EX(���, �)) is nilpotent and ex(CUT (b′, EX(���, �))) ∈
�(B ′′).

By inductive hypothesis we have that ��′�, ��′′� are algorithms of types �(B ′, A) and �(A⊥, B ′′), respectively.
Hence given b′ ∈ �(B ′⊥) we have that b′�′

11 is nilpotent and a = ex(CUT (b′, ��′�)) ∈ �(A). Note that a =
�′

22 +∑
n �′

21(b
′�′

11)
nb′�′

12 and a�′′
11 is nilpotent and ex(CUT (a, ��′′�)) ∈ �(B ′′). This means that �′

22�
′′
11 is nilpotent

which implies that
[

0
�′

22

�′′
11
0

]
is nilpotent and hence EX(���, �) is a finite sum. Recall that

��� =

⎡
⎢⎢⎣

�′
11 0 �′

12 0
0 �′′

22 0 �′′
21

�′
21 0 �′

22 0
0 �′′

12 0 �′′
11

⎤
⎥⎥⎦ .

The 11th entry of CUT (b′, EX(���, �)) is given by b′�′
11+∑

n b′�′
12(�

′′
11�

′
22)

n �′′
11�

′
21 which is nilpotent as follows:

we shall write it as Tr(sMs) for M =
[

�′′
11�

′
22

b′�′
12

�′′
11�

′
21

b′�′
11

]
which can be written as M1 + M2 with M1 =

[
�′′

11�
′
22

0
0

b′�′
11

]
and M2 =

[
0

b′�′
12

�′′
11�

′
21

0

]
. Now note that M1 is nilpotent by inductive hypothesis and

∑
n

M2M
n
1 =

[
0

∑
n �′′

11�
′
21(b

′�′
11)

n∑
n b′�′

12(�
′′
11�

′
22)

n 0

]

which is nilpotent because a�′′
11 is nilpotent. Thus M is nilpotent by Lemma 18 and so Tr(sMs) is nilpotent by

Lemma 19.
Finally we shall show that ex(CUT (b′, EX(���, �))) ∈ �(B ′′). Many steps in the following equations have been

compressed, they all follow from trace properties and naturality of symmetry morphisms.

ex(CUT (a, ��′′�)) = TrU(s(a ⊗ 1)��′′�s)
= TrU(s(TrU(s(b′ ⊗ 1)��′�s) ⊗ 1)��′′�s)
= TrU(s(b′ ⊗ 1)TrU((1 ⊗ s)(��′� ⊗ 1)(s ⊗ 1)(1 ⊗ s)

(��′′� ⊗ 1)(s ⊗ 1)(1 ⊗ s)))

= TrU(s(b′ ⊗ 1)TrU
2
((1 ⊗ s ⊗ 1)(1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1)

(��′� ⊗ ��′′�)(1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1))s)

= ex(CUT (b′, EX(���, �))).

However, by inductive hypothesis ex(CUT (a, ��′′�)) ∈ �(B ′′). The case of non-singleton �′ and �′′ is similar except
that it is done in higher dimension with block matrices.

In this and all the following cases we assume that 	 is empty. The non-empty case can be reduced to the empty case
using the associativity of cut. More explicitly, we would like to prove the result for EX(���, �), where � represents the
cut-formulas in 	. We remove all the cuts in � except the one occurring as the last rule by first pre- and post-composing
��� with appropriate permutations (see the rightmost formula in Lemma 13) and then applying the execution formula.
Then we apply this theorem and get back to EX(���, �) using the associativity of cut.

• Suppose that � is obtained from a proof �′ of �′ by an application of an exchange rule. Let �′ = A1, . . . , Ai,

Ai+1, . . . , An and � = A1, . . . , Ai+1, Ai, . . . , An. By inductive hypothesis ��′� is a datum of type �(�′), so for
ai ∈ �(A⊥

i ), we have that (a1 ⊗ · · · ⊗ an)��′� is nilpotent. Recall that ��� = 
−1��′�
 for 
 = (1 ⊗ s ⊗ 1)

with identity morphisms of appropriate types. Then for ai ∈ �(A⊥
i ), (a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ an)��� =


−1(a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ an)��′�
 which is clearly nilpotent.
• Suppose that � is obtained from the proofs �′ and �′′ of � �′, A and � �′′, B, respectively, by an application of a

times rule. We let �′ = C′ and �′′ = C′′ be single formulas, the general case is similar. We need to show that ���
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is a datum of type �(C′, C′′, A ⊗ B) that is, given �′ ∈ �(C′⊥) and �′′ ∈ �(C′′⊥) we need to show that �′�11 and
�′′�22 are nilpotent and that ex(CUT (�′, �′′, ���)) ∈ �(A ⊗ B).

By the inductive hypothesis we have �′�′
11 and �′′�′′

11 are nilpotent. Recall that

��� =
⎡
⎢⎣

�′
11 0 �′

12k1

0 �′′
11 �′′

12k2

j1�′
21 j2�′′

21 j1�′
22k1 + j2�′′

22k2

⎤
⎥⎦ .

Hence, �′�11 and �′′�22 are nilpotent. Also by the inductive hypothesis we have that a = ex(CUT (�′, ��′�)) =
�′

22 + ∑
n �′

21(�
′�′

11)
n�′�′

12 ∈ �(A) and b = ex(CUT (�′′, ��′′�)) = �′′
22 + ∑

n �′′
21(�

′�′′
11)

n�′′�′′
12 ∈ �(B). It is

immediate that j1ak1+j2bk2 ∈ �(A⊗B), but a simple calculation shows that ex(CUT (�′, �′′, ���)) = j1ak1+j2bk2.

• Suppose � is obtained from a proof �′ of � �′, A, B by an application of a par rule. We assume that �′ = C a single
formula, the general case being similar. By the inductive hypothesis we have that ��′� ∈ �(C, A, B). Note that

��� =
[

�′
11 �′

12k1 + �′
13k2

j1�′
21 + j2�′

31 j1�′
22k1 + j2�′

32k1 + j1�′
23k2 + j2�′

33k2

]
.

By the inductive hypothesis for any � ∈ �(C⊥), ��′
11 is nilpotent and hence ��11 is nilpotent. ex(CUT (�, ���)) =

� + � where � = j1�′
22k1 + j2�′

32k1 + j1�′
23k2 + j2�′

33k2 and � = ∑
n (j1�′

21 + j2�′
31)(��

′
11)

n(��′
12k1 + ��′

13k2).

Now let a ∈ �(A⊥) and b ∈ �(B⊥). Then by assumption (� ⊗ a ⊗ b)��′� is nilpotent. We need to show that
ex(CUT (�, ���)) ⊥ (j1ak1 + j2bk2) and conclude ex(CUT (�, ���)) ∈ �(A

...................................................
.............
............................... B). Let � = (j1ak1 + j2bk2). Using

the assumption above we see that �� and
∑

n ��(��)n are nilpotent and hence by Lemma 18 we get the desired result.

• Suppose � is obtained from a proof �′ of � ?�′, A by an application of an of course rule. For simplicity we assume
that �′ = B, a single formula, the general case being similar. Recall that

��� =
[

ueUT (v�′
11u)e′

Uv ueUT (v�′
12)v

uT (�′
21u)e′

Uv uT (�′
22)v

]
.

Now let b ∈ �(B⊥), then uT (b)v ∈ �(!B⊥) = �((?B)⊥). By inductive hypothesis uT (b)v�′
11 is nilpotent and hence

so is uT (b)vueUT (v�′
11u)e′

Uv, because

(uT (b)vueUT (v�′
11u)e′

Uv)n = ueUT ((T (b)v�′
11u)n)e′

Uv

by functoriality of T , naturality of e and vu = 1. It remains to show that ex(CUT (uT (b)v, ���)) ∈ �(!A).
By inductive hypothesis � = ex(CUT (uT (b)v, ��′�)) = �′

22 + ∑
n �′

21(uT (b)v�′
11)

nuT (b)v�′
12 ∈ �(A). One

computes that ex(CUT (uT (b)v, ���)) = uT (�)v because of (e, e′), (u, v) being retraction pairs, naturality of e

and functoriality of T . Hence ex(CUT (uT (b)v, ���)) ∈ �(!A).
• Suppose � is obtained from a proof �′ of � �′ by an application of a weakening rule. As usual we assume

that �′ = B. Let b ∈ �(B⊥), and recall that

��� =
[

�′
11 0

0 0

]
.

By inductive hypothesis b�′
11 is nilpotent and ex(CUT (b, ���)) = 0 + ∑

n 0(b�′
11)

n0 = 0, which clearly belongs
in �(?A).

• Suppose � is obtained from a proof �′ of � �′, A using an application of a dereliction rule. As usual we assume
that �′ = B. Recall that

��� =
[

�′
11 �′

12d
′
Uv

udU�′
21 udU�′

22d
′
Uv

]

and by inductive hypothesis we have that for any b ∈ �(B⊥), b�′
11 is nilpotent and hence so is b�11. Also � =

ex(CUT (b, ��′�)) = �′
22 + ∑

n �′
21(b�′

11)
nb�′

12 ∈ �(A). Now let a ∈ �(A⊥), then a� is nilpotent. Let � =
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ex(CUT (b, ���)) = udU�d ′
Uv, and note that u(T a)v� = uT a(dU�d ′

U)v = udUa�d ′
Uv by naturality of d and

hence u(T a)v� is nilpotent as (d, d ′), (u, v) are retraction pairs and a� is nilpotent. Therefore, � ∈ �(?A).
• Suppose � is obtained from a proof �′ of � �′, ?A, ?A using an application of the contraction rule. As usual

we assume that �′ = B. We use c1, c2, c
′
1 and c′

2 to denote the components of cU and c′
U . Recall that ��� =[

�′
11

uc1v�′
21+uc2v�′

31

�′
12uc′

1v+�′
13uc′

2v
�

]
where � = uc1v�′

22uc′
1v + uc2v�′

32 uc′
1v + uc1v�′

23uc′
2v + uc2v�′

33uc′
2v. Let

b ∈ �B⊥, then b�′
11 is nilpotent and thus so is b�11. Let � = ex(CUT (b, ��′�)) =

[
�′

22
�′

32

�′
23

�′
33

]
+ ∑

n

[
�′

21
�′

31

]
(b�′

11)
n

[b�′
12 b�′

13] ∈ �(?A, ?A).

We need to show that � = ex(CUT (b, ���)) ∈ �(?A). Let a ∈ �(A⊥), we have to show that � ⊥ u(T a)v.
uT (a)v� = uc1(T a)v�11uc′

1v + uc1(T a)v�12uc′
2 v + uc2(T a)v�21uc′

1v + uc2(T a)v�22uc′
2v which is nilpotent

because by inductive hypothesis we have that (u(T a)v ⊗ u(T a)v)� is nilpotent, (c, c′) is a retraction pair, that is
c′
j ci = 0 for i �= j and 1 for i = j and (u, v) is a retraction pair. �

Theorem 21. Let � be a proof of a sequent � [	], � in MELL. Then

(i) EX(���, �) is a finite sum.
(ii) If � reduces to �′ by any sequence of cut-elimination steps and � does not contain any formulas of the form ?A,

then EX(���, �) = EX(��′�, 
). So EX(���, �) is an invariant of reduction. In particular, if �′ is any cut-free
proof obtained from � by cut-elimination, then EX(���, �) = ��′�.

Proof. Part (i) is an easy corollary of Theorem 20. We proceed to the proof of part (ii). As explained in Girard’s proof
of the same theorem, see [11, pp. 235–239, 248–249], it suffices to check the following cases:

(1) Suppose �′ is a cut-free proof of � �, A and � is obtained by applying the cut rule to �′ and the axiom � A⊥, A.
Then

EX(���, �) = Tr

⎛
⎜⎜⎝(1 ⊗ �)

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

�′
11 �′

12 0 0

�′
21 �′

22 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= Tr

⎛
⎜⎜⎝

⎡
⎢⎢⎣

�′
11 0 �′

12 0
0 0 0 1
0 1 0 0

�′
21 0 �′

22 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

[
�′

11 �′
12

�′
21 �′

22

]
= ��′�.

(2) Similarly to [11], in the following five cases we shall consider proofs � of the form

�′ �′′
...

...

� �′, A � A⊥, �′′

� [A, A⊥], �′, �′′ (cut)

Also we assume that the last rules in �′ and �′′ are logical rules applied to A or A⊥. Hence in the syntax the cut
rule for A will be replaced by other cuts. We use � to represent the cuts of � and 
 for those of �, which is obtained
from � by one step reduction (cut-elimination). We shall ignore the exchange rule hereafter.

First we consider the case where A ≡ B ⊗C and hence A⊥ ≡ B⊥ ...................................................
.............
............................... C⊥. Hence �′ is obtained from �′

1 of � �′
1, B

and �′
2 of � �′

2, C using the times rule. Also �′′ is obtained from �′′
1 of � B⊥, C⊥, �′′ using the par rule. We shall,

without loss of generality, assume that �′
1, �

′
2 and �′′ consist of single formulas. The more general case follows in

similar ways only using block matrices.

��′
1� =

[
a b

c d

]
, ��′

2� =
[

e f

g h

]
and ��′′

1� =
⎡
⎣ l m o

p q r

x y z

⎤
⎦ .
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Then

��′′� =
[

j1lk1 + j2pk1 + j1mk2 + j2qk2 j1o + j2r

xk1 + yk2 z

]
and

��′� =
⎡
⎣ a 0 bk1

0 e f k2
j1c j2g j1dk1 + j2hk2

⎤
⎦ .

And

��� =

⎡
⎢⎢⎢⎢⎣

a 0 0 bk1 0
0 e 0 f k2 0
0 0 z 0 xk1 + yk2

j1c j2g 0 j1dk1 + j2hk2 0
0 0 j1o + j2r 0 j1lk1 + j2pk1 + j1mk2 + j2qk2

⎤
⎥⎥⎥⎥⎦ .

Finally EX(���, �) = Tr((1 ⊗ s)���).
Now apply the cut rule to �′

1 and �′′
1 to get �0 of � [B, B⊥], C⊥, �′

1, �
′′ and apply cut again to �′

2 and �0 to get
� of � [B, B⊥, C, C⊥], �′

1, �
′
2, �

′′. We have

��� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 b 0 0 0
0 e 0 0 0 f 0
0 0 z 0 x 0 y

c 0 0 d 0 0 0
0 0 o 0 l 0 m

0 g 0 0 0 h 0
0 0 r 0 p 0 q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Define the matrices K = (1 ⊗ s ⊗ 1)(k ⊗ k), J = (j ⊗ j)(1 ⊗ s ⊗ 1), and L =
[

I3
0

0
K

]
, L′ =

[
I3
0

0
J

]
. An easy matrix

multiplication shows that L′(1 ⊗ s ⊗ s)���L = (1 ⊗ s)���.

EX(���, 
) = TrU⊗U⊗U⊗U((1 ⊗ s ⊗ s)���)
= TrU⊗U(L′(1 ⊗ s ⊗ s)���L) by dinaturality of trace and LL′ = 1U7

= TrU⊗U((1 ⊗ s)���)
= EX(���, �).

As a matter of fact we could have proven both cases above using algebraic methods (properties of trace and structural
morphisms, etc). We shall do so in the following cases to avoid long calculations. In the following: � = (1 ⊗ 1 ⊗ s)

(1 ⊗ s ⊗ 1), � = (1 ⊗ 1 ⊗ s)(1 ⊗ s ⊗ 1)(s ⊗ 1 ⊗ 1) and � = (1 ⊗ s)(s ⊗ 1). Note that the permutations above are
instantiated at different types in the formulas where they appear. Also, we let �′ = sU2,U2 and � = sU,U4 .
(3) Suppose that A ≡! B and so A⊥ ≡? B⊥, and � is given by the following proof.

�′
1 �′′

1
...

...

� ?�′
1, B

� ?�′
1, !B

(!) � ?B⊥, ?B⊥, �′′

� ?B⊥, �′′ (contraction)

� [!B, ?B⊥], ?�′
1, �

′′ (cut)
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The proof � is obtained by first cutting �′ against �′′
1 to get a proof �0 of � [!B, ?B⊥], ?B⊥, ?�′

1, �
′′, next cutting

�′ against �0 to get �0 ending with � [!B, ?B⊥, !B, ?B⊥], ?�′
1, ?�′

1, �
′′ and finally doing a sequence of contractions

on formulas in ?�′
1.

Recall that by assumption, �′
1 has to be empty. In fact the following equations are not valid otherwise. Without loss

of generality we let �′′ be a single formula.

EX(���, �) = TrU⊗U [(1 ⊗ s)�−1(uT (��′
1�)v ⊗ (ucU (v ⊗ v) ⊗ 1U)��′′

1�((u ⊗ u)c′
Uv ⊗ 1U))�]

= TrU⊗U⊗U [(1 ⊗ �)�−1(T (��′
1�)cU ⊗ (v ⊗ v ⊗ 1)��′′

1�((u ⊗ u)c′
U ⊗ 1))�] dinaturality of trace, vu = 1

= TrU⊗U⊗U [(1 ⊗ �)�−1(cU (T (��′
1�) ⊗ T (��′

1�)) ⊗ (v ⊗ v ⊗ 1)��′′
1� ((u ⊗ u)c′

U ⊗ 1))�] naturality of c

= TrU
4 [(1 ⊗ �′)�−1((u ⊗ u)(T (��′

1�) ⊗ T (��′
1�))(v ⊗ v) ⊗ ��′′

1�)�] dinaturality of trace, c′c = 1

= TrU
4 [(1 ⊗ �′)�−1(��′� ⊗ ��′� ⊗ ��′′

1�)�]
= EX(���, s ⊗ s).

(4) Suppose � is given as

�′
1 �′′

1

...
...

� B

� !B (!) � B⊥, �′′

� ?B⊥, �′′ (dereliction)

� [!B, ?B⊥], �′′ (cut)

and � is obtained as

�′
1 �′′

1

...
...

� B �B⊥, �′′

� [B, B⊥], �′′ (cut)

We have

EX(���, �) = TrU⊗U [(1 ⊗ s)�−1(uT (��′
1�)v ⊗ (udU ⊗ 1)��′′

1�(d
′
Uv ⊗ 1))�]

= TrU⊗U [(1 ⊗ s)�−1(T (��′
1�)dU ⊗ ��′′

1�(d
′
U ⊗ 1))�] dinaturality of trace and vu = 1

= TrU⊗U [(1 ⊗ s)�−1(dU ��′
1� ⊗ ��′′

1�(d
′
U ⊗ 1))�] naturality of d

= TrU⊗U [(1 ⊗ s)�−1(��′
1� ⊗ ��′′

1�)�] dinaturality of trace and d ′d = 1

= EX(���, s)

(5) Suppose � is given as

�′
1 �′′

1

...
...

� B

� !B (!) � �′′
� ?B⊥, �′′ (weakening)

� [!B, ?B⊥], �′′ (cut)

and � = �′′
1.
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We have

EX(���, �) = TrU⊗U [(1 ⊗ s)�−1(uT (��′
1�)v ⊗ (uwU ⊗ 1)(1I ⊗ ��′′

1�)(w
′
Uv ⊗ 1))�]

= TrU⊗U [(1 ⊗ s)�−1(T (��′
1�)wU ⊗ (1I ⊗ ��′′

1�)(w
′
U ⊗ 1))�] dinaturality of trace and vu = 1

= TrU⊗U [(1 ⊗ s)�−1(wU ⊗ (1I ⊗ ��′′
1�)(w

′
U ⊗ 1))�] naturality of w

= TrI [sI,U (1I ⊗ ��′′
1�)sU,I ] dinaturality of trace and w′w = 1

= ��′′
1� vanishing I.

(6) The last case is where � is given by

�′
1 �′′

1
...

...

� B

� !B (!) � ?B⊥, C

� ?B⊥, !C (!)
� [!B, ?B⊥], !C (cut)

and � is

�′
1 �′′

1
...

...

� B

� !B (!)
� ?B⊥, C

� [!B, ?B⊥], C
� [!B, ?B⊥], !C (!)

We have

EX(���, �) = TrU⊗U [(1 ⊗ s)�−1(uT (��′
1�)v ⊗ (ueU ⊗ u)�−1T ((v ⊗ 1)��′′

1�(u ⊗ 1))�(e′
Uv ⊗ v))�]

= TrU⊗U [(1 ⊗ s)�−1(T ��′
1�eU ⊗ (1 ⊗ u)�−1T ((v ⊗ 1)��′′

1�
(u ⊗ 1))�(e′

U ⊗ v))�] dinaturality of trace and vu = 1

= TrU⊗U [(1 ⊗ s)�−1(eUT 2(��′
1�) ⊗ (1 ⊗ u)�−1T ((v ⊗ 1)��′′

1�
(u ⊗ 1))�(e′

U ⊗ v))�] naturality of e

= TrU⊗U [(1 ⊗ s)�−1(T 2(��′
1�) ⊗ (1 ⊗ u)�−1T ((v ⊗ 1)��′′

1�
(u ⊗ 1))�(1 ⊗ v))�] dinaturality of trace and e′e = 1

= uTrU⊗U [(1 ⊗ s)�−1(T 2(��′
1�) ⊗ �−1T ((v ⊗ 1)��′′

1�(u ⊗ 1))�)�]v
naturality of trace and symmetry

= EX(�, s). �

6. Girard’s operator algebraic model

In this section we observe that Girard’s original C∗-algebra model (implementation) in GoI 1 is captured in our
categorical framework using the category Hilb2. First, recall Examples 8 and 9 which show that (PInj, N ×−, N) and
(Hilb2, �

2 ⊗ −, �2) are GoI Situations.

Proposition 22. (Hilb2, �
2 ⊗ −, �2) is a GoI Situation which agrees with Girard’s C∗-algebraic model, where �2 =

�2(N). Its structure is induced via �2 from PInj.

Proof. The structural retractions have already been shown in the two examples above. The correspondence of our set-up
with that of Girard and in fact with dynamic algebras [11,9,7,27] is given by the dictionary below. Here j1, j2, k1, k2 are
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the components of j : U ⊗ U → U and k : U → U ⊗ U , respectively, c1, c2 are the components of c : T U ⊗ T U →
T U and c′

1, c
′
2 are the components of c′ : T U → T U ⊗ T U .

Girard This paper

1 ⊗ a uT (a)v

p, p∗ j1, k1
q, q∗ j2, k2
(1 ⊗ r), (1 ⊗ r∗) uc1v, uc′

1v

(1 ⊗ s), (1 ⊗ s∗) uc2v, uc′
2v

t, t∗ ueU(T v)v, u(T u)e′
Uv

d, d∗ udU , d ′
Uv

What remains to be shown, to convince the reader that we have really obtained Girard’s model, is to show our execution
formula is the same as his. We do this in the next proposition. �

We now show that we obtain the same execution formula as Girard. Note that in Girard’s original execution formula
��� and � are both 2m+n by 2m+n matrices. To connect up with our previous notation, let �̃ = s ⊗· · ·⊗s (m-times.)

Proposition 23. Let � be a proof of � [	], �. Then in Girard’s model Hilb2 above,

(
(1 − �2)

∞∑
n=0

���(����)n(1 − �2)

)
n×n

= Tr((1 ⊗ �̃)���),

where (A)n×n is the submatrix of A consisting of the first n rows and the first n columns.

Proof. First note that by Lemma 4 [11, p. 242], the left-hand side, when it exists, is a morphism in Hilb2(�
2⊗n, �2⊗n).

Also, we considered our matrices to be indexed as n + 2m and not 2m + n as Girard does, so we have just flipped the
indexing in his execution formula to have indexing as n + 2m. We next show that Girard’s execution formula is the

same as our execution formula. Recall �̃ = s ⊗ · · · ⊗ s (m-copies) and � =
[

0
0

0
�̃

]
.

Now a simple calculation shows that the two sides are the same as follows:

First note that (1 −�2) =
[

Idn×n

0
0
0

]
. Hence the multiplication by (1 −�2) from left and right selects the 11th block

matrix, which is an n × n matrix and sets all other entries to zero. Then one retrieves this n × n matrix out of the
execution formula by removing the 2m zero rows and 2m zero columns.

���� =
[

0 0
0 �̃

] [
�1 �2
�3 �4

]
=

[
0 0

�̃�3 �̃�4

]
.

Hence for n�1,

(����)n =
[

0 0
(�̃�4)

n−1�̃�3 (�̃�4)
n

]
.

Finally (1 − �2)
∑∞

n=0 ���(����)n(1 − �2) =
[

�1+
∑

n�1 �2(�̃�4)
n−1�̃�3

0
0
0

]
. So the 11th block entry of this matrix

is nothing but Tr
([

�1
�̃�3

�2
�̃�4

])
= Tr((1 ⊗ �̃)���).
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Therefore in the categorical setting we need not remove 2m all-zero columns and rows; they are automatically
removed! �

7. Conclusions and further work

In this paper we have given a categorical model and axiomatization for the GoI semantics of MELL and have proven
the necessary theorems. We also showed how Girard’s original operator algebra model fits into this framework. We did
not discuss the work by Abramsky and Jagadeesan [4] for the simple reason that it does not fit the unique decomposition
category framework; that is, the category of domains does not form a UDC. This already suggests the necessity for a
suitable generalization of the ideas presented in this paper. More precisely, we observe that the necessary ingredients
for a categorical interpretation (model) are provided in the definition of a GoI Situation. However, one still needs to
give general meaning to the notions of orthogonality and type as well as provide a notion of “nilpotency”, “finite sum”
or “convergence”. Observe that these notions found natural meanings in UDCs but a general traced category does not
always have the corresponding notions.

We should note that there are many concrete GoI Situations based on partially additive and unique decomposition
categories; thus there are many models of this paper [14]. However, to obtain exactly Girard’s GoI 1, we also used
Barr’s �2 representation of PInj in Hilb. We do not yet know of any operator-algebra representations for other models.
That is an interesting open problem. However, independently of operator algebras, one may also investigate the GoI
interpretation in any specific model (for example, the partially additive category SRel) of stochastic kernels, perhaps
with respect to alternative notions of orthogonality (as in [20]) and convergence.

In [9], Girard addresses the issue of non-terminating algorithms and proves a convergence theorem for the execution
formula (note that in this case nilpotency is out of the question). This work is further studied in [24]. It would be
interesting to see how this can be captured in our categorical framework where all existing infinite sums make sense.
The challenge would be to have a means of distinguishing good and bad infinite sums, that is the ones corresponding
to non-termination and to divergence, respectively.

Moreover in [12], Girard extended GoI to the full case, including the additives and constants. He also proved a
nilpotency theorem for this semantics and its soundness (for a slightly modified sequent calculus) in the case of
exponential-free conclusions. This too constitutes one of the main parts of our future work.

Last but certainly not least, we believe that GoI could be further used in its capacity as a new kind of semantics
to analyze PCF and other fragments of functional and imperative languages and be compared to usual denotational
and operational semantics through full abstraction theorems. The work on full completeness theorems for MLL via
GoI in [13,15] is just a first step. Further related results, including those of Abramsky and Lenisa (e.g. [5]), should be
examined.
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Appendix A. Pictorial representation for GoI interpretation

Figs. A.1–A.5.
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Fig. A.1. Axiom.
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