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Abstract 

We introduce a linear analogue of Lbchli’s semantics for intuitionistic logic. In fact, our 
result is a strengthening of Lguchli’s work to the level of proofs, rather than provability. This 
is obtained by considering continuous actions of the additive group of integers on a category 
of topological vector spaces. The semantics, based on functorial polymorphism, consists of 
dinatural transformations which are equivariant with respect to all such actions. Such dinatural 
transformations are called un$orm. To any sequent in Multiplicative Linear Logic (MU), we 
associate a vector space of “diadditive” uniform transformations. We then show that this space 
is generated by denotations of cut-free proofs of the sequent in the theory MLL+h4IX. Thus 
we obtain a fulI completeness theorem in the sense of Abramsky and Jagadeesan, although our 
result differs from theirs in the use of dinatural transformations. 

As corollaries, we show that these dinatural transformations compose, and obtain a conserva- 
tivity result: diadditive dinatural transformations which are uniform with respect to actions of the 
additive group of integers are also uniform with respect to the actions of arbitrary cocommutative 
Hopf algebras. Finally, we discuss several possible extensions of this work to noncommutative 
logic. 

It is well known that the intuitionistic version of Liiuchli’s semantics is a special case of the 
theory of logical relations, due to Plotkin and Statman. Thus, our work can also be viewed as 
a first step towards developing a theory of logical relations for linear logic and concurrency. 

1. Introduction 

In the 193Os, Heyting introduced a “proof” interpretation of intuitionistic logic. This 

informal semantics has become increasingly influential, both in logic and more recently 

in computer science. Indeed, attempts to develop a rigorous mathematical framework 

for Heyting’s ideas led the way to many fundamental discoveries, for example Kleene’s 

Realizability, G6del’s Dialectica Interpretation , and (more recently) the Curry-Howard 

Isomorphism [21]. However somewhat less familiar is Liuchli’s seminal work in the 
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1960s [30]: this was the first attempt to give both an abstract model of “proof” for 

intuitionistic logic and a Completeness Theorem for provability. 

Lauchli’s viewpoint models a formula by a set: intuitively, by its set of (abstract) 

proofs. Ordinary sets, however, have insufficient structure to obtain a completeness 

theorem of this type. Lauchli’s modelling used a more sophisticated notion of “set” 

and “element”: 

Formula = set with a distinguished permutation on it 

Proof = invariant element. 

A set with a distinguished permutation may be identified with a Z-set (a set with 

an action of the free cyclic group Z). Thus, from this viewpoint, Ltiuchli’s abstract 

models are nothing more than Z-set models [23]. Lhchli’s Completeness Theorem 

says: a formula is provable if and only if its interpretation in every abstract model 
contains an invariant element (i.e. an “abstract proof”). 

Liiuchli’s semantics also has a categorical interpretation. The category of Z-sets is 

a Cartesian closed category (= ccc), and so interprets simply typed k-calculus as in 

[29], or equivalently deductions in a fragment of intuitionistic logic. A categorical 

presentation can be found in [23]. 

While Liiuchli’s semantics is a semantics of proofs, Liiuchli’s theorem is finally 

about provability, rather than genuine proofs. Thus, we might ask for a better result: 

can one find a notion of abstract model which characterizes proofs themselves? This is 

the fill completeness problem [2]. From the Curry-Howard viewpoint, which identifies 

formulas with types and (natural deduction) proofs with typed &terms, we are asking 

for a typed lambda model d with a surjective interpretation function i[ - ] : 2 + 8. 

Thus every function in such a model is the denotation of some proof. 

From a Computer Science viewpoint, full completeness theorems are similar to full 
abstraction theorems, since lambda terms correspond to programs. Thus one is attempt- 

ing to characterize operational or syntactic behavior of program terms using a more 

“mathematical” model. Indeed, the fundamental full completeness results of Abram- 

sky and Jagadeesan [2] for multiplicative linear logic (= MU) using game semantics 

recently led to a solution of the full abstraction problem for PCF [3], a fundamental 

problem in denotational semantics for many years [35]. 

Finally, from a categorical viewpoint, full completeness theorems are asking for a fufZ 
representation of a certain kind of free category, say %:, into a model category 8. In this 

sense, a full completeness theorem is a strong kind of representation theorem. Of course 

for such a result to be sensible, the model 6’ should not itself be too syntactic, but 

rather a “genuine” mathematical structure not built from @?. For example, the Yoneda 

embedding [29] Y : $9 + SetQDP is well known to give a fully faithful representation 

for ccc’s, but it fails to yield an independent model d in our sense: Set@’ depends 

too much on %. 

The first full completeness result that we know of is due to Plotkin [40]. Inspired by 

Lhchli’s work, Plotkin attempted to characterize lambda definability of set-theoretic 

functions in the full type hierarchy (= a full sub-ccc of Sets) generated from an 
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infinite atomic set. This characterization involved invariance under certain kinds of 

logical relations. For a detailed discussion, see Section 4 below. As such, we believe 

that the work presented in this paper may be viewed as the beginnings of a theory of 

logical relations for linear logic and concurrency. 

In this paper, we present a semantics based upon an extension of functorial polymor- 

phism [5, 9, 221 to the linear setting. In this setting, types are definable multivariant 

functors on a category of topological vector spaces. We then interpret terms, i.e. de- 

ductions in the theory MLL+MIX as certain dinatural transformations between such 

functors. The key property is that these transformations be uniform, in other words, 

equivariant with respect to certain continuous actions of the additive group of integers. 

In the case of sequents which are balanced but not binary, we add an additional cri- 

terion known as diadditiuity. This says that the transformation is a linear combination 

of substitution instances of dinaturals interpreting binary sequents. This is in keeping 

with the philosophy that in a (cut-free) proof structure it is the axiom links which 

behave as variables, and one should be allowed to substitute distinct variables for two 

variables not connected by axiom links. 

The use of dinaturality and functorial polymorphism is a substantial difference be- 

tween our work and previous such theorems. For example, function spaces have a 

natural interpretation as certain multivariant functors. This work also suggests that the 

notion of group action may be fundamental to future results of this sort. 

Our full completeness theorem (Section 10) takes the following strong form: in- 

terpreting formulas as definable functors F, F’, the set of uniform diadditive dinatural 

transformations has a vector space structure, with basis the cut-free proofs in MLL + 

MIX. This yields several interesting corollaries (see Section 10): 

- Such dinaturals compose. When one is constructing a semantics based on functorial 

polymorphism [5], one must show that the dinatural transformations representing the 

terms compose. This is because dinatural transformations, unlike natural transforma- 

tions, do not compose in general. 

- A conservativity result: if a proof (= diadditive dinatural) is uniform with respect to 

the additive group of integers, it is uniform with respect to arbitrary cocommutative 

Hopf algebras. 

Finally, we point out that our treatment appears to be extendible to other theories, 

notably theories of noncommutative linear logics, by generalizing groups to general 

Hopf algebras. At the same time, the categories of vector spaces we deal with are 

complete and cocomplete, suggesting the interpretation of far more than just MLL. 

2. Proof nets 

In this section, we review basic properties of proof nets, and their relationship to 

*-autonomous categories. We assume that the reader is familiar with linear sequent 

calculus. If not, the reader might consult [19] or [48]. 
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Notation convention. We shall write !- r to denote a one-sided sequent, and say that 
F r is derivable (correct or provable) if there is a sequent calculus proof of it. We 
will use similar terminology for two-sided sequents. 

Proof nets are a graph-theoretic natural deduction proof system for the multiplicative 
fragment of linear logic, introduced by Girard in [ 191. The remarkable property of proof 
nets is the interaction between a global correctness criterion and a local normalization 
process. It is this interaction which makes nets useful in analyzing coherence problems 
in *-autonomous categories [9]. 

The version of proof net we present is a simplification due to Danos and Regnier 
[14]. We lirst define the notion of proof structure. These are certain graphs whose 
nodes are labelled by formulas (or better, formula occurrences). Proof structures are 
constructed inductively from four types of links: 

AXIOM LINKS TENSOR LINKS 

A B 

A Al 
v 

A@B 

PAR LINKS 

A B 

v 
A9B 

CUT LINKS 

A AL 

v 

CUT 

Each link has a multiset of hypotheses and conclusions. The axiom link has no 
hypotheses and A,Al as conclusions, while Cut has the dual situation: A,AL are hy- 
potheses and no conclusion; the tensor and par links have A,B as hypotheses, and 
the appropriate formula as conclusion. Tensor and Par links are not symmetric w.r.t. 
interchanging hypotheses; on the other hand, axiom and cut are symmetric w.r.t. in- 
terchanging conclusions (resp. hypotheses). Proof structures are subject to the obvious 
restrictions, i.e. an occurrence of a formula is the conclusion of exactly one link, and 
the premise of at most one link. We will also add the condition that one may only 
introduce axiom links for which the conclusions are literals, i.e. atoms or negations of 
atoms. This has no effect on expressive power and allows us to avoid the expansion 
rules of [12]. 

There is a straightforward translation from sequent deductions to proof structures. 
We wish to identify those structures which correspond to derivable sequents. One of 
the advantages of this system over other natural deduction systems is that there is an 
intrinsic graph-theoretic criterion on proof structures which determines if the structure 
corresponds to a derivable sequent deduction. 

A switching for a proof structure is obtained by removing one of the two edges 
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from each D-link. A proof structure is a proof net if, for all switchings, the resulting 
graph is acyclic and connected. 

The following two theorems [19, 481 show that this is a correct notion of deduction 
for MLL. 

Theorem 2.1 (Girard). There is a canonical translation procedure which takes sequent 

calculus deductions in MLL to proof structures. If a proof structure is in the image 

of this translation, it is a proof net. 

Theorem 2.2 (Girard). Given a proof net with conclusions {Al,. . .,A,}, there is a 

sequent calculus proof of F Al,. . . , A,, mapped to it under the translation procedure. 

This last result is referred to as the sequentialization theorem. 
Finally, note that proof nets take no account of the order of the rules in a deduction: 

sequent proofs which are equivalent modulo commutative reductions have the same 
proof net. 

2.1. Cut elimination 

As previously remarked, the cut elimination procedure is especially important for 
analyzing the structure of *-autonomous categories. For proof nets, it is accomplished 
by the following procedure. The advantage of this procedure is that it is local in nature, 
so that each cut can be eliminated independently, as follows. 

The cut 

*vc *v 
BBC BL9CL 

CUT 

reduces to the two cuts 

The cut 

I 
A AL A 
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reduces to the single formula 

A 

The following is due to Girard [ 191. 

Theorem 2.3. The theory MLL satisfies cut elimination. The cut elimination pro- 

cess for proof nets is conjuent and strongly normalizing. Given a derivable sequent 
deduction in MLL, its cut-free proof net is uniquely determined 

This last statement follows from the elementary observation that a cut-free proof 

structure is uniquely determined by its axiom links. The portion of the net below the 

axiom links corresponds to the subformula tree of the formulas in the sequent. 

2.2. The MIX rule 

An important variant of MLL is obtained by considering the MIX rule. Not only is 

this an interesting extension of linear logic with a natural computational interpretation 

[15], but the MIX rule is valid in most models. For example, the coherence spaces 
of [19] as well as the category %?Y-Y6% defined below validate it. The MIX rule is 

stated as follows: 

This rule is not correct for MLL, so to accommodate the larger theory MLL + MIX, 
we simply alter the correctness criterion by requiring only that for each switch setting 

the graph be acyclic. Then all of the above results easily extend. This is described in 

[la 
In our models, we have a strong version of the MIX rule, which is obtained by 

equating the two multiplicative units, i.e. T = 1. It is straightforward to verify that 

MLL with the usual unit rules and this equation implies the MZX rule. For this theory, 

it is straightforward to incorporate units into the nets, whereas for MLL, one requires 

weakening links [ 121. 

2.3. Coherence 

While the observation that a cut-free net is uniquely determined by its axiom links 

is obvious, it has several important consequences. In particular it is used to derive the 

coherence theorem for *-autonomous categories. Under the Lambek equivalence be- 

tween deductions in a deductive system and morphisms in a free category, a morphism 

in the free *-autonomous category (without units) can be interpreted as a proof net. 

In this interpretation, proof nets are viewed as a graph-theoretic syntax for specifying 

morphisms in the free *-autonomous category (without units). The fact that they form 

a confluent, strongly normalizing rewrite system suggests that nets can be viewed as 
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a typed I-calculus for *-autonomous categories, analogous to the work of [29]. With 

this interpretation in mind, it is straightforward to derive: 

Theorem 2.4 (Blute). Two morphisms f, g : A + B are equal if and only tf f and g 

have the same interpretation as cut-free proof nets. 

This result is proved in [9], as part of a stronger theorem precisely characterizing 

those extensions of the theory of *-autonomous categories which satisfy such a criterion. 

(Among theories which satisfy this criterion is the theory of *-autonomous categories 

satisfying the MIX rule.) It allows us to interpret nets semantically. Thus, when we 

refer to the denotation of a proof, we mean the denotation of the corresponding net. 

2.4. Simple sequents 

We here record some proof-theoretic results, due to Abramsky and Jagadeesan [2], 

which will be crucial in the sequel. We begin with some definitions. 

Definition 2.5. A sequent t- r is balanced if each atom occurs an even number of 

times, with proper variance. A balanced sequent is binary if each atom occurs exactly 

twice. It is simple if all of the formulas of r are literals or a tensor product of two 

literals. 

A monotone context is a sequent with a “hole” (as in contexts for l-calculus) such 

that the hole does not appear in the scope of a negation. Such contexts will be denoted 

r = D[.] 

If a sequent is balanced, we can associate to it a cut-free proof structure. The fact 

that it is balanced allows us to establish axiom links, at which point the structure is 

uniquely determined, as previously remarked. If the sequent is binary, then there is a 

unique associated cut-free structure. Thus one can unambiguously ask whether a binary 

sequent is correct. 

One of the crucial results of [2] simplifies the process of proving a full completeness 

theorem by allowing one to only consider the simple sequents: 

Theorem 2.6 (Abramsky and Jagadeesan). Suppose t I is a binary sequent. Then 
there exists a finite list of binary simple sequents k II,. . . , I- r, such that: 

a k I -o Ii is derivable for all i. 
l t I is derivable tf and only if; for all i, k Ii is. 

To prove the result, we require two technical lemmas, both of which appear with 

proofs in [2]. 

Lemma 2.7. Let I = D[A @ (B 38 C)] be a binary sequent. Let I, = D[(A @ B) D C] 
and I2 = D[(A ~3 C) D B]. Then we have: 
l For all i= 1,2 t I -O Ii is derivable. 
a !- I is derivable if and only tf k Ii is derivable for i = 1,2. 



108 RF. Blute, P.J. ScottlAnnals of Pure and Applied Logic 77 (1996) M-142 

Lemma 2.8. Let r = D[A @ (B 8 C)] be a binary sequent. Let I’, = D[A 18 (B D C)] 

and r2 = D[A 9(B @ C)]. Then we have: 

l For all i= 1,2 k r -o Ti is derivable. 

l k r is derivable if and only if t Ti is derivable for i = 1,2. 

The set of sequents mentioned in the above theorem is then obtained by using three 

canonical morphisms which exist in any model of MLL + MIX. These are the weak 
distributivity [13] and the A4ZX morphism [15]: 

6: A @3(BDC)+(A @B)9C 

s’:A~(B~c)~(A@c)?BB 

One now proves the theorem by using the first lemma to push a par down the proof 

structure so that it is the outermost connective of the formula it appears in. Then 

replace it with a comma. 

Then given a nested occurrence of tensor, use the second lemma to replace it with a 

par. Then use the first lemma to eliminate it. Iteration of this process eventually leads 

to a finite family of simple binary sequents. 

It is important to note that the set of simple sequents is obtained by left composition 

with the three canonical morphisms described above. 

3. Logical relations and logical permutations 

Logical relations play an important role in the recent proof theory and semantics 

of typed lambda calculi [36, 40, 41, 441. We begin with logical relations on Henkin 

models; for further developments see [5, 36, 38, 391. 

3.1. DeJnitions and examples 

Consider a simply typed lambda calculus with product types. A Henkin model is 

a type-indexed family of sets d = {A,, 1 o a type } where AI = {*}, A,,, = 

A, x A,, A OaT c A$ which forms a ccc with respect to restriction of the usual ccc 

structure of Set. In the case of atomic base types b, xI~ is some fixed but arbitrary 

set. 

Given two Henkin models d and ~8, a logical relation from & to g is a family 

of binary relations B = {R, c A, x B, 1 cr a type } satisfying: 

1. R1(*,*) 

2. (a, b)R,&u’, b’) if and only if uR,u’ and bR,b’, for any a,~’ E A,, b, b’ E B,, 
i.e. ordered pairs are related exactly when their components are. 

3. For any _f, g E Aaar,fRo+r g if and only if for all a,~’ E A, (uR,u’ implies 

fu R, gu’), i.e. functions are related when they map related inputs to related outputs. 
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For each (atomic) base type b, fix a binary relation Rb 5 At, x Bb . Then: there is a 

smallest family of binary relations 9 = {R, 2 A,, x B, 1 o a type} defined inductively 

from the Rb’s by 1, 2, 3 above. That is, any property (relation) at base-types can 

be inductively lifted to a family W at all higher types, satisfying 1, 2, 3 above. If 

a, b E &,,, we write %!(a, b) to denote R,(u, b). If 99 is a logical relation from d to 

itself, we say an element a is invariant under $8 if W(a,u). 

The fundamental property of logical relations is the Soundness Theorem. Let 

M(x) : o denote a term M of type 0 with free variables X: r (i.e. in context r), 

sometimes denoted X: r D M: 6. As in [36], consider Henkin models d with well- 

delined assignments for variables nd. Let I[A4Ld denote the meaning of M in model 

& w.r.t. the given variable assignment (following [36], we only consider assignments 

9 such that q&xi) E d” if xi : CT E r). 

Theorem 3.1 ([40, 44, 361). Let .%Y c d x ?.4 be a logical relation between Henkin 

models &‘,a. Let x : r D M : o. Suppose assignments nd,na of the variables are 

related, i.e. for all xi, C%?(q,(xt), r,&xi)). Then 9QM]q,,[M],,). 
In particular, tf d = .!4J and M is a closed term (i.e. contains no free variables), 

its meaning [M] in a model J&’ is invariant under all logical relations. 

This observation has been used by Plotkin, Statman, and others [40, 44, 451 to show 

that certain elements (of models) are not lambda definable: it suffices to find some 

logical relation on d for which the element in question is not invariant. 

An important special case for us is the following example: 

Example 3.2. Consider a Henkin model -01, with a specified permutation nb : At, + Ab 

at each base type b. We extend n to all types as follows: (i) on product types we extend 

componentwise: n,xr = rrc, x rrz : A,,, -+ A,,,; (ii) on function spaces, extend by 

conjugation: n,,,(f) = rrroforc;l , where f E A,,,. We build a logical relation W on 

d by letting R, = the graph of permutation K, : A,, -+ A,, i.e. R&u, b) @ n,(u) = b. 
Members of &? will be called hereditary permutations. W-invariant elements a E A,, are 

simply fixed points of the permutation: n,(u) = a. Further discussion of this example 

is in the next section. 

There is no reason to restrict ourselves to binary logical relations: one may speak 

of nary logical relations, which relate n Henkin models [44]. Indeed, since Henkin 

models are closed under products, it suffices to consider unary logical relations, known 

as logical predicates. 

3.2. Soundness 

The original use of unary logical relations stemmed from Tait’s computability pred- 
icates in proof theory [21]. Unfortunately, our previous definition of logical relations, 

based on Henkin models, does not directly apply to the syntax, since syntactic term 
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models are not always Henkin models (cf. [29, p. 263, Corollary 2.121). Statman 

[44] and Mitchell [36] extended the notion of logical relation to certain applicative 
typed structures d for which (i) appropriate meaning functions on the syntax, [Ml,,, 

are welldefined, and (ii) all logical relations .@ are (in a suitable sense) congruence 

relations on the syntax. Following [36, 441 we call them admissible logical relations. 

In this situation, the Soundness Theorem above is still valid: 

Theorem 3.3 (Soundness). Let {di}i<n be a family of typed applicative structures. 
Let x : r D A4 : a and suppose IIMJtdr is a well-defined meaning function which inter- 

prets term M in di with respect to variable assignment ndz. Suppose 522 IIi<n&i 
is an nary admissible logical relation If the interpretations of the variables are all 

related, i.e. for all variables xi, &Y(nd, (xi), . . . , qdj(xi), . . . qd”(xi)), then %‘@Q~,, , . . . , 

Wh.dj 7. . .) Wlkd” ). 

As pointed out by Mitchell [36] and Statman [44] this permits obtaining many 

interesting soundness theorems for the syntax. For example, let d be a term model for 

the lambda theory Y. To apply the previous discussion to this term model, note that 

the usual (Tarski) interpretation of a term M, @Q_,, is a well-defined meaning function 

in our previous sense. For example, letting q be the identity, IIMjVd simply refers to 

the type assignment x : r D A4 : a, while the satisfaction relation d kV M = N : CT 

means “provable equality in theory Y”. 

Corollary 3.4 (“All terms are computable”). Let F be the pure theory of simply 
typed A.-calculus. Suppose B is an applicative typed structure, and 24 is an admissible 
logical predicate on a. Then for any term x : r D M : a and variable assignment na, 
tf all variables xi satisfy 9(na(xi)) then W([M],,). 

This corollary may be extended to applied lambda theories with additional con- 

stants, base types, type- and/or term-constructors, etc. by appropriate modifications 

to the notion of structure and interpretation. Indeed, as a special case of the above 

result, let %? be the term model for typed lambda calculus, and W be Tait’s com- 

putability predicates [21, Ch. 61; we obtain Tait’s Soundness Theorem [21, p. 461. As 

another special case, let B be a Henkin model and let %Y be the hereditary permu- 

tations on a, starting from some specified permutation(s) on the base type(s). Then 

the above corollary says: the meaning of any term is invariant under all hereditary 

permutations. 

The above corollary is itself a consequence of the usual universal property of free 

Cartesian closed categories: any interpretation of the nodes of a (discrete) graph 9 
into a ccc d has a unique extension to an d-valued representation of the free ccc 
generated 3. We may then pick 8 to be an appropriate category of logical relations 

[38]. For example, in the next section, we discuss Liiuchli’s semantics, in which we 

pick d = SetG, the category of G-sets. 
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4. Liiuchli semantics 

4.1. G-sets 

Definition 4.1. Let G be a group and X a set. A G-set X, or a left action of G on X, 

is a group homomorphism G + Sym(X) to the symmetric group on X. Equivalently, a 

G-set is a pair (X, - ) where . : G XX + X is a map satisfying, for all gi E G,x E X, 

(9192) * x = 91 * (92 * x) 
1 -x=x 

A G-set morphism from (X, - X) to (Y, - Y) is a function C#I : X + Y preserving 

the actions, i.e. &g - x) = g - C&X) ( we omit indexing the actions). Such maps are 

sometimes called equivariant maps. 

Theorem 4.2. The category SetG, the category of G-sets and G-set morphisms is a 
Cartesian closed category (= ccc) [29]. 

Proof. The ccc structure is as follows: 

Terminal object: any one point set, with trivial action. 

Products of G-sets: given two G-sets X, Y their product is the Cartesian product 

X x Y with pointwise action. 

Exponentials of G-sets: given two G-sets X, Y their exponential (function space) Yx 

is given by the ordinary set-theoretic function space, with “conjugate” or “contragre- 

dient” action: for any g E G,h E Yx, (g - h)(x) = g - h(g-’ - x). 0 

In the above proof, we see two important examples of group actions: (i) the trivial 
or discrete action given by second projection: g - x = x, for all g E G,x E X and 

(ii) the historically important case of a group G acting on itself by conjugation. We 

will be primarily interested in the case where G = Z, the additive group of integers. 

In this case, we have the following equivalence of categories, which follows from the 

fact that Z is the free cyclic group. 

Theorem 4.3. The category of Z-sets is equivalent to the category whose objects are 
sets equipped with a permutation and whose maps are set-theoretic maps commuting 
with the distinguished permutations. 

Thus maps which commute with the given permutations are frequently called equi- 
variant maps, while a Z-set with trivial action corresponds to a set with the identity 

permutation. 

The notions of hereditary permutations and soundness may be usefully understood 

from the above viewpoint [29, 231. Let 9 be a set, considered as a discrete graph, and 

consider (9) = the free ccc generated by 3. Let G be any group, and consider the 

topos of left G-sets SetG, a Henkin model. The universal property of (Y) implies the 
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following: for any graph morphism : 9 + Set’, there is a unique extension to a 
ccc-functor [ - p : (9) --f Set’. 

In other words, given any interpretation F of basic atomic types (= nodes of 9) as 
G-sets, there is a unique extension to a G-set interpretation [ - b of the entire typed 
lambda calculus generated by 8, modulo fi, v], and product equations (this is the free 
ccc (9)). 

In particular, by the Curt--Howard correspondence, lambda terms (which denote 
proofs) are interpreted as G-set morphisms, i.e. equivariant maps. That is, let F be an 
initial assignment of G-sets to atomic types. Then a closed term A4 : CT, qua proof 

: 1 + 0, corresponds to a G-set map [M]F : 1 + [ok. 

Such maps are fixed points under the action. In particular, letting G = Z, we obtain 
the notion of hereditary permutation, and the associated Soundness Theorem. In terms 
of provability it says: A formula o of intuitionistic propositional calculus is provable 
only tffor every F, its Setz-interpretation [ok has an invariant element. 

4.2. L.Liuchli’s Theorem 

In fact, the above viewpoint extends to the language {T, A, +, V}. ’ Consider B(9), 
the free ccc with binary coproducts generated by B. SetG has coproducts, so there is a 
unique extension of the interpretation of the base types to a structure-preserving functor 

hence the meaning map [ -1 interprets {T, A, =F, V}-proofs via hereditary permutations: 
a closed term M : 1 + o corresponds to an invariant lambda term in SetG (now for 
the extended lambda calculus with binary coproduct types.) This is the viewpoint of 
Liiuchli [30]. The Lauchli Completeness Theorem is a converse to Soundness, for the 
case G = Z: 

Theorem 4.4 (Lauchli [30]). A formula o of intuitionistic propositional calculus is 

provable tf and only tf for every interpretation F of the base types, its Set’-interpre- 
tation [ok has an invariant element. 

Indeed, Hamik and Makkai extend Lauchli’s theorem to a representation theorem. 
Recall, a functor @ is weakly full if Hom(A, B) being empty implies I-Zom(@(A), a(B)) 
is empty. 

* As emphasized in [30, 231, we ignore I in what follows, i.e. only consider nontrivial coproducts. 
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Theorem 4.5 (Hamik and Makkai [23]). Let ._& be a countable free ccc with binary 
coproducts. There is a weakly full representation of d into a countable power of Setz. 

If in addition d has the disjunction property, there is a weakly full representation 

into Setz. 

Letting A = T, i.e. the terminal object, we see that the existence of such a weakly 

full representation of d corresponds to completeness with respect to provability: i.e. 

Homset~(T,Q(B)) nonempty implies Hom&T,B) nonempty, so B is provable. 

We are interested in full completeness theorems-i.e. completeness with respect to 

proofs (not just nonemptiness of the horn-sets). This is connected with fullness of the 

mnctor i[ - b above. In the case of simply typed lambda calculus generated from a 

fixed base type (= the free ccc on one object), Plotkin proved the following related 

result. Consider the Henkin model Tg = the full type hierarchy over a set B, i.e. the 

full sub-ccc of Sets generated by some set B. Thus in TB we have B,,, = B, * B,, 
the full function space. Recall [40] that the rank of a type is defined inductively: 

rank(b) = 0, where b is a base type, rank( cr + r ) = max { rank(o) + 1, rank(z)}, 

rank(a x r) = max { rank(a), rank(r)}. The rank of an element f E B, in Tg is the 

rank of the type o. 

Theorem 4.6 (Plotkin [40]). In the full type hierarchy TB over an injinite set B, all 
elements f of rank ~2 satisfy: if f is invariant under all logical relations, then f 
is lambda dehnable. 

This result has been extended and discussed by Statman [44], but the same question 

for terms of arbitrary rank is still open. However Plotkin [40] did prove the above result 

for lambda terms of arbitrary rank, by moving to Kripke Logical Relations rather than 

Set-based logical relations. For a categorical reformulation, in terms of toposes of the 

form SetP, P a poset, see [37, 381. 
Finally, we also mention recent work of Loader [32]. Loader proves the undecid- 

ability of the Plotkin-Statman problem: in any model of simply typed lambda calculus 

over a finite base type, is it decidable whether a function is lambda definable or not? 

In particular, as pointed out in the Appendix to [32], this undecidability result actually 

implies that Plotkin’s theorem is false over finite base types: logical relations fail to 

characterize lambda definability (in terms of invariance) on TB, for B finite. 

Interestingly, a similar problem occurs if we restrict our semantics to finite dimen- 

sions: our Completeness and Full Completeness results for MLL depend crucially on 

having infinite dimensional spaces. 

5. *-autonomous categories and vector spaces 

Since the category of G-sets is Cartesian closed, it provides a model of intuitionistic 

logic. To model linear logic, it is natural to replace sets with vector spaces. This leads 
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to the classical subject of group representation theory as described for example in [18]. 

However, we must build a *-autonomous category of vector spaces, in order to be able 

to model the involutive negation of classical linear logic. 

Recall that a symmetric monoidal closed category is *-autonomous if, for all objects 

V, the canonical morphism ,U : V+( V -o-L) -+i is an isomorphism. Here I is a fixed 

object, called the dualizing object. In our example, the dualizing object will be the base 

field. In an arbitrary symmetric monoidal closed category, objects for which p is an 

isomorphism are called rejlexiue, or more precisely reflexive with respect to 1. 

5.1. Linear topology 

The approach we use goes back to the work of Lefschetz [31], and has been stud- 

ied by Barr [6]. The idea is to add to the linear structure an additional topologi- 

cal structure, and then define the dual space to be the linear continuous maps. This 

serves to decrease the size of the dual space and thus create a large class of re- 

flexive objects, i.e. objects which are canonically isomorphic to their second dual. 

The categorical structure so arising was studied by Barr in [6], where he shows that 

the resulting category is *-autonomous. In [lo], the first author examines this cat- 

egory as a model of linear logic, and considers the representations of groups and 

Hopf algebras in such spaces. This theory leads to a large class of new models of 

commutative linear logic [19], noncommutative linear logic [4, 281, and braided lin- 

ear logic [ll]. Proofs of all of the following results can be found in [6] and [lo]. 

Definition 5.1. Let V be a vector space over a discrete field k. A topology, r, on V 

is linear if it satisfies the following three properties: 

l and scalar are continuous, the field is given 

discrete topology. 

r is 

l 0 V has neighborhood basis open linear 

The first means that have a vector space the sense 

[24] (except most texts the field be the or complex with its 

topology). The requirement is stringent. For it implies 

the only topology on finite dimensional space is discrete topology. 

TV&$? denote category whose are vector equipped with 

topologies, and maps are continuous morphisms. 

vector space *LT W linear continuous is endowed the topology 

pointwise convergence, as a of the product WV. this, 

the product can endowed with linear topology obtain an 

category. The theorem follows an application the special functor 

theorem. the base acts as 
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Theorem 5.2 (Barr). Given V in YY&Z, the jiinctor V +LT - has a left adjoint, 

denoted - @LT V. 

Corollary 5.3 (Barr). FV&? is an autonomous (symmetric monoidal closed) 

category. 

It is important to note that while the monoidal structure exists for abstract reasons, it 

is possible to prove that the underlying vector space of V @)LT W is the usual algebraic 

tensor product. This issue is discussed in Barr’s note [8], which is an appendix to [lo]. 

We now define duality for this category. Given an object V in PV&? we define 

V’ to be V +LT k where the base field k is topologized discretely. Lefschetz proves: 

Theorem 5.4 (Lefschetz). The map p: V -+ V” is a bijection, for all V. 

Thus linear topology has served to decrease the size of the second dual space to 

the correct extent. While this map is a bijection, it need not be an isomorphism as 

the inverse map may not be continuous. Barr gives a characterization of the reflexive 

objects: 

Theorem 5.5 (Barr). A space is rejlexive if and only if every discrete linear subspace 
is jinite dimensional. 

Definition 5.6. Let RFV”&? denote the full subcategory of reflexive objects. 

The fundamental result is: 

Theorem 5.7 (Barr). WY-Y&Z is a *-autonomous category. 

The proof of this theorem follows from two lemmas. 

Lemma 5.8. For any V in Y-Y&?, the space VI is reflexive. 

Lemma 5.9. The inclusion WYYI%? * PK”I%? has a left adjoint (-)I1 : FVb%? 

+ !2&Tv-8%. 

Intuitively, the adjoint ( -)I1 is adjusting the topology to make the inverse of p 

continuous. Note that the tensor product in &?FY&Z of two objects, V and W, is 

given by (V ~3 W)ll. 
Thus W9V&? provides a model of multiplicative linear logic. While the category 

of finite-dimensional spaces is also *-autonomous, 64?FV&&? provides a richer model 

since it does not equate the two multiplicative connectives, @ and 0. It is well known 

that if V and W are finite dimensional spaces, we have an isomorphism: 
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Thus we cannot hope for any kind of completeness theorem. %‘FV&Z does not satisfy 

such an identity. This point is discussed in [lo]. 

5.2. Quotients and direct sums 

We now discuss quotients and direct sums of topological vector spaces. More com- 

plete discussions can be found in [24] and [42]. Given a topological vector space V 
and an arbitrary linear subspace U, it is readily seen that the quotient topology on 

the quotient space V/U gives a topological vector space. It is not generally the case 

however that when an object of PYb%? is quotiented by an arbitrary subspace that 

we get an object of F’Td??. This is seen by the following lemma, which is proved 

in the above two references. 

Lemma 5.10. The quotient space V/U is hausdorfl if and only if U is closed. 

We also observe that if U is an open linear subspace, then V/U will be discrete. 

This leads to the following standard result. 

Lemma 5.11. An open linear subspace is also closed 

We now wish to consider direct sums. In particular, for (nontopological) vector 

spaces, we have the following canonical isomorphism: 

To what extent does this hold topologically or, more precisely, does V have the 

product topology in the above expression? We have the following definition: 

Definition 5.12. Let V be a topological vector space, which algebraically is the direct 

sum V E M @ N. We say that V is the topological direct sum of M and N if the 

linear map 

is an isomorphism of topological vector spaces. Here, M x N has the product topology. 

Note that if we quotient an object of FV”6V by a nonclosed subspace, then clearly 

the above isomorphism is not a topological direct sum. 

We have the following result, proved in [24] and [42]: 

Lemma 5.13. If V is the algebraic direct sum of M and N, then V is their topological 
direct sum if and only tf the canonical projections onto M and N are continuous. 
(Here we mean projections in the sense of linear algebra, a morphism from V to V 
projecting onto the M (or N) component.) 
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Finally, we will need the following lemma: 

Lemma 5.14. Let V be an object of F-TM, and U an open linear subspace. Then 
V is the topological direct sum: 

Proof. The morphism p1 : V-+V/U is continuous, since this is the quotient map. Now 

for any vector space, this map splits, and the splitting is continuous, as V/U is discrete. 

This induces a continuous endomorphism of V, call it q, which is the projection onto 

the VfU component. Then the other projection onto U is also continuous as it can be 

defined as 1 v - q. 0 

This particular lemma will be quite important in what follows. When defining actions 

on %?YV&?, one must always make sure they are continuous. Given any point in V, 

one can find an open linear subspace not containing the point. This follows from the 

definition of linear topology. The quotient will be discrete, so continuity is automatic 

on this factor of the direct sum. Since the above composition is a topological direct 

sum, it is possible to define an action on V componentwise. 

6. Representations of groups 

We will first consider representations of groups in discrete spaces. 

Definition 6.1. Let G be a group and V a vector space. A representation of G on V is 

given by a group homomorphism Q : G --+ A&(V), the group of linear automorphisms 

of V. Equivalently, a G-module is a vector space V equipped with a linear automor- 

phism u H g - u for each g E G. These automorphisms must satisfy the obvious 

analogue of the equations of a G-set. Let &09(G) denote the category of G-modules 

with linear maps commuting with the G-action as morphisms. 

6.1. Z-actions 

The group we are primarily interested in is the additive group of integers Z, which 

can act on a complex vector space V in many ways; we shall give some useful 

examples. 

Example 6.2. The following are actions of Z on V: 
1. For each nonzero complex number p define the action n . v = pnv, for all v E V. 

These are sometimes called “p-actions”. 

2. Suppose V = %?[Z], the complex vector space generated by the elements of Z. 
Thus V has as basis {ei}iEz. For each basis vector ei, define the action n - ei = ei+,,. 
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3. More generally, for any space V with basis {ei}iEr, choose any permutation 0 of 

the set I, and define an action by n - ei = e,q;). 

Of course, these actions can be combined in various ways using direct sums and 

tensor products. 

6.2. Symmetric monoidal closed structure 

The category JZLog(G) has the appropriate structure to model intuitionistic multi- 

plicative linear logic. 

Theorem 6.3. For any group G, the category .MO9(G) is symmetric monoidal closed 

Proof. If V and W are G-modules, we define a G-action on V %I W by 

g~(o@~)=g~v~g~w (1) 

The exponential, V -o W in this category is the space of all k-linear maps from V 

to W with action defined by 

(9. f)(u)=s* f(Q_’ * 0) 0 (2) 

Eq. (2) is generally refered to as the contragredient representation [18]. Note the 

obvious similarity to the structure of the category of G-sets (cf. Theorem 4.2). 

To model the involutive negation of classical linear logic, we must consider repre- 

sentations of groups in WYV&?. 

Definition 6.4. Let G be a group. A continuous G-module is a linear action of G 

on a space V in .YV&S’, such that for all g E G, the induced map g - ( ) : V --+ 

V is continuous. Let Y&!&S(G) denote the category of continuous G-modules and 

continuous equivariant maps. Let B?Y&?LoB(G) denote the full subcategory of reflexive 

objects. 

We have the following result, which in fact holds in the more general context of 

Hopf algebras [lo]. 

Theorem 6.5. The category YMO9(G) is symmetric monoidal closed. The cate- 
gory WYAO9(G) is *-autonomous, and a rejective subcategory of YAOQ(G)via 
the jiinctor ( ) IL Furthermore the forgetful functor to &?Y~&? preserves the *- . 

autonomous structure. 

7. Functorial polymorphism 

We shall give a further development of the theory of Functorial Polymorphism 
applied to linear logic, following [5, 9, 221. For other developments of the general 
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theory, cf. [ 16, 171. Recall that in functorial polymorphism, the types of a A-calculus 

are interpreted directly as certain multivariant functors, while terms are an appropri- 

ate multivariant version of natural transformation known as a dinatural transforma- 

tion: 

Definition 7.1. Let V be a category, and F, G : VP x 59 + V functors. A dinatural 

transformation is a family of +?-morphisms 8 = {8* : FAA + GAA 1 A E W} satisfying 

(for any f : A + B) 

FAA 
0.4 

- GAA 

FfA 

/ \ 

GA/ 

FBA GAB 

\ 
FBf 

/ 
GfB 

FBB 
OS 

- GBB 

More generally, we can consider multivariant functors F, G : (‘PP)n x V + %‘, 

where n > 1, and dinatural transformations between them. In this case, then A and B 

above denote vectors of objects and f denotes a vector of morphisms. 

Denote dinatural transformations by 8 : FAG. 

A fundamental difficulty is that dinatural transformations do not generally compose 

[5]; however, in certain known cases they do. When composition is well-defined, the 

dinatural calculus permits interesting “parametric” interpretations of the relevant lambda 

calculus (cf. [41]). 

For example: 

1. In [5] it was shown that certain uniform dinaturals between “logically definable” 

functors over Per (the category of partial equivalence relations on the natural numbers) 

do compose. In this case, one obtains a parametric model of Girard’s second-order 

lambda calculus, system %. 

2. Also, in the case of logical syntax, for certain freely generated categories and 

“logically definable” functors, there is a notion of uniform dinatural transformation, for 

which again composition is well-defined. More specifically, one shows that the inter- 

pretations of cut-free proofs yield dinatural transformations. This is done by induction 

on the complexity of the derivation. Compositionality then follows by cut elimination. 

This approach was applied to simply typed lambda calculus in [22] and to linear logic 

in [9]. 

In this paper we shall develop another notion of uniformity, in this case for certain 

dinatural transformations on a category of vector spaces. Again we shall show composi- 

tionality of uniform dinaturals between appropriate definable functors as a consequence 

of a more general “Full Completeness Theorem” below. 
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7. I. Interpreting 8, -0 

We shall first work in the theory of symmetric monoidal closed (= smc) categories 

without units, equivalently in intuitionistic MLL without units [20, 93. Thus formulas 

are built from atoms, using the connectives ~4. Following the lead of functorial 

polymorphism (lot tit), we interpret formulas as multivariant functors over an smc 

category $7, using the following functorial operations on n-ary multivariant functors 

F,G:(%“‘P)“xV+%? 

(F @ G)(AB) = F(AB) &I G(AB) (3) 

(F --o G)(AB) = F(BA) -o G(AB) (4) 

Here AB E (V’P)” x 59’ denotes an object consisting of a vector of n contravariant 

variables A and n covariant variables B. Note the “twisted” order of arguments in 

exponentiation. The operations F @ G and F -o G again yield n-ary multivariant 

functors. 

Formulas are interpreted functorially: associated to each formula ~$(a,, . . . , an), with 

type variables (or atoms) a1 , . . . , a,, its interpretation [&al,. . . , a,)] : (VYP)n x V + %? 

is given as follows: 

1. If 4(al,..., a,,) E ai, then [4](AB) = Bi, the (covariant) projection functor onto 

the i-th component of B. We denote this ith covariant projection fimctor by lli. 

2. If C$ = c, a constant interpreted as an object of %?, then [c$] = KC, the constant 

multivariant fknctor with value c. 

3. If 4 = 41 @ 42, then [$I = [&I 8 [&]. 

4. If 4 = 41 --o 42, then [+I 4 &] = [$JI] -O [&]. 
Thus formulas are thought of as schemas with n slots (atoms) into which other 

formulas can be plugged. 

Similarly, a sequent between formulas with n atoms 

is interpreted as a dinatural transformation between n-ary multivariant functors. In- 

deed, letting the atoms be al,. . . ,a, and [ci(ai,. . . , a,)] = Fi : (Vp)n x V -+ V and 

Ir(ar,..., a,)] = G : (F’P)” x W + W then the sequent ~1,. . . , q k z interprets as a 

dinatural transformation 0 : F1 ~3 . . . ~3 FkL G. 

Example 7.2. The above inductive definitions yield the following: 

1. The axiom sequent a k a is interpreted as a dinatural transformation cr : II, &II, : 
W’P x $7 + V, where II&3 = B is the (covariant) projection. Thus (letting aA =&r oAAA) 

we have a family of maps 

One such dinatural family is given by choosing each CA to be the identity on A. We 

call this the identity dinatural. Since the sequent a I- a is actually provable, this identity 

dinatural is the “standard” interpretation, cf. [22]. 
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More generally, note that any dinatural transformation (r : III LIII : VP x W -+ %’ 

must satisfy the following square (= degenerate hexagon); for any f : A + B 

A 
0.4 .A 

/ 
id 

\ 

f 

A B 

\ f 
/ 

id 

B QLI .B 

Thatis,asof =fogA. 

2. Given the sequent a -o /3 t a -o fl, its dinatural interpretation is, in general, of 
the form F&F : (WP)2 x W2 + W, where F = [a -o b] = II, -o l&, with TIi = the 
projection onto the ith covariant variable (i = 1,2). Thus (using semicolon to separate 
contravariant and covariant variables), 

F(AA’; BB’) = II, (BB’; AA’) -o I’12(AA’; BB’) = A -o B’. 

Any dinatural 8 = {Ofit : F(AA'; AA’) + F(AA'; AA’) 1 @,A’) E Pi?’ } interpreting this 
sequent must satisfy the following hexagon, for f : B + A and g : B’ + A’: 

A -0 B’ B - A’ 

\ 
f 4 B’ 

/ 
B-g 

B -o B’ 
BBW 

B -.a B’ 

For example, in the above case we could pick the identity dinatural, i.e. each com- 
ponent 0~1 would be the identity. 

3. The derivable sequent a, a -o fi i- b interprets as a dinatural 

ev : FS G : (Vp)2 x 55” + $7 

where F = [(a -o fi) @ a] = III @ (II, -o II2), and G = [fl = II2. Thus (using 
semicolon to separate contravariant and covariant variables), 

F(BB’;AA’) = l-I,(BB’;AA’) @ (II&IA’; BB’) 4 I12(BBt;AA’)) 

=A@(B-oA’) 

G(AA’; BB’) = I&&l’; BB’) = B’. 

The dinatural 

ev = {evAA, : F(AA’;AA’) + G(AA'; AA’) 1 (A, A’) E V2 } 
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must satisfy the following hexagon, for f : A -+ B and f' : A’ --+ B’: 

A C? (A -o A’) 
e?J&i 

A’ 

\ 

f 

A @ (B --o A’) B’ 

We refer to en as the evaluation dinatural. Of course, in the canonical syntactic inter- 
pretation [223, as well as in many concrete monoidal closed categories, ev refers to the 
evaluation map: euut(a @ u) = u(a). In such concrete categories, the hexagon above 
translates into the following equation: for any a @J g E A QD (B +J A’) 

f’(euda @ 9 0 f)) = wdf(a) C3 f’ 0 s> (5) 

A generalization of this example to nested evaluations is in Lemma 10.2 below. 

7.2. Interpreting MLL sequen ts 

Functorial polymorphism can be extended to handle Barr’s *-autonomous categories 
[7], i.e. smc categories V equipped with an involution functor ( )I : W’P -+ V given 
by a dualizing object. Such categories interpret the multiplica~ve latent of classical 
linear logic [43, 91. 

We modify the functorial interpretation of formulas mentioned earlier to the c$( )‘- 
fragment of classical linear logic by modifying the interpretation of atomic clauses. 
Thus associated to each formula #(ai,. . . , a,) in 8, -0, ( )I, with type variables (or 
atoms) ~tt,...,~,, we inductively define its ~~ter~retat~on [&LX,,. . .,a,,)] : (W’P)n x 

%?’ + c$ by changing the previous inte~retation to: 

l If C#.)(at,..., CI,) E ai, then I[c$](AB) = Bi, the (covariant) projection onto the ith 
component of B. 

. If &at,..., a,) z al, then I[$](AB) = Al, the linear negation of the (contravariant) 
projection onto the ith component of A, denoted II:. 

l @ is interpreted as before. 

Remember that in MLL, A -O B is defined as A’ 788 

Example 7.3. The above inductive definition yields the following: 
1. The unde~vable sequent c1 4 /I k CX’ CZJ /.? interprets as a dina~ral 

8 : F---, G : (U”p)2 x V2 + V 

where F = [a -o /I-l] = II, --o lT2 and G = [al @ /I] = IIf @ II2 . Here IIi denotes 
the projection onto the ith covariant variable and IIf denotes the linear negation of 
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the projection onto the ith contravariant variable (i = 1,2). Thus (using semicolon to 
separate con~av~~t and covariant variables), 

F(BB’; AA’) = II,(AA’; BB’) --o l&(BB’;/U’) = B -o A’ 

G(AA’; BB’) = l-I&4’; BB’) 8 &(AA’; BB’) = AL ~3 B’. 

Any dinatural 8 = (%~a( : F(BB’; BB’) -+ G(BB’; BB’) f (B, B’) E d2 } must satisfy the 
following hexagon, for f : A -+ B and g : A’ ---f B’: 

B -c B’ 
beI BLOB' 

Remark 7.4. Although dinatural transformations do not compose in generai, we note 
that the composition of a dinatural with a natural transformation does yield a well- 
defined dinatural transformation (cf. Remark 9.6 below). We shall use this observation 
later. 

Remark 7.5. We end with some notation. Let % : F+ G : (5Pf’~ x %P -+ %’ be 
a dinatural, with components schematically denoted %, : F(a;a) + G(a;a), with a 
semicolon separating the contravariant from the covariant occurrences of variables. Here 
a = (al,..., a,,) are formal variables referring to the n contravariant and n covariant 
slots in the functors F and G. A genuine component of 8, say %A : F(A; A) + 
G(A; A), where A = (Al, . . . , A,) E V”, is also called an ~nsfantiation of 8 at A. Such 
an instantiation arises as a formal simultaneous substitution of Ai for ai into the schema 
8, . We sometimes denote iimctors and dinaturals schematically, using variables, as in 
the above interpretation of MLL sequents. We usually omit the semicolon separating 
contravariant and covariant slots. 

8. Dinaturals on vector spaces 

8. I. Uniform dinaturals 

The theory of uniform dinaturals is motivated by the following elementary observa- 
tion. Let JYOB(G) be the associated category of modules of a group G. &F&33(G) is 
autonomous, and moreover the forgetful functor: 

1 1 : dO9(G) + Vet 
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is an autonomous functor. An analogous result holds when vector spaces are re- 
placed with spaces equipped with a linear topology, when we instead use the forgetful 
fimctor: 

section 8.1. Let F and F’ be definable fimctors on &TV&V. A dinatural transfor- 
mation B : F--+F’ is uniform for a group G if for every Vi,. . . , V, E %T&‘@9{ G), the 
morphism 81V,l,,,,,lV~l is a G-map, i.e. is equivariant with respect to the actions induced 
(by Eqs. (1) and (2)) from the atoms 6. 

In the above definition, the instantiation of the dinatural, 8iVi ~,...,~r,~, is certainly a 
continuous map of topological vector spaces, but there is no a priori reason why it 
should also be equivariant on the action induced by the actions on the atoms. This is 
what uniformity requires. 

Remark 8.2. We here make some elementary observations that we will need in the 

sequel. 
l Any action on a function space V -o V which is induced by an action of V will 

preserve the identity element. 
l By the definition of equivariance, if an element of the domain is fixed under the 

action induced by the atoms, then it must be mapped to a fixed point. 

8.2. Linear structure of uniform dinaturals 

We use the following notation: suppose given definable functors F, F’ : ( VePP)" x 

Vet” - vet, 
(i) Dinat(F,F’) = the set of dinatural transformations from F to F’, 
(ii) G-Dinat(F, F’) = the set of dinatural transformations from F to F’ which are 

uniform for the group G. 

volition 8.3. Dinat(F’, F’) is a vector space under poi~tw~e operations. Moreover, 

for each group G, G-Dinat(F, F’) is a subspace of Dinat(F, F’). 

We refer to the elements of G-Dinat(F, F’) as G-uniform dinatural transformations. 
By analogy to Liiuchli semantics, the special case we are interested in is when G = Z, 
the additive group of integers. We call Z-Dinat(F, F') the space of proofs associated 
to the sequent M k M’, where = F and [M’] = F’. This terminology will be 
motivated by the full completeness theorem below. In the sequel, we will frequently 
allow formulas to denote their own interpretation. For example, above we might write 
Z-Dinat(M,M’). 
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9. Completeness 

We begin by establishing a traditional completeness theorem, which is a direct ana- 

logue of the original Lhchli result. Recall that to a binary balanced sequent, we can 

assign a unique cut-free proof structure. The completeness theorem says that if that 

proof structure is not a net, then there are no nonzero “abstract proofs”. 

Theorem 9.1 (Completeness). Let M t- N be a balanced binary sequent. If the unique 

cut-free proof structure associated to M t N is not a proof net for the theory 

MLL + MIX, then Z-Dinat(M, N) is a zero dimensional vector space. 

The following lemma will be crucial in establishing completeness. 

Lemma 9.2. Let V be an injinite dimensional object in WY-Y&?, and let v # 0 be 
an element of V ~3 VI. Then there exists a Z-action on V such that v is not jixed 
by the induced action on V @ VI. 

Proof. Begin by choosing a basis for V, say {ei}iEI, and a dual basis for VI, say 

{ fj}iE_t. Now let v = C riiei @ fj. Note that this is a finite sum, since the underlying 

vector space is the usual algebraic tensor product. Suppose without loss of generality 

that er,e2,. . . , e, are the n basis vectors appearing in v. Finally, let e,+l be a basis 

vector not appearing in the list, and set L equal to the list el, . . . , e,,+l. 

Now we must construct 92, an open linear subspace of V, such that the images of the 

elements of L remain linearly independent in V/f@. For each ei in L, one can find a %i, 

an open linear subspace not containing ei. Begin by setting 42 = 421 n %!2 n. + . fl %“+I. 

This will not be the final 42. Now choose any pair of elements of L, say ei and ej. 

The subspace 42 may contain a nonzero element of the form u = riei + rjej. If so, 

then any other such element must be a scalar multiple of this one: otherwise, ei or 

ej would be in 92. Now find an open linear subspace not containing u and “update” 

42 by intersecting it with this space. Now repeat this procedure for all pairs of basis 

elements. This establishes pairwise linear independence. Now proceed as above for all 

3-tuples, and so on. The process terminates after finitely many intersections, so that 4! 

is open. 

By construction it is clear that the images of elements of L are linearly inde- 

pendent in V/S!. Furthermore since % is open, then V/a will be discrete, and it is 

possible to rewrite V as the topological direct sum V g V/42 CB 42 by the previous 

discussion. 

We proceed by choosing a basis for VP& such that the elements of L are in the 

basis. We define an action on V/%2 which cyclically permutes the elements of L but 

leaves the other basis elements fixed. Since VP42 is discrete, this is continuous. We 

extend to an action on V by placing a trivial action on 9. Clearly v is not fixed by 

this action. 0 



126 RF. Blute, P.J. ScottlAnnals of Pure and Applied Logic 77 (19%) 101-142 

Notice first that infinitely many dimensions are necessary to carry this argument 

out. For finite V, there are elements which are fixed by arbitrary actions. These are 

the scalar multiples of the trace element, and arise because the category of finite 

dimensional representations of a group is compact [26]. Thus, while the category of 

finitedimensional vector spaces is a model of multiplicative linear logic, it will not 

satisfy the appropriate full completeness theorem. 

Notice also that this lemma contains the first hint of a completeness theorem. A 

dinatural interpreting the nonderivable sequent t- M: @ I& instantiated at V would cor- 

respond to a point of V 8 VI, which is fixed for all actions induced by actions on V. 

The above lemma implies that such a dinatural must be 0 on all infinite dimensional 

instantiations. We will soon see that this implies the dinatural must be identically 0. 

Lemma 9.3. Given a binary sequent of the form 

T,al --3a2,a24aj ,..., a,_1 -oa,ka+@atl, (6) 

suppose each ai is instantiated at the same space V E WYlc’b%. (The atoms in r 
may be instantiated at any spaces.) Let 8 be a uniform dinatural transformation in- 
terpreting this sequent. Suppose there exist elements a E r, f 1 E al +J a2, f2 E a2 +J 

a3,..., f,,-I E a,,_1 -O a,, such that, at the above instantiation, &a, f,,,.., f,,_l) # 0. 

Then e(a,id,. . . ,id) # 0. 

Proof. Consider a dinatural 0 E Z-Dinat(T@(al -o c(z)@.. .@(a,_l -o a,),a,). Such 

a dinatural is a family of morphisms eA,...A, satisfying the following diagram: for all 

n-tuples of objects ArA2 . . .A,, BlB2.s * B, in B?Y’^Y-&V and morphisms f i : Ai + Bi, 

the following hexagon commutes: 

Commutativity of this hexagon corresponds to the following equation: for all a @ 

92 @ . * .@g,, E T@(Bl *A2)@~~.@((B,,-l -A,), 

(7) 

Recalling that all objects Ai and Bi (in B’s components) are instantiated at V, we 
SiI’IIply WI& 8 instead Of t& ,... ,& Or eB ,... &. Consider the element a @ id 63 . . . ~3 id E 
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I-@((Bl -OA2)63... ~3 (B,_I -XI A,,). Set fn : A,, --+ B, = idr. Chasing this element 

around the hexagon (i.e. evaluating Eq. 7 with f n = g2 = . . . = gn = idr) we obtain 

&a, f 1 ,...,fn-I)= fi' ~B,(e(a,f2,...,fn-1,id)) (8) 

Since @a, f 1,. . . , fn_l) # 0 it follows that @a, f2, . . . , f ,+I, zd) # 0. Repeatmg this 

process, we obtain the statement of the lemma. 0 

Lemma 9.4. Suppose 8 is a untform dinatural interpreting sequent (6), and suppose 
each U.i is instantiated at V, an injinite dimensional object in %‘F$‘“&?. Then 6’ is 

identically zero for this instantiation. 

Proof. Choose v E V @3 VI, v # 0. We define actions on the spaces instantiating the 

atoms of sequent (6); these atoms consist of those in r together with ~1,. . . , cc,. The 

spaces instantiating the atoms in r are given the trivial action. V is given an action 

for which v is not fixed by the induced action on V ~3 VI. By Lemma 9.2, we know 

such an action exists. Since the identity map is fixed under any action, we conclude 

that &a, id,. . . , id) # v: this follows since a uniform dinatural takes fixed points to 

fixed points. Since v is arbitrary, then B(u,id,. . . , id) = 0. The result now follows from 

the previous lemma. 0 

Lemma 9.5. Zf 8 is a untform dinatural interpreting (6) then 8 is identically zero on 
all instantiations. 

Proof. Consider a dinatural 8 E Z-Dinat(Z@(crl 4 CQ)EI.. . @(a,_~ +I a,), a: @a,), 
i.e. a family of morphisms satisfying the following diagram: for all n-tuples of objects 

AlA . . .A,, BlB2 . . . B, in WYVb%? and morphisms fi : At + Bi, the following 

hexagon commutes: 

In this proof we will consider the upper leg of the diagram. Suppose that the Ai are 

instantiated at arbitrary spaces Vi. Set 

B E B, = B2 = . . = B, = 

The purpose is to create an infinite dimensional space into which all the 6 embed. 

(Note that k[Z]ll is an object of WFVd%‘, but k[Z] is not.) If one of the Vi is 
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already infinite dimensional, the summand k[Z]‘l is unnecessary. Let fi : Ai+B be 
the canonical embedding. Given an arbitrary element a @ hr 18 + f .@ h,_, E r @ (A, -o 

A2) CL3 ... @(&_I -o A,) define an element a@di @...@d,_r E r@((Bi 4 

AZ)@. . . @(B,_ 1 + A,) as follows: di : B*Ai is hi on the ith component, 0 elsewhere. 
By Lemma 9.4, we know the lower leg of the diagram is zero. Therefore, chasing the 
upper leg of the diagram, we conclude that (A: ~3 fn) 0 @(a @ hl c3 . + .@ h,_l ) = 0. 

Since fn is manic, the result follows. !J 

Proof. We now prove Theorem 9.1 (the completeness theorem). Suppose we have an 
underivable binary sequent which is also simple. Since the sequent is not derivable, 
the associated proof structure has a cycle. Isolate those formulas of the sequent which 
appear in the cycle. Choose one such formula, and bring all other formulas to the 
other side of the sequent using linear negation. Then, the first observation is that any 
such sequent must be of the form (6). Thus the previous lemma establishes the result 
for underivable simple sequents. Now suppose that we have an arbitrary underivable 
binary sequent. We reduce to the simple case by repeatedly left-composing with the 
morphisms: 

6: A@(BDC)+(A@B)??C 

6’: A@(BDC)-+(A@C)??B 

Since these morphisms are manic, the general case follows (see Remarks below). q 

Remark 9.6. The above proof involves a subtlety: we are composing a sequent (in- 
terpreted as a dinatural transformation) with one of the maps 6,6’, r; the latter, as 
sequents, are also dinaturals. How do we know such dinaturals compose? The rea- 
son is that in fact these maps 6,6’, 5 are really natural transformations, and natural 
transformations do compose with dinaturals. 

As an example of this phenomenon in the reduction to simple sequents, consider the 
composition (using the cut-rule) of the binary, nonsimple sequent 

with the mix map 5 (qua sequent) 

This composition yields the sequent F (a 8 jIL ) ?B (/3 @ al ), which is the same as the 
simple binary sequent F (a @ j?l), (/I @ a*). 

Let us examine the dinatural interpretation of this composition in WFV&‘%: 
1. The sequent F (a 18 PI) @ (/I @ aI) interprets as a dinatural 

0 : F* G : (W’P)2 x W2 + 59 
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where F = [l] = k, the constant timctor with value the base field (= unit for the 

tensor) and G = [(a @ /3’) 63 (/3 @ al)] = (III @ II;) @ (II, @ I’If ) . Here I& denotes 
the projection onto the ith covariant variable and II: denotes the linear negation of 
the projection onto the ith contravariant variable (i = 1,2). Since F is constant, the 
dinatural hexagon for 0 degenerates into a diamond shape (a so-called wedge). We 
leave it to the reader to calculate the following diagram for 0: for any f : C --+ A and 
g:D+B, 

2. Composing the above diagram for 8 with the natural transformation associated 
to the MIX map 5, we obtain the following combined co~u~tive diagram, thus a 
dinatural transformation: 

In the above diagram, we have oared the appropriate subscripts on the MIX natural 
transformation. The commutative diagram II arises since mix is a natural transformation 
(A @3 (-)) @ (B KJ (-))---+(A @ (-))O(B @ (-)). Similarly, III arises since m;ix is a 
natural transformation ((-) QpL+) 63 ((-) @ C’)+((-) @ L+-)T?((-) @ Cl). 

10. Full completeness 

We are interested in Full Completeness, tbat is, when is a space of dinaturals gen- 
erated by (the denotations of) syntactic proof terms? In this setting, syntactic proof 
terms take on the form of proof nets. We begin by es~blishing that a nonzero uniform 
dinatural can be assigned axiom links. 

Lemma 10.1. Let M, N be MLL formulas. If Z-Dinat(M,N) has dimension greater 
than 0, then the sequent M t N is balanced 
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Proof. Suppose cr is a nonzero dinatural transformation, and that oA is an instantiation 

for which it is nonzero. Let u E M[A] be such that GA(a) # 0. Let al,. . . ,a, be the 

atoms of&l t N, and A = A 1,. . . , A, the corresponding spaces. We define actions on 

each Ai as follows. Pick distinct prime numbers ~1,. . . , pn and define the Ai action to 

be n - v = pinv, for all v E Ai. Since c is uniform, we know that 

o(1 * u) = 1 - c(u) 

Consider for example a positive occurrence of tli in M. Each such occurrence con- 

tributes a factor of pi to the left-hand side of the equation. For the equation to hold, 

we conclude that there must either be: 

l A negative occurrence of ai in M, which would contribute a factor of pi-‘. 

l A positive occurrence of a; in N. 

A similar claim holds for all occurrences of variables, and it is clear that such 

occurrences must come in pairs, thus establishing that the sequent is balanced. Cl 

Thus, for a sequent to have a nonzero proof structure, it must be a balanced sequent. 

So for the remainder of this section we will only consider such sequents. We begin 

by restricting to binary sequents, that is, sequents where each variable appears exactly 

twice. 

If the sequent M F N is balanced, then one can associate to it a cut-free proof 

structure by choosing a pairing of the variables, and viewing this pairing as a set of 

axiom links. As previously remarked, given a sequent together with its axiom links, 

the cut-free proof structure is uniquely determined. To a binary sequent, we can only 

associate one set of axiom links. Thus the sequent is assigned a unique cut-free proof 

structure. To a nonbinary sequent, we associate a finite set of cut-free proof structures. 

IO. I. Binary sequen ts 

We begin by considering simple sequents. 

Lemma 10.2. The space of proofs of the derivable binary sequent 

al,al * a2,a2 -4 a3,.. . ,a,_1 -0 a, t a, 

has dimension 1. That is, the space 

(9) 

Z-Dinat(al @3 (al -3 a?) @ . +. CL+ (an_1 -3 an),an) 

consists of scalar multiples of the canonical dinatural transformation of this shape, 
which is the dinatural of the form 

(V,fl,f2,..., fn-1) H fn-l(fn-2(...fl(U>)...) 

Proof. Consider a dinatural 19 E Z-Dinat(al @(al -D a2)@. . .@(a,,._~ -O an), a,,). Such 

a dinatural is a family of morphisms f3~, . ..A. satisfying the following diagram: for all 
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n-tuples of objects A1A2 . . .A,, BlB2. . . B, in WFVL%? and morphisms f i : Ai + Bi, 

the following hexagon commutes: 

AI 0 (B, 4 A?) @. @ (B,.., * A,) B” 

fi 8 (B, 4 fi) @ 8 (Bn-, + jn) 

_i 
id 

B, 8 (B, * Bg) @...@ (B,_, *B,,) b,...& 6 

Commutativity of this hexagon corresponds to the following equation (which is a 

generalization of Eq. (5)): for (u,g2 . e . g,,) E Al ~3 (B1 4 AZ) @ . . . CG (B,_l 4 A,,): 

f,(eA,...A"(~,92°f1,930f2...gnOfn-1)) 

= eB,...,(fl(~),f2O92...f”OSn) (10) 

We begin by instantiating 8 at a single space V; e.g. in OA,,,.A. set Al = A2 = . . . = 

A, = V. Given v E V define an action on V which fixes v but has a p-action on a 

complementary subspace. It can be shown that such actions are continuous, by previous 

arguments. 

We calculate OA, . ..~.(a, id,. . . , id). Since the point (a, id,. . . , id) is fixed under the 

above action, we have 

OA ,... A.(v,id,. . .,id) = rv (11) 

for some scalar r. We show that r is independent of the choice of v E V. 
To this end, consider the above hexagon with all spaces Ai = Bi = V. Now pick 

another vector u’ E V, v’ # 0. Choose a continuous involution i,t : V + V satisfying 

i,!(u) = u’ and ii, = id. Consider the following element (u, i,!, i,t . . . i,t ) E Al @ (B, -o 

A2) @ ... $3 (B,_I -+ A,) and let all f 1 = f 2 = . . . = f,, = i,t. Chasing around 

the hexagon, the upper leg gives rv’, whereas the lower gives O(v’, id,. . . , id). Thus 

O( u’, id,. . . , id) = rv’, as required. 

We now show that in this instantiation of the hexagon (i.e. when all Ai and Bi 

equal V): 

eA ,... d4f l,..., fn-1) = r(fn-l(...fl(~))) 

where each f i is an arbitrary endomorphism of V, and for the same r as in Eq. (11). 

To prove this, consider the previous hexagon (i.e. with all Ai and Bi equal V), and set 

fn =id. Consider(o,id,id,...,id)EA1@(B1 -oA2)@...@(B,_1 -oA,). Then going 

around the upper leg gives OA, ...A.( V, f 1,. . . , f n_l ), while going around the lower leg 

gives b,..df w,f2,. . ., f “_ 1, id). By induction, we conclude that 

eK...dt4f l,. . ., fn-1) = r(fn-l(...fl(U))) 

We now show that the scalar r in the equations above is independent of the space V 
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at which we uniformly instantiate. Denote the r above by P-V. We shall now show that 
r~ = rk, where k is the base field. Ins~ntiate the hexagon (i.e. Eq. (10)) at Ai = Y and 
Bi = k, for all i. Consider the element (u, 6,. . . , u”) E A 1 @ (B1 -a AZ) @ . . . @ (B,_ 1 --o 

A,), where 6 : k+V is the map sending 1 to u. Choose f : V+k such that f(u) = 1. 

Set S1,f2,... = f. Now by considering the diagram, the upper leg gives YV and the 
lower gives Q. 

Finally, we need to verify the result on arbitrary inst~tiations. Consider the instan- 
tiation Bc,...~, where each cli is instantiated at Ci, an arbitrary object. Next we set each 
Z?i = V = @ C;. The maps Ci -+ Bi are the canonical inclusions. 

Suppose we have c@ j’l @f2...fn_r E Ci @(Cl --o Cz)...(C,_t -o C,,). Define 
an element of Cl @(V -o C’z)@...@(V + C,) by defining a map V -3 Cj to be 
f i_-l on G-1 and 0 elsewhere. 

The commu~tivi~ of the above diagram gives 

ec,...c”(C,fl,...,fn-l) = cn-l(..*Sl(C>)). q 

Theorem 10.3 (Full completeness for binary sequents). Zf ~a sequent M I- N is binary, 

then Z-~inat(M,~) is zero or I-dimensional, depending on whether its ~~ique~~ de- 
termined proof structure is a net. 

Proof. If M k N is not derivable, the result follows from the completeness theorem. 
For the other direction, first observe that all of the connected components of a 

derivable binary simple sequent in the theory MLL+MZ~ are of the form (9). The 
disjoint components must have disjoint atoms, since the sequent is binary. Thus the 
argument establishing the preceding lemma can be carried out “in parallel” on the 
various pieces. For example, if there are two disjoint components, the codomain of 
the dinatural will be of the form AD B. If v E A and w E B, then the image of 
(v,id,...,id,w,id,..., id) will be a scalar multiple of the morphism mapping f ~3 g to 
~(~)g(w), where f f A’- and g f B’. (Remember that A??B = (Al %I Bl>I.) The 
various diagram chases necessary to establish the previous lemma go through in this 
more general setting as well. 

Now given a derivable binary sequent, we associate to it a set of simple binary 
sequents, by the methods described in Section 2.4. Since the sequent is derivable, each 
of these simple sequents must be derivable, and so has a one-dimensional proof space. 
We know that the proof space of the original sequent is at least one dimensional, 
since it will contain the denotation of the cut-free proof. If it were greater than one 
dimensional, then the proof space of one of the associated simple sequents would have 
to also be at least two dimensional. This is because the associated simple sequents 
are obtained by left composition with the structure maps described in Lemma 9.5, and 
these maps are manic, and so have trivial kernels. q 

Remark 10.4. The dinatural transformations interpreting binary sequents in the above 
theorem will be called binary dinatural transformations. 



RF. Blute, P.J. ScottlAnnals of Pure and Applied Logic 77 (1996) 101-142 133 

This result establishes full completeness for arbitrary binary sequents. Given a deriv- 

able such sequent, we see that the only “abstract proofs” are scalar multiples of the 

denotation of the unique cut-free proof. 

10.2. Nonbinary sequents 

The above result could be seen as the main theorem of the paper as it is the bi- 

nary sequents which are fundamental in linear logic. Nonbinary balanced sequents are 

obtained as substitution instances of these. This philosophy is discussed in [9]. In that 

paper, a general system known as the Autonomous Deductive System (ADS) is pre- 

sented. An ADS is a method of specifying theories of monoidal categories by the 

addition of nonlogical axioms to (multiplicative) linear logic. One of the fundamental 

restrictions in the definition of ADS is that if one wishes to add nonbinary axioms, 

one must add an associated binary axiom of which it is a substitution instance. 

This corresponds to the idea that in a proof net, it is the axiom links themselves 

which are functioning as variables. An analogue of cr-conversion for linear logic should 

say that in a proof structure, one should be allowed to substitute distinct variables when 

two variables are not connected by an axiom link. With this interpretation in mind, 

given a nonbinary balanced sequent, we will only consider those dinaturals which are 

(linear combinations of) substitution instances of binary &naturals. Such dinaturals will 

be called diadditive. 

Consider as an example the sequent a @ o! t c( 8 CI. There are two canonical proofs of 

this sequent. These are modelled in a *-autonomous category by the identity morphism 

and the symmetry map. Thus the proof space associated to this sequent should be a 

two-dimensional space. In other words, every uniform dinatural of this shape should 

be a linear combination of the identity dinatural and the “twist” dinatural. 

We investigate this question in more detail. First note that to any balanced sequent, 

say A4 t N, we can assign a set of sets of axiom links. This assignment determines a 

finite list of binary sequents of which M t- N is a substitution instance. Suppose this 

list is: MI F N,,Mz t Nz,... (The list must be finite.) We define a new vector space, 

called the associated binary space for the sequent M t N: 

J&‘.B’Y(M, N) = fl Z-Dinat(Mi, Ni) 

By the completeness theorem, we know that each Z-Dinat(Mi, Ni) is either 0- or l- 

dimensional, and in the latter case, the space is generated by the denotation of the 

unique cut-free proof of the sequent. 

Example 10.5. Consider the (derivable) sequent CI,C( -e c( k a. For later purposes, it 

is convenient to consider this as a left-sided sequent: a, a -J a,a’ I-. There are two 

associated sets of axiom links: 
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These yield (respectively) the following binary sequents: 

(a) ~,a --o 8,P l- 

(b) a,P --o P,@* k 

The associated binary space d289 of the original sequent a, a -o a k a is the 

coproduct of the proof spaces associated to (a) and (b). Using full completeness for 

binary sequents we obtain: For (a), the sequent is derivable; so the space of Z-dinats 

in this case has dimension 1. For (b), the sequent is not derivable, so the space of 

Z-dinats in this case has dimension 0. Thus &L&KY has dimension 1 + 0 = 1, as 

expected. 0 

There is a canonical linear map: 

cp : d9d9’(M,N) - Z-Dinat(M,N) 

On basis elements, this is defined by “equating variables” in the associated binary 

sequents Mi I- Ni or, more formally, restricting which instantiations we will allow 

according to the pattern of in M t N (see the previous example). At the level of 

dinaturality, this amounts to restricting the acceptable instantiations. 

Definition 10.6. We call those elements of Z-Dinat(M, N) of the form ~(9’) for a 

(necessarily unique) Y E dS?Y(M,N) diadditive. 

Equivalently, a diadditive dinatural transformation is a transformation which is a 

linear combination of substitution instances of binary dinaturals. 

Note that if the sequent is binary, every Z-uniform dinatural is automatically 

diadditive. 

Example 10.7. In Example 10.5, consider the sequent a @J (a -CI /I) t j?. We will 

only allow instantiations (in 92YV”H) of the form a = /I = V. Clearly the resulting 

dinatural transformation lives in Z-Dinat(M, N). 

Given a diadditive element of Z-Dinat(M,N), we give a method for determining the 

unique Y E dgP’(M,N). 
Suppose that the atom a occurs in the sequent M t- N. We introduce a stock of new 

variables S?“:, %i, 9?$, . . . We will consider formal expressions of the form 3: @ 3-z @ 

. . . @ ,537:. This is designed to represent the idea that we will be instantiating the atom 

a at n-ary coproducts. The variables Xq will represent the surmnands, which we will 

allow to vary over arbitrary objects of WYVH. In such instantiations, we will only 

consider morphisms of the form 

Now for the construction. We restrict our attention to left-only sequents, i.e. sequents 

of the form r I-. Since we are working in a *-autonomous category, this is not a 
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real restriction. Suppose that the atom c( occurs 2n times in the sequent r, n times 

covariantly and n times contravariantly. Finally suppose we have 8 E Z-Dinat(r, ). In 

8, we will instantiate a at the formal coproduct: 

Repeat this process for all atoms in M k N. 

Given an allowable set of axiom links, number the links connecting CI’S 1,. . . , n. For 

the two occurrences of IX paired by the ith axiom link, restrict 3: @ 3: @ . . $ .T,* 

to the ith component (and set the others to 0). If CI occurs in the scope of a negation 

(thus it interprets as a functional) this amounts to ignoring some of the summands of 

the domain of the functional. Proceed similarly for all atoms in the sequent. 

When 6’ is instantiated in this way, it can be interpreted as a (binary) dinatural 

4 corresponding to the binary sequent with the chosen set of axiom links. We shall 

illustrate the construction by an extended example below, but for now we will continue 

with the main discussion. 

We repeat this process for all choices of allowable axiom links for r t. The process 

yields a finite family of binary dinaturals associated to 8, say (81,. . . , em}, where m is 

the number of choices of allowable axiom links for r k. We then conclude that 

8 = 8, + 42 + . ‘. + 4,. 

We now begin an extended example illustrating the above procedure. 

Example 10.8. We consider the sequents in Example 10.5. 

(a) Consider the sequent cl,a --<) a, M ’ I- This sequent is equivalent to the sequent . 

c1@ (a +J a) 8 cl* l- I , where I is the unit. Let % = .B?Y-Yd%?. The sequent interprets 

as a dinatural 8 : F + G : (VP) x %? + $7, where F = PI @ (PI +I PI) @ Pf (with 

PI = the covariant projection) and G = [I] = the constant functor with value k, the 

base field. The reader may verify that 8 satisfies the following wedge (= degenerate 

hexagon [5]): for any h : A + B 

A@(A-oA)caA’ 

k 

Thus for any element (a,x,b) E A @(B +z A) @ Bl, we have the equation 

f3A(a,x 0 h, b 0 h) = &(/z(a), h 0 x, b) (12) 
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(b) The first set of axiom links in Example 10.5 yields the binary sequent a, a -I 

/?, /I’ t-. This latter sequent is equivalent to a 8 (a -o p) @ /?I t Z, where Z is the 

unit for the tensor. As above, this sequent interprets as a dinatural 6 : F -+ G : 

(%?oP)2 x $T2 -+ %, where F = II, 63 (II, -o II,) 18 IIt and G = [Z] = the constant 

functor with value k, the base field. The reader may verify that 8 satisfies the following 

wedge (= degenerate hexagon [5]): for any h : A -+ B, h’ : A’ -+ B’: 

A @ (A -o A’) 0 (A’)l 

Thus for any element (a, Z,m) E A @I (B -o A’) @I (B’)l, we have the equation 

8u,(a, 1 o h,m o h’) = dBBt(h(a), h’ o l,m) (13) 

(c) Let 0 be a dinatural interpreting the sequent (with axiom links) 

l-l ml a,a -0 a,a t 

and satisfying Eq. (12) above. We know these axiom links determine the binary sequent 

a, a * /?, /?I t. We shall instantiate 8 at a coproduct V $ W, yielding a family 

&w: V@(V-oW)@WWI+k 

as follows: for the first axiom link, we instantiate at V, letting W = 0 and vice versa 

for the second axiom link. 

&‘,W(r, f,g) =def&‘@W((h 0) @ [(v^, G) - (0, f(v^))l ‘8 [(u^, G) ++ g(+)l) (14) 

We now show that 6 is a dinatural transformation, i.e. satisfies Eq. (13) above (in 

which we set, respectively, A = V,A’ = W, B = V’, B’ = W’.) We chase around the 

above diagram. Consider an element (a, l,m) E V @ (V’ +I W) @ (W’)l. The upper 

leg gives 

The 

&,~(a, bh,moh’) =Bvew((a,O) @ [(C+) ++ (0, Kh(i9))1@ [(fi,+) 

H m(h’(*))l). 

lower leg gives 

&t,p(h(a), h’d, m) =8 vew((h(a), 0) CQ Kv^,G) H (Qh’(K3))1@ KC $1) 

H m(+it)l>. 
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We leave it to the reader to verify that the equality of these two expressions follows 
from the dinaturality equation (12) for 8. 0 

10.3. Main result 

We are now ready to state the main result of the paper, which follows from the 
previous discussion. 

Theorem 10.9 (Full Completeness). Let M and M’ be formulas in multiplicative lin- 

ear logic, interpreted as deJinable multivariant functors on W97%%2. Then the vector 
space of diadditive Z-uniform dinatural transformations Z-Dinat(M,M’) has as basis 

the denotations of cut-free proofs in the theory MLL + MLY. 

A full completeness theorem establishes such a tight correspondence between syn- 
tax and semantics that the syntactic proof of compositionality of definable dinatu- 
rals can be lifted to any semantics for which such a theorem holds. Thus one can 
show: 

Corollary 10.10. Uniform diadditive dinatural transformations compose. Thus we ob- 
tain a *-autonomous category by taking as objects formulas, interpreted as multivari- 
ant functors. Morphisms will be uniform diadditive dinatural transformations. 2 

At this point, we mention an open question. We have been unable to exhibit a 
Z-uniform dinatural which is not diadditive. This leads us to ask: does Z-uniformity 
imply diadditivity? 

11. Hopf algebras 

The representation theory of Hopf algebras provides a natural generalization of 
that of groups and may ultimately allow us to generalize the previous results to 
the noncommutative, braided and cyclic settings. We briefly review the basic the- 
ory before stating our conservativity result. For a more complete discussion, see [l] 
or [46]. 

11.1. Dejinition and categorical structure 

Definition 11.1. A Hopf algebra is a vector space, H, equipped with an algebra struc- 
ture, a compatible coalgebra structure and an antipode. These must satisfy equations 

2 In fact, we obtain an indexed *-autonomous category in the sense of [43]. 
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as outlined in [46]. The following chart summarizes the necessary structure. 

Structure kfG1 
Algebra m:H@H-+H NJ1 8 92) = 9192 

1: k-+H dlk) = lG 
Coalgebra d: H-H@H 4g) = 9 @B 

E: H-k E(g) = lk 
Antipode S:H-+H S&f = 9-l 

One obtains a Hopf algebra from a group G by taking the vector space generated 
by the elements of the group. The previous chart also illustrates this associated Hopf 
structure. Many other examples are discussed in [46] and [l]. 

We now discuss the representation theory of Hopf algebras. In the following defmi- 
tion Y can either be a vector space, an object of YV&%? or WFY&Y. In the latter 
cases, we topologize the Hopf algebra discretely, and use the appropriately topologized 
tensor product. 

~finition 1. A (f@) ~o~~~e over a c~ommutative Hopf algebra H is a space Y, 
together with a linear action map p : H %I V -+ Y satisfying the following two 

diagrams: 

H@H@V 
id@p 
-H@V V---f-H@V 

The category of discrete H-modules and equiv~~t maps is denoted Af@.S(H). The 
category of linearly topologized H-modules is denoted ~Al!B(H). 

The representations of a Hopf algebra associated to a group correspond precisely to 
representations of the group. 

Proof, If U and V are modules, then U I% V has a natural module structure given by 

This module will be denoted as U @H V or just U @ V if there is no danger of 
confusion, A significant difference between groups and Hopf algebras is that the tensor 
in JZ@.Q(H) need not be symmetric: 
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Definition 11.3. H is said to be cocommutative if 

A 
H-H@H 

H@H 

Here ~12 is the canonical symmetry. An easy calculation shows: 

Lemma 11.4. If H is a cocommutative Hopf algebra, A’W(H) and 9-.,&09(H) are 
symmetric monoidal categories. 

The fact that AO@H) need not be symmetric means that these categories are of 
great use in modelling variants of the traditional commutative linear logic. By altering 
the Hopf algebra, one may obtain models of noncommutative logic, braided logic or 
cyclic logic. Hopf algebras are viewed as a unifying structure for these different logics, 
and the structure of the logic you are modelling is reflected in the structure of the 
algebra. This is discussed in [lo]. 

While &!&2(H) and Y.MU@H) may not be symmetric, they will always be closed. 
For the rest of the section, we will assume H is cocommutative, although the next result 
holds in a more general setting [34]. 

Theorem 11.5. Let H be a cocommutative Hopf algebra. &89(H) and .YA!O9(H) 
are symmetric monoidal closed categories. 

Proof. In the case of .A&S(H) the internal HOM is given by the space of k-linear 
maps with action described as follows: Let V and W be modules, f : V-+ W a k-linear 
map, and v E I’. Then define 

hf (v) = Chlf (W2b) 

where 

d(h) = Ch, @ h2 

For Y&Z&2(H), the internal HOM will be the space of k-linear continuous 
maps. 0 

Note that the action of the internal HOM is the obvious generalization of the con- 
tragredient representation of groups. It is easily seen that the work of Lefschetz and 
Barr on the structure of the category YV&? lifts to the category .Y.MO.Q?(H). In 
particular, 

Theorem 11.6. Zf V E YAO.C@H), then p : V--tVLL is a bijection. Let WYAO9(H) 
denote the full subcategory of YA!OQ(H) of objects for which p is an 
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isomorphism. Then ~.9-.&‘#9( H) is a *-autonomous category and a rejective subcat- 
egory of~~~~( H) via the~nctor (-) li. The forgetful functor from WYA’O$@(H) 

to &?SV&X? is a *-autonomous finctor. 

11.2. Conservativity theorem 

The following result is a corollary of the previous theorem and the full completeness 
theorem. It can be viewed as a conservativity result. 

Theorem 11.7. A diadditive dinatural transformation between definable multivariate 
functors which is untform with respect to the additive group of integers is untform 

with respect to arbitrary co~ommutative Hopf algebra. 

Proof. This follows immediately from the fact that the forgetful ftmctor preserves the 
*-autonomous structure. 0 

These results suggest that general Hopf algebras may be useful in deriving full 
completeness theorems for nonco~utative logics, such as those studied in [4] and 

[491. 

12. Conclusion 

We now discuss possible extensions of this work. 
While Theorem 11.7 is straightforward to prove, it is an extremely suggestive result. 

In [lo], it is observed that Hopf algebras provide a unifying framework for modelling 
a number of different variants of linear logic. These different variants are obtained by 
modifying or eliminating the exchange rule. In this way, one obtains noncommutative 
{planar) linear logic, cyclic linear logic and braided linear logic. By choosing an ap- 
propriate Hopf algebra, we are able to model all of these different variants. The Hopf 
algebra is used to control the degree of symmetry of the model. Thus the notion of 
uniformity may be used to derive full completeness theorems for these various fiag- 
ments. In particular, there is one Hopf algebra, the shuffle algebra, described in [46] 
and [lo], which we conjecture will provide a fully complete semantics for cyclic linear 
logic. 

We also observe that since the category &!YVL?V is complete and cocomplete, it 
is possible to model second-order quantification via the end interpretation of [5]. The 
extent to which full completeness holds for this fragment is worth exploring. 

Finally, we point out that the notion of group action and invariant element recurs 
throughout mathematics. For example, the notion of a group acting on a graph has been 
studied extensively. By allowing a group to act on the underlying web of a coherence 
space, we are led to the notion of a G-coherence space. This structure may prove 
illuminating for obtaining full completeness for a larger fragment of linear logic. 



RF Blute, P.J. Scott I Annals of Pure and Applied Logic 77 (19%) 101-142 141 

References 

[l] K. Abe, Hopf Algebras (Cambridge Univ. Press, Cambridge, 1977). 

[2] S. Abramsky and R. Jagadeesan, Games and full completeness for multiplicative linear logic, J. Symbolic 

Logic 59 (1994) 543-574. 

[3] S. Abramsky, R. Jagadeesan and P. Malacaria, Games and full abstraction for PCF, Parts I, II. Research 

announcements (July, September 1993), Imperial College, London. 

[4] V.M. Abrusci, Phase semantics and sequent calculus for pure noncommutative classical linear 

propositional logic, J. Symbolic Logic 56 (1991) 1403-1456. 

[5] E. Bainbridge, P. Freyd, A. Scedrov and P. Scott, Functorial polymorphism, Theoret. Comput. Sci. 70 

(1990) 140331456. 

[6] M. Barr, Duality of vector spaces, Cahiers de Top. et Giom. Diff. 17 (1976) 3-14. 

[7] M. Barr, *- Autonomous Categories, Lecture Notes in Mathematics, Vol. 752 (Springer, Berlin, 1980). 

[S] M. Barr, Separability of tensor in Chu categories of vector spaces, Appendix to [IO]. 

[9] R. Blute, Linear logic, coherence and dinaturality, Theoret. Comput. Sci. 115 (1993) 3-41 

[lo] R. Blute, Hopf algebras and linear logic, Math. Struct. Comput. Sci. (1995), to appear. 

[I l] R. Blute, Braided proof nets and categories, in preparation. 

[12] R. Blute, J.R.B. Cockett, R.A.G. Seely and T. Trimble, Natural deduction and coherence for weakly 

distributive categories, J. Pure Appl. Algebra, to appear. 

[13] J.R.B. Cockett and R.A.G. Seely, Weakly distributive categories, in: Applications of Categories in 
Computer Science, London Mathematical Society Lecture Notes Series, Vol. 177 (1992). 

[14] V. Danos and L. Regnier, The structure of multiplicatives, Arch. Math. Logic 28 (1989) 181-203. 

[ 151 A. Fleury and C. R&ore, The MIX rule, preprint, 199 1. 

[16] P.J. Freyd, E.P. Robinson and G. Rosolini, Dinaturality for free, in: M.P. Fourman, P. Johnstone and 

A.M. Pins, eds., Applications of Categories in Computer Science (Cambridge Univ. Press, Cambridge, 

1992) 107-l 18. 

[ 171 P.J. Freyd, E.P. Robinson and G. Rosolini, Functorial parametricity, Proc. Logic in Computer Science 

(IEEE Press, New York, 1992). 

[IS] W. Fulton and J. Harris, Representation Theory, Graduate Texts in Mathematics, Vol. 129 (Springer, 
Berlin, 199 1). 

[19] J.Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) l-102. 

[20] J.Y. Girard and Y. Lafont, Linear Logic and Lazy Computation, Lecture Notes in Computer Science, 
Vol. 250 (Springer, Berlin, 1988). 

[21] J.Y. Girard, Y. Lafont and P.Taylor, Proofs and Types, Cambridge Tracts in Theoretical Computer 
Science, Vol. 7 (1989). 

[22] J.Y. Girard, A. Scedrov and P. Scott, Normal forms and cut-free proofs as natural transfotmations, 

in: Logic From Computer Science, Mathematical Science Research Institute Publications 21 (1991), 

217-241 (also available by anonymous ftp from: tbeory.doc.ic.ac.uk, in: papers/Scott). 

[23] V. Harnik and M. Makkai, Lambek’s categorical proof theory and Lauchli’s abstract realizability, 

J. Symbolic Logic 57 (1992) 200-230. 

[24] J. Horvath, Topological Vector Spaces and Distributions, Addison-Wesley Series in Mathematics (1966). 

[25] P. Jobnstone, Topos Theory (Academic Press, New York, 1977). 

[26] G.M. Kelly qnd M. La Plaza, Coherence for compact closed categories, J. Pure Appl. Algebra 19 (1980) 
193-213. 

[27] G.M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971) 97-140. 

[28] J. Lambek, Bilinear logic in algebra and linguistics, preprint, 1993. 

[29] J. Lambek and P.J. Scott, Introduction to Higher Order Categorical Logic (Cambridge Univ. Press, 

Cambridge, 1986). 

[30] H. Lauchli, An abstract notion of realizability for which intuitionistic predicate calculus is complete, 

in: A. Kino et al., eds., Intuitionism and Proof Theory (North-Holland, Amsterdam, 1970) 227-234. 

[3 l] S. Lefschetz, Algebraic Topology, American Mathematical Society Colloquium Publications 27 (1963). 

[32] R. Loader, The undecidability of I-definability, manuscript, 1993 (available by anonymous ttp from 
tbeory.doc.ic.ac.uk, in: papers/Loader). 

[33] R. Loader, Linear logic, totality and full completeness, Proc. Logic in Computer Science (LICS) 1994 
(IEEE Computer Science Press, Silver Spring, MD, 1994). 



142 RF. Blute, P.J. ScottlAnnals of Pure and Applied Logic 77 (1996) 101-142 

[34] S. Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Intemat. J. Modem Phys. 5 (1990) 

I-91. 

[35] R. Mimer, Fully abstract models of typed Lambda calculi, Theoret. Comput. Sci. 4 (1977) I-22. 

[36] J.C. Mitchell, Type systems for programming languages, in: J. van Leeuwen, ed., Handbook of 

Theoretical Computer Science, Vol. B (Elsevier, Amsterdam, 1990) 365-458. 

[37] J.C. Mitchell and E. Moggi, Kripke-style models for typed lambda calculus, Ann. Pure Appl. Logic 51 

(1991) 99-124. 

[38] J.C. Mitchell and A. Scedrov, Notes on sconing and relators, Computer Science Logic ‘92, Lecture 

Notes in Computer Science, Vol. 702 (Springer, Berlin, 1993) 352-378. 

[39] J.C. Mitchell and P.J. Scott, Typed lambda models and Cartesian closed categories, Contemp. Math 92 

(1989) 301-316. 

[40] G.D. Plotkin, Lambda definability in the full type hierarchy, To H.B. Curry, Essays on Combinatory 

Logic, Lambda Calculus and Formalism (1980) 363-373. 

[41] J. Reynolds, Types, abstraction and parametric polymorphism, Information Processing ‘83 (North- 

Holland, Amsterdam, 1983). 

[42] H.H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Vol. 3 (Springer, Berlin, 

1970). 

[43] R.A.G. Seely, Linear logic, *-autonomous categories, and cofree coalgebras, Contemp. Math. 92 (1989) 

371-382. 

[44] R. Statman, Logical relations and the typed Lambda calculus, Inform. and Control 65 (1985) 85-97. 

[45] A. Stoughton, Mechanizing logical relations, Proc. Mathematical Foundations of Programming 

Semantics, Lecture Notes in Computer Science, Vol. 802 (Springer Berlin, 1994). 

[46] M. Sweedler, Hopf Algebras (Benjamin Press, New York, 1969). 

[47] W.W. Tait, Intensional interpretation of functionals of finite type, J. Symbolic Logic 32 (1967) 198-212. 

[48] A. Troelstra, Lectures on Linear Logic (CSLI Publications, 1991). 

[49] D. Yetter, Quantales and (noncommutative) linear logic, J. Symbolic Logic 55 (1990) 41-64. 


