
Geometry of Interaction and the Dynamics of

Proof Reduction: a tutorial

Esfandiar Haghverdi a, Philip Scott b,1

aSchool of Informatics, Indiana University
Bloomington, IN 47408, USA

b Department of Mathematics & Statistics, University of Ottawa,
585 King Edward, Ottawa, Ontario, K1N 6N5, CANADA

Abstract

Girard’s Geometry of Interaction (GoI) is a program that aims at giving mathe-
matical models of algorithms independently of any extant languages or computing
models, thus making it possible to prove general theorems about algorithms. In the
context of proof theory, where one views algorithms as proofs and computation as
cut-elimination, this program translates to providing a mathematical modelling of
the dynamics of cut-elimination. The kind of logics we deal with, such as Girard’s
linear logic, are resource sensitive and have their proof-theory intimately related to
various monoidal (tensor) categories. The GoI interpretation of dynamics aims to
develop an algebraic/geometric theory of invariants for information flow in networks
of proofs.

Key words: Linear Logic, Cut Elimination, Monoidal and Traced Monoidal
Categories, Geometry of Interaction,, Partial Trace, Abstract Orthogonality,
Execution Formula.

Contents

1 Introduction 3

2 From Monoidal Categories to *-Autonomy 4

2.1 Monoidal Categories 4

2.2 Closed Structure 8

2.3 Monoidal Categories with Duality 9

Email addresses: ehaghver@indiana.edu, phil@mathstat.uottawa.ca (Philip
Scott).
1 Research supported by a Discovery Grant from NSERC, Canada.

Preprint submitted to Elsevier Science 30 June 2008

3 Linear Logic and Categorical Proof Theory 12

3.1 Gentzen’s proof theory 12

3.2 Categorical Models of Linear Logic 18

3.3 Adding Exponentials: full linear logic 21

3.4 Cut Elimination: Gentzen’s Operational Semantics of Proofs 22

4 Traced monoidal categories 23

4.1 Wave vs. Particle style traces 25

4.2 Unique Decomposition Categories and Particle-Style Traces 29

4.3 The Int Construction 32

5 What is the Geometry of Interaction? 34

5.1 Dynamical Invariants for Cut-Elimination 34

5.2 Girard’s GoI 1 Framework: An Overview 35

6 GoI Interpretation of MELL 38

6.1 GoI Interpretation of formulas 40

6.2 GoI Interpretation of proofs 41

6.3 GoI Interpretation of cut-elimination 44

6.4 Soundness of the GoI Interpretation: running the execution formula 45

7 Partial Trace and Abstract Orthogonality 47

7.1 Examples of Partial Traces 49

8 The Typed GoI Interpretation for MELL in *-Categories 53

8.1 MGoI Interpretation of formulas 57

8.2 MGoI Interpretation of proofs 57

8.3 Interpretation of cut-elimination 60

8.4 Soundness of the Interpretation 61

9 Concluding Remarks 62

2

References 62

A Graphical Representation of The Trace Axioms 67

B Comparing GoI Notation 68

1 Introduction

In the 1930’s, Gerhard Gentzen developed a profound approach to Hilbert’s
proof theory, in which formal laws for deriving logical entailments Γ ` ∆ (i.e.
premisses Γ entail conclusions ∆) were carefully systematized, breaking the
laws of logic into three groups: (i) the Axiom and Cut-Rule, (ii) Structural
Rules, and (iii) Logical Rules. Gentzen’s work revealed the hidden symmetries
in logical syntax, and his remarkable Cut-Elimination Theorem, one of the
deepest in logic, has also had considerable significance for theoretical computer
science.

In these lectures we shall give the background, both logical and categorical,
to a remarkable new approach to Gentzen’s work, stemming from J-Y Gi-
rard’s introduction of Linear Logic in 1987 [Gi87]. Linear Logic, a radical
analysis of the Gentzen rules of traditional logic, is based upon studying the
use of resources in these rules, e.g. in duplicating and eliminating premisses
and conclusions in a logical inference. We may think of proofs as dynamical
systems, with inputs and outputs being the hypotheses and the conclusions re-
spectively, and we think of the rules involved in transforming, i.e. in rewriting,
proof trees (in Gentzen’s Cut-Elimination Algorithm) as interaction between
these dynamical systems. We are looking for mathematical invariants for the
dynamics of these systems.

Girard’s Geometry of Interaction (GoI) project began in the late 1980s
[Gi89,Gi89a]. The first paper on GoI was set in an operator algebraic context:
proofs were interpreted as operators on the Hilbert space of square summable
sequences. The GoI interpretation of cut-elimination was given by a finite sum,
which was finite due to nilpotency of the summands. This already pointed to
the usefulness of the GoI view of logic: one has a degree of nilpotency that mea-
sures the complexity of cut-elimination (=computation). This also inspired a
different line of work in GoI research, the so called path-semantics with rela-
tionships to lambda calculus, a fundamental model of computation [DR95].

One might ask: why is this important? The answer lies in realizing that one way
to model computation is precisely as an instance of Gentzen’s algorithm. We
search for mathematical models of this dynamical process of cut-elimination,
expecting that such an analysis will shed deep light on the very nature of

3

computation and its complexity. Indeed, there are connections of the whole
project with complexity, as we mention in Remark 5.2 in these notes.

The early work on understanding the categorical framework of GoI was begun
in lectures of Abramsky and of Hyland in the early 90’s. This brought the
notion of abstract trace (in the sense of Joyal, Street, and Verity [JSV96])
into the picture. Work by Hyland, by Abramsky [Abr96] and later by us
[AHS02,HS04a] has emphasized the role of abstract traces in modelling cut-
elimination in GoI. Our categorical modelling of GoI has recently led us to the
use of ∗-categories (see Section 8), already familiar to theoretical physicists
in the work by Doplicher, Roberts and others. This approach to GoI offers
a potential connection to the literature in several areas of interest in math-
ematics and physics, for example to knot theory, where trace appears under
the name braid closure (cf. [Abr07]). The most recent work by Girard [Gi08],
makes use of type II1 von Neumann algebras to offer a new interpretation of
GoI, although the categorical meaning is totally open. It is our strong hope
and belief that the categorical and logical structures outlined in these notes
will be conducive to non-trivial and productive connections with applications
to physics.

2 From Monoidal Categories to *-Autonomy

2.1 Monoidal Categories

Monoidal (tensor) categories are a fundamental mathematical structure arising
in many areas of mathematics, theoretical computer science and physics, and
increasingly in mathematical logic. The subject is a vast one, so we will just
include definitions and examples relevant to these lectures. For general back-
ground, the reader is referred to standard category theory texts [Bor93,Mac98].
For general surveys of monoidal categories in relation to categorical and linear
logics, see the articles [Sc00,BS04,Mel07] and further references given below.

Definition 2.1 A monoidal (or tensor) category (C,⊗, I, α, `, r) is a category
C, with functor ⊗ : C × C → C, unit object I ∈ ob(C), and specified iso-

morphisms (natural in A,B,C): αABC : (A ⊗ B) ⊗ C
∼=−→ A ⊗ (B ⊗ C),

`A : I ⊗ A
∼=−→ A , rA : A ⊗ I

∼=−→ A satisfying the following equations (in
diagrammatic form):

`I = rI : I ⊗ I → I , as well as:

4

(A⊗ I)⊗ C
α
- A⊗ (I ⊗ C)

A⊗ C

rA ⊗ idC
?

= A⊗ C

idA ⊗ `C
?

A(B(CD)) �
α

(AB)(CD) �
α

((AB)C)D

A((BC)D)

idA ⊗ α
6

�
α

(A(BC))D

α⊗ idD
?

where we omit ⊗’s and subscripts in the second diagram for typographical
reasons. This latter diagram is known as the Mac Lane pentagon. It expresses
an equality between the two a priori different natural isomorphisms between
((A⊗B)⊗ C)⊗D and A⊗ (B ⊗ (C ⊗D)) .

Monoidal structure is not generally unique nor canonical: there may be several
(nonisomorphic) tensor structures on the same category. An interesting special
case is when the isos α, `, r are all identity morphisms. In that case, we say
the monoidal category is strict.

Definition 2.2 A strict monoidal category is a category C with a functor
⊗ : C × C → C and I ∈ ob(C) satisfying the following equations:

• (A⊗B)⊗ C = A⊗ (B ⊗ C) .
• A⊗ I = A = I ⊗ A .
• (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) for any arrows f, g, h.
• f ⊗ idI = f = idI ⊗ f , for any arrow f : A→ B.

Many concrete examples of strict monoidal categories arise in knot theory,
quantum groups and related areas (e.g. [KRT97]). More generally, the Mac
Lane Coherence Theorem [Mac98] states that every monoidal category is
equivalent to a strict one. This essentially says that in an arbitrary monoidal
category C, every “formal” diagram of arrows (from a source object to a target
object) which is built from instances of the maps α, `, r under the monoidal
category operations automatically commutes. Thus, without loss of generality
(up to equivalence) we can assume our monoidal categories are strict. Notice
in a strict monoidal category, the objects form a monoid (= semigroup with
unit) under ⊗.

From now on we write (C,⊗, I) for monoidal categories, omitting the remaining
structure maps α, `, r when it is clear. We introduce some standard graphical
notation for arrows in Figure 1.

In any monoidal category (C,⊗, I), we can define the monoid of scalars to be
C(I, I). For example, in the monoidal category (Vec,⊗, I) of k-vector spaces
and linear maps, with the usual notion of algebraic tensor product, and I = k
(the base field) observe Vec(I, I) ∼= I. The following result is from [KL80]
(see also [Abr05]).

5

A1

f

Am

B1

Bn

-

A1 ⊗ · · · ⊗ Am
f−→ B1 ⊗ · · · ⊗Bn

...
...

-

-

-

X ⊗ U g⊗h−→ Y ⊗ V

X
g

h
U

Y

V

-

-

-

-

Fig. 1. Pictorial Representation of Morphisms

Proposition 2.3 (Kelly-LaPlaza) In any monoidal category, the scalars
form a commutative monoid.

There are many additional structures one may add to this basic definition. We
shall introduce below such notions as symmetric ,closed, ∗-autonomous, and
traced structure, which are key to modelling proofs in linear logic.

Suppose first that there is a natural isomorphism sAB : A⊗B → B⊗A (called
a braiding) making the following three diagrams commutative.

(1)

A⊗B
sA,B- B ⊗ A

A⊗B

sB,A

?

id
-

(2)

B ⊗ I
sB,I- I ⊗B

B

�

'

'

-

(3)

A⊗ (B ⊗ C)
α−1
- (A⊗B)⊗ C

s
- C ⊗ (A⊗B)

A⊗ (C ⊗B)

idA ⊗ s

? α−1
- (A⊗ C)⊗B

s⊗ idB- (C ⊗ A)⊗B

α−1

?

where in (3) we have omitted subscripts for typographical reasons. We say C
is symmetric if diagrams (1), (2), and (3) commute. Notice in a symmetric
monoidal category, sAB = (sBA)−1.

More generally, a braided monoidal category is a monoidal category satisfying
the commutativity of diagrams (2), (3), and (3’), where (3’) is like (3) but
replacing α−1 by α, id⊗ s by s⊗ id and appropriately relabelling the nodes.
Such categories arise in knot theory and physics [JS91,JS93,KRT97] as well
as in recent semantical studies in Quantum Computing [AbCo04,Abr05].

Let us give some examples that will be useful later.

6

Examples 2.4 (Symmetric Monoidal Categories)

1. Any cartesian category (=finite products), with ⊗ = ×.
2. Any co-cartesian category (= finite coproducts), with ⊗ = +
3. Rel×. This is the category Rel whose objects are sets and whose arrows

are binary relations. Recall the composition of two arrows is their rela-

tional product: given A
R−→ B

S−→ C, define A
SoR−→ C to be the relation

defined by

a(SoR)c iff ∃b∈B aRb ∧ bSc .

The identity morphism A
idA−→ A is simply the diagonal relation ∆A =

{(a, a) | a ∈ A}. The functor ⊗ : Rel × Rel → Rel is defined as
follows. On objects, ⊗ = ×, the cartesian product of sets; on arrows,

A⊗B R⊗S−→ C⊗D is the relation given by: (a, b)R⊗S(c, d) iff aRc & bSd.
The tensor unit I = {∗}, any one element set.

4. Rel+. This is again the category Rel, except ⊗ = + (disjoint union),
where disjoint union in Set is given by: X + Y = X × {1} ∪ Y × {2}.
On arrows, A⊗B R⊗S−→ C ⊗D is the relation given by:

(x, i)R⊗ S(y, j) iff [(i = j = 1 and xRy) or (i = j = 2 and xSy)]
Here the tensor unit I = ∅.

5. Two important monoidal subcategories of Rel+ are:
(1) Pfn: Sets and partial functions. Here the morphisms between sets

are relations which are functional, i.e. binary relations A
R−→ B

satisfying: ∀x∈A∀y,y′∈B [xRy ∧ xRy′ → y = y′].

(2) PInj: Sets and partial injective functions. This is the subcategory
of Pfn consisting of those partial functions which are also injective
on their domains: ∀x,x′∈A∀y∈B [xRy ∧ x′Ry → x = x′].

6. Vecfd and Vec : (finite dimensional) vector spaces over k, where k is a
field. Here V ⊗W is taken to be the usual tensor product, and I = k.

7. The categories Hilb⊕, (Hilb⊕)fd of Hilbert spaces (resp. finite dimen-
sional Hilbert spaces) and bounded linear maps with the direct sum ⊕
as tensor. Similarly, we may consider the categories Ban and Banfd of
Banach spaces (resp. finite dimensional Banach spaces) and bounded
linear maps. Important subcategories of the above include cBan and
cHilb, where the maps are (nonexpansive) contractions, i.e. linear maps
L satisfying ‖L(x)‖ ≤ ‖x‖.

8. Hilb⊗ is the category of Hilbert spaces and bounded linear maps, with
the tensor being the usual Hilbert space tensor product. There are also
a variety of tensor products on Banach spaces, but we shall not require
that theory.

7

2.2 Closed Structure

In order to deal with internal function spaces, we introduce the notion of
closedness, as an adjoint functor to ⊗:

Definition 2.5 A symmetric monoidal closed category (smcc) C is a symmet-
ric monoidal category such that for all A ∈ C, the functor −⊗A : C → C has a
right adjoint A −◦ −, i.e. there is an isomorphism, natural in B,C, satisfying

C(C ⊗ A,B) ∼= C(C,A −◦ B) (1)

We say A −◦ B is the “linear exponential” or “linear function space”. In
particular, the isomorphism (1) induces evaluation and coevaluation maps
(A −◦ B)⊗A→ B and C → (A −◦ (C⊗A)), satisfying the adjoint equations.

Examples 2.6

1. Any ccc, with A⊗B = A×B and A −◦ B = A⇒ B.
2. A poset P = (P,≤) is an smcc iff there are operations ⊗,−◦: P 2 → P ,

1 ∈ P satisfying:
(1) (P,⊗, 1) is a commutative monoid.
(2) ⊗,−◦ are functorial in the posetal sense: i.e. x ≤ x′, y ≤ y′ implies

x⊗ y ≤ x′ ⊗ y′ and x′ −◦ y ≤ x −◦ y′
(3) (Closedness) x⊗ y ≤ z iff x ≤ y −◦ z.

3. Girard’s Phase Semantics: This is a posetal smcc, in the sense of Ex-
ample 2 above. Let M = (M, ., e) be a commutative monoid. Consider
the poset P(M), the powerset of M . We view P(M) as a poset ordered
by inclusion. For X, Y ∈ P(M), define

X ⊗ Y =XY =def {x.y | x ∈ X, y ∈ Y }
X −◦ Y = {z ∈M | z.X ⊆ Y } and I = {e}

4. Vec, where V ⊗W is the usual algebraic tensor product and V −◦ W =
Lin(V,W). More generally, consider R-Modules over a commutative
ring R, with the standard algebraic notions of V ⊗RW and V −◦ W =
Hom(V,W).

5. MOD(G). This example extends groups acting on sets to groups acting
linearly on vector spaces. Let G be a group and V a vector space. A
representation of G on V is a group homomorphism ρ : G → Aut(V);
equivalently, it is a left G-action G×V

.

−→ V (satisfying the same equa-
tions as a G-set) such that v 7→ g.v is a linear automorphism, for each
g ∈ G. The pair (ρ, V) is called a G-module or G-space. MOD(G) has
as objects the G-modules and as morphisms the linear maps commuting
with the G-actions. Define the smcc structure of MOD(G) as follows:

8

V ⊗W = the usual tensor product, with action determined by

g.(v ⊗ w) = g.v ⊗ g.w

V −◦ W =Lin(V,W), with action (g.f)(v) = g.f(g−1.v) ,

the contragredient action.

2.3 Monoidal Categories with Duality

For the purposes of studying linear logic, as well as general duality theories,
we need to consider monoidal categories equipped with a notion of involutive
negation (or “duals”). A general categorical theory of such dualities, including
many traditional mathematical duality theories, was developed by M. Barr
[Barr79] in the mid 1970’s, some ten years before linear logic.

Definition 2.7 ([Barr79]) A ∗-autonomous category (C,⊗, I,−◦,⊥) is an
smcc with a distinguished dualizing object ⊥, such that (letting A∗ = A −◦⊥),
the canonical map µA : A → A∗∗ is an iso, for all A (i.e. “all objects are
reflexive”).

Facts about ∗-autonomous categories C:

• The operation (−)∗ induces a contravariant dualizing functor Cop ()∗−→ C
such that C(A,B) ∼= C(B∗, A∗) which is a natural iso and which satisfies
all natural coherence equations.

• C is closed under duality of categorical constructions: e.g. C has products
iff it has coproducts, C is complete iff it is co-complete, etc.

• (A −◦ B)∗ ∼= A⊗B∗ and I ∼=⊥∗ Also A −◦ B ∼= B∗ −◦ A∗.
• We may define A ...

............
.................................. B = (A∗ ⊗ B∗)∗, a kind of “de Morgan dual”

of ⊗. In linear logic, this is the connective “par”, a kind of “parallel
disjunction”. In general, ⊗ 6=...

............
.................................. , and (in general) there is not even a

C-morphism A⊗B → A ...
............
.................................. B.

• As we shall see below, categorical models of multiplicative, additive linear
logic will be ∗-autonomous categories with products (hence coproducts).

The first two examples are from Example 2.4 above.

Example 2.8 Rel×. The category of relations Rel× is probably the simplest
∗-autonomous category. For sets A,B, A ⊗ B = A −◦ B = A × B. Let the
dualizing object ⊥= {∗}, any one-element set. As for the dualizing functor
(−)∗, on objects define A∗ = A. On arrows, given a relation R : A → B, we
define R∗ = Rop : B → A to be the opposite relation (so that bR∗a iff aRb, for
any a ∈ A, b ∈ B). Notice: (A⊗B)∗ = A∗ ⊗B∗ = A×B.

9

Example 2.9 Vec is symmetric monoidal closed, where I = k (the base
field), V ⊗W is the usual algebraic tensor product and V −◦ W = Lin(V,W).
Note that in the category Vec of vector spaces over the field k, V satisfies
V ∼= V ∗∗(via the canonical map µV) iff V is finite dimensional (see [Ger85],
p. 68). Hence, Vecfd is ∗-autonomous, where I = k (the base field) and
V ∗ = V −◦ I is the usual dual space.

Unfortunately, the above two examples Rel× and Vecfd are “degenerate”
∗-autonomous categories (from the viewpoint of linear logic), since ...

............
.................................. ∼= ⊗.

That is, (A ⊗ B)∗ ∼= A∗ ⊗ B∗. We shall mention these below, as examples
of compact categories. Indeed, from the viewpoint of linear logic, it is quite
hard to find nice examples of nondegenerate ∗-autonomous categories. One
of the motivations that led to [Barr79] was that such categories arise quite
naturally in various topological duality theories. The following discussion is a
quick summary, primarily based on work of M. Barr (e.g. [Barr79]) and the
treatment in Blute [Bl96], based on a topology originally due to Lefschetz
([Lef]). See also [BS96]. Let TVec denote the category whose objects are
vector spaces equipped with linear topologies, and whose morphisms are linear
continuous maps.

Barr showed that TVec is a symmetric monoidal closed category, when V −◦
W is defined to be the vector space of linear continuous maps, topologized
with the topology of pointwise convergence. (It is shown in [Barr79] that the
forgetful functor TVec→Vec is tensor-preserving) . Let V ∗ denote V −◦ k.
Lefschetz proved that the canonical embedding V→V ∗∗ is always a bijection,
but need not be an isomorphism. Now we just cut down to so-called reflexive
spaces: those for which the embedding V→V ∗∗ is actually an isomorphism:

Theorem 2.10 (Barr) RTVec, the full subcategory of reflexive objects in
TVec, is a complete, cocomplete ∗-autonomous category, with I∗ = I = k the
dualizing object. Moreover, in RTVec, ⊗ and ...

............
.................................. are not isomorphic.

More generally, other classes of ∗-autonomous categories arise by taking a
continuous linear analog of G-sets, namely categories of group representations,
using the category RTVec.

Definition 2.11 Let G be a group. A continuous G-module is a linear action
of G on a space V in TVec, such that for all g ∈ G, the induced map g.() :
V → V is continuous. Let TMOD(G) denote the category of continuous G-
modules and continuous equivariant maps. Let RTMOD(G) denote the full
subcategory of reflexive objects.

Theorem 2.12 The category TMOD(G) is symmetric monoidal closed.
The category RTMOD(G) is ∗-autonomous, and a reflective subcategory
of TMOD(G) via the functor ()∗∗. Furthermore the forgetful functor
| | : RTMOD(G)→ RTVec preserves the ∗-autonomous structure.

10

Following [Bl96], still more general classes of ∗-autonomous categories arise
analogously using the category RTMOD(H), the reflective subcategory of
linearly topologized H -modules, for a cocommutative Hopf algebra H .

The next notion is much more familiar mathematically, although logically it
corresponds to a rather degenerate case of linear logic: the case where ⊗ = ...

............
.................................. :

Definition 2.13 A compact closed category [KL80] is a symmetric monoidal
category such that for each object A there exists a dual object A∗, and canon-
ical morphisms:

ν : I → A⊗ A∗
ψ : A∗ ⊗ A→ I

such that evident equations hold. In the case of a strict monoidal category,
these equations reduce to the usual adjunction triangles.

Remark 2.14 (From Compactness to *-Autonomy) For constructing
new models of multiplicative linear logic, there is a general categorical con-
struction Double Glueing which can be used to turn compact closed categories
into nontrivial *-autonomous ones, essentially by breaking the isomorphism
between ⊗ and ...

............
.................................. . This is described in detail in [HylSc03]. Indeed, double

gluing can be iterated, to obtain interesting categories, e.g. see [HamSc07].

We have already remarked above that the categories Rel× and Vecfd are
compact closed. In the study of quantum computing, Abramsky and Coecke
[AbCo04] have shown the utility of strongly compact closed categories, those
with additional structure abstracting the theory of inner product spaces.

Lemma 2.15

• Compact closed categories are ∗-autonomous, with the tensor unit as dual-
izing object.

• Recall A ...
............
.................................. B = (A∗⊗B∗)∗. In any ∗-autonomous category in which the ten-

sor unit is the dualizing object, there is a canonical morphism A⊗B→A ...
............
.................................. B

given by: µA ⊗ µB : A ⊗ B→A∗∗ ⊗ B∗∗ ∼= (A∗ ⊗ B∗)∗. In a compact closed
category, this morphism is an isomorphism.

What are monoidal functors between monoidal categories? Here there can be
several notions. Let us pick an important one:

Definition 2.16 A monoidal functor between monoidal categories is a 3-tuple
(F,mI ,m) where F : C → D is a functor, together with a morphism mI : I −→
F (I) and a natural transformation mUV : F (U) ⊗ F (V) −→ F (U ⊗ V) sat-
isfying some coherence diagrams (which we omit). F is strict if mI ,mUV are
identities. A monoidal functor is symmetric if m commutes with the symme-

11

tries: mB,AsFA,FB = F (sA,B)mA,B, for all A,B.

Finally, we need an appropriate notion of natural transformation for monoidal
functors.

Definition 2.17 A natural transformation between monoidal functors α :
F → G is monoidal if it is compatible with both mI and mUV , for all U, V , in
the sense that the following equations hold: (i) αI omI = mI and
(ii) mUV o(αU ⊗ αV) = αU⊗V omUV .

Remark 2.18 (Alternative Treatments of ∗-autonomy) There are al-
ternative definitions of ∗-autonomous categories, some based on attempts to
axiomatize a fully faithful dualizing functor (−)∗ : Cop → C. This leads to
thorny problems concerning what are the appropriate categorical coherence
equations to impose. Recent work of Robin Houston [Hou07] has shown that
this is subtle and is inadequately addressed in the literature, so we omit dis-
cussing it.

A more radical alternative categorical treatment of the various layers of lin-
ear logic (and thus of ∗-autonomous categories) arose in work of Cockett
and Seely and coworkers [CS97,BCST96,BCS00]. Their idea is to first con-
sider linearly (or weakly) distributive categories: monoidal categories with two
monoidal structures tensor (⊗) and cotensor (...

............
..................................), together with various coher-

ence and (weak) distributive laws relating them. This corresponds to a kind of
multiplicative linear logic of just conjunction/disjunction, without any nega-
tion or duality relating the two tensors. On top of this structure, one can
impose an involutive negation (−)∗ (which will satisfy a De Morgan duality
between tensor and cotensor); in addition, one may adjoin products × (and
thus, coproducts +) for the additive structure. Finally, one may impose the
further exponential structure of linear logic (see below). The authors in the
above papers also take extra care in handling the logical units (for tensor and
cotensor) and the various categorical coherence problems these require.

3 Linear Logic and Categorical Proof Theory

3.1 Gentzen’s proof theory

Gentzen’s approach to Hilbert’s proof theory [GLT,Mel07], especially his se-
quent calculi and his fundamental theorem on Cut-Elimination, have had a
profound influence not only in logic, but recently in category theory and
computer science as well. The connections of Gentzen proof theory with
categorical logic (and linear logic) are discussed in various survey papers

12

[Sc00,BS04,Mel07]. Let us just introduce some basic terminology.

A sequent for a logical language L is an expression

A1, A2, · · · , Am ` B1, B2, · · · , Bn (2)

where A1, A2, · · · , Am and B1, B2, · · · , Bn are finite lists (possibly empty) of
formulas of L. Sequents are denoted Γ ` ∆, where Γ and ∆ are lists of formu-
las. We think of sequent (2) as a formal entailment relationship between the
premisses Γ and (potential) conclusions ∆.

Traditional logicians would give the semantical meaning (of the truth) of the
sequent (2) as: the conjunction of the Ai entails the disjunction of the Bj.
More generally, following Lambek and Lawvere, category theorists interpret
proofs of such sequents (modulo equivalence of proofs) as arrows in appropriate
(freely generated) monoidal categories. For logics L similar to Girard’s linear
logic [Gi87], we interpret a proof π of sequent (2) in a *-autonomous category
(C,⊗, I,−◦,⊥) with a “cotensor” ...

............
.................................. (see Definition 2.7 above) as an arrow of

the following form

A1 ⊗ A2 ⊗ · · · ⊗ Am
π−→ B1

...
............
.................................. B2

...
............
.................................. · · · ...

............
.................................. Bn (3)

Here − : L → C is an interpretation function of formulas and proofs (of the
logic L) into the objects and arrows of C. We interpret formulas Ai as objects
Ai ∈ C by induction, starting with an arbitrary interpretation of the atoms

(as objects of C).

Remark 3.1 (Notation) We abuse notation for π above and omit writing
− on formulas when it is clear; thus we write the arrow (3) above as

A1 ⊗ A2 ⊗ · · · ⊗ Am
π−→ B1

...
............
.................................. B2

...
............
.................................. · · · ...

............
.................................. Bn (4)

as an interpretation of sequent (2) above in category C.

Gentzen’s approach to proof theory gives rules for generating formal proofs
of sequents. These formal proofs are trees generated by certain rules (called
rules of inference) for building new sequents from old sequents, starting from
initially specified given sequents called axioms. Thus, a (formal) proof of Γ ` ∆
is a tree with root labelled by Γ ` ∆ and in which every node is labelled by a
rule of inference and in which the leaves are labelled by instances of axioms.

Lambek [L89] pointed out that Gentzen’s sequent calculus was analogous to
Bourbaki’s method of bilinear maps. For example, given lists Γ = A1 · · ·Am
and ∆ = B1B2 · · ·Bn of R−R bimodules of a given ring R, there is a natural
isomorphism

Mult(ΓAB∆, C) ∼= Mult(ΓA⊗B∆, C) (5)

13

between m+ n+ 2-linear and m+ n+ 1-linear maps. Bourbaki derived many
aspects of tensor products just from this universal property. Such a formal
bijection is at the heart of Linear Logic, whose rules we now present briefly.

3.1.1 Gentzen’s Rules

Gentzen’s rules analyze the deep structure and implicit symmetries hidden in
logical syntax. Gentzen broke down the manipulations of logic into two classes
of rules applied to sequents: structural rules and logical rules (including Axiom
and Cut rules.) All rules come in pairs (left/right) applying to the left (resp.
right) side of a sequent.

Gentzen’s Structural Rules (Left/Right)

Permutation
Γ ` ∆

σ(Γ) ` ∆
Γ ` ∆

Γ ` τ(∆) σ, τ permutations.

Contraction
Γ, A,A ` ∆

Γ, A ` ∆

Γ ` ∆, B,B

Γ ` ∆, B

Weakening
Γ ` ∆

Γ, A ` ∆
Γ ` ∆

Γ ` ∆, B

Permutation says that from Γ ` ∆, we can permute arbitrarily the order of
the lists of premisses and conclusions. Contraction says (for the Left-side)
that from an inference of ∆ from premisses Γ together with two copies of
premise A, we can still infer ∆ from Γ but using only one copy of A; dually
for contraction on the right. Weakening (on the left) says if Γ entails ∆, then
adding extra premisses to Γ still entails ∆, and dually for the right hand rule
(see [GSS,Abr93,L89]).

In linear logic we do not allow such uncontrolled contraction and weakening;
rather, formulas which can be contracted or weakened are marked with !A (for
left rules) and ?A for right rules. We shall mention more on this below.

By controlling (and making explicit) these traditional structural rules, logic
takes on a completely different character.

Definition 3.2 Formulas of the theory LL (linear logic) are generated from
atoms and their negations p, p⊥, q, q⊥, · · · , constants I,⊥,1,0 using the binary
connectives ⊗, ...

............
.................................. ,×,+ and unary operations !, ?. Negation is extended by de

Morgan duality to all expressions as follows: p⊥⊥ = p, (A⊗ B)⊥ = A⊥ ...
............
.................................. B⊥

and dually, as well as (A × B)⊥ = A⊥ + B⊥ and (!A)⊥ =?(A⊥) and dually.
Finally, A −◦ B is defined to be A⊥ ...

............
.................................. B (this connective is redundant, but

useful for understanding the categorical semantics of linear logic later below).

14

Structural Perm
Γ ` ∆

σ(Γ) ` τ(∆) σ, τ permutations.

Axiom & Cut Axiom A ` A

Cut
Γ ` A,∆ Γ′, A ` ∆′

Γ,Γ′ ` ∆,∆′

Negation
Γ ` A,∆

Γ, A⊥ ` ∆

Γ, A ` ∆

Γ ` A⊥,∆

Multiplicatives Tensor
Γ, A,B ` ∆

Γ, A⊗B ` ∆

Γ ` A,∆ Γ′ ` B,∆′
Γ,Γ′ ` A⊗B,∆,∆′

Par

Γ, A ` ∆ Γ′, B ` ∆′

Γ,Γ′, A ...
............
.................................. B ` ∆,∆′

Γ ` A,B,∆
Γ ` A ...

............
.................................. B,∆

Units
Γ ` ∆

Γ, I ` ∆ ` I

⊥ ` Γ ` ∆
Γ `⊥,∆

Implication
Γ ` A,∆ Γ′, B ` ∆′

Γ,Γ′, A −◦ B ` ∆,∆′
Γ, A ` B,∆

Γ ` A −◦ B,∆

Additives Product
Γ, A ` ∆

Γ, A×B ` ∆

Γ, B ` ∆

Γ, A×B ` ∆

Γ ` A,∆ Γ ` B,∆
Γ ` A×B,∆

Coproduct
Γ, A ` ∆ Γ, B ` ∆

Γ, A+B ` ∆

Γ ` A,∆
Γ ` A+B,∆

Γ ` B,∆
Γ ` A+B,∆

Units Γ,0 ` ∆ Γ ` 1,∆

Exponentials Weakening
Γ ` ∆

Γ, !A ` ∆ Contraction
Γ, !A, !A ` ∆

Γ, !A ` ∆

Storage
!Γ ` A
!Γ ` !A

Dereliction Γ, A ` ∆

Γ, !A ` ∆

Fig. 2. Rules for Classical Propositional LL

The Logical Rules of Linear Logic are in Figure 2. Previously equivalent no-
tions now split into subtle variants based on resource allocation. For example,
the rules for Multiplicative connectives simply concatenate their input hy-
potheses Γ and Γ′, whereas the rules for Additive connectives merge two input
hypotheses Γ into one. The situation is analogous for conclusions ∆ and ∆′.

15

In Figure 2 we illustrate the rules of linear logic. The Exponential rules are
the rules of the connective ! (e.g. contraction and weakening on the left side
of sequents). Using the rules of negation, one can obtain the dual laws (e.g.
contraction and weakening on the right side) by using the dual ? connective.

The logical connectives in linear logic can represent linguistic distinctions
related to resource use which are simply impossible to formulate in tradi-
tional logic (see [Gi89,Abr93]). For example, we think of a linear entailment
A1, · · · , Am ` B as an action–a kind of process that in a single step consumes
the inputs Ai and produces output B. For example, this permits representing
in a natural manner the step-by-step behaviour of various abstract machines,
certain models of concurrency like Petri Nets, etc. Thus, linear logic permits
us to describe the instantaneous state of a system, and its step-wise evolu-
tion, intrinsically within the logic itself (e.g. with no need for explicit time
parameters, etc.)

We should note that linear logic is not about simply removing Gentzen’s struc-
tural rules, but rather modulating their use. The particular connective !A,
which indicates that contraction and weakening may be applied to formula A,
yields the Exponential connectives in Figure 2. From a resource viewpoint,
an hypothesis !A is one which can be reused arbitrarily. It is roughly like an
infinite tensor power ⊗ωA, and more generally (for physicists) something like
an exterior algebra or Fock-space like construction.

Moreover, this connective permits decomposing intuitionistic implication “⇒”
(categorically, the cartesian closed function space) into more basic notions:

A⇒ B = (!A) −◦ B

Remark 3.3 (1-sided Sequents & Theories) Observe that in classical
linear logic LL, two-sided sequents can be replaced by one-sided sequents,
since Γ ` ∆ is equivalent to ` Γ⊥,∆, with Γ⊥ the list A⊥1 , · · · , A⊥n , where Γ is
A1, · · · , An. This permits halving the number of rules, and we shall use this
notation frequently, see Figure 3. Finally, we end with the following standard
terminology of subtheories of LL in Figure 2. The literature usually presents
the theories below using 1-sided sequents.

MLL: multiplicative linear logic is built from the atoms and multiplicative
units {I,⊥} using the connectives {⊗, ...

............
.................................. , ()⊥}. The rules include the struc-

tural, axioms, cut, negation and the multiplicative rules. This theory corre-
sponds semantically to ∗-autonomous categories.

MALL: multiplicative additive linear logic is built from the atoms and the
units {I,⊥,0,1} using the connectives {⊗, ...

............
.................................. , ()⊥,×,+}. The rules include

the MLL rules together with the additive rules. This theory corresponds se-
mantically to ∗-autonomous categories with products (hence coproducts).

16

Structural Perm
` Γ
` τ(Γ) τ a permutation.

Axiom & Cut Axiom ` A⊥, A

Cut
` A,Γ ` A⊥,Γ′

` Γ,Γ′

Multiplicatives Tensor
` A,Γ ` B,Γ′

` A⊗B,Γ,Γ′

Par

` A,B,Γ

` A ...
............
.................................. B,Γ

Units ` I
` Γ
`⊥,Γ

Additives Product
` A,Γ ` B,Γ

` A×B,Γ

Coproduct
` A,Γ

` A+B,Γ

` B,Γ

` A+B,Γ

Units ` 1,Γ

Exponentials Weakening
` Γ
` ?A,Γ Contraction

` ?A, ?A,Γ

` ?A,Γ

Storage

` ?Γ , A

` ?Γ , !A
Dereliction ` A,Γ

` ?A,Γ

Fig. 3. 1-Sided Rules for Classical Propositional LL

MELL: multiplicative exponential linear logic is built from those formulas
of LL that do not use any of the additive structure: that is, formulas built
from the atoms and multiplicative units {I,⊥} using the connectives {⊗, ...

............
..................................

, ()⊥, !, ?}. The rules include the structural, axioms, cut, negation and the
multiplicative and exponential rules.

3.1.2 Categorical Proof Theory

One of the basic ideas of categorical logic and categorical proof theory is
that (the proof theory of) various logics generate interesting classes of free
categories: free cartesian, cartesian closed, monoidal, monoidal closed, *-

17

autonomous, toposes, etc. The intuition is:

• Formulas of a logic should be the objects of a category.
• Proofs (or, rather, equivalence classes of proofs) should be the morphisms.

The subject began in the work of Lawvere and of Lambek in the 1960’s and
is discussed in detail in [LS86] (cf. also the expository treatment in [BS04]).
One of the early applications of Lambek was to apply these methods to solve
coherence problems for various monoidal categories.

3.2 Categorical Models of Linear Logic

We are interested in finding the categories appropriate to modelling linear
logic proofs (just as cartesian closed categories modelled intuitionistic ∧,⇒
,> proofs). The basic equations we certainly must postulate arise from the
operational semantics–that is cut-elimination of proofs. If we have a proof-

rewriting

π....
A1, · · · , Am ` B1, · · · , Bn

;
π′....

A1, · · · , Am ` B1, · · · , Bn then the
categorical interpretation − of these proofs (as arrows in an appropriate
category as in (4) above) should be to give equal arrows π = π′ :
A1 ⊗ · · · ⊗ Am → B1

...
............
.................................. · · · ...

............
.................................. Bn.

In the case of sequent calculi, this rewriting is generated by the rules of
Gentzen’s Cut-Elimination algorithm [GLT]. However, there are sometimes
natural categorical equations (e.g. the universal property of cartesian prod-
ucts) which are not decided by traditional proof theoretic rewriting, and need
to be postulated separately (otherwise, conjunction only gives a “weak prod-
uct” [LS86]). Precisely which equations to add, to make a mathematically
natural and beautiful structure, is an important question. The problem is fur-
ther compounded in linear logic (at the level of the exponentials) where the
equations and coherences are more subtle, with more variations possible.

The first attempted categorical semantics of LL is in Seely’s paper [See89]
which is still a good resource (although some fine details have turned out to
require modification). Since that time, considerable effort by many researchers
has led to major clarifications and quite different axiomatizations. An excel-
lent survey of the current state-of-the-art is in Melliès [Mel07]. In the case
of Multiplicative-Additive classical linear logic MALL, there is little contro-
versy: the syntax should generate a free ∗-autonomous category with products
(and thus coproducts). In more detail, in Figure 4 we present the categorical
structure of (free) ∗-autonomous categories considered as symmetric monoidal
closed categories (smcc’s) with dualizing objects ⊥, as in the discussion above.

18

We may think of the arrows A
f−→ B as proofs of very simple sequents A ` B

(where premisses and conclusions are lists of length 1). For example, the iden-

tity map A
id−→ A corresponds to the axiom A ` A. The remaining laws of

linear logic follow from the arrow-generating rules. The associated equations
guarantee that: (i) we get all the axioms of ∗-autonomous categories with
products, but also (ii) these are the equations between proofs we must postu-
late to get a nice categorical structure (this is relevant to our next section on
Cut-Elimination).

At this point we could also add coproducts, denoted +, and their associated
equations, dual to products. But once we have the equations of ∗-autonomous
categories (at the bottom of Figure 4) we get coproducts for free, essentially
by De Morgan duality. Finally we add any necessary coherence equations, as
in Barr’s monograph [Barr79].

19

Arrow-generating Rules Equations

A
id−→ A

A
f−→ B B

g−→ C

A
gf−→ C equations of a category

A
f−→ B A′

g−→ B′

A⊗ A′ f⊗g−→ B ⊗B′
⊗ is a functor : ff ′ ⊗ gg′ = (f ⊗ g)(f ′ ⊗ g′)

id⊗ id = id

(A⊗B)⊗ C α−→ A⊗ (B ⊗ C) α, s, ` are natural isos

A⊗B s−→ B ⊗ A equations for symmetric

I ⊗ A `−→ A monoidal structure

A⊗B f−→ C

A
f∗−→ (B −◦ C)

−◦R
equations for monoidal closedness

(A −◦ B)⊗ A ev−→ B (this gives smcc’s)

C
f−→ A C

g−→ B

C
〈f,g〉−→ A×B cartesian products

A×B π1−→ A A×B π2−→ B (this gives smcc’s + products)

A
!A−→ >

A
f−→ B

B∗
f∗−→ A∗ (−)∗ is a contravariant functor

A∗ −→ (A −◦⊥) these are natural isos

(A −◦⊥) −→ A∗

(A −◦ B)→ (B∗ −◦ A∗) natural strength iso

A→ ((A −◦⊥) −◦⊥) natural iso

Fig. 4. *-Autonomous Categories Equationally

20

3.3 Adding Exponentials: full linear logic

By far the most subtle question is how to model the linear modality !. We begin
with seven basic derivation forms, arising from the rules of linear logic and
then postulate equations which arise directly from the categorical viewpoint.

Functoriality

A
f−→ B

!A
!f−→!B

Monoidalness I
mI−→!I !A⊗!B

mAB−→!(A⊗B)

Products I
nI−→!> !A⊗!B

nAB−→!(A×B)

Dereliction !A
εA−→ A

Weakening !A
ε′A−→ I

Contraction !A
δ′A−→!A⊗!A

Digging (Storage) !A
δA−→!!A

Fig. 5. Basic Exponential Laws

Exercise 3.4 Prove the laws in Figure 5, using the 2-sided rules in Figure

2. Let us give two examples. As mentioned above, we think of A
f−→ B as a

proof f of the sequent A ` B.

• Functoriality:

f....
A ` B
!A ` B Derel.

!A `!B
Storage

, where f is the given proof of A ` B.
• Contraction: Applying functoriality to the axiom A ` A, we get a proof
π : !A `!A. Now use π twice in the following proof tree:

π....
!A `!A

π....
!A `!A

!A, !A `!A⊗!A
⊗R

!A `!A⊗!A
Contr

So, what is a model of full linear logic? The state-of-the-art is described in
work of Hyland-Schalk [HylSc03] and especially Melliès [Mel07]. Here is one
class of structure that is popular to impose: let C be a model of MALL proofs,

21

i.e. a ∗-autonomous category with products (and hence coproducts). We add:

• (!,mI ,mAB) : C → C is a monoidal endofunctor

• !A
εA−→ A and !A

δA−→!!A are monoidal natural transformations.
• (!, δ, ε) is a monoidal comonad.
• nI , nAB are isomorphisms, natural in A,B.
• The associated adjunction structure 〈F,U, η, ε〉 between the co-Kleisli cat-

egory of ! and C is monoidal.
• Various coherence equations [BCS96,Mel07].

However, for the purposes of Geometry of Interaction, we shall not need all
this elaborate structure of the exponentials and the associated properties of
cocommutative comonoids, etc. Indeed, beyond the basic derivations in Figure
5, one merely needs the exponential structure associated to a Linear Combi-
natory Algebra [AHS02], as we shall see.

3.4 Cut Elimination: Gentzen’s Operational Semantics of Proofs

Let us briefly discuss the Cut-Elimination theorem in proof theory. For more
details, the reader may examine the works of Girard (e.g. [GLT,Gi87]) or the
survey of Melliès [Mel07] or the textbook [TrSchw]. Recall the Cut-Rule, which
is a kind of generalized composition law:

Γ ` ∆, A Γ′, A ` ∆′

Γ,Γ′ ` ∆,∆′
Cut

A fundamental theorem of logic is the following result of Gentzen:

Cut-elimination (Gentzen’s Haupsatz, 1934): If π is a proof of Γ ` ∆,
then there is a proof π′ of Γ ` ∆ which does not use the cut rule.

It is the basis of Proof Theory, at the very foundations of Hilbert’s approach to
logic, and has applications in a wide range of areas of both logic and theoretical
computer science.

For usual sequent calculus, Gentzen gave a Non-Deterministic algorithm π ;

π′ (the cut-elimination procedure) for transforming proofs π into proofs π′.
The details of the rewriting steps (for each proof rule, Left and Right) become
rather intricate. Here is an example of a rewriting step, with respect to the
Contraction Rule on the Right:

22

....
Γ ` B,B

Γ ` B Contr

....
B ` ∆

Γ ` ∆
Cut

;

....
Γ ` B,B

....
B ` ∆

Γ ` B,∆ Cut

....
B ` ∆

Γ ` ∆,∆
Cut

.... Contrs&Perms
Γ ` ∆

Notice that this is slightly strange: starting from the root of the tree and going
upwards, the subproof of B ` ∆ in the original left proof is now duplicated
in the right proof higher up in the tree. So moving from the LHS proof to
the RHS proof, we have replaced a single Cut (on B) by two cuts on B
higher up in the tree (beyond the contraction); at the same time we have
postponed the contractions until later, lower down in the proof. But since the
duplicated proof of B ` ∆ may be arbitrarily complex (millions of lines long)
it is not obvious that the rewriting above has “simplified” anything. The point
is that Gentzen, with respect to subtle complexity measures, is able to show
that there is a measure which decreases, thus the process terminates. This
is explained in more details in [GLT,GSS,TrSchw]. Thus, to every proof we
obtain a “cut-free” proof, i.e. its normal form. One sometimes calls the process
proof normalization.

For the systems of linear logic we deal with in this paper, the rewriting/cut-
elimination process yields unique normal forms, that is the cut-free form of a
proof is independent of the order of applying the rewriting steps. This is proved
by a Church-Rosser (or Diamond Lemma) type of argument [LS86,GLT]. In
GoI, we shall obtain analogs of this property (e.g., see Lemma 6.8).

4 Traced monoidal categories

The theory of traces has had a fundamental impact within diverse areas
of mathematics, from functional analysis and noncommutative geometry to
topology and knot theory. More recently, abstract traces have arisen in logic
and theoretical computer science. For example, in the 80’s and 90’s it was
realized there was a need for algebraic structures modelling cyclic operations.
parametrized fixedpoints and feedback in such areas as: flowchart schemes,
dataflow, network algebra, and more recently in quantum computing and bi-
ological modelling.

Traced monoidal categories were introduced by Joyal, Street, and Verity
[JSV96]. These categories and their variants have turned out to be key in-
gredients in discussing the above phenomena. As quoted by [JSV96],

23

f

X

U

Y

U

-

-

-

-

Fig. 6. The trace TrUX,Y (f)

This paper introduces axioms for an abstract trace on a monoidal category.
This trace can be interpreted in various contexts where it could alternatively
be called contraction, feedback, Markov trace or braid closure. . .

There have been various extensions of traces and partial traces: we discuss
more of this in Section 7 as well as in Remark 4.4 below.

Definition 4.1 A traced symmetric monoidal category is a symmetric monoidal
category (C,⊗, I, s) with a family of functions TrUX,Y : C(X ⊗ U, Y ⊗ U) −→
C(X, Y) pictured in Figure 6, called a trace, subject to the following axioms:

(1) Natural in X, TrUX,Y (f)g = TrUX′,Y (f(g ⊗ 1U)) , where f : X ⊗ U −→
Y ⊗ U , g : X ′ −→ X,

(2) Natural in Y , gTrUX,Y (f) = TrUX,Y ′((g ⊗ 1U)f) , where f : X ⊗ U −→
Y ⊗ U , g : Y −→ Y ′,

(3) Dinatural in U , TrUX,Y ((1Y ⊗ g)f) = TrU
′

X,Y (f(1X ⊗ g)) , where f :
X ⊗ U −→ Y ⊗ U ′, g : U ′ −→ U ,

(4) Vanishing (I, II), TrIX,Y (f) = f and TrU⊗VX,Y (g) = TrUX,Y (TrVX⊗U,Y⊗U(g)),
for f : X ⊗ I −→ Y ⊗ I and g : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V .

(5) Superposing,

g ⊗ TrUX,Y (f) = TrUW⊗X,Z⊗Y (g ⊗ f)

for f : X ⊗ U −→ Y ⊗ U and g : W −→ Z .

(6) Yanking, TrUU,U(sU,U) = 1U .

Given f : X ⊗U → Y ⊗U , we think of TrUX,Y (f) as “feedback along U”, as in
Figure 6. Similarly, the axioms of traced monoidal categories have suitable geo-
metrical representation, given in Appendix A (cf. also [JSV96,AHS02,Has08]).

Observe that if X = Y = I, up to isomorphism we have TrUX,Y (f) : C(U,U)→
C(I, I) is a scalar-valued trace (cf. Proposition 2.3).

Exercise 4.2 (Generalized Yanking) Let C be a traced symmetric monoidal
category, with arrows f : X→Y and g : Y→Z. Then gof = TrYX,Z(sY,Zo(f⊗g)).
Geometrically, stare at the diagram in Figure 7 , and do a “string-pulling” ar-
gument (For an algebraic proof, see Proposition 2.4 in [AHS02])

24

X
f

g
Y

Y Z

Z

= X
f−→ Y

g−→ Z
-

-

-

-

-

-
@
@R�
��

6

Fig. 7. Generalized Yanking

Note that this exercise actually says that composition gof in a traced monoidal
category is definable from tensor and symmetries. More generally, in [AHS02]
we have the following normal-form theorem for arrows in traced symmetric
monoidal categories:

Theorem 4.3 Let C be a traced symmetric monoidal category, and T a col-
lection of arrows in C. Then any expression E built from arrows in T using
tensor product, composition, and trace can be represented as Tr(πFτ) where
F consists of tensor products of arrows in T and π, τ are permutations (built
from symmetry and identity maps).

Let us remark that for logicians, the discussion above prefigures the Execution
Formula (see Equation (10) and Figure 9(b) below), since it illustrates the
reduction of general composition (“cut”) to a global trace applied to primitive
compositions of permutations and tensoring.

Generalized yanking is also often used in some axiomatizations for partial
traces [ABP99,Pl03] although for our purposes it is equivalent to yanking
[AHS02].

Remark 4.4 (Some traces literature) In computer science, there has
been a long tradition of studying theories related to traces and partial traces
in the analysis of feedback, fixed points, iteration theories, and related notions
in network algebra and flowcharts. Detailed and fundamental categorical work
by Manes and Arbib[MA86], Bloom and Esik [BE93], and Stefanescu [Ste00]
have greatly influenced our development here. We should mention very inter-
esting work on circuits and feedback categories in a series of papers by Katis,
Sabadini, and Walters (e.g. [KSW02]). They also introduce an interesting no-
tion of partial trace, an important topic we introduce (for purposes of GoI) in
Section 7 below. We should also mention work of P. Hines [Hi97,Hi03] both
on analyzing GoI and studies of abstract machines. Finally, a survey of recent
results on traced monoidal categories is in Hasegawa[Has08].

4.1 Wave vs. Particle style traces

Many examples of traces can be divided into two styles[Abr96,AHS02]: Product
Style and Sum Style, or more evocatively (following Abramsky) “wave style”

25

and “particle style”. These refer, respectively, to whether the monoidal tensor
⊗ is given by a cartesian product versus whether it is given by a disjoint
union. As explained in [Abr96,AHS02], product-style traces may be thought
of as passing information in a “global information wave” while sum-style traces
can be modelled by streams of particles or tokens flowing around a network
(cf. [AHS02,Hag00,Hi97]). We shall now illustrate both styles of trace.

Examples 4.5 (Product Style Traces)

1. The category Rel× is traced. Let R : X ×U −→ Y ×U be a morphism
in Rel×. Then TrUX,Y (R) : X −→ Y is defined by: TrUX,Y (R)(x, y) =
∃u.R(x, u, y, u).

2. The category Vecfd is traced. Let f : V ⊗ U −→ W ⊗ U be a lin-
ear map, where U, V,W are finite dimensional vector spaces with bases
{ui}, {vj}, {wk}. We define TrUV,W (f) : V −→ W by:

TrUV,W (f)(vi) =
∑
j,k

akjij wk where f(vi ⊗ uj) =
∑
k,m

akmij wk ⊗ um.

This reduces to the usual trace of f : U −→ U when V and W are one
dimensional.

3. Note that both Rel× and Vecfd are compact closed categories. More
generally [JSV96], every compact closed category has a unique canonical
trace given by:

TrUA,B(f) = A ∼= A⊗I id⊗ν−→ A⊗U⊗U∗ f⊗id−→ B⊗U⊗U∗ id⊗ψ
os−→ B⊗I ∼= B.

Uniqueness of this trace is shown in [Has08].
4. Coherent Logic and ∃-Doctrines. A slight generalization of Example (1)

is to consider any theory in multisorted coherent logic, that is the frag-
ment {∃,∧} of ordinary logic (here it doesn’t matter if one picks intu-
itionist or classical logic) [KR77]. The objects are Sorts (assumed closed
under ×), denoted X, Y, Z, etc. Morphisms are (equivalence classes of)
formulas, thought-of as relations between sorts: R(x, y) : X → Y , mod-
ulo provable equivalence. Composition is defined like relational compo-

sition: X
R(x,y)−→ Y

S(y,z)−→ Z = X
T (x,z)−→ Z, where

T (x, z) = ∃y.R(x, y) ∧ S(y, z)

This is a well-defined operation, using laws of coherent logic. Omitting
pairing symbols, given R(x, u, y, u′) : X × U −→ Y × U , define

TrUX,Y (x, y) : X → Y = ∃uR(x, u, y, u)

The same calculations used in Example (1) can be mimicked in Co-
herent Logic to show that this yields a trace. The close connections

26

of Coherent Logic with Regular Categories provides a large stock of
examples of these styles of trace. Indeed, still more generally, the calcu-
lations are true for Lawvere’s Existential Doctrines with ∃π-quantifiers
along projections, Frobenius Reciprocity, Beck-Chevalley, and in which
equality is definable by ∃∆ , existential quantification along a diagonal
[Law69,Law70].

5. The category ω-CPO⊥ consists of objects of ω-CPO with a least el-
ement ⊥, and maps of ω-CPO that do not necessarily preserve ⊥.
Here ⊗ = ×, I = {⊥}. The (dinatural) family of least-fixed-point
combinators YU : UU → U induces a trace, given as follows (using
informal lambda calculus notation): for any f : X × U → Y × U ,
TrUX,Y (f)(x) = f1(x,YU(λu.f2(x, u))), where f1 = π1of : X × U →
Y, f2 = π2of : X × U → U and YU(λu.f2(x, u)) = the least element u′

of U such that f2(x, u′) = u′.
6. (cf. Katis, Sabadini,Walters [KSW02]) Take any (Lawvere) equational

theory, for example the theory of rings. Define a category whose objects
are of the form Rn for a fixed ring R, where n ∈ N. Define Hom(Rn, Rm)
= m-tuples of polynomials in n indeterminates, with composition being

substitution. For example, the identity map Rn id−→ Rn is given by the
list of n polynomials p1, · · · , pn, where pi(x1, · · · , xn) = xi. Here ⊗ is
cartesian product.

A morphism ~f,~g ∈ Hom(Rn × Rp, Rm × Rp) is a list of m + p poly-
nomials in n + p unknowns. We can write it as a system of polynomial
equations:

y1 = f1(~x, ~u)
...

ym = fm(~x, ~u)

u′1 = g1(~x, ~u)
...

u′p = gp(~x, ~u)

The operation of trace or feedback is the formal identification of the vari-
ables u′i on the LHS of the equations with the ui on the RHS. Of course,
to know this setting is consistent (yielding a nontrivial category) we
should provide models in which there exist nontrivial solutions of such
simultaneous feedback equations. These are discussed, for example, in
[KSW02] above. This example admits many generalizations: for exam-
ple, to general Lawvere theories, in which morphisms are represented
by (equivalence classes of) terms with free variables, modulo provable
equality in the theory.

27

Unfortunately, the above examples do not really illustrate the notion of feed-
back as data flow: the movement of tokens through a network. This latter
view, emphasized in work of Abramsky and later Haghverdi and Hines (cf.
[Abr96,AHS02,Hag00,Hi97]), is illustrated by examples based on sum-style
monoidal structure. They are related to dataflow interpretations of graphical
networks. We illustrate this view with categories connected to Rel.

Examples 4.6 (Sum-style Traces)

1. Rel+ , the category Rel with ⊗ = +, disjoint union. Suppose X+U
R−→

Y + U is a relation. The coproduct injections induce four restricted
relations : RUU , RUY , RXY , RXU (for example, RXY ⊆ X×Y is such that
RXY (x, y) = R(inX,U1 (x), inY,U1 (y)). Let R∗ be the reflexive, transitive
closure of the relation R. A trace can be defined as follows:

TrUX,Y (R) =RXY ∪
⋃
n≥0

RUY oRn
UU

oRXU

=RXY ∪RUY oR∗UU oRXU . (6)

2. The categories Pfn and PInj of sets and partial functions (resp. sets
and partial injective functions), as monoidal subcategories of Rel+. The
tensor product is given by the disjoint union of sets, where we identify
A+B = A× {1} ∪B × {2} (note that this is not a coproduct in PInj,
although it is a coproduct in Pfn). There are the obvious injections
inA,B1 : A→ A+B and inA,B2 : B → A+B as well as “quasiprojections”
ρ1 : A + B −→ A given by ρ1((a, 1)) = a (where ρ1((b, 2)) is undefined
) and similarly for ρ2 : A+B −→ B.

Given a morphism f : X + U −→ Y + U , we may consider its
four “components” fXY : X → Y , fXU : X → U , fUX : U → X, and
fUU : U → U obtained by pre- and post-composing with injections and

quasiprojections: for example, fXY = X
in1−→ X + U

f−→ Y + U
ρ1−→ Y ,

(See Figure 8).

X

U

fXY

fUU

fXU

fUY

Y

U
..................

1

q-

..................--

-

-

-

Fig. 8. Components of f : X + U → Y + U

Both Pfn and Pinj are traced, the trace being given by the following
iterative formula

TrUX,Y (f) = fXY +
∑
n∈ω

fUY f
n
UUfXU , (7)

which we interpret as follows:

28

For the category Pfn (respectively PInj), a family {hi}i∈I : X −→
Y is said to be summable if the hi’s have pairwise disjoint domains
(respectively, have pairwise disjoint domains and codomains). In either
case, we define the sum of the family to be:

(
∑
i∈I

hi)(x) =

hj(x), if x ∈ Dom(hj) for some j ∈ I;

undefined, else.

From a dataflow view, particles enter through X, travel around a loop on
U some number n of times, then exit through Y . Numerous other examples
of such “particle-style” traces are studied in [AHS02,Hag00]. We shall now
introduce a general theory of such traces, based upon Haghverdi’s Unique
Decomposition Categories.

4.2 Unique Decomposition Categories and Particle-Style Traces

How do we make sense of sums such as in equation (7) above? Haghverdi
[Hag00,Hag00a] introduced symmetric monoidal categories whose homsets
come equipped with (technically, are enriched in) an abstract summability
structure, called a Σ-monoid. Sigma monoids, and their variants, permit form-
ing certain infinite sums of maps, in a manner compatible with the monoidal
category structure. Haghverdi’s work is a generalization of the work of Manes
and Arbib [MA86] who introduced partially additive categories in program-
ming language semantics. These categories form a useful general framework
for speaking of while-loops, and axiomatizing Elgot’s work on feedback and
iteration, as well as fixed-point semantics.

Recently, Hines and Scott [HiSc07] extended the the work of Haghverdi and
Manes-Arbib to more general Σ-structures with certain partially defined traces
(cf Section 7 below), so as to account for a general theory of “quantum while-
loops” in quantum computing.

In what follows, we give a basic framework for Σ structures sufficient for our
purposes.

Definition 4.7 A Σ-monoid consists of a pair (M,Σ) where M is a nonempty
set and Σ is a partial operation on the countable families in M (we say that
{xi}i∈I is summable if

∑
i∈I xi is defined), subject to the following axioms:

(1) Partition-Associativity Axiom. If {xi}i∈I is a countable family and if
{Ij}j∈J is a (countable) partition of I , then {xi}i∈I is summable if and
only if {xi}i∈Ij is summable for every j ∈ J and

∑
i∈Ij xi is summable for

j ∈ J . In that case,
∑
i∈Ixi =

∑
j∈J(

∑
i∈Ijxi).

29

(2) Unary Sum Axiom. Any family {xi}i∈I in which I is a singleton is
summable and

∑
i∈I xi = xj if I = {j}.

A morphism of Σ monoids is a function that preserves sums of countably-
indexed summable families: i.e. if {xi}i∈I is summable, then so is {f(xi)}i∈I
and f(

∑
i∈I xi) =

∑
i∈I f(xi). Σ-monoids form a symmetric monoidal closed

category ΣMon (see the discussion in [HiSc07]).

A ΣMon-category C is a category enriched in ΣMon; i.e. its homsets are
enriched with a partial infinitary sum, compatible with composition. Such
categories have non-empty homsets, e.g. they have zero morphisms 0XY :
X −→ Y =

∑
i∈∅ fi for fi ∈ C(X, Y). For details see [MA86,Hag00].

Definition 4.8 A unique decomposition category (UDC) C is a symmetric
monoidal ΣMon-category which satisfies the following axiom:

(A) For all j ∈ I there are morphisms called quasi injections: ιj : Xj −→ ⊗IXi,
and quasi projections: ρj : ⊗IXi −→ Xj, such that

1. ρkιj = 1Xj
if j = k and 0XjXk

otherwise.
2.

∑
i∈I ιiρi = 1⊗IXi

.

Proposition 4.9 (Finite Matrix Representation) Given f : ⊗JXj −→
⊗IYi in a UDC with |I| = m and |J | = n, there exists a unique family
{fij}i∈I,j∈J : Xj −→ Yi with f =

∑
i∈I,j∈J ιifijρj, namely, fij = ρifιj.

Thus every morphism f : ⊗JXj −→ ⊗IYi in a UDC can be represented by a
matrix; for example f above (with |I| = m and |J | = n) is represented by the
m× n matrix [fij]. Composition of morphisms in a UDC then corresponds to
matrix multiplication.

Proposition 4.10 (Standard Trace Formula) Let C be a unique decom-
position category such that for every X, Y, U and f : X ⊗ U −→ Y ⊗ U , the
sum f11 +

∑∞
n=0 f12f

n
22f21 exists, where fij are the components 2 of f . Then, C

is traced and TrUX,Y (f) = f11 +
∑∞
n=0f12f

n
22f21.

The trace formula above is called the standard trace, and a UDC with such
a trace is called a traced UDC with standard trace. Note that a UDC can be
traced with a trace different from the standard one. In this paper all traced
UDCs are the ones with the standard trace.

We now present some more examples. For further details, see [AHS02,Hag00].

Examples 4.11 (Traced UDC’s)

2 Here f11 : X → Y, f12 : U → X, f21 : X → U, f22 : U → U

30

(1) All the categories in Example 4.6 above. In Rel+, all countable families
are summable, and

∑
i∈I Ri = ∪iRi. In the case of Pfn and PInj, summa-

bility of a family of morphisms {fi}i∈I is as given above in the Examples.
In this case, the two trace formulas (6) and (7) exactly correspond to the
standard trace formula in Proposition 4.10 above.

(2) SRel, the category of stochastic relations. Here the objects are measur-
able spaces (X,FX) and maps f : (X,FX) → (Y,FY) are stochastic
kernels, i.e. f : X × FY → [0, 1] which are bounded measurable in the
first variable and subprobability measures in the second. Composition
gof(x,C) =

∫
Y g(−, C)df(x,−) where f(x,) is the measure for integra-

tion. This category has finite and countable coproducts (which form the
tensor). A family {fi}i∈I is summable iff

∑
i∈I fi(x, Y) ≤ 1 for all x ∈ X.

(3) Hilb2. Consider the category cHilb of Hilbert spaces and linear contrac-
tions (norm ≤ 1). Barr [Barr92] defined a contravariant faithful functor
`2 :PInjop −→ cHilb by: for a set X, `2(X) is the set of all complex val-
ued functions a on X for which the (unordered) sum

∑
x∈X |a(x)|2 is finite.

`2(X) is a Hilbert space with norm given by ||a|| = (
∑
x∈X |a(x)|2)1/2 and

inner product given by < a, b >=
∑
x∈X a(x)b(x) for a, b ∈ `2(X). Given

a partial injection f : X → Y in PInj, then l2(f) : `2(Y) → `2(X) is
defined by

`2(f)(b)(x) =

 b(f(x)) x ∈ Dom(f)

0 otherwise.

This gives a correspondence between partial injective functions and par-
tial isometries on Hilbert spaces (see also [Gi95a,Abr96].) Let Hilb2 =
`2[PInj]. Its objects are `2(X) for a set X and morphisms u : `2(X) −→
`2(Y) are of the form `2(f) for some partial injective function Y

f−→ X.
Hence, Hilb2 is a nonfull subcategory of Hilb. It forms a traced UDC
with respect to the induced `2 structure, as follows:
• `2(X) ⊕ `2(Y) ∼= `2(X] Y) is a tensor product in Hilb2 (but is a

biproduct in Hilb) with unit `2(∅).
• Quasi injections and projections = their `2 images from PInj.
• Define: A Hilb2 family {`2(fi)} is summable if

· {fi} is summable in PInj
· In that case,

∑
i `2(fi) =def `2(

∑
i fi).

• Hilb2 is traced. Given

u : `2(X)⊕ `2(U) −→ `2(Y)⊕ `2(U)

Tr(u) =def `2(TrUY,X(f))

where u = `2(f) with f : Y] U −→ X] U ∈ PInj.
• Since PInj is self-dual, `2 : PInj → Hilb2 is an equivalence of cate-

gories. Here is a chart giving some explicit equivalences:

31

PInj(X,Y) Hilb(`2(Y), `2(X))

f `2(f)

partial injective function partial isometry

total isometry

total and surjective unitary

X = Y and f is identity on Dom(f) projection

• Many (although not all) of the above examples of traced UDC’s are
special cases of the Partially Additive Categories of Manes and Arbib
[MA86]. Those also form traced UDC’s with standard trace formula.

4.3 The Int Construction

Starting with a symmetric traced monoidal category C, we now describe a
compact closed category Int(C) given in [JSV96] (which is isomorphic to the
category G(C) in [Abr96]). We follow the treatment in [Abr96], and actually
give the construction for G(C); for simplicity, we call both these categories the
Int construction. The reason for the name is in Exercise 4.13 below.

Definition 4.12 (The Int Construction) Given a traced monoidal cate-
gory C we define a compact closed category Int(C) ∼= G(C) as follows:

• Objects: Pairs of objects (A+, A−) where A+ and A− are objects of C.

• Arrows: An arrow f : (A+, A−) −→ (B+, B−) in Int(C) is an arrow
f : A+ ⊗B− −→ A− ⊗B+ in C.

• Identity: 1(A+,A−) = sA+,A− , the symmetry or “twist” map.

• Composition: Arrows f : (A+, A−) −→ (B+, B−) and g : (B+, B−) −→
(C+, C−) have composite gof : (A+, A−) −→ (C+, C−) given by:

gof = TrB
−⊗B+

A+⊗C−,A−⊗C+(β(f ⊗ g)α)

where α = (1A+⊗1B−⊗sC−,B+)(1A+⊗sC−,B−⊗1B+) and β = (1A−⊗1C+⊗
sB+,B−)(1A− ⊗ sB+,C+ ⊗ 1B−)(1A− ⊗ 1B+ ⊗ sB−,C+). Pictorially, gof is given
by symmetric feedback:

?

?

?

?�
�
�
�
��
?

B
B
B
B
BB

?

A+
B− B+ C−

B+ B− C+A−

gf

• Tensor: (A+, A−)⊗ (B+, B−) = (A+⊗B+, A−⊗B−) and for (A+, A−) −→

32

(B+, B−) and g : (C+, C−) −→ (D+, D−), f⊗g = (1A−⊗sB+,C−⊗1D+)(f⊗
g)(1A+ ⊗ sC+,B− ⊗ 1D−)

• Unit: (I, I).

• Duality: The dual of (A+, A−) is given by (A+, A−)∗ = (A−, A+) where the
unit η : (I, I) −→ (A+, A−)⊗ (A+, A−)∗ =def sA−,A+ and the counit map
ε : (A+, A−)∗ ⊗ (A+, A−) −→ (I, I) =def sA−,A+ .

• Internal Homs: As usual, (A+, A−) −◦ (B+, B−) = (A+, A−)∗⊗ (B+, B−) =
(A− ⊗B+, A+ ⊗B−).

Following Abramsky [Abr96], we interpret the objects of Int(C) in a game-
theoretic manner: A+ is the type of “moves by Player (the System)” and A−

is the type of “moves by Opponent (the Environment)”. The composition of
morphisms in Int(C) is connected to Girard’s execution formula (see below) .
In [Abr96] it is pointed out that G(PInj) captures the essence of the original
Girard GoI interpretation in [Gi89a] (we discuss this in more detail below),
while G(ω-CPO⊥) is the model of GoI in [AJ94a].

Exercise 4.13 (Why Int?) The Int construction above is analogous to (in
fact, it yields) the construction of the integers Z from the natural numbers
N. Indeed (using the notation above): put an equivalence relation on N×N by
defining: (A+, A−) ∼ (B+, B−) iff A+ +B− = A−+B+ in N. Prove this yields
Z. Harder question: show how this is a special case of the Int construction.

Translating the work of [JSV96] in our setting we obtain that Int(C) is a kind
of “free compact closure” of C at the bicategorical level (for which the reader
is referred to [JSV96]):

Proposition 4.14 Let C be a traced symmetric monoidal category

(1) Int(C) defined above is a compact closed category. Moreover, FC : C −→
Int(C) defined by FC(A) = (A, I) and FC(f) = f is a full and faithful
embedding.

(2) The inclusion of 2-categories CompCl ↪→ TraMon of compact closed
categories into traced monoidal ones has a left biadjoint with unit having
component at C given by FC.

We remark that [Has08] shows (in the general setting of [JSV96]) that a traced
monoidal category C is closed iff the canonical inclusion C ↪→ Int(C) has a
right adjoint. Finally, we should remark that the Int construction has seen
other applications in recent categorical studies of the semantics of quantum
computing, arising from the fundamental paper [AbCo04].

33

5 What is the Geometry of Interaction?

5.1 Dynamical Invariants for Cut-Elimination

Recall the earlier discussion of Cut-Elimination and the rewriting theory of
proofs. We begin with some general questions:

• How do we mathematically model the dynamics of cut-elimination (i.e. the
movement of information in the rewriting of the proof trees)?
• Are there dynamical (mathematical) invariants ϕ for proof normalization,

that is: if π rewrites to π′, then ϕ(π) = ϕ(π′)?
• In what sense is cut-elimination related to recent theories of abstract algo-

rithms?

Recall that in categorical proof theory, for any logic L, we may interpret
proofs of sequents Γ ` ∆ as arrows (in an appropriate structured category
C) as in (4) above. This gives an interpretation function (call a denotation)
− d : L → C which satisfies: for any rewriting step ; in the cut-elimination

process, if π ; π′ then π d = π′ d. Such functions π d lead to a rather
bland notion of “invariant” for cut-elimination. Indeed, “;” implies simply
denotational equality, the equations one must impose to give the appropriate
algebraic structure of the category of proofs (depending on the logic): e.g.
cartesian, cartesian closed, monoidal closed, etc. We search for more meaning-
ful invariants, with deeper connections to the dynamics.

Girard’s Geometry of Interaction (GoI) program was the first attempt
to model, in a mathematically sophisticated way, the dynamics of cut-
elimination, and in particular to find an invariant (the Execution Formula)
with more subtle features. The first proposal appeared in [Gi89], followed by
an important series of papers [Gi89a,Gi88,Gi95a] written in the language of
operator algebras. His recent work [Gi07,Gi08] has moved towards the frame-
work of von Neumann algebras. However, it became clear early on, from
lectures of Abramsky [AJ94a,Abr96] and also Hyland in the early 1990’s
that more simple conceptual machinery, based on traced monoidal categories,
suffices to understand many of the fundamental algebraic and geometric
ideas underlying early GoI. This was explored by us in a series of papers
[AHS02,HS04a,HS04b,HS05a,Hag06]. In what follows we shall explore some
algebraic aspects of Girard’s early GoI 1, and the notion of information flow.
We leave it an open question how to connect this up with Girard’s more recent
ideas based on von Neumann algebras [Gi07,Gi08].

34

5.2 Girard’s GoI 1 Framework: An Overview

The basic idea of [Gi89a] is to consider proofs as certain matrix operators
on a C∗-algebra B(H) of bounded linear operators on a Hilbert space H. We
shall look at proofs of 1-sided sequents in LL, say π : ` Γ , where Γ is a list
of formulas. A key notion in Girard’s work was to keep track of all the cut
formulas used in a proof. These general proofs have the form π :` [∆],Γ
where ∆ is a list of all the Cut formulas generated from applying the Cut
Rule, as follows:

` [∆],Γ, A ` [∆′], A⊥,Γ′

` [∆,∆′, A,A⊥] Γ, Γ′
Cut

We think of this Cut Rule as taking the cut formulas A,A⊥ (in that order)
and putting them on a stack: the (ordered) list [∆,∆′, A,A⊥].

Thus, in a general proof π :` [∆],Γ , we have that ∆ is an even length list of
cut formulas, say ∆ = A1, A

⊥
1 , · · · , Am, A⊥m. In general suppose |∆| = 2m and

|Γ| = n, so that ` [∆],Γ has n+ 2m formulas. Let us informally describe the
GoI ingredients.

A key aspect of Girard’s interpretation is to consider a Dynamic Interpretation
− of proofs. A proof π : ` [∆],Γ will be modelled by a pair of I/O (input-

output) boxes (Figure 9(a).) Cut-elimination will be modelled by a diagram
involving the feedback on σ (Figure 9(b).)

Γ
π

(a)

(π , σ)

∆ ∆

∆

Γ

∆

...
...

-

-

-
-

-

-

-
-

-
-

-
- σ

Γ
π

∆

Γ

∆

σ

Ex(π , σ) = Tr⊗∆
⊗Γ,⊗Γ((1⊗Γ ⊗ σ) π)

(b)

...
...

-

-

-
-

-

-

-

6
6

?

-

?

Fig. 9. Proofs of ` [∆],Γ as I/O Boxes

Formulas in sequents are interpreted (uniformly) by a special object U in
the category C. In Girard’s GoI 1, C = Hilb, the category of Hilbert spaces
and bounded linear maps and U = `2(N) = `2, the Hilbert space of square
summable sequences. Indeed, the interpretation actually occurs in Hilb2 (Ex-
ample 4.11 (3)). We know that Hilb2 is equivalent to PInj under the `2

functor; it follows that the GoI 1 interpretation below may equally well be
thought-of as occurring in PInj, with U = N.

In the GoI interpretation of logic, formulas are interpreted as types via a no-
tion of orthogonality, ()⊥, on certain hom-sets. Such notions of orthogonality

35

are needed both to define types (as sets equal to their biorthogonal) as well as
to give convergence-like properties of the Execution Formula. Below we intro-
duce such notions concretely in Definition 6.3, and more abstractly (following
[HylSc03]) in Definition 7.9.

Proofs on the other hand are interpreted as morphisms in Int(C). Suppose
we have a proof π of a sequent ` [∆],Γ, with |Γ| = n and |∆| = 2m. This is
interpreted as a morphism π in Int(C) from (Un, U2m) to itself, where Uk

is a shorthand for the k-fold tensor product of U with itself: equivalently, as

a map Un+2m π−→ Un+2m in C. Notice that all formulas Γ and ∆ occur twice
(i.e. as both inputs and outputs to π) in Figure 9(a).

Remark 5.1 (GoI Notation) For ease of computing the GoI interpretation
of proofs π (using their graphical representations as in Figure 9 above) , we
often label the inputs and outputs by the I/O formulas themselves (e.g. Γ, ∆ in
Figure 9), rather than the object U (which uniformly interprets all formulas).

The interpretation of proofs is completed by defining the morphism σ := s⊗m

representing ∆, where s is the symmetry (i.e. the identity map in Int(C)).
The precise sense in which we interpret formulas and proofs will be described
in Section 6 below.

To recap, we will interpret proofs-with-cuts π : ` [∆],Γ as pairs (π , σ)
such that:

• π : Un+2m −→ Un+2m is defined inductively on proofs, and

• σ : U2m −→ U2m = s⊗m (the m-fold tensor product of the symmetry
morphism sU,U with itself) represents the cuts ∆.

Here, |∆| = 2m and |Γ| = n. If ∆ = ∅, π is cut-free and σ = 0 will be a
zero morphism. (This will always exist, since our categories will be Σ-monoid
enriched). We note that in Girard’s model Hilb2 and our ∗-category approach
in Proposition 8.7 below, (π , σ) are partial symmetries).

As we are working in a traced UDC, we can use the matricial representation
of arrows (see Proposition 4.9) to write π as a block matrix:

π =

 π11 π12

π21 π22

The dynamics of proofs (cut-elimination) will be interpreted using the Execu-
tion Formula defined in formula (8) below. This is illustrated in Figure 9(b).
In any traced UDC, this can be represented as a sum, as in (9) below.

Execution/Trace Formula

36

EX(π , σ) =def Tr
⊗∆
⊗Γ,⊗Γ((1⊗Γ ⊗ σ) π) (8)

= π11 +
∑
n≥0

π12(σπ22)n(σπ21) (9)

Note that the underlying category C is a traced UDC and more generally
in Section 8, a traced category , where ⊗∆ = U2m, ⊗Γ = Un. Thus
EX(π , σ) : Un → Un exists as a C-morphism.

The essential mathematical ingredients at work in GoI were understood to
consist of a traced symmetric monoidal category, a traced endofunctor and the
special object U we alluded to above, called a reflexive object. Such structures
are called GoI Situations, see below for detailed definitions. In [HS04a], we
showed that Girard’s GoI 1 can be modeled categorically, using GoI Situations
where the underlying category C is a traced UDC. In particular, we proved
that the original operator algebraic framework in [Gi89a] is captured by the
GoI Situation on the category Hilb2, see Proposition 6.13 below.

Remark 5.2 (GoI, Path-Based Computing, Complexity) Important
approaches to GoI arose in work of V. Danos and L. Regnier and coworkers
[Dan90,DR95,Lau01,MR91]. This work analyzes information flow in β-
reduction of untyped lambda calculus, using paths in proof-nets. The GoI
execution formula may be analyzed as a certain kind of sum-of-paths for-
mula, breaking down β-reduction to local reversible asynchronous steps. The
authors give detailed and profound analyses of the kinds of paths and infor-
mation flow this viewpoint represents, together with fundamental algebraic
models for computation. This leads to important connections with previous
work in the geometry of β-reduction; in particular, to relations of GoI with
optimal reduction [GAL92].

GoI has also had some connections with complexity [GSS,BP01] in particular
with evaluation strategies and rates of growth of numerical measures assigned
to proofs in bounded logics. In the case of Traced UDC-style models of GoI
and GoI Situations as studied here, more recently Schöpp [Sch07] used this
machinery to study fragments of bounded (affine) linear logic suitable for
studying logarithmic space.

In a different direction, in [AHS02], a general analysis of algebraic models of
GoI is carried out. There it is shown how to use GoI Situations to obtain
models of the {!,−◦} fragment of linear logic, presented in terms of linear
combinatary algebras. These are certain combinatory algebras (A, .) equipped
with a map ! : A → A and constants B,C, I,K,W,D, δ, F satisfying the com-
binatory identities for a Hilbert-style axiomatization of {!,−◦}. The method
is sketched as follows.

Let C be a traced smc, with an endofunctor T : C → C and an object (called a

37

reflexive object) U ∈ C with retractions U⊗U�U , I�U , and TU�U . Then if
T satisfies some reasonable axioms and setting V = (U,U) and I = (I, I), it is
shown in [AHS02] how the homset Int(C)(I, V) = C(U,U) naturally inherits
the structure of a linear combinatory algebra. For example, in the case of
C = PInj, N is such a reflexive object, with endofunctor T (−) = N × (−).
This example underlies the original Girard GoI constructions. The model in
[AJ94a] likewise arises from Int(CPO⊥). Moreover, Girard’s original operator-
theoretic models (in the category of Hilbert spaces), as well as Danos-Regnier’s
small model [DR95] are also captured in the above framework using some
additional functorial structure (see [Hag00]).

We should mention Abramsky’s paper [Abr07] which, while discussing
Temperley-Lieb Algebra in knot theory, develops a version of planar GoI.
In a different vein, Fuhrman and Pym [FP07] develop a categorical framework
for obtaining models for classical logic using a GoI/Int construction applied
to certain extensions of symmetric linearly distributive categories, along the
lines of the work of Blue-Cockett-Seely.

6 GoI Interpretation of MELL

Geometry of Interaction interprets an underlying logical system at three lev-
els: formulas, proofs and cut-elimination. We shall carry out this interpretation
for MELL without units in the following sections. There are two fundamental
ingredients in a GoI interpretation: (i) A GoI Situation containing the underly-
ing traced UDC, and (ii) A notion of orthogonality. We begin by defining these
ingredients. We shall discuss generalizations and extensions of these notions
in later sections.

Definition 6.1 A GoI Situation is a triple (C, T, U) where:

(1) C is a traced symmetric monoidal category

(2) T : C −→ C is a traced symmetric monoidal functor with the follow-
ing monoidal retractions (i.e. the retraction pairs are monoidal natural
transformations):
(a) TT � T (e, e′) (Comultiplication)

(b) Id� T (d, d′) (Dereliction)

(c) T ⊗ T � T (c, c′) (Contraction)

(d) KI � T (w,w′) (Weakening). Here KI is the constant I functor.

(3) U is an object of C, called a reflexive object, with retractions:
(a) U ⊗ U � U (j, k), (b) I � U , and (c) TU � U (u, v).

38

Here TT � T (e, e′) means that there are monoidal natural transformations
eX : TTX −→ TX and e′X : TX −→ TTX such that e′e = 1TT . We say that
TT is a retract of T . Similarly for the other items.

Before we proceed, let’s consider some examples of GoI Situations (C, T, U).
For comparison of our notation with the notation of Girard and his students,
see Appendix B.

Examples 6.2

(1) (PInj,N × −,N). Here N is the set of natural numbers. The functor
T = N×−, is defined as TX = N×X and for a morphism f : X −→ Y ,
Tf = 1N × f . We shall refer the reader to [AHS02] for details on this
and the following examples. However, we include a few definitions for
illustration. For example, consider the cases for U ⊗U �U (j, k), Comul-
tiplication and Contraction:

• N]N � N (j, k) is defined by j : N]N −→ N, j(1, n) = 2n, j(2, n) =
2n+ 1 and k : N −→ N] N,

k(n) =

(1, n/2), if n even;

(2, (n− 1)/2), if n odd .

Clearly kj = 1N]N.

• (Comultiplication) N×(N×X)
eX−→ N×X and N×X

e′X−→ N×(N×X)
N × (N × X)

eX−→ N × X is defined by, eX(n1, (n2, x)) = (〈n1, n2〉, x).
Given f : X −→ Y , (1N × f)eX((n1, (n2, x)) = (〈n1, n2〉, f(x)) =
eY (1N × (1N × f)(n1, (n2, x)) for all n1, n2 ∈ N and x ∈ X proving the
naturality of eX . e′X(n, x) = (n1, (n2, x)) where 〈n1, n2〉 = n.
e′XeX(n1, (n2, x)) = e′X(〈n1, n2〉, x) = (n1, (n2, x)) for all n1, n2 ∈ N and
x ∈ X.

• (Contraction) (N ×X)] (N ×X)
cX−→ N ×X and N ×X

c′X−→ (N ×
X)] (N×X).

cX =

(1, (n, x)) 7→ (2n, x)

(2, (n, x)) 7→ (2n+ 1, x)

Given f : X −→ Y , (1N×f)cX(1, (n, x)) = (2n, f(x)) = cY (1N×f]1N×
f)(1, (n, x)) for all n ∈ N and x ∈ X. Similarly (1N × f)cX(2, (n, x)) =
(2n + 1, f(x)) = cY (1N × f] 1N × f)(2, (n, x)) for all n ∈ N and x ∈ X,
proving the naturality of cX .

c′X(n, x) =

(1, (n/2, x)), if n is even;

(2, ((n− 1)/2, x), if n is odd.

39

Finally, c′XcX(1, (n, x)) = c′X(2n, x) = (1, (n, x)) and c′XcX(2, (n, x)) =
c′X(2n+ 1, x) = (2, (n, x)).

(2) (Pfn,N×−,N).
(3) (Rel+,N×−,N).
(4) (SRel, T,N∞). Here T : SRel −→ SRel is defined as T (X,FX) = (N×

X,FN×X) where FN×X is the σ-field on X]X]X · · · (ω copies). For a
given f : (X,FX) −→ (Y,FY), Tf((n, x),

⊎
i∈ω Bi) = f(x,Bn).

Note that throughout this section we shall be working with GoI Situations
where the underlying category is a traced UDC.

Definition 6.3 (Orthogonality and Types) Let f, g be morphisms in
C(U,U). We say that f is nilpotent if fk = 0 for some k ≥ 1. We say that f is
orthogonal to g, denoted f ⊥ g if gf is nilpotent. Orthogonality is a symmetric
relation and it makes sense because 0UU exists. Also, 0 ⊥ f for all f ∈ C(U,U).

Given a subset X of C(U,U), we define

X⊥ = {f ∈ C(U,U)|∀g(g ∈ X ⇒ f ⊥ g)}

A type is any subset X of C(U,U) such that X = X⊥⊥. Note that types are
inhabited, since 0UU belongs to every type.

6.1 GoI Interpretation of formulas

Formulas are interpreted by types as defined above.

Definition 6.4 Consider a GoI situation (C, T, U) as above with j1, j2, k1, k2

components of j and k respectively. Let A be an MELL formula. We define
the GoI interpretation of A, denoted θA, inductively as follows:

(1) If A ≡ α that is A is an atom, then θA = X an arbitrary type.
(2) If A ≡ α⊥, θA = X⊥, where θα = X is given by assumption.
(3) If A ≡ B ⊗ C, θA = Y ⊥⊥, where Y = {j1ak1 + j2bk2|a ∈ θB, b ∈ θC}.
(4) If A ≡ B ...

............
.................................. C, θA = Y ⊥ , where Y = {j1ak1 + j2bk2|a ∈ (θB)⊥, b ∈

(θC)⊥}.
(5) If A ≡ !B, θA = Y ⊥⊥ , where Y = {uT (a)v|a ∈ θB}.
(6) If A ≡?B, θA = Y ⊥ , where Y = {uT (a)v|a ∈ (θB)⊥}.

An easy consequence of the definition that (θA)⊥ = θA⊥ for any formula A.

40

6.2 GoI Interpretation of proofs

In this section we define the GoI interpretation for proofs of MELL without
the units. Proofs are interpreted in the homset C(U,U) of endomorphisms of
U .

Convention: All identity morphisms are on tensor copies of U ; however we
adopt the convention of writing 1Γ instead of 1Un with |Γ| = n, where Un

denotes the n-fold tensor product of U with itself. The retraction pairs are
fixed once and for all.

Every MELL sequent will be of the form ` [∆],Γ where Γ is a sequence of
formulas and ∆ is a sequence of cut formulas that have already been made
in the proof of ` Γ (e.g. A,A⊥, B,B⊥). This is used to keep track of the
cuts that are already made in the proof of ` Γ. Suppose that Γ consists of
n and ∆ consists of 2m formulas. Then a proof π of ` [∆],Γ is represented
by a morphism π ∈ C(Un+2m, Un+2m). Recall that this corresponds to a
morphism from U to itself, using the retraction morphisms U ⊗ U � U (j, k).
However, it is much more convenient to work in C(Un+2m, Un+2m) (matrices
on C(U,U)). Define the morphism σ : U2m −→ U2m, as σ = s ⊗ · · · ⊗ s (m-
copies) where s is the symmetry morphism, the 2×2 antidiagonal matrix [aij],
where a12 = a21 = 1; a11 = a22 = 0. Here σ represents the cuts in the proof of
` Γ, i.e. it models ∆. If ∆ is empty (that is for a cut-free proof), we define
σ : I −→ I to be the zero morphism 0II . Note that U0 = I where I is the unit
of the tensor in the category C.

Given block matrices A,B, by A ⊗ B we mean the block matrix with A and
B on the main diagonal (the rest zeros). Thus σ above is the 2m× 2m block
matrix with the 2× 2 matrix s along the main diagonal.

Definition 6.5 (The GoI Interpretation) Let π be a proof of ` [∆],Γ.
We define the GoI interpretation of π, denoted by π , by induction on the
length of the proof as follows. We illustrate two cases (Cut and Contraction)
geometrically below.

(1) π is an axiom ` A,A⊥, then m = 0, n = 2 and π = s =

 0 1

1 0

.

(2) π is obtained using the cut rule on π′ and π′′ that is

π′....
` [∆′],Γ′, A

π′′....
` [∆′′], A⊥,Γ′′

` [∆′,∆′′, A,A⊥],Γ′,Γ′′
cut

41

Then we define π as follows: π = τ−1(π′ ⊗ π′′)τ where τ
and τ−1 are the indicated permutations of the interface (the identity on
Γ′,∆′):

A⊥

Γ′′

∆′′

A⊥

Γ′′

∆′′

Γ′

A
π′

π′′

∆′

Γ′

A

∆′

∆′′

A

A⊥

∆′′

A

A⊥

Γ′

Γ′′

∆′

Γ′

Γ′′

∆′

(3) π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ′.
That is π is of the form

π′

...

` [∆],Γ′

` [∆],Γ
exchange

where in Γ′ we have Ai, Ai+1. Then, π is obtained from π′ by inter-
changing the rows i and i+ 1. So suppose that Γ′ = Γ′1, Ai, Ai+1,Γ

′
2, then

Γ = Γ′1, Ai+1, Ai,Γ
′
2 and π = τ−1 π′ τ , where τ = 1Γ′1

⊗ s⊗ 1Γ′2⊗∆.

(4) π is obtained using an application of the par rule, that is π is of the form:

π′

...

` [∆],Γ′, A,B

` [∆],Γ′, A ...
............
.................................. B

...
............
..................................

Then π = g π′ f , where f = 1Γ′ ⊗ k ⊗ 1∆ and g = 1Γ′ ⊗ j ⊗ 1∆,
recalling that U ⊗ U � U (j, k).

(5) π is obtained using an application of the times rule, that is π has the
form

42

π′ π′′

...
...

` [∆′],Γ′, A ` [∆′′],Γ′′, B

` [∆′,∆′′],Γ′,Γ′′, A⊗B times

Then π = gτ−1(π′ ⊗ π′′)τf , where τ is a permutation and
f = 1Γ′⊗Γ′′ ⊗ k ⊗ 1∆′⊗∆′′ and g = 1Γ′⊗Γ′′ ⊗ j ⊗ 1∆′⊗∆′′ .

(6) π is obtained from π′ by an of course rule; that is π has the form :

π′

...

` [∆], ?Γ′, A

` [∆], ?Γ′, !A
of course

Then π = ((ueU)⊗n⊗u⊗u⊗2m)ϕ−1T ((v⊗n⊗ 1A⊗ 1∆) π′ (u⊗n⊗ 1A⊗
1∆))ϕ((e′Uv)⊗n ⊗ v ⊗ v⊗2m), where TT � T (e, e′), |Γ′| = n, |∆| = 2m,
and ϕ : (T 2U)⊗n ⊗ TU ⊗ (TU)⊗2m −→ T ((TU)⊗n ⊗ U ⊗ U⊗2m) is the
canonical isomorphism.

(7) π is obtained from π′ by the dereliction rule, that is π is of the form :

π′

...

` [∆],Γ′, A

` [∆],Γ′, ?A
dereliction

Then π = (1Γ′ ⊗ udU ⊗ 1∆) π′ (1Γ′ ⊗ d′Uv ⊗ 1∆) where Id� T (d, d′).

(8) π is obtained from π′ by the weakening rule, that is π is of the form:

π′

...

` [∆],Γ′

` [∆],Γ′, ?A
weakening

Then π = (1Γ′⊗uwU⊗1∆) π′ (1Γ′⊗w′Uv⊗1∆), where KI �T (w,w′).

(9) π is obtained using the contraction rule on π′, that is

π′....
` [∆],Γ′, ?A, ?A

` [∆],Γ′, ?A
contraction

43

Then we define π as follows, , where T ⊗ T � T (c, c′):

π = (1Γ′ ⊗ (u(cUv ⊗ v))⊗ 1∆) π′ (1Γ′ ⊗ (u⊗ u)c′Uv ⊗ 1∆)

∆ ∆

Γ′ Γ′

?A ?A

?A?A

U

U
U

Γ′

∆

v TU

UTU
TU

U

U

TU

U

Γ′

∆

TU
TU U

u
c′U cU

u

u

v

v

π′
!!

aa

aa

!!

Example 6.6 Let π be the following proof (of cut applied to the axioms).
Categorically it corresponds to idoid.

` A⊥, A ` A⊥, A
` [A,A⊥], A⊥, A

cut

Then the GoI semantics of this proof (see the Cut rule above) is given by
conjugation with a permutation matrix τ :

π =

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

=

 0 Id2

Id2 0

where Id2 is the 2 × 2 identity matrix, 0 is the 2 × 2 zero matrix and the
middle matrix is s⊗ s.

6.3 GoI Interpretation of cut-elimination

Dynamics is at the heart of the GoI interpretation as compared to denotational
semantics and it is hidden in the cut-elimination process. The mathematical
model of cut-elimination is given by the execution formula defined as follows:

EX(π , σ) = TrU
2m

Un,Un((1Un ⊗ σ) π) (10)

where π is a proof of the sequent ` [∆],Γ. Pictorially this can be represented
as in Figure 9(b) in Section 5.2 above.

44

Note that EX(π , σ) is a morphism from Un −→ Un and it always makes
sense since the trace of any morphism in C(U2m+n, U2m+n) is defined. Since
we are working with a traced UDC with the standard trace, we can rewrite
the execution formula (10) in a more familiar form:

EX(π , σ) = π11 +
∑
n≥0

π12(σπ22)n(σπ21)

where π =

π11 π12

π21 π22

 . Note that the execution formula defined in this cat-

egorical framework always makes sense; that is, we do not need a convergence
criterion.

The intention here is to prove that the result of this execution formula is
what corresponds to the cut-free proof obtained from π using Gentzen’s cut-
elimination procedure. We will also show that for any proof π of MELL
the execution formula is a finite sum, which corresponds to termination of
computation as opposed to divergence.

Example 6.7 Consider the proof π in Example 6.6 above. Recall also that
σ = s in this case (m = 1). Then

EX(π , σ) = TrU
2

U2,U2

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

=

 0 0

0 0

 +
∑
n≥0

 1 0

0 1

 0 0

0 0

n 0 1

1 0

 =

 0 1

1 0

 = ` A⊥, A .

Note that in this case we have obtained the GoI interpretation of the cut-free
proof obtained by applying Gentzen’s Hauptsatz to the proof π. (Categorically,
this just says idoid = id in Int(C), where the composition is obtained dynam-
ically by running the Execution formula). This is generalized in Theorem 6.12
below.

6.4 Soundness of the GoI Interpretation: running the execution formula

In order to ensure that the definition above yields a semantics, we need to
prove the soundness of the GoI interpretation. In other words, we have to

45

show that if a proof π is reduced (via cut-elimination) to its cut-free form
π′, then EX(π , σ) is a finite sum and EX(π , σ) = π′ . Intuitively this
says that if one thinks of cut-elimination as computation then π can be
thought of as an algorithm. The computation takes place as follows: if we
run EX(π , σ), it terminates after finitely many steps (cf. finite sum) and
yields a datum (cf. cut-free proof). This intuition will be made precise in this
section through the definition of type and the main theorems (see Theorems
8.12, 8.14). The next result is the analog of the Church-Rosser (or Diamond)
property in our setting.

Lemma 6.8 (Associativity of cut) Let π be a proof of ` [Γ,∆],Λ and σ
and τ be the morphisms representing the cut-formulas in Γ and ∆ respectively.
Then

EX(π , σ ⊗ τ) = EX(EX(π , τ), σ)

Proof. Follows from naturality and vanishing II properties of trace. 2

Definition 6.9 Let Γ = A1, · · · , An. A datum of type θΓ is a morphism
M : Un −→ Un such that for any β1 ∈ θ(A⊥1), · · · , βn ∈ θ(A⊥n), (β1⊗· · ·⊗βn)M
is nilpotent. An algorithm of type θΓ is a morphism M : Un+2m −→ Un+2m

for some integer m such that for σ : U2m −→ U2m defined in the usual way,
EX(M,σ) = TrU

2m

Un,Un((1⊗ σ)M) is a finite sum and a datum of type θΓ.

Lemma 6.10 Let M : Un −→ Un and a : U −→ U . Define CUT (a,M) =
(a⊗1Un−1)M : Un −→ Un. Note that the matrix representation of CUT (a,M)
is the matrix obtained from M by multiplying its first row by a. Then M = [mij]
is a datum of type θ(A,Γ) iff for any a ∈ θA⊥, am11 is nilpotent and the
morphism ex(CUT (a,M)) = TrA(s−1

Γ,ACUT (a,M)sΓ,A) is in θ(Γ). Here sΓ,A

is the symmetry morphism from Γ⊗ A to A⊗ Γ.

Theorem 6.11 (Proofs as Algorithms) Let Γ be a sequent, and π be a
proof of Γ. Then π is an algorithm of type θΓ.

Theorem 6.12 (Ex is an invariant) Let π be a proof of a sequent ` [∆],Γ
in MELL. Then

(i) EX(π , σ) is a finite sum.
(ii) If π reduces to π′ by any sequence of cut-eliminations and ?A does not

occur in Γ for any formula A, then EX(π , σ) = EX(π′ , τ). So
EX(π , σ) is an invariant of reduction.

(iii) In particular, if π′ is any cut-free proof obtained from π by cut-
elimination, then EX(π , σ) = π′ .

In [HS04a] we show that we obtain the same execution formula as Girard.
Note that in Girard’s original execution formula π and σ are both 2m+ n
by 2m+nmatrices. To connect up with our previous notation, let σ̃ = s⊗· · ·⊗s

46

(m-times.)

Proposition 6.13 (Original Execution Formula) Let π be a proof of
` [∆],Γ. Then in Girard’s model Hilb2,

((1− σ2)
∞∑
n=0

π (σ π)n(1− σ2))n×n = TrU
2m

Un,Un((1⊗ σ̃) π)

where (A)n×n is the submatrix of A consisting of the first n rows and the first
n columns.

In the next two sections we discuss further generalizations of the notions of
trace and orthogonality. These notions play crucial roles in GoI interpretations.

7 Partial Trace and Abstract Orthogonality

In this section we look at partial traces. The idea of generalizing the abstract
trace of [JSV96] to the partial setting is not new. For example, partial traces
were already studied in work of Abramsky, Blute, and Panangaden [ABP99],
in unpublished lecture notes of Gordon Plotkin [Pl03], work of Blute, Cock-
ett, and Seely [BCS00] (see Remark 7.2), and others. The guiding example in
[ABP99] is the relationship between trace class operators on a Hilbert space
and Hilbert-Schmidt operators. This allows the authors to establish a close cor-
respondence between trace and nuclear ideals in a tensor ∗-category. Plotkin’s
work develops a theory of Conway ideals on biproduct categories, and an as-
sociated categorical trace theory. Unfortunately none of these extant theories
is appropriate for Girard’s GoI. So we present an axiomatization for partial
traces suitable for our purposes.

Recall, following Joyal, Street, and Verity [JSV96], a (parametric) trace in a
symmetric monoidal category (C,⊗, I, s) is a family of maps

TrUX,Y : C(X ⊗ U, Y ⊗ U) −→ C(X, Y),

satisfying various well-known naturality equations. A partial (parametric)
trace requires instead that each TrUX,Y be a partial map (with domain denoted
TU
X,Y) and satisfy various closure conditions.

Definition 7.1 (Trace Class) Let (C,⊗, I, s) be a symmetric monoidal cat-
egory. A (parametric) trace class in C is a choice of a family of subsets, for
each object U of C, of the form

TU
X,Y ⊆ C(X ⊗ U, Y ⊗ U) for all objects X, Y of C

47

together with a family of functions, called a (parametric) partial trace, of the
form

TrUX,Y : TU
X,Y −→ C(X, Y)

subject to the following axioms. Here the parameters are X and Y and a
morphism f ∈ TU

X,Y , by abuse of terminology, is said to be trace class.

• Naturality in X and Y : For any f ∈ TU
X,Y and g : X ′ −→ X and h : Y −→

Y ′,
(h⊗ 1U)f(g ⊗ 1U) ∈ TU

X′,Y ′ ,

and TrUX′,Y ′((h⊗ 1U)f(g ⊗ 1U)) = h TrUX,Y (f) g.

• Dinaturality in U : For any f : X ⊗ U −→ Y ⊗ U ′, g : U ′ −→ U ,

(1Y ⊗ g)f ∈ TU
X,Y iff f(1X ⊗ g) ∈ TU ′

X,Y ,

and TrUX,Y ((1Y ⊗ g)f) = TrU
′

X,Y (f(1X ⊗ g)).

• Vanishing I: TI
X,Y = C(X ⊗ I, Y ⊗ I), and for f ∈ TI

X,Y

TrIX,Y (f) = ρY fρ
−1
X .

Here ρA : A ⊗ I −→ A is the right unit isomorphism of the monoidal
category.

• Vanishing II: For any g : X ⊗ U ⊗ V −→ Y ⊗ U ⊗ V , if g ∈ TV
X⊗U,Y⊗U ,

then
g ∈ TU⊗V

X,Y iff TrVX⊗U,Y⊗U(g) ∈ TU
X,Y ,

and TrU⊗VX,Y (g) = TrUX,Y (TrVX⊗U,Y⊗U(g)).

• Superposing: For any f ∈ TU
X,Y and g : W −→ Z,

g ⊗ f ∈ TU
W⊗X,Z⊗Y ,

and TrUW⊗X,Z⊗Y (g ⊗ f) = g ⊗ TrUX,Y (f).

• Yanking: sUU ∈ TU
U,U , and TrUU,U(sU,U) = 1U .

A symmetric monoidal category (C,⊗, I, s) with such a trace class is called a
partially traced category, or a category with a trace class. If we let X and Y be
I (the unit of the tensor), we get a family of operations TrUI,I : TU

I,I −→ C(I, I)
defining what we call a non-parametric (scalar-valued) trace.

Remark 7.2 An early definition of a partial parametric trace is due to
Abramsky, Blute and Panangaden in [ABP99]. Our definition is different but
related to theirs. First, we have used the Yanking axiom in Joyal, Street and
Verity [JSV96], whereas in [ABP99] they use a conditional version of the so-
called “generalized yanking”; that is, for f : X −→ U and g : U −→ Y ,
TrUX,Y (sU,Y (f ⊗g)) = gf whenever sU,Y (f ⊗g) is trace class. In our theory sUU
is traceable for all U ; on the other hand, many examples in [ABP99] do not

48

have this property. More importantly, we do not require one of the ideal axioms
in [ABP99]. Namely, we do not ask that for f ∈ TU

X,Y and any h : U −→ U ,
(1Y ⊗h)f and f(1X ⊗h) be in TU

X,Y . Indeed in the next section we prove that
the categories (Vecfd,⊕) of finite dimensional vector spaces, and (CMet,×)
of complete metric spaces are partially traced. It can be shown that in both
categories the above ideal axiom and Vanishing II of [ABP99] fail and hence
they are not traced in the sense of [ABP99].

In [BCS00], Blute, Cockett, and Seely develop an interesting and detailed
theory of trace (and fixpoint) combinators in a linearly distributive category,
including an appropriate version of the Int construction of [JSV96] in that
setting. The authors take a local view of the trace combinator: rather than
assuming that a trace is available at every object, they consider the effect of
particular objects having a trace (partiality of trace), as well as restricting to
“compatible classes” of trace operators (which guarantees that an object may
have at most one trace structure.)

One is obliged to say that there are many different approaches to partial
categorical traces and ideals; ours is geared to the details of Girard’s GoI.
We believe our traceability conditions are most naturally formulated as we
did above, as properties of morphisms rather than objects, but this may be a
matter of taste.

7.1 Examples of Partial Traces

(a) Finite Dimensional Vector Spaces

The category Vecfd of finite dimensional vector spaces and linear transfor-
mations is a symmetric monoidal, indeed an additive, category (see [Mac98]),
with monoidal product taken to be ⊕, the direct sum (biproduct). Hence,
given f : ⊕IXi −→ ⊕JYj with |I| = n and |J | = m, we can write f as an
m × n matrix f = [fij] of its components, where fij : Xj −→ Yi (notice the
switch in the indices i and j).

We give a trace class structure on the category (Vecfd,⊕,0) as follows. We
shall say an f : X ⊕ U −→ Y ⊕ U is trace class iff (I − f22) is invertible,
where I is the identity matrix, and I and f22 have size dim(U). In that case,
we write

TrUX,Y (f) = f11 + f12(I − f22)−1f21 (11)

This definition is motivated by a generalization of the fact that for a matrix
A, (I − A)−1 =

∑
iA

i, whenever the infinite sum converges. Clearly this sum
converges when the matrix norm of A is strictly less than 1, or when A is
nilpotent, but in both cases the general idea is the desire to have (I − A)
invertible. If the infinite sum for (I − f22)−1 exists, the above formula for

49

TrUX,Y (f) becomes the usual “particle-style” trace in [Abr96,AHS02,HS04a].
One advantage of formula (11) is that it does not a priori assume the con-
vergence of the sum, nor even that (I − f22)−1 be computable by iterative
methods.

Proposition 7.3 (Vecfd,⊕,0) is partially traced, with trace class as above.

The proof is sketched in [HS05a]. Proposition 7.3 uses the following standard
facts from linear algebra:

Lemma 7.4 Let M =

A B

C D

 be a partitioned matrix with blocks A (m×m),

B (m× n), C (n×m) and D (n× n). If D is invertible, then M is invertible
iff A−BD−1C (the Schur Complement of D) is invertible.

Lemma 7.5 Given A (m × n) and B (n × m), (Im − AB) is invertible iff
(In −BA) is invertible. Moreover (Im − AB)−1A = A(In −BA)−1.

Proof (Proposition 7.3). We shall verify a couple of axioms.

• Naturality in X and Y : Suppose f ∈ TU
X,Y and g : X ′ −→ X and h : Y −→

Y ′, (h⊕1U)f(g⊕1U) can be represented by its matrix

hf11g hf12

f21g f22

 whose

component from U to itself is f22 and hence (h⊕ 1U)f(g⊕ 1U) ∈ TU
X′,Y ′ and

it is easy to see that hTrUX,Y (f)g = TrUX′,Y ′((h⊕ 1U)f(g ⊕ 1U)).
• Dinaturality in U : Let f : X ⊕ U −→ Y ⊕ U ′, g : U ′ −→ U . (1Y ⊕ g)f ∈

TU
X,Y iff I − gf22 is invertible iff I − f22g is invertible by Lemma 7.5 and

thus iff f(1X ⊕ g) ∈ TU ′
X,Y .

TrUX,Y ((1Y ⊕ g)f) = f11 + f12(I − gf22)−1gf21

= f11 + f12g(I − f22g)−1f21 by Lemma 7.5.

= TrU
′

X,Y (f(1X ⊕ g)).

2

As discussed in Remark 7.2, the category (Vecfd,⊕) is not partially traced in
the sense of ABP.

(b) Metric Spaces

Consider the category CMet of complete metric spaces with non-expansive
maps, that is f : (M,dM) −→ (N, dN) such that dN(f(x), f(y)) ≤ dM(x, y),
for all x, y ∈ M . Note that the tempting collection of complete met-

50

ric spaces and contractions (dN(f(x), f(y)) < dM(x, y)) is not a cate-
gory: there are no identity morphisms! CMet has products, namely given
(M,dM) and (N, dN) we define (M ×N, dM×N) with dM×N((m,n), (m′, n′)) =
max{dM(m,m′), dN(n, n′)}.

We define the trace class structure on CMet(where ⊗ = ×) as follows. We
say that a morphism f : X × U −→ Y × U is in TU

X,Y iff for every x ∈ X the
induced map π2λu.f(x, u) : U −→ U has a unique fixed point; in other words,
iff for every x ∈ X, there is a unique u, and a y, such that f(x, u) = (y, u).
Note that in this case y is necessarily unique. Also, note that contractions
have unique fixed points, by the Banach fixed point theorem.

Suppose f ∈ TU
X,Y . We define TrUX,Y (f) : X −→ Y by TrUX,Y (f)(x) = y, where

f(x, u) = (y, u) for the unique u. Equivalently, TrUX,Y (f)(x) = π1f(x, u) where
u is the unique fixed point of π2λt.f(x, t).

Proposition 7.6 (CMet,×, {∗}) is a partially traced category with trace
class as above.

Lemma 7.7 Let A and B be sets, f : A −→ B and g : B −→ A. Then, gf
has a unique fixed point if and only if fg does. Moreover, let a ∈ A be the
unique fixed point of gf : A −→ A and b ∈ B be the unique fixed point of
fg : B −→ B. Then f(a) = b and g(b) = a.

Proof (Proposition 7.6). We shall verify the dinaturality axiom. For f :
X × U −→ Y × U and x ∈ X, we will use fx to denote the map λu.f(x, u) :
U −→ Y × U.

Dinaturality in U : Let f : X×U −→ Y ×U ′, g : U ′ −→ U . Note that for any
x ∈ X, π2((1Y × g)f)x = g(π2fx) and π2(f(1X × g))x = (π2fx)g and g(π2fx)
has a unique fixed point iff (π2fx)g has a unique fixed point, by Lemma 7.7.
Thus (1Y × g)f ∈ TU

X,Y iff f(1X × g) ∈ TU ′
X,Y .

TrUX,Y ((1Y × g)f)(x) =π1(1× g)f(x, u) u is the unique

fixed point of g(π2fx)

=π1f(x, u)

=π1f(x, g(u′)) by Lemma 7.7

where u′ is the unqiue fixed point of (π2fx)g

= TrU
′

X,Y (f(1X × g))(x).

2

Proposition 7.6 remains valid for the category (Set,×) of sets and mappings.

51

The latter then becomes a partially traced category with the same definition
for trace class morphisms as in CMet. However, this fails for the category
(Rel,×), of sets and relations, as Lemma 7.7 is no longer valid: consider the
sets A = {a}, B = {b, b′}, and let f = {(a, b), (a, b′)} and g = {(b, a), (b′, a)}.

(c) Total Traces

Of course, all (totally-defined) traces in the usual definition of a traced
monoidal category yield a trace class, namely the entire homset is the do-
main of Tr.

Remark 7.8 (A Non-Example) Consider the structure (CMet,×). Defin-
ing the trace class morphisms as those f such that π2λu.f(x, u) : U −→ U is
a contraction, for every x ∈ X, does not yield a partially traced category: all
axioms are true except for dinaturality and Vanishing II.

For details and motivation on the orthogonality relation we refer the interested
reader to [HS05a]. See also the important work by Hyland and Schalk in
[HylSc03] for the general definition of orthogonality relations in a symmetric
monoidal closed category and its connections to models of linear logic.

Definition 7.9 Let C be a traced symmetric monoidal category. A (strong)
orthogonality relation on C is a family of relations ⊥UV between maps u :
V −→ U and x : U −→ V , denoted V

u−→ U ⊥UV U
x−→ V , subject to the

following axioms:

(i) Isomorphism : Let f : U ⊗ V ′ −→ V ⊗ U ′ and f̂ : U ′ ⊗ V −→ V ′ ⊗ U be
such that TrV

′
(TrU

′
((1⊗ 1⊗ sU ′,V ′)α−1(f ⊗ f̂)α)) = sU,V and

TrV (TrU((1⊗ 1⊗ sU,V)α−1(f̂ ⊗ f)α)) = sU ′,V ′ . Here α = (1⊗ 1⊗ s)(1⊗
s ⊗ 1) with s at appropriate types. Note that this simply means that
f : (U, V) −→ (U ′, V ′) and f̂ : (U ′, V ′) −→ (U, V) are inverses of each
other in G(C) (the compact closure of C, [Hag00,AHS02].)

Then, for all u : V −→ U and x : U −→ V,

u ⊥UV x iff TrUV ′,U ′(sU,U ′(u⊗ 1U ′)fsV ′,U) ⊥U ′V ′ TrVU ′,V ′((1V ′ ⊗ x)f̂);

that is, orthogonality is invariant under isomorphism. This is so because
the expressions above correspond to composition of u and f , and x and
f̂ in the compact closed category G(C).

(ii) Precise Tensor: For all u : V −→ U , v : V ′ −→ U ′ and h : U ⊗ U ′ −→
V ⊗ V ′,

(u⊗ v) ⊥U⊗U ′,V⊗V ′ h,
iff

v ⊥U ′V ′ TrUU ′,V ′(sU,V ′(u⊗ 1V ′)hsU ′,U) and u ⊥UV TrU
′

U,V ((1⊗ v)h)

(iii) Identity : For all u : V −→ U and x : U −→ V , u ⊥UV x implies 1I ⊥II
TrVI,I(xu).

52

(iv) Symmetry : For all u : V −→ U and x : U −→ V , u ⊥UV x iff x ⊥V U u.

Example 7.10 (Orthogonality as trace class) Let (C,⊗, I, Tr) be a par-
tially traced category where ⊗ is the monoidal product with unit I, and Tr

is the partial trace operator as in above. Let A and B be objects of C. For
f : A −→ B and g : B −→ A, we can define an orthogonality relation by
declaring f ⊥BA g iff gf ∈ TA

I,I . The axioms can be checked easily and we
shall not include the verification here. It turns out that this is a variation of
the notion of Focussed orthogonality of Hyland and Schalk [HylSc03].

Hence, from our previous discussion on traces, we obtain the following exam-
ples:

• Vecfd. For A ∈ ~fd, f, g ∈ End(A), define f ⊥ g iff I−gf is invertible. Here
I is the identity matrix of size dim(A).

• CMet. Let M ∈ CMet. For f, g ∈ End(M), define f ⊥ g iff gf has a
unique fixed point.

8 The Typed GoI Interpretation for MELL in *-Categories

The GoI interpretation we presented in Section 6 was carried out using a GoI
Situation with the underlying category a traced UDC, and using an orthog-
onality relation, defined based on nilpotency. Moreover, formulas and proofs
were interpreted based on a single reflexive object U . It is possible to extend
this framework vastly beyond these limits, indeed it is possible to give a multi-
object (typed) GoI (MGOI) interpretation for MELL using a GoI Situation
with additional structure and a compatible abstract orthogonality relation. We
shall briefly highlight what is involved without getting into details. Interested
readers can refer to [Hag06].

For the purposes of this general version we shall need an additional structure
on a monoidal category, namely that of contravariant functor ()∗. In the fol-
lowing we shall recall the definition of monoidal ∗-categories from [ABP99].
Nevertheless, note that our definition is different from that in [ABP99], as we
do not require a conjugation functor, and we demand stronger conditions on
the functor ()∗. Categories such as these with further structure on the homsets
(W ∗-categories) were first introduced in [GLR85]. The idea there was to gen-
eralize the notions and machinery of von Neumann algebras to a categorical
setting. Later, similar categories (C∗-categories) were defined in [DopR89] and
studied in depth. The motivation in this work was to present a new duality
theory for compact groups, itself motivated by the work in early seventies on
superselection structure in quantum field theory. Both [GLR85] and [DopR89]
are excellent sources for examples of ∗-categories we define here.

53

Definition 8.1 A symmetric monoidal ∗-category C is a symmetric monoidal
category with a strict symmetric monoidal functor ()∗ : Cop −→ C which is
strictly involutive and the identity on objects. Note that this in particular
implies that (f ⊗ g)∗ = f ∗ ⊗ g∗, and s∗A,B = sB,A where sA,B is the symmetry
morphism.

We say that a morphism f : A −→ A is Hermitian if f ∗ = f . A morphism
f : A −→ B is called a partial isometry if f ∗ff ∗ = f ∗ or equivalently, if ff ∗f =
f . A morphism f : A −→ A is called a partial symmetry if it is Hermitian
and a partial isometry. That is, if f ∗ = f and f 3 = f . Note that there is
no underlying Hilbert space structure on the homsets of C; the terminology
here is borrowed from operator algebras to account for the similar properties
of such morphisms, which can be expressed in the more general setting of
∗-categories.

An obvious example is the category Hilb⊗ of Hilbert spaces and bounded
linear maps with tensor product of Hilbert spaces as the monoidal product.
Given f : H −→ K, f ∗ : K −→ H is given by the adjoint of f , defined uniquely
by 〈f(x), y〉 = 〈x, f ∗(y)〉. It is not hard to see that all the required properties
are satisfied. Note that the category Hilb⊕ of Hilbert spaces and bounded
linear maps but with direct sum as the monoidal product is a ∗-category too,
with the same definition for the ()∗ functor.

Another example is the category Rel× of sets and relations with the cartesian
product of sets as the monoidal product. Given f : X −→ Y , f ∗ = f where
f is the converse relation. Again, note that the category Rel⊕ of sets and
relations with monoidal product, the disjoint union (categorical biproduct) is
a monoidal ∗-category too, with the same definition for the ()∗ functor.

Yet another example that shows up frequently in the context of GoI is the
category PInj] of sets and partial injective maps, with disjoint union as the
monoidal product. Given f : X −→ Y , f ∗ = f−1.

Other examples include Hilbfd of finite dimensional Hilbert spaces and
bounded linear maps, URep(G), finite representations of a compact group
G, etc. For more details, examples and the ways that such categories show up
in logic and computer science, see [ABP99].

Definition 8.2 A GoI category is a triple (C, T,⊥) where C is a partially
traced ∗-category as in Section 7, T = (T, ψ, ψI) : C −→ C is a traced sym-
metric monoidal functor, that is if f ∈ TU

X,Y , then ψ−1
Y,UT (f)ψX,U ∈ TTU

TX,TY and

TrTUTX,TY (ψ−1
Y,UT (f)ψX,U) = T (TrUX,Y (f)). Here ⊥ is an orthogonality relation

on C as in the above. Furthermore, we require that,

• The following natural retractions exist:

54

(i) KI � T (w,w∗), KI denotes the constant I functor.

(ii) Id� T (d, d∗)

(iii) T 2 � T (e, e∗)

(iv) T ⊗ T � T (c, c∗)

• The orthogonality relation must be GoI compatible, that is, it must satisfy
the following additional axioms:

(c1) For all f : V −→ U , g : U −→ V ,

f ⊥U,V g implies dUfd
∗
V ⊥TU,TV Tg.

(c2) For all f : U −→ U and g : I −→ I,

wUgw
∗
U ⊥TU,TU Tf.

(c3) For all f : TV ⊗ TV −→ TU ⊗ TU and g : U −→ V ,

f ⊥TU⊗TU,TV⊗TV Tg ⊗ Tg implies cUfc
∗
V ⊥TU,TV Tg.

• The functor T commutes with ()∗, that is (T (f))∗ = T (f ∗). Moreover,
ψ∗ = ψ−1 and ψ∗I = ψ−1

I .

Proposition 8.3 Suppose C is a partially traced ∗-category that is in addition
equipped with an endofunctor T and monoidal retractions as in Definition
8.2. Then, the orthogonality relation ⊥ defined as in Example 7.10 is GoI
compatible.

Proof. We shall verify the compatibility axioms of Definition 8.2.

(c1) TrTV (T (g)dUfd
∗
V) = TrTV (dV gfd

∗
V) = TrV (gf).

(c2) TrTU(T (f)wUgw
∗
U) = TrTU(wUgw

∗
U) = TrI(g).

Recall that TI
I,I = C(I, I).

(c3) TrTV (T (g)cUfc
∗
V) = TrTV (cV (Tg ⊗ Tg)fc∗V) = TrTV⊗TV ((Tg ⊗ Tg)f). 2

GoI categories are the main mathematical structures in our semantic inter-
pretation in the following section. Here are a few examples of GoI categories.

Examples 8.4 (a) (PInj], T,⊥)

We define, f ⊥ g iff gf is nilpotent. It can be easily checked that this definition
satisfies the axioms for an orthogonality relation.

55

Let us verify the compatibility axioms:

• For f : V −→ U and g : U −→ V , suppose gf is nilpotent, say (gf)n = 0,
then (T (g)dUfd

∗
V)n = (dV gfd

∗
V)n by naturality of dU , but as d∗V dV = 1V we

have (dV gfd
∗
V)n = dV (gf)nd∗V = 0.

• As I = ∅ and wI = 0, we have that T (f)wUgw
∗
U is nilpotent.

• For f : TV ⊗ TV −→ TU ⊗ TU and g : U −→ V , suppose (Tg ⊗ Tg)f is
nilpotent, say ((Tg⊗Tg)f)n = 0, Then (T (g)cUfc

∗
V)n = (cV (Tg⊗Tg)fc∗V)n,

by naturality of cV , but as c∗V cV = 1TV⊗TV we have (cV (Tg ⊗ Tg)fc∗V)n =
cV ((Tg ⊗ Tg)f)nc∗V = 0.

Finally, for any f : X −→ Y , (Tf)∗ = T (f ∗).

(b) (Hilb⊕, T,⊥), where Hilb is the category of Hilbert spaces and bounded
linear maps. The monoidal product is the direct sum of Hilbert spaces. We
have seen above that Hilb⊕ is a partially traced ∗-category.

T (H) = `2 ⊗H where `2 is the space of square summable sequences.

We define, f ⊥ g iff (1 − gf) is an invertible linear transformation. Compat-
ibility follows from Proposition 8.3, because for f : H −→ K , g : K −→ H,
f ⊥ g iff gf ∈ TH .

Finally, as Hilb⊗ is also a ∗-category with f ∗ the adjoint of f , we have that
for any f : H −→ K, (Tf)∗ = T (f ∗).

(c) (Rel⊕, T,⊥) is a GoI-category with the same definitions for T and ⊥ as in
the case of PInj. Note that disjoint union, denoted ⊕, is in fact the categorical
biproduct in Rel.

Multiobject Geometry of Interaction (MGoI) was introduced in [HS05a] and
was used to interpret MLL without units. It was later extended to expo-
nentials in [Hag06]. The main idea in [HS05a] was to keep the types of the
formulas that were defined by a denotational semantics map during the GoI
interpretation. For the multiplicative case this also implied that, in contrast
to the usual GoI, there was no need for a reflexive object U and this made the
interpretation possible in categories like finite dimensional vector spaces. On
the other hand, in the case of exponentials, we soon observe that infinity forces
itself into the framework: it is no longer possible to carry out the MGoI inter-
pretation in finite dimensions. This transition to infinity occurs, for example
when we are forced to admit a retraction TTA� TA for any object A in the
relevant category. Note that, although in this way reflexive objects reappear,
they are not used to collapse types as in the GoI interpretation using a single

56

object U .

8.1 MGoI Interpretation of formulas

Given a GoI category (C, T,⊥), let A be an object of C and let f, g ∈ End(A).
We say that f is orthogonal to g, denoted f ⊥ g, if (f, g) ∈⊥. Also given
X ⊆ End(A) we define

X⊥ = {f ∈ End(A) | ∀g ∈ X, f ⊥ g}.

We now define an operator on the objects of C as follows: Given an object
A, T (A) = {X ⊆ End(A) |X⊥⊥ = X}. We shall also need the notion of
a denotational interpretation for formulas. We define an interpretation map
− on the formulas of MELL as follows. Given the value of − on the

atomic propositions as objects of C, we extend it to all formulas by:

• A⊥ = A
• A ...

............
.................................. B = A⊗B = A ⊗ B .

• !A = ?A = T A .

The MGoI-interpretation for formulas is defined as follows.

• θ(α) ∈ T (α), where α is an atomic formula.
• θ(α⊥) = θ(α)⊥, where α is an atomic formula.
• θ(A⊗B) = {a⊗ b | a ∈ θ(A), b ∈ θ(B)}⊥⊥
• θ(A ...

............
.................................. B) = {a⊗ b | a ∈ θ(A)⊥, b ∈ θ(B)⊥}⊥

• θ(!A) = {Ta | a ∈ θ(A)}⊥⊥
• θ(?A) = {Ta | a ∈ θ(A⊥)}⊥

Easy consequences of the definition are: (i) for any formula A, (θA)⊥ = θA⊥,
(ii) θ(A) ⊆ End(A), and (iii) θ(A)⊥⊥ = θ(A).

8.2 MGoI Interpretation of proofs

In this section we define the MGoI interpretation for proofs of MELL without
units. All references from now on refer to this MGoI interpretation unless
stated otherwise.

As before, every MELL sequent will be of the form ` [∆],Γ where Γ is a
sequence of formulas and ∆ is a sequence of cut formulas that have already
been made in the proof of ` Γ. This device is used to keep track of the cuts

57

in a proof of ` Γ. A proof π of ` [∆],Γ is represented by a morphism π ∈
End(⊗ Γ ⊗ ∆). With Γ = A1, · · · , An, ⊗ Γ stands for A1 ⊗· · ·⊗ An ,

and with ∆ = B1, B
⊥
1 , · · ·Bm, B

⊥
m, ∆ = T k(B1 ⊗ · · · ⊗ Bm

⊥), for
some non-negative integer k, with T 0 being the identity functor. We drop
the double brackets wherever there is no danger of confusion. We also define
σ = s ⊗ · · · ⊗ s (m-copies) where s is the symmetry map at different types
(omitted for convenience), and |∆| = 2m. The morphism σ represents the cuts
in the proof of ` Γ, i.e. it models ∆. In the case where ∆ is empty (that is
for a cut-free proof), we define σ : I −→ I to be 1I where I is the unit of the
monoidal product in C.

Definition 8.5 (The MGoI Interpretation) Let π be a proof of ` [∆],Γ.
We define the MGoI interpretation of π, denoted by π , by induction on the
length of the proof as follows.

(1) π is an axiom ` A,A⊥, π := sV,V where A = A⊥ = V .

(2) π is obtained using the cut rule on π′ and π′′ that is,

π′....
` [∆′],Γ′, A

π′′....
` [∆′′], A⊥,Γ′′

` [∆′,∆′′, A,A⊥],Γ′,Γ′′
cut

Define π = τ−1(π′ ⊗ π′′)τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗∆′ ⊗∆′′ ⊗ A⊗ A⊥ τ−→ Γ′ ⊗ A⊗∆′ ⊗ A⊥ ⊗ Γ′′ ⊗∆′′.

(double brackets and ⊗ are dropped for the sake of readability).

(3) π is obtained using the exchange rule on the formulas Ai and Ai+1 in Γ′.
That is π is of the form

π′....
` [∆],Γ′

` [∆],Γ
exchange

where Γ′ = Γ′1, Ai, Ai+1,Γ
′
2 and Γ = Γ′1, Ai+1, Ai,Γ

′
2. Then, π is ob-

tained from π′ by interchanging the rows i and i + 1. So, π =
τ−1 π′ τ , where τ = 1Γ′1

⊗ s⊗ 1Γ′2⊗∆.

(4) π is obtained using an application of the par rule, that is π is of the form:

π′

...

` [∆],Γ′, A,B

` [∆],Γ′, A ...
............
.................................. B

...
............
..................................

. Then π = π′ .

58

(5) π is obtained using an application of the times rule, that is π is of the
form:

π′....
` [∆′],Γ′, A

π′′....
` [∆′′],Γ′′, B

` [∆′,∆′′],Γ′,Γ′′, A⊗B ⊗

Then π = τ−1(π′ ⊗ π′′)τ , where τ is the permutation
Γ′ ⊗ Γ′′ ⊗ A⊗B ⊗∆′ ⊗∆′′

τ−→ Γ′ ⊗ A⊗∆′ ⊗ Γ′′ ⊗B ⊗∆′′.

(6) π is obtained from π′ by an of course rule, that is π has the form :

π′

...

` [∆], ?Γ′, A

` [∆], ?Γ′, !A
of course

Then π = (eΓ′ ⊗ 1TA ⊗ 1∆)ϕ−1T (π′)ϕ(e∗Γ′ ⊗ 1TA ⊗ 1∆), where
TT � T (e, e∗), with Γ′ = A1, · · · , An, eΓ′ = eA1 ⊗ · · · ⊗ eAn , similarly for
e∗, and ϕ is the canonical isomorphism: The isomorphism ϕ : T 2(Γ′) ⊗
TA ⊗ T (∆) −→ T (T (Γ′) ⊗ A ⊗ ∆) is defined using the isomorphism
ψX,Y : TX × TY −→ T (X ⊗ Y). With Γ′ = A1, · · · , An, T (Γ′) is a short
hand for TA1 ⊗ · · · ⊗ TAn, similarly for T (∆).

(7) π is obtained from π′ by the dereliction rule, that is, π is of the form :

π′

...

` [∆],Γ′, A

` [∆],Γ′, ?A
dereliction

Then π = (1Γ′ ⊗ dA ⊗ 1∆) π′ (1Γ′ ⊗ d∗A ⊗ 1∆) where Id� T (d, d∗).

(8) π is obtained from π′ by the weakening rule, that is, π is of the form:

π′

...

` [∆],Γ′

` [∆],Γ′, ?A
weakening

Then π = (1Γ′⊗wA⊗1∆) π′ (1Γ′⊗w∗A⊗1∆), where KI �T (w,w∗).

(9) π is obtained from π′ by the contraction rule, that is, π is of the form :

59

π′

...

` [∆],Γ′, ?A, ?A

` [∆],Γ′, ?A
contraction

Then π = (1Γ′ ⊗ cA⊗ 1∆) π′ (1Γ′ ⊗ c∗A⊗ 1∆), where T ⊗ T � T (c, c∗).

Examples 8.6 (a) Let π be the following proof:

` A,A⊥ ` A,A⊥

` [A⊥, A], A,A⊥
cut

Then the MGoI interpretation of this proof is given by π = τ−1(s⊗ s)τ =

sV⊗V,V⊗V where τ = (1⊗ 1⊗ s)(1⊗ s⊗ 1) and A = A⊥ = V .

(b) Now consider the following proof

` A,A⊥

` A, ?A⊥

`!A, ?A⊥ ` B,B⊥

`!A⊗B, ?A⊥ ...
............
.................................. B⊥

Given A = V and B = W , we have π = (1 ⊗ s ⊗ 1)(1 ⊗ e ⊗ 1 ⊗
1)(ψ−1T (h)ψ ⊗ s)(1⊗ e∗ ⊗ 1⊗ 1)(1⊗ s⊗ 1) where h = (1⊗ dV)s(1⊗ d∗V).

Proposition 8.7 Let π be an MELL proof of ` [∆],Γ. Then π is a partial
symmetry.

Proof. Proof follows by induction on the length of the proofs, noting that the
functor ()∗ is a strict symmetric monoidal functor, T (f)∗ = T (f ∗), ψ∗ = ψ−1,
and ψ∗I = ψ−1

I . 2

8.3 Interpretation of cut-elimination

As we saw previously, the mathematical model of cut-elimination is given by
the execution formula as in (8), defined as follows:

EX(π , σ) = Tr⊗∆
⊗Γ,⊗Γ((1⊗ σ) π)

where π is a proof of the sequent ` [∆],Γ, and σ = s⊗m models ∆, where
|∆| = 2m. Note that EX(π , σ) is a morphism from ⊗Γ −→ ⊗Γ, when it
exists. We shall prove below (see Theorem 8.12) that the execution formula
always exists for any MELL proof π.

60

Example 8.8 Consider the proof π in Example 6.6 above. Recall also that
σ = s in this case (m = 1). Then EX(π , σ) = Tr((1 ⊗ sV,V)sV⊗V,V⊗V) =
sV,V .

8.4 Soundness of the Interpretation

In this section we discuss the soundness of the MGoI interpretation. We show
that if a proof π is reduced (via cut-elimination) to another proof π′, then
EX(π , σ) = EX(π′ , τ); that is, EX(π , σ) is an invariant of reduction.
In particular, if π′ is cut-free (i.e. a normal form) we have EX(π , σ) =
EX(π′ , 1I) = π′ .

We shall not give the proof of the soundness here, but will mention the main
lemmas used in this proof.

Lemma 8.9 (Associativity of cut) Let π be a proof of ` [Γ,∆],Λ and σ
and τ be the morphisms representing the cut-formulas in Γ and ∆ respectively.
Then

EX(π , σ ⊗ τ) = EX(EX(π , τ), σ) = EX(EX((1⊗ s) π (1⊗ s), σ), τ),

whenever all traces exist.

Definition 8.10 Let Γ = A1, · · · , An and Vi = Ai .

• A datum of type θΓ is a morphism M : ⊗iVi −→ ⊗iVi such that for any
ai ∈ θ(A⊥i), ⊗iai ⊥M and

M .a1 := TrV1(s−1
⊗i 6=1Vi,V1

(a1 ⊗ 1V2 ⊗ · · · ⊗ 1Vn)Ms⊗i6=1Vi,V1)

and
M .̂(a2 ⊗ · · · ⊗ an) := TrV2⊗···⊗Vn((1⊗ a2 ⊗ · · · ⊗ an)M)

both exist.

• An algorithm of type θΓ is a morphism M : ⊗iVi ⊗ ∆ −→ ⊗iVi ⊗ ∆
for some ∆ = B1, B2, · · · , B2m with m a nonnegative integer and Bi+1 =
B⊥i for i = 1, 3, · · · , 2m − 1, such that if σ : ⊗2m

i=1 Bi −→ ⊗2m
i=1 Bi is

⊗2m−1
i=1 ,odd s Bi , Bi+1

, EX(M,σ) exists and is a datum of type θΓ.

Lemma 8.11 Let Γ̃ = A2, · · · , An and Γ = A1, Γ̃. Let Vi = Ai , and M :
⊗iVi −→ ⊗iVi, for i = 1, · · · , n. Then, M is a datum of type θ(Γ) iff for all
ai ∈ θ(A⊥i), M .a1 and M .̂(a2 ⊗ · · · ⊗ an) (defined as above) exist and are in
θ(Γ̃), and θ(A1), respectively.

Theorem 8.12 (Proofs as algorithms) Let π be an MELL proof of a se-
quent ` [∆],Γ. Then π is an algorithm of type θΓ.

61

Corollary 8.13 (Existence of Dynamics) Let π be an MELL proof of a
sequent ` [∆],Γ. Then EX(π , σ) exists.

Theorem 8.14 (EX is an invariant) Let π be an MELL proof of a sequent
` [∆],Γ such that ?A does not occur in Γ for any formula A. Then,

• If π reduces to π′ by any sequence of cut-elimination steps, then EX(π , σ) =
EX(π′ , τ). So EX(π , σ) is an invariant of reduction.

• In particular, if π′ is any cut-free proof obtained from π by cut-elimination,
then EX(π , σ) = EX(π′ , 1I) = π′ .

9 Concluding Remarks

We have mentioned several open questions in the tutorial, and the reader will
be able to find many interesting questions in following up the literature in the
Bibliography. Still, a few questions seem particularly apt.

(i) The GoI interpretation does not seem to deal well with units in LL. Thus,
one should formulate GoI taking into account *-autonomous categories without
units. One such study is in R. Houston’s thesis [Hou07].

(ii) The question of how to take into account the additives of LL in GoI and
the associated categorical analysis of [Gi95a], both along the style here, as
well as in the style of [AHS02], is still open.

(iii) Finding examples of our GoI situations in von Neumann algebras, and
categorically analyzing Girard’s recent notions of GoI [Gi07,Gi08] is a chal-
lenge, and presumably would need to accommodate categorical versions of
Polarized Linear Logics, as in [HamSc07].

References

[Abr93] S. Abramsky, Computational Interpretations of Linear Logic, Theoretical
Computer Science111, 1993, 3-57.

[Abr96] S. Abramsky (1996), Retracing Some Paths in Process Algebra. In
CONCUR 96, Springer LNCS 1119, 1-17.

[Abr05] S. Abramsky, Abstract Scalars, Loops, and Free Traced and Strongly
Compact Closed Categories, in: CALCO 2005, Vol. 3629, Springer Lecture
Notes in Computer Science, 2005, 1-31.

62

[Abr07] S. Abramsky, Temperley-Lieb algebra: from knot theory to logic and
computation via quantum mechanics In Mathematics of Quantum
Computing and Technology, Goong Chen, Louis Kauffman and Sam
Lomonaco, eds. Taylor and Francis, 2007, 515–558 .

[ABP99] S. Abramsky, R. Blute, and P. Panangaden (1999), Nuclear and trace ideals
in tensored *-categories, J. Pure and Applied Algebra vol. 143, 3–47.

[AbCo04] S. Abramsky and B. Coecke, A categorical semantics of quantum
protocols, in Proc. 19th Annual IEEE Symposium on Logic in Computer
Science (LICS) , IEEE Computer Science Press, 415-425, 2004.

[AHS02] S. Abramsky, E. Haghverdi, and P. J. Scott (2002), Geometry of Interaction
and Linear Combinatory Algebras. MSCS, vol. 12(5), 2002, 625-665, CUP.

[AJ94a] S. Abramsky and R. Jagadeesan, New Foundations for the Geometry of
Interaction. Information and Computation 111 (1), 53-119 (1994).

[Bail95] P. Baillot (1995), Abramsky-Jagadeesan-Malacaria strategies and the
geometry of interaction, mémoire de DEA, Universite Paris 7, 1995.

[BP01] P. Baillot and M. Pedicini, Elementary complexity and geometry of
interaction, Fundamenta Informaticae, vol. 45, no. 1-2, 2001

[Barr79] M. Barr, ∗-Autonomous Categories, Springer Lecture Notes in Mathematics
752 , 1979.

[Barr92] Barr, M. (1992), Algebraically Compact Functors. JPAA, Vol. 82, 211-231.

[BE93] Stephen L. Bloom and Zoltan Esik. Iteration theories: equational logic of
iterative processes. EATCS monographs on theoretical computer science,
Springer-Verlag, 1993.

[Bl96] R. Blute, Hopf algebras and linear logic, Mathematical Structures in
Computer Science 6, pp. 189-212, (1996).

[BCST96] R. Blute, J. R. B. Cockett, R. A. G. Seely and T. Trimble. Natural
deduction and coherence for weakly distributive categories. Journal of
Pure and Applied Algebra 13, pp. 229–296, (1996)

[BCS96] R. Blute, J. R. B. Cockett, R. A. G. Seely. ! and ?: Storage as tensorial
strength. Mathematical structures in Computer Science 6, pp. 313-351,
(1996).

[BCS00] R. Blute, J. R. B. Cockett, R. A. G. Seely (2000), Feedback for linearly
distributive categories: traces and fixpoints, Bill (Lawvere) Fest, Journal
of Pure and Applied Algebra, vol. 154, pp 27-69.

[BS96] R. Blute, P. Scott. Linear Lauchli semantics, Annals of Pure and Applied
Logic 77, pp. 101-142 (1996).

[BS04] R. Blute, P. Scott. Category Theory for Linear Logicians, in
Linear Logic in Computer Science, Camb. U. Press, 2004, 3–64

63

[Bor93] F. Borceux. Handbook of Categorical Algebra, Cambridge University Press,
(1993).

[CS97] J. R. B. Cockett, R. A. G. Seely. Weakly distributive categories. Journal
of Pure and Applied Algebra 114, pp. 133-173, (1997).

[Dan90] V. Danos (1990), La logique linéaire appliquée à l’étude de divers processus
de normalisation et principalement du λ-calcul. PhD thesis, Université
Paris VII.

[DR95] V. Danos and L. Regnier (1995), Proof-nets and the Hilbert Space. In:
Advances in Linear Logic, London Math. Soc. Notes, 222, CUP, 307–328.

[DopR89] Doplicher, S. and Roberts, J.E. (1989), A New Duality for Compact
Groups. Invent. Math. 98, pp. 157-218.

[FP07] C. Fuhrman and D. Pym, On categorical Models of classical logic and
the Geometry of Interaction, Math. Structures in Comp. Science (2007),
Cambridge, 957–1027

[Ger85] R. Geroch. Mathematical Physics, University of Chicago Press. 1985

[GLR85] Ghez, P., Lima, R. and Roberts, J.E. (1985), W ∗-categories. Pacific
Journal of Math. 120, pp. 79-109.

[Gi87] J.-Y. Girard Linear Logic. Theoretical Computer Science 50 (1) (1987),
1-102.

[Gi88] J.-Y. Girard (1988), Geometry of Interaction II: Deadlock-free Algorithms.
In Proc. of COLOG’88, LNCS 417, Springer, 76–93.

[Gi89] J-Y. Girard, Towards a Geometry of Interaction, in: Categories in
Computer Science and Logic, ed. by J.W. Gray and A. Scedrov, Contemp.
Math, 92, AMS , 1989, pp. 69-108.

[Gi89a] J.-Y. Girard (1989a), Geometry of Interaction I: Interpretation of System
F. In Proc. Logic Colloquium 88, North Holland, 221–260.

[Gi95a] J.-Y. Girard (1995), Geometry of Interaction III: Accommodating the
Additives. In: Advances in Linear Logic, LNS 222,CUP, 329–389,

[Gi07] J.-Y. Girard (2007). Le Point Aveugle I, II, Hermann Éditeurs, Paris , 567
+ pp.

[Gi08] J.-Y. Girard. Geometry of Interaction V: logic in the hyperfinite factor,
manuscript, 2008.

[GLT] J.-Y. Girard, Y. Lafont, P.Taylor. Proofs and Types, Cambridge Tracts in
Theoretical Computer Science 7, 1989.

[GSS] Girard, J.-Y., A. Scedrov, and P.J. Scott Bounded linear logic, Theoretical
Comp. Science97, 1992, pp. 1–66.

64

[GAL92] G. Gonthier, M. Abadi, and J.-J. Lévy (1992), The geometry of optimal
lambda reduction. In Proceedings of Logic in Computer Science, vol. 9 pp.
15-26.

[Hag00] E. Haghverdi, A Categorical Approach to Linear Logic, Geometry of Proofs
and Full Completeness, PhD Thesis, University of Ottawa, Canada 2000.

[Hag00a] E. Haghverdi, Unique Decomposition Categories, Geometry of Interaction
and combinatory logic, Math. Struct. in Comp. Science, vol. 10, 2000, 205-
231.

[HS04a] E. Haghverdi and P.J.Scott, A categorical model for the Geometry of
Interaction, Theoretical Computer Science Volume 350, Issues 2-3 , Feb
2006, pp. 252-274. (Preliminary Version in: in Automata , Languages,
Programming(ICALP 2004), Springer LNCS 3142, pp. 708-720).

[HS04b] E. Haghverdi and P.J.Scott, From Geometry of Interaction to Denotational
Semantics. Proceedings of CTCS2004. In ENTCS, vol. 122, pp. 67-87.
Elsevier.

[HS05a] E. Haghverdi and P.J.Scott, Towards a Typed Geometry of Interaction,
CSL2005 (Computer Science Logic), Luke Ong, Ed. SLNCS 3634, pp. 216-
231.

[Hag06] E. Haghverdi, Typed GoI for Exponentials. in: M. Bugliesi et al. (Eds.):
Proc. of ICALP 2006, Part II, LNCS 4052, pp. 384-395, 2006. Springer
Verlag.

[HamSc07] M. Hamano, P. Scott, A categorical semantics for polarized MALL,
Ann. Pure & Applied Logic, 145 (2007),276-313

[Has97] Hasegawa, M. (1997), Recursion from Cyclic Sharing : Traced Monoidal
Categories and Models of Cyclic Lambda Calculus, Springer LNCS 1210,
196-213.

[Has08] Hasegawa, M. On Traced Monoidal Closed Categories, MSCS, to appear
(2008).

[Hi97] P. Hines. The Algebra of Self-Similarity and its Applications. Thesis.
University of Wales, (1997).

[Hi03] P. Hines (2003), A categorical framework for finite state machines, Math.
Struct. in Comp. Science, vol. 13, 451-480.

[HiSc07] P. Hines and P. Scott (2007) Conditional Quantum Iteration from
Categorical Traces, manuscript.

[Hou07] R. Houston (2007) Modelling Linear Logic without Units, PhD Thesis,
Dept. of Computer Science, Manchester University.

[HylSc03] M. Hyland and A. Schalk (2003), Glueing and Orthogonality for Models
of Linear Logic. Theoretical Computer Science vol. 294, pp. 183–231.

65

[JS91] A. Joyal and R. Street, The geometry of tensor calculus I, Advances in
Mathematics 88, 1991, pp. 55–112.

[JS93] A. Joyal and R. Street, Braided tensor categories , Advances in
Mathematics 102, no. 1 1993, pp. 20-79.

[JSV96] A. Joyal, R. Street, and D. Verity (1996), Traced Monoidal Categories.
Math. Proc. Camb. Phil. Soc. 119, 447-468.

[KRT97] C. Kassel, M. Rosso, V. Turaev. Quantum Groups and Knot Invariants.
Soc. Mathématique de France, 1997.

[KSW02] P. Katis, N. Sabadini, R.F.C. Walters, Feedback, trace and fixed-point
semantics, Theoret. Informatics Appl 36, (2002), 181-194.

[KL80] G. M. Kelly and M. Laplaza. Coherence for compact closed categories.
Journal of Pure and Applied Algebra 19 (1980) 193–213 .

[KR77] A. Kock and G. Reyes, Doctrines in categorical logic, in Handbook of
Mathematical Logic, J. Barwise, ed. North-Holland, 1977.

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic,
Cambridge Studies in Advanced Mathematics 7, Cambridge University
Press, 1986.

[L89] J. Lambek, Multicategories Revisited. Contemp. Math.92, pp. 217-239.

[Lau01] O. Laurent, (2001), A Token Machine for Full Geometry of Interaction. In
TLCA ’01, SLNCS 2044, pp. 283-297.

[Law69] F.W. Lawvere, Adjointness in Foundations, Dialectica, 23, pp. 281-296.

[Law70] F. W. Lawvere, Equality in hyperdoctrines and comprehension schema
as an adjoint functor, Applications of Category Theory, Proc. of A.M.S.
Symposia on Pure Math XVII, AMS, Providence, RI. 1970.

[Lef] S. Lefschetz, Algebraic Topology, Am. Math. Soc. Colloquium Publications,
1942.

[Mac98] S. Mac Lane (1998), Categories for the Working Mathematician, 2nd Ed.
Springer.

[MR91] P. Malacaria and L. Regnier (1991), Some Results on the Interpretation of
λ-calculus in Operator Algebras. Proc. Logic in Computer Science (LICS)
pp. 63-72, IEEE Press.

[MA86] E. Manes and M. Arbib. Algebraic Approaches to Program Semantics,
Springer-Verlag, 1986.

[Mel07] P.-A. Melliès, Categorical semantics of linear logic: a survey, 132pp. (in
preparation). See website http://www.pps.jussieu.fr/ mellies/

[Pl03] G. Plotkin, Trace Ideals, MFPS 2003 invited lecture, Montreal
(unpublished).

66

[Reg92] L. Regnier (1992), Lambda-calcul et Réseaux, PhD Thesis, Université Paris
VII.

[Sch07] U. Schöpp, Stratified Bounded Affine Logic for Logarithmic Space, Proc.
Logic in Computer Science (LICS), IEEE, 2007, 411-420.

[Sc00] P. Scott, Some Aspects of Categories in Computer Science, in
Handbook of Algebra, Vol. 2 , M. Hazewinkel, ed., 2000, Elsevier,pp. 3–77.

[See89] R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras.
Contemporary Mathematics, Volume 92. American Mathematical Society,
(1989).

[Ste00] G. Stefanescu. Network Algebra, Springer-Verlag, 2000.

[TrSchw] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, Camb. U.
Press, 1996.

A Graphical Representation of The Trace Axioms

X’ X’

1
U

f f
g g

U U

YY

UU

X X

U

Naturality in X

1
U

f
g

U U

YX Y’

U

f

X Y’

U U

Yg

Naturality in Y

1
Y

f

U

Y

U

X

U

Y

g

Y

U’

f
g

X

UU’

1
XX

Dinaturality in U

67

ff

X Y

I I

X Y

Vanishing I

ff

VUVU V V

X Y

U U

YX

Vanishing II

f

g

U U

W

X

Z

Y

g

f

W Z

X Y

U U

Superposing

U U

UU

U U

Yanking

B Comparing GoI Notation

Girard This Paper

1⊗ a uT (a)v

p, p∗ j1, k1

q, q∗ j2, k2

(1⊗ r), (1⊗ r∗) uc1v, uc
′
1v

(1⊗ s), (1⊗ s∗) uc2v, uc
′
2v

t, t∗ ueU (Tv)v, u(Tu)e′Uv

d, d∗ udU , d
′
Uv

68

