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We detail Abramsky’s “proofs-as-processes” paradigm for intxpreting classical linear logic (CLL) 

(Girard, 1987) into a “synchronous” version of the n-cah:ulus recently proposed by Milner 

(1992.1993). The translation is given at the abstract level of proof structures. We give a detailed 

treatment of information flow in proof-nets and show how to mirror various evaluation strategies 
for proof normalization. We also give soundness and complet :ness results for the process%alculus 

translations of various fragments of CLL. The paper also gives 1 self-contained introduction to some 

/ of the deeper proof-theory of CLL, and its process interpretation. 

1. Introduction 

Milner’s x-calculus [26,27] is a recent addition to a large and active literature on 

the foundations of concurrent computation. These theories attempt to analyze and 

clarify the world of concurrently communicating proce!;ses (and associated program- 

ming languages) in much the same way as lambda calculus and other models of 

computation have done for the sequential world [26]. 

In a different direction, Girard [13,16,17,18] has instituted the rapidly growing 

area of linear logic, a radical modification of traditional logic which appears to have 

strong connections with theoretical computer science. In several publications [ 15,161 
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Girard has suggested that linear logic should have deeper connections with parallel- 

ism and concurrent computation. This suggestion was taken up more formally by 

Abramsky [2] in an influential series of lectures, and in some unpublished work of 

Milner [24]. 

The Abramsky view is essentially a modification of the familiar formulae-as-types 

(Curry-Howard) isomorphism: instead of proofs being functions (qua lambda terms), 

Abramsky views proofs as processes (e.g., rr-calculus or CCS terms). Processes are 

thought of as communicating through distinguished ports or channels, named by free 

variables. The key observation is that proof-theoretical communication (i.e., the Cut 

rule in the Gentzen formalism) is modelled by communication along a private internal 

channel (i.e. hiding) in the process-calculi world. It should follow that the dynamics of 

logical computation, namely the cut-elimination or normalization process for proofs, 

be reflected in the rewriting theory for process algebra terms. 

Alas, this is precisely the point where the concurrency and logic worlds begin to 

diverge. For example, the fundamental case of cut-elimination requires modular or 

contextual rewriting (since we may need to eliminate a cut embedded high-up in 

a proof tree). Most experts on concurrency theory are simply unwilling to allow 

rewriting within all contexts, particularly those involving nondeterministic choice +; 

typically an interaction with a process P + Q chooses one of the components, and the 

other component is immediately destroyed. The question is: to what extent can we 

represent logical computation within the accepted concurrency world? 

Milner [25] recently developed a version of the rr-calculus (the synchronous 

TC-calculus) purposely supporting some of the logical rewriting envisioned by 

Abramsky. In this paper, we analyze the Abramsky view in detail for the synchronous 

rr-calculus. We shall translate proofs (and certain normalization strategies) for the 

three important levels of linear logic: the multiplicatives, the additives, and the 

exponentials. In the case of multiplicative linear logic, the n-calculus translation 

provides a lock-step simulation of proof net reduction. As soon as the additive and ex- 

ponential connectives are included, again problems of rewriting in contexts begin to 

appear (even for the synchronous rr-calculus). We show how we may soundly and 

completely reflect the proof theory (though not necessarily lock-step simulation) by 

different methods: 

l Modify the x-calculus reduction strategies to more closely mimic those inherent in 

logic (e.g., (i) by introducing guarding of terms [27] or (ii) by a version of Girard’s 

theory of slicing of proof nets [7,13]). 

l Modify linear logic evaluation strategies to take into account the extant theory of 

rc-calculus (e.g., restriction to Geometry of Interaction-style evaluation strategies 

CI7,181). 
One of the theses of this work is that the Abramsky-style translations (of linear 

logic) into the process world actually have less to do with logic than one might think: 

they are essentially only about the abstract pluggings in proof structures [12,13,16], 

and we formulate many of our results in this more general setting. This phenomenon 

may be already expected by experts in concurrency theory, who view process algebras 
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as a theory of “hand-shaking” protocols (which have nothing to do with logic) but it 

came as a surprise to us. What seems particularly curious - given this “alogical” 

nature of n-calculus - is that much of the theory (as described below) is nonetheless 

coherent (and complete) for various logical proof reduction (normalization) strategies. 

A second theme of this paper is that information flow in cut elimination is related to 

sending/receiving protocols in n-calculus. In Section 5, this intuition is made precise in 

a detailed analysis of information flow in pure nets [S, 11,221 which is a theory of 

graphical networks for representing untyped lambda terms in the style of proof nets 

for linear logic. We shall show how to dynamically orient a proof-net (assigning the 

symbols I (for input) and 0 (for output)) in a manner coherent with respect to 

introduction and elimination rules for natural deduction, and cut-elimination (nor- 

malization). This permits a systematic analysis of orientation and information flow in 

the Abramsky n-translation, obviating (for example) the need for bidirectional buffers. 

Finally, the paper contains a survey of more advanced proof-theory for linear logic, 

including additive boxes and Girard’s theory of slicing, and how to represent these 

notions in the n-calculus. 

At this point, we should mention a few papers on related themes. The paper of 

Monteiro [29] gives a lock-step simulation of proof nets for multiplicative linear logic 

into a version of CSP, although the author does not handle the additives or exponen- 

tials. This paper is the first example of the kind of analysis considered here (apparently 

independent of Abramsky [ 11) o a sound and faithful translation of logical deduction f 

in a language of concurrency. The paper of Miller [23] is based on a logic program- 

ming view of the n-calculus: Miller codes the x-calculus as a theory in linear logic, and 

discusses how techniques of logic programming (proof search, etc.) are useful in 

understanding some of the metatheory of the 7c-calculus. This paper has no direct 

connection with the Abramsky program of proofs-as-processes, although some of the 

syntactical considerations are mildly similar. 

2. The n-calculus 

The following version of the n-calculus [24,27] has recently been suggested by 

Milner [25] for its possible connections to linear logic, a connection we shall develop 

in more detail below. 

2.1. Basic synchronous z-calculus 

There is an infinite family X of variables called names. We shall denote names by 

x, y, z, . . . EX and vectors of names by JE or .Z. The rc-calculus describes certain basic 

entities known as processes, having the following syntactic forms: 

l I (vx)P I P II Q I d’ 

where 
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(i) The prefixes 7c are formal expressions of the form X(G ) or x(G), where x is 

a name, and 3 is a vector of names, possibly of length zero. We say P is the scope of 

prefix 7c in the process rcP. 

(ii) vx and (5) are name-binding operators with the obvious scopes. Thus in the 

expression (vx)P, the name x is bound and the scope of vx is P; the operation v is 

known as hiding: the variable x in the process (vx)P is said to be a hidden name. 

Similarly, in the expression x(G)P, the names 5; are bound (and x is free) and P is the 

sc0pe.l 

The intended interpretation is that rc-calculus describes a theory of processes 

concurrently communicating through distinguished ports or channels (think of tele- 

phone systems or a computer network). The intended meaning of names [24] is that 

they represent communication channels, i.e., ports for the communicating behaviour of 

these interactive processes. A fundamental such operation is the “hand-shaking” 

protocol, in which one agent’s channel identifies itself to another agent’s channel, and 

the receiver signifies it is ready to receive the communication. This is encapsulated in 

the two syntactic operations X( j )P, which means “send the names ; along the 

channel x and then do process P”, and ~(3 )P which means: “receive along x arbitrary 

names for the bound names y “. Another fundamental operation is “hiding”, in which 

a channel is declared private and so is inaccessible to the outside world. Finally P /I Q 

denotes the process in which P and Q are acting concurrently (in parallel) while 

l denotes the nil process. 

The following rules govern the behaviour of n-calculus terms. We assume there is 

a congruence relation = on n-terms which satisfies the following additional proper- 

ties: 

(1) w1 wzP= wlwl P provided no free variables become bound, nor any bound 

variables become free. 

(2) w(P 11 Q) = COP 11 Q, provided bn(a)nfn(Q)=@. 

(3) I/ - as a binary operation on processes - satisfies the axioms of a commutative 

monoid with unit l . 

(4) (vx) 0 = 0. 

(5) (v4(vY)P=(vY)(vx)P. 
As usual, we identify processes which are identical except for change of bound 

variables (a-conversion). We often omit writing the process l (cf. [27]), writing X (G ) 

in place of X(;)o. 

We make the rc-calculus into a rewriting system by assuming the following notion of 

basic 1 -step reduction: 

X<j>P II x(t)Q > P II QL%l 

1 More precisely, we may define the set of free and bound names in processes P (=fn(P) and bn(P), 
respectively) as follows: (a) fn(o)=bn(o)=@. (b) fn(P 11 Q)=fn(P)ufn(Q); bn(P 11 Q)=bn(P)ubn(Q). 

(c)fn(~(~)P)={~,~}ufn(P);bn(~(~)P)=bn(P).(d)fn(x(~)P)=fn(P)u{x};bn(x(~)P)=bn(P)u{~}. 

(e) fn((vx)P)=fn(P)\{x}; bn((vx)P)=bn(P)u{x}. 
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where Q [ G/z ] denotes the simultaneous substitution of the names yi for the (possibly 

free) names Zi in Q. We consider the rewriting theory modulo =, so that for all 

contexts %? we have: P > Q =S %[P] > %?[Q]. 

This version of the n-calculus allows some unexpected rewritings (modulo E); 

for example: X(j)x(Z)P> P[$2]. Proof: X(y)x(Z )P=Z(j)(o 11 x(;)P)= 

(X(3>.IIX(~)P)~PC~l~l. 

2.2. Full synchronous n-calculus 

We add to the syntax of the basic theory above, an additional process formation 

rule: finite summation. That is, the processes now have the following form: 

. I (vx)f’ I PII Q I nf’ I f’+Q 

P+Q represents a process able to take part in one (but only one) of the alternatives 

P, Q; however, the choice is not made by the process, but by the environment at the 

time of a particular interaction. We add to the previous congruence rules for = the 

following rule: 

The operation + -considered as an operation on processes - satisfies the axioms of 

a commutative monoid with identity l . 

Moreover, we add to the reduction rules above the following additional basic 

rewrite rule: 

V’+xG)Q) II (b(jW)+S) > Q II RC;/:I 

We do not assume > is a congruence with respect to + - i.e., we do not assume 

rewriting under a +. It is worth remarking that the choice operator + above has 

a powerful effect: it destroys all “side processes” P and S not actually involved in the 

interaction.2 This is one of the main problematic operators in understanding rr- 

calculus from the logical viewpoint. 

Two important notions from the ordinary rc-calculus are guarding and distributiuity. 

Guarding is a method of forcing certain communications to occur in a given order, 

thus imposing a restriction on the evaluation strategies available for n-calculus terms. 

Syntactically, a dot after a prefix, as in CO. P, denotes a process in which communica- 

tion must occur with o before any communication can occur within P (so in a sense 

the prefix CO “guards” P against contact with ambient processes, as well as preventing 

internal communication within P until w is discharged). Writing the dot “. ” has no 

other formal status than to denote this ordering of evaluation. If we speak of 

synchronous z-calculus with guarding, we shall mean (unless otherwise stated) that all 

’ In particular, S is arbitrary, so may itself be of the form x(j )S’. So, assuming commutativity of +, basic 

interactions of the above form could sometimes (up to =) arbitrarily pick either component when rewriting 

a summand. 
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processes can have prefix sequences which may be mixtures of either guarded or 

unguarded ones. 

Rewriting theory in the presence of guarding is a slight modification of that of the 

basic synchronous calculus above. We modify the rules mentioned in Section 2.1, as 

follows: 

l We can permute unguarded prefixes up to =, with the usual provisos on free and 

bound variables, with the following restriction: properties (1) and (2) of the congru- 

ence = do not apply if one of the prefixes Wi or o is a guarding prefix. 

l A subterm w. P can only be reduced via communication with o, not through 

reduction within P. 

In particular, under guarding rewriting is not contextual or compositional. 

II x(y)Q > P II QCz/yl 

whereas the guarded term u(x). [X(z)P 11 x(y)Q] is at the moment inert: it cannot 

have any internal action and can only communicate through the variable U. 

Milner [27] uses guarding to constrain evaluation strategies (e.g., in simulating the 

lazy A-calculus in the n-calculus). Similarly, in Section 6.2 we shall use guarding to 

mirror certain restricted evaluation strategies in linear logic (needed for our complete- 

ness theorems for additive proof net reduction). 

Distributivity (of 11 and unguarded prefixes) with respect to + is discussed in [27] 

and other references referred to there. The main feature (from our viewpoint) is that 

distributive laws are needed to mirror the commutative reductions of linear logic 

(cf. [ 131). 

3. Proofs-as-processes 

In this section we introduce a version of the Abramsky translation [l] mapping 

proofs in linear logic into process calculi, and discuss Soundness and Completeness 

Theorems for this translation. As mentioned in the introduction, our treatment is an 

adaptation of the original Abramsky work to the synchronous 7r-calculus, a calculus 

better suited to this kind of analysis. The idea is to assign to a proof annotated with 

free variables, a process term whose free variables are exactly the variables in the 

conclusion of the proof: 

kx,:A,,...., x,:A, -+ Pxl,...,x, 

One may think of the free variables x 1, . . . . x, as “communication ports” in an 

interface connecting a process to its surroundings. 
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We assume the reader is familiar with the usual presentations of classical linear 

logic (CLL) by one-sided sequents [2,13]. We consider, in separate sections below, an 

involutive negation ( )I along with the three levels of CLL connectives emphasized by 

Girard [13], which are pairwise related by de Morgan duality: (i) multiplicatiues: the 

conectives { 0, ??}, i.e., tensor and dual tensor (= par), (ii) additives: the connectives 

{&, @}, i.e., product and coproduct, (iii) exponentials: the connectives {!, ?}, which are 

storage operators. We write MLL for the multiplicative fragment, MALL for the 

multiplicative and additive fragment, and CLL for the full theory, Note that we ignore 

the role of the units in all that follows. For simplicity, we also consider only atomic 

axiom links. 

Much of the proof theory used in this paper is standard; further details for the case 

of linear logic are contained in Girard’s original paper [13], Troelstra’s recent book 

[32], as well as in [6,7,12], etc. 

3.1. The Abramsky translation: the multiplicatives 

Logical rule 

Ex:A,y:Al 

;F .G 

t%:I-,x:A I-?;:A,y:B 

t%::,;:A,z:A@B 
0 

.F 

t%::,x:A,y:B 
?I? 

k;:r,z: ATB 

jF .G 

I-;:r,x:C &:A,y:C’ 

I-;:I-,i;:A 
cut 

n-translation 

Zxy=x(a)j(a) 

$ (F, G) %;z = vxy(Z(xy) (F;x 11 Gijy)) 

( ?j’;qy)(F)~z=z(xy)F?vxy 

Cut’(F, G);Z;=vz(F; [z/x] 11 G; [z/y]) 

It is worth remarking that this translation makes two choices: we choose to 

interpret @ uniformly as a sender and ~5’ uniformly as a receiver. Following the 

terminology of Abramsky and Milner, the operator I in the translation of the axiom is 

known as an axiom bufSer. Note that axiom buffers also translate positive atoms as 

receivers and negative atoms as senders. A full discussion of information flow and 

these choices is in Section 5 below. Superscripts on the rc-terms 0, 38, Cut denote 

bound variables. 

3.1.1. The cut algebra for MLL 

The following equations represent, in functional (combinator) form, the cut- 

elimination reductions in MLL. 
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Symmetric reductions: 

Cut”(F, G)= Cut”(G, F) (1) 

CuP(Fx, Ixy) > F [ y/xl (2) 

Cut’ g (Fx, Gy), ‘18:‘Y(Hxy) > CutY(Gy, Cut”(Fx, Hxy)) (3) * 

= Cut”(Fx, CutY(Hxy, Gy)) (4) 

Commutative reductions: 

CutX( .:,’ Fxcd, Gx)= T9~dCutX(Fxcd, Gx) (5) 

Cut” 

where in the first and second commutative reduction equations, 7%’ and @ do not react 

with x. 

Remark. Note that in the term ?k?zd CutX(Fxc, Gxd), Cut and Par obviously do not 

permute. In order to permute inferences, one needs the additional information that c, d 

occur in the same branch of the proof tree, as in (5) above. 

Theorem 1 (Soundness). Let 29 be a proof in MLL and let ~(9) be it n-calculus 

translation. 

(i) If 9 > 1 9’ by a l-step symmetric reduction in the cut-elimination process, then 

~$9) > 1 ~(9’) in the synchronous rc-calculus. 

(ii) If 9 > 1 9’ by a l-step commutative reduction in the cut-elimination process, then 

~~(9)s ~(9’) in the synchronous x-calculus. 

Proof. By induction, following the steps in cut-elimination. 0 

From part (ii) in the above theorem, we see that the 7~ translation really acts on 

proofs modulo the order of the rules, thus on proof nets [13]. This theorem will be 

generalized in Sections 4,5 below to the case of proof structures. We shall also discuss 

the completeness (or in categorical language, the local fullness) of the 7c-calculus 

translation. 

It is important to observe that cut-elimination is a modular or compositional 

property: a reduction 9 > 1 9’ may occur high up in the proof tree, not necessarily at 

the bottom node. This requires that reduction in the associated n-terms must be 

a congruence, i.e., reduction must be contextual. This will be the case for the n-terms 

that arise in the MLL translation. But there will be problems with the additives and 

exponentials, as we shall see below. 



3.2. The Abramsky translation: the additives 

Logical rule 

.P 

t-ii,:P,x:A 

W+4@B6 

On the n-calculus and linear logic 

rc-translation 

L:(P)Gz=(vx)(z(uv)u(x) Pi;X) 

;P iQ 
F%:T,x:A F%::,y:B 

FG:l-,z:A&B 
& &:Y(P,Q)~z=~(~~)Z(u~)[~(~)P;;,+~(y)Q;;.J] 

3.2.1. The cut algebra: additives 

The following equations are true for proofs in MALL: 

Symmetric reductions: 

Cut’(&:‘(P,, P,), WQ,)) > CuW’x> Q Cxlul) 

Cut’(&:Y(P,, P,), WQ,)) > CWL Q Cxlul) 

Commutative reductions: 

(7) 

(8) 

(9) 

Theorem 2 (Weak soundness). Let 9 be a proof in MALL and let rc(G8) be its 

n-calculus translation. Then we have: 

(1) Let G?? be any cut such that no &-rule occurs below %?. If 9 > I 9’ by a symmetric 

reduction applied to the cut Gf? then rt(g) > n(g’). 

(2) If the z-calculus admits distributivity of /I and prefixes (including hiding) over 

+ and if9 > 1 9’ by a commutative reduction then z(s)=z(5@‘). 

Note that this theorem says the n-translation is sound only for eliminating certain 

specific cuts. This comes from the fact that > is not a congruence with respect to 

+ (see the introduction and Section 2). For example, with respect to the restrictions in 

Theorem 2, eliminating a cut in a term of the form &:‘(P,Q)Gz would involve 

contextual rewriting under a +. 

We include some examples of Theorem 2 (weak soundness for additives). 



20 G. Bellin, P.J. Scott 

Example 1. The proof below has a & below a cut. 

Ex:A,p:AL Fy:A,p:AL Fx’:A,p’:Al 

kw:A&A,p:Al 
&I OL 

kx’:A,w:A1@A’Cut 

kp:A’,x’:A 
1 

Fy’:B,q’:B1 

Ez:Z3,q”:B1 Ft:A1@Bl,x’:A kt:A1@B1,y’:B 

kz:B,w’:Al@B1 tt:Al@W,w’:A&B 

I-z:B,t:A1@B1 
cutz 

This reduces to (by a symmetric reduction to CutI, and axiom reduction) 

IX’P 

X7&7 . . 
. 9 . ky’:B,q’:B1 

Fz:B,q”:B~ Ft:AI@B1,x’:A Ft:Al@ZV,y’:B 

I-z:B,w’:A1@BI t-t:Al@B1,w’:A&B 

Fz:B,t:Al@B1 
Cut, 

To the first proof corresponds the rc-term (with Cut, and &i in bold) 

z%z= CutW’(R$(Zzq”), &“,:L(Lp(cutw(&~~(zxp, Zyp), L$(Zx’p’))), R,4’(Zy’q’))). 

The process of cut-elimination illustrated above corresponds to rewriting a subterm of 

Ptz as follows: the left hand branch before (and after) Cut1 is eliminated corresponds 

to the following subterm reductions: 

(vwu~p’)(w(u~)Cu(x)(x(a)p(a))+~(Y)(Y(b)p(b))l II w(u~)u(P’>(x’(c)P’(c>))) 

> (vp’)((p’(a)F(a>) II w(4P’(c>)) 

>* x’(c)p(c), after extruding x’, interaction, and eliminating bound p’. 

=Zx’p, which is the denoted proof of t x’: A, p: A’. 

This illustrates Part 1 of weak soundness, except the condition “no &-rule occurs 

below a cut”. To understand this restriction, suppose we attempt to continue reduc- 

tion of the proof, by a symmetric reduction of Cutz, noting that 8~ is below a cut. We 

implement this by continuing to reduce the z-term Ptz (having already reduced the 

inner subterm above.) The rightmost subterm of Ptz containing R$(Zy’q’) has the 

form P,,-v’(y’)(vq’)t(r’s’)s’(q’)(y’(d)q’(d)). But in the n-calculus, we can rewrite 

a term occurring in the scope of a sum only after choosing the relevant summand; 

here, the term PO is discarded by the previous steps. If we were to continue cut- 

elimination and apply a symmetric reduction to Cutz, then in the associated reduction 

of the z-term Ptz, we eventually obtain an irreducible n-term which does not 

correspond to a proof, because of the disappearance of PO. We leave the calculation to 

the reader. 
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Example 2. We illustrate Part 2 of weak soundness. The proof 

Fx:A,p:Al F)?:A,p:AL& 

Fw:A&A,p:Al Fp:A,q:Al 

Fw:A&A,q:Al 
cut 

becomes, after a commutative reduction 

Fx:A,p:Al t-p:A,q:AlC& Fy:A,p:AL ä P:A,q:ALC,t 

Ex:A,q:Al Ey:A,q:Al 

Ew:A&A,q:Al 
& 

and eventually becomes (after axiom reductions) 

kx:A,q:Al ty:A,q:Al& 

Ew:A&A,q:Al 

We can exactly represent these proof transformations by the following z-term rewrit- 

ings, provided we allow distributivity of 11 over +: 

(v~)((vuv)w(uv> Cu(x)x(a)p(a)+v(y)y(b)p(b)l~ p(c)q(c)) 

=(v~)((vuv)@<uv)Cu(x)x(a)P<a) II ~(c)q<c)+v(y)y(b)p<b) II ~(c)~<c)l) 
>*(vuv)W(uu) [u(x)x(a)~(a)+v(y)y(b)~(b)] (after axiom reductions). 

3.3. The Abramsky translation: the exponentiuls 

Logical rule rc-translation 

iQ 
tzi:r 

Fii:r,z:?AW 

.Q 
FZi:r,x:A 

tli:l-,z:?A 
d 

iQ 

W,(Q)l;z = z(wdc)wQ 

D;(Q)uz=(vx)z(wdc)a(x)Q 

tii:r,x:?A,y:?A 

t-;:l-.z:?A x 
C;,“(Q)Eiz=(vxy)(z(wdc)c(xy))Q 

.Q 
Eii:?r,x:B, 

ki!:?I-,z:! B’ 

!;(Q);z = !:(Qiix) 

=(vwdc)(z(wdc) Ij 
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For the rest of this paper, we assume the existence of the term !:(Q)Gz (as a solution 

to the appropriate recursion equation in the synchronous n-calculus). This deserves 

some discussion. One of our goals is to see how much of the structure of linear 

logic proofs is preserved in the translation to (synchronous) rr-calculus terms. 

Milner’s congruence ! Q=Q /I ! Q ( or a variant such as ! Q = ! Q 11 ! Q, etc.) equates 

terms in a manner which does not directly correspond to proof reduction. In 

particular, in linear logic the cut algebra for the exponentials (see below) allows 

duplication of ! Q only as a rewriting step, not as a congruence. Nonetheless, with 

such a rewriting interpretation of ! Q, the soundness of the cut algebra for the 

exponentials (and, more generally, the proof net interpretation) follows, cf. Section 

7 below. 

Heuristically, in the above rr-translation of the exponentials, the variables “w, d, c” 

represent the rules of weakening, dereliction, and contraction, resp. During commun- 

ication (= cut-elimination), processes first identify themselves (“hand-shaking”) as 

coming from one of these rules. Once these identifications establish that the commun- 

ication can indeed occur, then cut-elimination is implemented through x-calculus 

rewriting (see the cut algebra below). 

3.4. The cut algebra: exponentials 

The following equations are true for proofs in CLL: 

Symmetric reductions: 

CuWW’x), !:Q,) > CWP,, Qx) 

C~t=(GV’x,), !:(Q;x)) 

> P” (CutZ’(Cut”‘(P[z’/x,z”/y],!;,Q’),!;..Q”)) 

(10) 

(11) 

(12) 

where Q’ = Q cc’/; ] (and similarly for Q”) and Ci”‘; /1 denotes an iterated sequence of 

contraction combinators. 

Commutative reductions: 

(13) 

Theorem 3 (Weak soundness). Let 9 be a proof in CLL and let ~(9) be its x-calculus 

translation. Then we have: Let % be any cut such that no &- or !-rule occurs below Gf?. If 
9 > 1 9’ by a symmetric reduction applied to the cut %?, then ~(9) > 1 ~(9’). 

There is no straightforward version of soundness for the case of commutative 

reductions in CLL. 
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4. Translating MLL proof structures 

We give a brief introduction to proof structures and nets, referring the reader to the 

literature [2,7,12,13,16,30,32] for more details. 

The Gentzen rules for one-sided sequents for CLL are given in Section 3 above 

(in proof-term assignment form). In this section we consider multiplicative linear logic 

MLL [12,14], whose formulas are built from { 0, T} using linear negation ()I and de 

Morgan duality. In all that follows, we ignore the role of the units. 

4.1 MLL proqf structures 

A link is an m + n-ary relation between formula occurrences, for some m, n 30, 

m+n#O. Suppose X1 ,..., X,,, are in a link: if m>O, then Xl,...,Xm are 

called the premises of the link; if y1 >O, then X,+ r, . . . . X,,, are called the 

conclusions of the link. If m = 0, the link is called an axiom link. Links are graphically 

represented as 

x x?n 1, . . . . 

X m+1, ‘..> 
X ?lL+n 

We consider only logical axioms and multiplicative links of the forms 

AAl AB AB 

A A’ cut A@B ATB 

The first two links are known as axiom and cut links, respectively. We assume that the 

axiom and cut links are symmetric relations. Following common practice, we shall 

sometimes avoid writing the word “cut” in a cut link. 

A proof structure Y for propositional MLL consists of (i) a nonempty set of 

formula-occurrences (i.e., a multiset of formulas) together with (ii) a set of logical 

axioms and multiplicative links satisfying the properties: 

(1) Every formula-occurrence in Y is the conclusion of one and only one link; 

(2) Every formula-occurrence in Y is the premise of at most one link. 

We shall draw proof structures in the familiar way as nonempty, not necessarily 

planar, graphs. 

Proof structures for MLL can be defined inductively, i.e., Y is a proof structure if it 

results from a finite number of applications of the following clauses: 

(i) an axiom X X’ is a proof structure; 

(ii) if 9” and 9” are proof structures, then so is 9”uY”; 

(iii) if 

Y Y’ 

x XL 
and 

x Y 
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are proof structures, then so are 

x XL 
and x * 

x Y 
and ~ 

XQY xv* 

We define the following reductions on proof structures: 

Axiom reductions: 

x XL X reduces to X 

Symmetric reductions: 

. . . . 
:1 :2 :3 :4 

x Y XL Yl 

X@Y XL9YL 

reduces to 

. . . . 
:1 :3 :2 :4 

x XL Y Yl 

Definition. A Danos-Regnier switching s in a proof structure consists in the choice, for 

each par link, of one of the premises of the link. 

Definition. Given a proof structure 9 and a switching s, we define the undirected 

Danos-Regnier graph 9?~(9’) as follows: 
_ the vertices of %~(Y) are the formulas of 9’; 
_ there is an edge between vertices X and Y exactly when: 

(i) X and Y are the conclusions of a logical axiom or the premises of a cut link; 

(ii) X is a premise and Y the conclusion of a times link; 

(iii) Y is the conclusion of a par link and X is the occurrence selected by the 

switching s. 

Definition. A proof structure W is a proofnet for MLL if for every switching s of 9, the 

graph 9$%?) is acyclic and connected (i.e., an undirected tree). 

We shall denote the Danos-Regnier graph as s(9). For further information, 

cf. [12,6]. 

Occasionally (e.g., in Section 5.3 below) we will consider the system of sequent 

calculus for multiplicative linear logic, with the additional structural rule of mix, also 
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called direct logic DL [4-6,10,11,31]: 

t-r +A 
mix: 

I- r, A 

Definition. A proof structure 9 is a proof net for Direct Logic DL if for every switching 

s of 9, the graph %JW) is acyclic (but not necessarily connected.) 

The following fundamental result (Girard [13]) relates sequent calculus and proof 

nets for MLL. 

Theorem 4 (Sequentialization theorem). There exists a map ( .)- from sequent deriva- 

tions in MLL to proof nets for MLL with the following properties: 

(a) Let 9 be a derivation of r in the sequent calculus for MLL; then (9)- is a proof 

net with conclusions r. 

(b) (Sequentialization) Zf 92 is a proof net with conclusions r for MLL, then there is 

a sequent calculus derivation 9 of T such that 9%‘=(B)-. 

(c) If 9 reduces to 9’, then 9- reduces to ($2’)). 

(d) If 9- reduces to 9’ then there is a 9’such that 9 reduces to 23’ and %?‘=(9’)-. 

A similar result can be stated for direct logic ([7,11,31]). 

Given an MLL proof structure A T A with distinguished conclusions AI, . . . . A, we 
11 3 n 

want to associate to it a basic synchronous rc-calculus term n 
!A,%! 

whose free 

names will be in bijective correspondence with the conclusions. The key point of this 

translation is that communication of rt terms may only occur in correspondence with 

a cut link through a hidden channel. The hiding of this channel is explicitly given by 

a v binding. This imposes a severe restriction on the behaviour of rc-calculus terms in 

the image of our translation: free names will never communicate. This point will 

become clear in Proposition 4 below. As we show, the graphical properties of a proof 

structure will be faithfully reflected by the nesting of the bindings in the associated 

rr-terms. Theorem 7 and its Corollaries below show this translation fully mirrors (in 

the rr-calculus) the reduction process of proof structures (and thus proof nets). 

Throughout this section, we will only be using the basic synchronous rc-calculus in 

Section 2. 

4.2. Translation of A4LL proof structures 

The theorem below generalizes the entire discussion of Section 3.1 to the level of 

structures, emphasizing one of our main points: that the communication in the 

rc-calculus, insofar as it relates to linear logic, is really only about the pluggings in 

proof structures, not the logic itself. 
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It is convenient to use the notation (vx=y) defined and implemented as follows: 

(VX=Y)PxY=def(VZY)(~(Y) II ZWXY) 

> (VY) PXY c Y/Xl 

= (VU)PXY [u/x, U/Y1 

We now define a map n from proof structures to terms of synchronous n-calculus. 

This mapping depends upon some fixed “typing assignment” of distinct names 

(= variables) to all formula occurrences, which we suppose fixed once and for all. 

(1) rc(A A’)=x(u)j(u), represented as 

x:A y:A’ 

where x,y are in the (given) typing assignment. 

(2) Let ncA ; I.) =Pxyd and let t be a name not occurring in P; then 

=def bxy)t<xy> (pxYx”) 

represented as 

x:A y:B 

t:A@B @ 

(3) let TC(~~~)=PXY. Then 

=def tvx = Y)pxY 

represented as 

P#C 

x:A x:A’ 

c4) Let n(A f ,-:)=def Pxyx” and let p be a name not occurring in P; then 

=def P(xY)(pxYT) 
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represented as 

P1 

x:A y:B 

p:A??B T 

(5) Let n(, ; I.) and nit z A) be the translations of two proof structures. Then 

To fix terminology, in a prefix a(xi, . . . . x,) or ~(x,, . . ..x.) the occurrences of a or 

z are called names in channel position (or simply channels) and the occurrences of 

x1, . . . , x, are called names in message position (or simply messages). Among names in 

channel position, a( ) is a sender and a() is a receiver. 

Remark. The notation in the above translation is intended to signify the following: if 

we erase the variable names, we obtain the proof structure; if we erase the formulas, 

the notation indicates that the lowermost variables are the free names of the rc term 

and the rest of the graph represents the binding structure of the variables in channel 

position. 

Example. The following is a proof structure W which is not a proof net: 

?:A t7.I I 
p:A?%?B p:AL@BL z:A??B d:B’ c:A’ 

cut r:(A?BB)@ B’ 

It has the following translation into a 7c term: 

(vzd)u<zd )(v)(~(~~)(L, II I,,) II I,z) 

where I denotes the translation of the appropriate axiom link, e.g., I,, is the term 

u(u)c(u), corresponding to the axiom link u:A c : A ‘. (Recall we only consider 

atomic axiom links.) We remark that, by Proposition 5 below, this translation will not 

depend on the order of the inductive construction of the proof structure. 

Example (Deadlock). The deadlocked proof structure A A’ has the translation 

vx[x(u)x(a)]. 

The next proposition gives some important syntactic properties of those rc-terms 

which translate linear logic proofs: 
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Proposition 5. Let P=,(9), for some proof structure W. Then the following are true, 

modulo u-conversion: 

(i) Every name occurs at most once or twice in channel position. 

(ii) If x occurs twice in channel position in a process P, then both occurrences are 

bound by the same (vx), i.e., P can be written as (vx = y)Pxy, where x is a sender and 

y a receiver. In particular, each free name x occurs at most once in a channel position. 

(“a communicating channel corresponds to a cut”); 

(iii) If ci(xI, . . . . x, ) occurs in a process P, then x1, . . . , x, are bound, either by some 

c(x1, ..., x,), (n= 1) or by (vxl , . . ., xn), (n =2). (“senders send only private names”) 

Therefore, tf jab and .?cd occur in a process P, then a, b, c, d are all distinct. (“deferent 

channels send difSerent messages”) 

(iv) A message in a unary prefix is bound by (or binds) exactly one other unary prejx 

(“unary channels correspond to axiom links”); 

(v) If x and y occur as messages in a binary prefix, then both x and y occur in P also in 

channel position (“binary channels correspond to binary links”). 

Since proof structures are inductively generated, it is possible to characterize 

exactly those n-terms which arise as the translation of proof structures, by adding 

some clauses to Proposition 5. We shall refrain from doing this here. 

Proposition 6. If 9 is a proof structure, then n(9), modulo --, does not depend on the 

particular order of the inductive construction of 9. 

Proof. By induction on the number of links in 6%. E.g., let .% be 

and assume the lemma for ~(6%“‘) = P”xyuv. Then in the synchronous rr-calculus we 

certainly have 

p(uv)(vxy)t(xy)P”xyuv~(vxy)t(xy)p(uv)P”xyuv cl 

We now state two theorems which completely characterize the relationship between 

reducibility for proof structures (and thus for proof nets) and the n-calculus transla- 

tion considered here. 

Theorem 7 (Weak soundness). If 93, Y are proof structures for MLL, and if W > Y 

then ~(99) > rr(Y). 

Proof. This is a straightforward induction on the formation of proof structures. II 
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The above result generalizes to proof structures Abramsky’s result for proofs stated 

earlier. 

Theorem 8 (Local fullness). For any proof structure W, if x(93) > Q, then there is 

a proof structure Y such that Q =x(9’) and 92 > 9, as illustrated by the following 

diagram: 

Proof. Suppose rc(B) > Q. Since 9 is inductively generated, so is rc(W) and we can 

argue by induction on the formation of n(9). Then by Proposition 5, part (i), (ii) and 

(iii), communication can occur only along a hidden channel 

71, ,,..., ..(v4(~<x1, . . ..x.,)p+ ,.._, X. II a(yl, . . ..yn)Qrl ,..., J 

> 71, ,,..., ..(p, I,..., x. II Q, ,...., JxrI~r> . ..>d~.l) (*) 

Here Qy,, . . . . y. is the scope of the binder a(yl, . . . . y,) and rrX, ,.._, ,,. is a prefix binding 

x1, . . . , x, whose scope in ~(9) does not extend beyond the subterm indicated in ( * ). 

If n = 1, then by Proposition 5, part (iv) Qy, is a sender 6( y, ) and communication 

(*) corresponds to a reduction 

a:X’ a:X b:X’ reduces to b:X’ 

cut 

i.e., the desired Y is obtained from B by eliminating the cut and an axiom link as 

indicated. 

If n = 2, then by Proposition 5, part (v) communication ( * ) corresponds to a reduc- 

tion from 

:1 :2 :3 :4 

x1:x x2: Y y,:xl y, : YL 

a:X@ Y a:X’??Y’ 

cut 

to 

:1 :3 12 :4 

x1:x x1:x1 x2:Y xz:Yl 

cut cut 

i.e., the desired Y is obtained from W by replacing the times, par and cut links with two 

cuts as indicated. 0 
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Example (of Theorem 7). The proof structure 99 above Proposition 5 was translated 

by the term 

4~)=(vz4~(zd )(vp)(p(ab)(~,, II Id II I,z). 

It is easy to verify that z(W) > (vzd)F(zd)z(ab)(Z,, 11 Zbd). Call this latter term Q. But 

then Q is the rc-calculus translation Q =X(Y) of the following structure Y (and 

moreover 9 > 9): 

I 
a:A b:F 

I 

p:A%B d:B’ c:A’ 

r:(A%‘B)@ B’ 

Corollary. Zf x(W) > x(Y) and 2 is a proof net, then 9 is a proof net too. 

An alternate proof of local fullness for MLL proof structures will be considered in 

Section 5.3. 

5. Information flow 

The reader may have observed that there are some arbitrary choices made in the 

above rr-calculus translation: (i) we have chosen axiom buffers to be unidirectional- 

atoms become receivers, and negations of atoms senders, (ii) the times and par links 

become senders and receivers respectively. This has a very serious consequence: the 

translation is not preserved under substitution for propositional variables, since it 

depends on the identification of an atomic occurrence in an axiom. For this reason in 

the original Abramsky translation, axiom buffers were bidirectional, i.e., Abramsky 

translated the axiom k x : A, y : A’ as 

rc(x: A y:Al)=x(a)y(a)+y(a)x(a) 

However, the use of + creates other problems, which will be discussed later in Section 

6.1. Instead, we shall here develop an intrinsic notion of information flow for pure nets, 

thus obviating the need for bidirectional buffers.3 

Terms of the /2-calculus have a natural direction, namely from the inputs to the 

output. This is obvious from the intended functional interpretation, as well as the 

dynamics of evaluation. Danos, Regnier [l 1,22,30], Van de Wiele and others have 

studied pure nets, a formalism of “proof nets” for untyped /l-calculus: pure nets are 

3 The problem of substitution for propositional variables relates to whether the proofs-as-processes view 

extends to second-order linear logic. We leave that issue open. 
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nets built from “formulas” I and 0 (representing input and output, resp.), using links 

of the forms 

0 I ?I 0 
IO ~ ~ TY 

!O I 
,o $! ?I...?1 

cut 0 
~ contr 

?I 

One motivation for this formalism is to think of the v-link as satisfying the 

domain “equation” D g ! D - D (where we let D be 0). This is just the familiar domain 

equation D ZD * D, under the Girard translation into linear logic [13]. Other 

notions of pure nets for untyped lambda calculus arise by imposing different domain 

equations [21]. 

One of the goals of the above work on pure nets is to understand information flow 

in the process of B-reduction. But the same questions arise in the typed setting. When 

we consider natural deduction derivations in intuitionistic logic under the 

Curry-Howard correspondence (i.e., qua simply typed lambda terms), we find the 

same flow of information in the process of normalization, and a direction in the 

derivations statically considered (the elimination part of the proof-tree becomes the 

input part and the introduction part of the proof-tree becomes the output part). 

Proof nets could be designed as input-output graphs as well but, because of De 

Morgan dualities for classical (linear) connectives and contraposition laws, one 

expects that the roles of input and output should be fully interchangeable. In what 

follows we make this precise. Following Bellin and Van de Wiele [S], we show that (at 

least for MLL) we can always assign input-output directions to proof nets so that one 

arbitrarily chosen conclusion is the output and all the others the inputs; when this is 

done, we have an interpretation of the proof net as a natural deduction derivation. 

Conversely, all natural deduction derivations correspond to a proof net with an 

input-output orientation. Each translation of a classical net into intuitionistic natural 

deduction obviously yields a linear 2 term, under the Curry-Howard correspondence. 

Communication between rc-calculus processes also has a direction. Agents pass 

names, i.e., access to information; some agents are senders, others are receivers. 

A process of transfer of information, when regarded as a whole, has a certain direction. 

Its implementation in the rc-calculus may involve a sequence of intermediate interac- 

tions - some of which may simply be identification protocols, where the information 

flows in both directions. These may have no direct logical meaning. Nevertheless, it 

makes sense to ask that an efficient n-calculus translation of some logical system 

should fundamentally reflect the flow of information in the “object calculus”. In 

Section 5.5 below we examine in more detail Milner’s direct translation of linear 

A-calculus into the 7c-calculus, and briefly compare it to the one arising from the 

proofs-as-processes (and pure net) viewpoint. 

5.1. Pure structures 

It is convenient to prove soundness and local fullness in a more abstract form, 

which does not depend on the particulars of the above translation. For this purpose, 
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we introduce the notion of an untyped pure structure, in analogy to the notion of pure 
net used in the study of untyped lambda calculi [11,22,30]. 

Definition. A pure structure 9 is a proof structure built from occurrences of the 

symbols I, 0, (for input and output) together with a set of links of the form 

M N MI M2 

I 0 cut N 

where M, Mi and N are occurrences of the symbols I, 0. 

Remarks. (1) Notice that in pure structures we do not necessarily require premises of 

cuts to be complementary: for example, g represents a deadlocked pure structure. 

(2) Pure nets are a special class of pure structures in our sense (with additional 

links). 

(3) For the purpose of studying the translation of multiplicative proof structures, 

the above links suffice. A more general setting (possibly useful for studying larger 

classes of z-calculus terms) might allow axiom links of the forms 0 Or . . . 0, 

IO r . . . O,, with ~30. 

Pure structures, just like ordinary proof structures, can also be defined inductively: 

cf. Section 4 above. Also in analogy with ordinary proof structures, we define the 

following reductions on pure structures: 

(1) Axiom reductions: 

0 I 0 reduces to 0 

(2) Symmetric reduction: 

. . . . 
:1 :2 :3 :4 

M N M’ N’ 

I 0 

reduces to 

. . . . 
:1 :3 12 :4 

M M’ N N’ 

Definitions. Let 9 be a pure structure and 9’ be an ordinary proof structure. An 

injective map z : B-+9’ is said to preserve a link 9’ of 9 if 

9 
x xnl 1, ..., H 4X,), . . ..G.) 
Yl , . . . , Yn z(K), . ..J(Y.) . 
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Similarly, an injective 6 : Y+P preserves 9 in Y if 

L.z 
x xnl 1, . ..1 Wl), ~..>W,) 
Y I)...) Yn I-+ d(Y,) )...) 6(y,) 

An injective link-preserving map z:$??+Y is called a typing of 9’; an injective 

link-preserving 6: Y+P is called an orientation of Y. 

5.2. Translation qf pure structures into the x-calculus 

Let P be the set of pure structures and let Q be a set of rr-calculus terms satisfying 

conditions (i)-(v) of Proposition 4. 

We define a representation rcpUre of pure structures into x-calculus terms as follows. 

For each YEP we define a n-calculus term n lure(Y) by induction on the definition of 

9. We will let npure(Z) be a receiver x(), and xpuJO) a sender X( ). To verify that 

rcpure(Y)~I;j, in particular, that all free names in rcnpure(Y) are pairwise distinct, we make 

sure that at each step of the construction “fresh” free names are used. This can be 

implemented as follows. We have two lists 8, and lb of names; at the beginning of the 

process of translation we have an infinite 8, and empty 8,,. Let concatenation be 

denoted by “.” 

(i) npure(l O)=a(x)~<x)), where 8,=a. b. rest e,; now set &,:=rest e,, and 

Jb :=x . lb respectively; 

(ii) if B = 9” u Y”, then xnpure(Y) = xpure(Y’) I( TC~~~~(L?“‘), where xpUre(9’) and 

xpure(9”) are previously given. 

(iii) if 71 .9 
Pure ! 1 “& J,C = P_ then 

spume MgN =(vx=Y)p~,y=(vz)p,,~czlx~zlYl i 1 
where z = first(ef). Now set /, := rest e, and b, := z . x . y . fb. 

(iv) if 7r pure(A?‘..)= Px+ then 

and 

9 

7$m? M N =(vx,Y)~(x,Y)Px,, I I 0 

where a = first(e,). Now set 8, := rest(l,) and eb :=x . y . lb. 
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Remark. There is also a dual translation rr’ pure which interchanges the roles of sender 

and receiver, i.e., the interpretation of I and 0. 

Analogously to the previous Theorem 6 (Soundness), one obtains for pure struc- 

tures the following theorem. 

Theorem 9 (Soundness). If 8,B’ are pure structures for MLL such that 9’ > P”, then 

unpure > me and also &A~) > ~&W). 

We now prove local fullness for pure structures. 

Theorem 10 (Local fullness). For any pure structure 9, if n,,,,(9) > Q, then there is 

a pure structure 9’ such that Q = rcPure(P’) and B > 9’, as illustrated by the following 

diagram: 

Proof. The proof is the same as that given in Section 4.2., with “pure structure” in 

place of “proof structures”. 0 

5.3. Deadlock-free structures 

The next useful result shows that the two rc-calculus translations of pure structures 

and ordinary proof structures (respectively) are the same, modulo an orientation: 

Proposition. Let Y be a proof structurefor MLL with atomic axioms only. Let ~3’ be the 

pure structure with the same form as Y but with all formula occurrences replaced by I’s 

and O’s as follows: atoms map to I, negations of atoms map to 0. Then there is a unique 

orientation 6 : Y-9 which maps atoms to I, negations of atoms to 0, satisfying 

S(X)S(X’)=Z 0, 6(X @ Y)=O, s(x;lgY)=r. (90) 

and which makes the following diagram commute: 

The proof is immediate. 
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Proposition. Let 9’ be a proof structure for MLL with atomic axioms only and let 6 be 

an orientation satisfying ($0). 

(i) Zf 9’ > 9”, then S(Y) > 6(Y’). 

(ii) If S(Y) > 9’, then we can Jind a 9” such that Y > 9” and P’=S(Y’). 

Proof. A reducible cut link p or A T?B A’ @ B’ in Y is mapped to a cut link of 

the form ZO, which is reducible. Conversely, a reducible cut link m in 8(Y) can only 

be the image of a reducible cut p or A %B A’ @ B’ in 9. 0 

We now give an alternate proof of Local Fullness. 

Theorem 11 (Local fullness). For any MLL proof structure 9, if ~(9) > Q as n- 

calculus terms, then there is a proof structure Y’ such that Q=n(Y’) and Y > Y’, as 

illustrated by the following diagram: 

Proof. Consider the following diagram: 

By the local fullness of pure structures, there is a pure structure 9’ filling-in the 

bottom cell of the diagram. We thus must find a proof structure Y’ and an orientation 

6 with the above properties. The previous two Propositions complete the proof. 0 

Definitions. (i) A pure structure g is called deadlock-free if no links of the form II, 

00 or IO occur in 9’. 

(ii) A reduction sequence 9$ > PI > ... > 9, is deadlock-free if every I is dead- 

lock free. 

(iii) An orientation 6 : Y+P is computationally consistent if every reduction se- 

quence starting from Y is mapped by 6 to a deadlock-free reduction sequence. 

What are the general structures that are guaranteed to be deadlock-free? 

We recall (see Section 4.1) that a proof structure satisfying the acyclicity condition 

(but not necessarily connectedness) is a proof net for Direct Logic DL namely, 

multiplicative linear logic MLL with the structural rule of Mix [4,6,10,16]. 
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Theorem 12 (Deadlock-free nets). Let 9 be a proof netfor MLL or direct logic and let 

6 be an orientation of Y satisfying ($3). Then 6 is computationally consistent. 

Proof. The reader should check that under the assignment (@) to an axiom reduction 

of proof nets (Section 4.1) there corresponds an axiom reduction of pure structures 

(Section 5.1) and to a symmetric reduction of proof nets there corresponds a symmet- 

ric reduction of pure structures where M is the dual of M’ and N is the dual of N’. It 

remains to show that the orientation a cannot be obtained as a result of the 

cut-elimination process, i.e., that the configuration E cannot be obtained as 

a result of the cut-elimination process for proof-nets. This follows from the well- 

known fact that cut-elimination preserves acyclicity of the D-R graphs. To check it, 

suppose that a proof-structure 5%’ comes from 92 by a symmetric reduction and that 

for some switching s, ~(92’) contains a cycle. Various cases occur depending on 

whether or not the cycle passes through one or more of the “new” cut links in 92’; in 

each case one may choose a switching for the indicated par links which yields a cycle 

in 92, contrary to the hypothesis. For instance, if the cycle passes through both “new” 

cutlinks,thenithaseithertheform(a)...XX’...YY’...ortheform(b)...X’X... 

yyl.... In both cases there is a cycle in s(B) for any choice of the switch for the new 

par link, etc. 0 

Corollary. Let sPI,Y2 be proof nets for direct logic, let 9 result from YI and Y, 

by adding a cut link between them. If S1 ,6, are orientations on YI,Y2, respec- 

tively, satisfying (#), then the induced orientation 6 =dl uSz on Y is computationally 

consistent. 

Remark. The converse statement, that every computationally consistent pure struc- 

ture is typable in direct or linear logic, is false. Indeed there are incorrect proof- 

structures that reduce to a proof-net; for instance 

AL A A Al AL A AL A AL A AL A - - 
ABA A’??A’ reduces to cut cut 

cut 

Therefore the following pure structure is computationally consistent 

- ~ ~ ~ - - 
IOOIIO IOIOIO - - -- 

0 I reduces to cut cut 

cut 

So this pure structure, when typed, does not become a proof-net for either linear or 

direct logic. Therefore our notion of computational consistency, which arises nat- 

urally from the consideration of cut-elimination as logical computation and from the 

notion of deadlock for a z-calculus term, is not sufficient to characterize proof-nets for 

direct logic. 
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Intuitively, the acyclicity condition for D-R-graphs (which characterizes proof-nets 

in direct logic) seems to express absence of deadlock in a logical computation; clearly, 

a stronger notion of deadlock than ours is needed to characterize correctness for such 

nets. We shall not pursue the matter further here (cf. recent work of Asperti [S]). 

Another example of computationally consistent orientation will be considered in 

Section 5.4 below. 

5.4. Orienting proof nets and linear A-terms 

The present section is based on joint work by Bellin and Van de Wiele ([8]). 

The system IMLL of intuitionistic multiplicative linear logic is based on a language 

with the connectives --o and 0; there is a symbol forfalsity (we use I as in classical 

linear logic) but no property of falsity is assumed for it here. Linear negation is defined 

as A’ =dfAd 1. The sequent calculus rules and the associated term assignment (of 

“linear” lambda terms) are familiar [ 1,203. For example, in addition to A-abstraction 

and substitution, the following rules for @ are assumed: 

0 L: 
;:r,x:A,y:Btt:C 

y:r,z:A@BFlet z be x@y in t:C 

Finally, the related system of natural deduction for IMLL is also familiar and 

unproblematic. 

For simplicity, we consider only proof nets 9’ for MLL with the property that every 

axiom link contains an atomicformula and its linear negation. Given such a proof net 9, 

consider orientations 6 : Y-+(0, Z} (which can also be written as 6: LY’+P) satisfying 

the following restrictions: 

axiom: 0 z cut: _ z 0 

tensor: (1) 7 (2) 7 (3) 7 

par: (4) 7 (5) 7 (6) 7 

As usual [l-1], axiom and cut links are assumed symmetric in I and 0. 

Theorem 13 (Bellin, Van de Wiele). The following hold: 

(a) Zf Y is a proof net with a chosen conclusion A, and s is a D-R switchingfor Y, then 

s and A determine an orientation cY~,~: Y-+{Z, 0} satisfying (l)-(6). Moreover, if the 

chosen conclusion is assigned 0 and all the other conclusions are assigned 1. 

(b) There exists a map (.)‘from IMLL sequent derivations to MLL proof nefs with 

orientations, satisjing: 
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(b,) Let 9 be a derivation of r t- A in the for then ($3)’ is 

a proof net with an orientation 01; conclusion Ts- A* of 

Y is equivalent l-4 A in classical MLL. 

(b2) 9 be a proof net conclusions for Y is 

computationally consistent, then there exists T’I- A’ derivation 

the sequent calculus IMLL such that (9)‘=Y. 

Zf Y is a proof-net with cut and s’ is a partial switching undefined above all 

then there exists such that the 

(b4) If 9 reduces 9’, then 

(b,) If S)=gi and then there is a 9’ such that 9 reduces 

and Y‘=(9’)i. 

the linear A-term assignment IMLL sequents, one from 

following corollary. 

14. M be a linear A-term as above. Then M corresponds net with 

orientation 6: Y’+{I, 01. net with conclusion C, then 

type 

Thus, an oriented net classical MLL 

type is assigned and whose arguments are assigned 

13. Y be a proof with conclusions Ci, C,, 

s be a switching Y together with Ci. We define an 

orientation 6 : Y+{Z, 0) as follows. 

l Let Ci t-+ 

encountered (O-paths); 

l when, proceeding upwards, we reach an axiom P Q and assign 0, say, to P, then we 

continue by letting Q H I and proceed downwards from Q; 

l proceeding downwards - from a premise to the conclusion of a times link and from 

the selected premise to the conclusion of a par link -we always assign I for formulas 

(I-paths); however, 

l in the case of a times link A’ A1 
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connected, the assignment is total. Thus we have an orientation 6 : Y-+(1, 0} such 

that if 6(Ci)=O, then 6(Cj)=Z, for all j#i. 

Remark. It can also be proved that any I-O assignment satisfying conditions (l)-(6) 

above, when applied to any proof net yields CiH 0 for some conclusion of the 

proof-net in question. (In particular, this holds when applied to a subnet of an 

oriented proof net.) Indeed, given 6 : Y-t{Z, 0) and a conclusion Cj with S(Cj)= I, we 

proceed as follows: 

proceeding upwards, follow the unique I-path up to an axiom; 

proceeding downwards from an axiom, follow the unique O-path until either (i) 

a conclusion Ci is reached with S(Ci) = 0, or (ii) a premise A, of a times link such 

that 6(A,)=O but for the conclusion we have S(A, @ A,)= I; 

since in case (ii) above we must have 6(A 1 _ i) = I, we continue upwards from A i _ i, 

and so on. 

Since the D-R graph is acyclic, case (ii) can occur only a finite number of times; thus 

eventually we reach a conclusion Ci of Y such that S(Ci)= 0, as claimed (end of 

remark). 

Proof of Theorem 13 (continued). (b,)-(b,) (the rest is straightforward) Girard’s 

sequentialization theorem (see Section 4.1) provides a map (.)- from classical MLL 

sequent proofs (thus from IMLL proofs) to proof nets (cf. also [20]) which determines 

a bijection between the inferences of a derivation 9 and the links of Y’=(g)-. The 

active formulas and the principal formula of an inference in $3 correspond to the 

premises and the conclusion, respectively, of a link in Y. Orientations exist, by (a). 

This provides the map ( .)’ in (b). 

Case 1: Cut free proof nets. We consider first the translation of cut-free proof nets 

(which are trivially computationally consistent). Given an orientation 6 : Y+{Z, 0}, 

by Girard’s theorem let 9 be a classical sequent derivation such that Y=(9)-. We 

simultaneously define the intuitionistic derivation 9’ and for each formula A in 93’, 

the translation A’. We write A0 if 6(A) = 0 and A, if 6(A) = I; we write Ai for the 

translation of A when 6(A) = 0, etc. 

l For P atomic, we let Pi = P = (Pi)’ and Pj = P’ = (P&)6. Thus 

kP:,P, F+ PEP kPpo’,P, H PlFPl 

l Given A& Bz, let (A @ B),f, = AA @ Bi; thus 

tr,,Ao t- d,,Bo r;l-A; A;FB; 

r,, AI I- (A 0 B)o r;,A;tA;@B; 

l Given Ai, B,6, let (A 0 B),6=A& B,d; thus 
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l Conversely, given A,d and Bi, let (A 0 B),d = B6 0 - A,d and proceed symmetrically to 

the previous case. 

l Given A,d, Bg, let (A VB)i=Af- Bi; thus 

E Tr>A,&J r;, A,6 t B; 

Er,,(AV% H r,“M,d-B; 

l Conversely, given Ai and B,d, let (A ?3B)i = B,d -A: and proceed symmetrically to 

the previous case. 

l Finally, given A;, B,d, let (A TB): = A,d @ Bf; thus 

ä T~,AI,BI,C~ I-;, A;, B,d F C: 

E r,, (A TB),, Co H l-;,A;@B;Kj, 

Case 2: proof nets with Cut. In the case of a proof-net 9 with Cut links, by the 

sequentialization theorem we obtain a sequent derivation 9 containing subderiva- 

tions 

and we need to show that A,b=(A’)g or Ai=(A This is not true in general, if we 

take arbitrary switchings on the par links occurring above A and A’ in 9’. Let 9” be 

the subnet of 9 given by (9’)) and similarly, let &?“=(a”)-. Consider the pure 

structures 8(.92’) =9” and s(B?“) =P”; in 9’ and 9” consider the subtrees correspond- 

ing to the hereditary subformulas of A and A’: what we need is that such subtrees be 

dual, e.g., 

10I00I01 

I 0 0 I 

0 I 

cut 

Using the cut-elimination theorem we show that this requirement can be met, by 

induction on the length of the cut-elimination procedure. 

l If the proof net .%?I reduces to W2 by an axiom reduction 

P PL P reduces to P 

and 62:WZ+{I,0} is computationally consistent, then it is immediate to define 

a computationally consistent d1 : WI +{I, 0}, as no new par links are to be con- 

sidered. 
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l Suppose %!r reduces to ~8~ by a symmetric reduction 

. . . . 

:1 :2 :3 :4 

A B AL BL 
-Y 

A@B A’%‘B’ 

reduces to 

. . . 
:1 :3 :2 14 

A A’ B B’ 

and suppose we have a computationally consistent orientation d2 : 92,+{Z, 0} so 

that A”=(A’)’ and B’=(B’)‘: we need to choose a switching for the new par link 

.Y so as to extend d2 to a computationally consistent 6r : 3TI+{1, O}. By Girard’s 

sequentialization theorem the above reduction step corresponds to the reduction 

from 9r to g2, say, by the steps from 

to 

Notice that .!2”’ =(9”‘)) is a subnet of .9JT2 =(g2)-, and that by part (a) at most one 

of A’, B’ can be assigned value 0 by fi2. 

l case (i) d2(A’)=0: let the switch for the link 9 be Left; 

l case (ii) d2(B’)=0: let the switch for the link 9 be Right; 

l case (iii) c~~(A’)=Z=~~(B’): choose the switch for 9 arbitrarily. 

In case (ii) we obtain 6r extending d2 with 

. . . . 
:1 :2 :3 :4 

01 IO 

I 0 

which reduces to 

. . . . 
:1 :3 12 :4 

01 IO 
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Letting A = 0, C, we obtain a translation thus: 

Indeed using the induction hypothesis we obtain 

@‘=@=(B~)$+P);l and (A1),6’=(A1)~‘=A$=A~ 

hence Ai -B;‘=(AL)$o(BL);’ and the indicated Cut is correct. 

Case (i) is symmetric. 

In case (iii) we obtain d1 extending S2 with 
. . . . 
:1 12 :3 :4 

00 II 

I 0 

which reduces to 
. . . . 
:1 :3 :2 :4 

01 OI 

Letting /1 =E, D, we obtain a translation thus: 

indeed, using the induction hypothesis we obtain 

A;=A$=(A1),62=(A~);1 and B$=B$=(B’)f’=(B’)f’ 

hence A: @ B$ =(A’):’ @I (B’),6’. 

Finally it is not difficult to show that all translations are classically equivalent: we 

argue by induction on the length of the sequent calculus derivation and use the 

provable classical equivalence of A 0 B with (A-B’)’ and (B-A’)‘, etc. 0 

Remarks. (1) For the purposes of the Corollary, we could argue directly and translate 

each proof net for MLL with a computationally consistent orientation 6 : Y+{Z, 0} 

into a natural deduction derivation in IMLL. This requires developing properties of 

the subnets of a proof net. Instead we prefer to use Girard’s sequentialization theorem. 

(2) As pointed out to us by Hyland, the procedure for constructing orientations in 

(a) can be formulated as a finite game, where the opponent begins and chooses D-R 

switches and O-paths, while the player replies by choosing Z-paths. This appears 

related to recent work of Hyland and Ong on game-theoretic semantics for linear 

logic. 



On the n-calculus and linear logic 43 

(3) The procedure to construct orientations in (a) can be extended to the whole 

system of linear logic, but the translation (.)” in (br)-(b3) canl~ot be extended in 

general. We omit the counterexamples; however the problem is contraction (either 

explicitly in the exponentials or implicitly in the side doors of additive boxes). 

A reasonable theory of computationally consistent orientations for additives has been 

developed, but we omit it here for reasons of space. 

Example. The proof net 

with the choice of A @ B as output receives the orientation 

I--- l 
OOIOIOII ~ - ___ __ 

0 I I I 

These data represent the natural deduction derivation 

DO 

C-B 
D--c CDl_-E 

C 
R 

-E 

A 
CA’ - Ql 

A@B @E 
A@B 

The following gives another orientation of the same net, with the choice of D’ %‘A’ as 

output: 

1-j 
IOIOIOIO ~ __ __ __ 

I I I 0 

These data represent the natural deduction derivation 

C-B 
D--c PI_, 

C 

B-A’ B 
-E 

AL 
+E 

and so on. 
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Define a map y on the hereditary premises of the cut formulas of 9 as follows. For 

every cut link 9 : X XL, let 

0 XHXl 

. if?!$and??$ are hereditary premises of X,X’, respectively, and YH Y’, then 

Yi- Y: and YZ- Y,‘. 

Lemma. lf Y is a proof net for direct logic or multiplicative linear logic such that only 

atomic formulas occur in axiom links, any orientation 6:Y-+P is computationally 

consistent if and only if for every hereditary premise of a cut link in 9, the map 

q1=&yo6-’ dualizes the orientation (i.e., q(l)=0 and cp(O)=Z). 

Proof (sketch). Because of the assumption that only atomic formulas occur in axiom 

links, the above definition is total on the set of the hereditary premises of all cut links. 

Since Y is a proof net, a configuration X XL will never occur as a result of 

cut-elimination from 9’. Given any orientation 6:P+9’, together with its inverse 

z : 9’-+9, we prove by induction on the length of a reduction sequence that 6 0 cp 0 T 

inverts I and 0 if and only if no pure structure in the reduction sequence contains an 

irreducible cut. 17 

Any Danos-Regnier switching, for example, induces such an orientation, by the 

work in Section 5.4. We obtain a translation of proof nets into synchronous rc-calculus 
%n.. 

by considering the composite Wb’ 9+ 71 pure(P). We could also use the 

71 ,‘,,e translation. In all cases, soundness and local fullness hold, according to Section 

5.2. 

5.5. Milner’s linear A-terms 

The following is Milner’s direct translation [25] of the linear /2-calculus into the 

7c-calculus: 

[AxMlj U =,Jer u(xu) [M] u 

[MNJu=~~~(vu)([IM~ v 11 (vx)17(xu)x(w)[N] w) (where x is not free in N). 

Ix]1 n =def x<u> 

It is interesting to compare Milner’s translation of the linear I-calculus with our 

“logical” translations into oriented proof nets: (i) the Abramsky translation n and (ii) 

the translation 7~0 6 obtained from Bellin and Van de Wiele’s result. 

Lambda abstraction: The following (intuitionist) proof represents lambda abstrac- 

tion: 

x:/Ii-M:B 

I-Ax.M:A-B 
- R. 



On the n-calculus and linear logic 45 

Using one-sided sequents (in classical linear logic) this becomes: 

;M 

kx:A’,v:B 

F ?$‘(M):A’?$‘B 
T> 

which corresponds to the proof net 

with orientation 

3 (9) 
I 0 

<M))xu be Abramsky translation From the for 79, 

obtain: 

((lx. 

Note that is precisely same translation Milner obtains. 6(A’ %‘B)= 

hence the rco s(2) the dual of a 

Application: The (intuitionist) proof application MN natu- 

ral 

M&B N’:A 

which in sequent calculus becomes 

;M BtB 

FA-B 
-L 

cut 
AFB F cut 

t-B 

into classical one-sided sequents A- B A’ TB) 

reducing the cut yields following representation application 
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The last proof translates into the following proof net: 

iN 

.M w:A z:B’ 

u:A’%‘B A@B’ 

u:B cut 

with orientation 

? (N) 
is (M) 0 I 1 
0 I 0 

Let ((M >>u and ((N >w be rc-terms, with free names u (resp. w), translating the above 

proofs by the Abramsky translation. We have 

=vowz(<M>u II fi(wz)(W>w II u@)~@))). 

We note that Milner’s term for MN is essentially an “optimized” version of our 

term: the logic gives an additional axiom buffer I,, whereas Milner’s translation gives 

a direct implementation. We may think of this axiom buffer as a “dangling wire”, 

which a more efficient, direct implementation would avoid. 

On the other hand, in the translation rro6(9), since we have 6(A @ B’)=I, the 

agent corresponding to A @ B’ becomes a receiver, rather than a sender. 

Variables: The variable x is interpreted as an axiom buffer, viz. u : A x:A’. So 

we have: 

We see that the Milner translation is more direct: instead of sending information from 

x received through channel u, Milner directly sends u! 

So how do we explain that both Milner and Abramsky translate linear 1 terms 

using the dual of the rr 0 6 translation and turn an O-formula into a receiuer and an 

Z-formula into a sender? 

According to the basic philosophy of the rc-calculus, rc-terms consist of agents in an 

interacting environment; thus A-calculus computations are interpreted into the rc- 

calculus as interactions between certain agents and their environment. An environ- 

ment in which a term Ax. M can interact is one where an input can be received for 

x and a new environment is created for M with such an input. An environment 

u making the application MN possible can be thought as an agent sending information 

to M; in particular, such information includes the name x by which the main input 

channel of M is identified henceforth, if such an input exists. The name x is also given 
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to an input channel which controls the new environment of the term N; since the 

names u and x are made private (i.e., are bound variables), the information flow is 

tightly controlled in the new process. 

6. The additives 

6.1. Problems with the additives 

To handle the additive connectives of linear logic, we consider the full synchronous 

rr-calculus. Unfortunately, the additives illustrate the divergence of pure logic from the 

concurrency world. We shall begin by illustrating the problems. 

6.1.1. Problems with the axioms 

Recall, in the last section, we mentioned that the original Abramsky translation 

[2,3] considers the axioms as bidirectional buffers. That is, one translates4 

7c(A AL)=x(u)y(u)+y(u)x(u) 

Consider the proof net 

y:A’ y:A 

x:A cut z:A’ 

Assuming axioms are bidirectional buffers, we obtain the following x-term: 

vy[x(u)ju + y(u)Xu I/ y(u)zu + z(u)ju] 

Allowing distributivity (of 11 with respect to +) in the full synchronous rc-calculus 

causes troubles: using distributivity, we may multiply out the expressions (like poly- 

nomials). The two cross-terms x(u)& /I z(u)ju and y(u)% will be deadlocked. 

There are at least three obvious choices of what to do. 

(1) Use unidirectional buffers, as in the last section, which must then be shown to be 

coherent with respect to the rest of the translation of the additives. 

(2) Ban distributivity at the level of translation of axioms. 

(3) Garbage collect deadlocked terms. 

Although it seems fairly common in the concurrency world to consider garbage 

collection as a reasonable solution in such problems [27], the logical status of 

having deadlocked terms with garbage collection is somewhat unclear. It is certainly 

contrary to the spirit of translating logical deduction in a sound and faithful 

way. 

4 As will become clear below, + is related to the translation of boxes. This seems to fit with the remark of 

Girard [I 3, 2.4, p. 453 “Technically speaking ___ axioms are boxes”. 
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6.1.2. Problems with additive reduction 

We shall now discuss some of the thorny problems with additive reductions. The 

reader unfamiliar with proof boxes might find it helpful to first read Section 6.2 (proof 

structures with boxes) below, or to use it as a reference for what follows. 

To analyze the representation of the additive connectives [13] in the synchronous 

rc-calculus, consider the sequent calculus introduction rule for & 

where r is a multiset of formula occurrences (often called a context). 

Recall the behaviour of the cut-elimination process: 

Symmetric reduction: 

reduces to 

Commutative reduction: 

FC,l-,A FC,l-,B 
t-C,r,A&B 

& 

kD,A,A&B 
“‘W 

reduces to 

tC,r,A . . . 
9 

F c,r, B . . . 

tD,A,A kD,A,B 
99 

tD,A,A&B 
& 

where 9 is a cut rule (cf. the Cut algebra in Section 3.2). 
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In sequent calculus the introduction rule for & is contextual in the sense that the 

contexts in the premises and conclusion must be the same multiset r; for the inference 

to be correct, a test for the identity of the contexts is required. 

However, proof-theory does not specify when such a test must be performed: by 

permuting the & rule with the rules below it (as in commutative reductions) the test 

could be delayed and performed on a larger context. 

As pointed out by Girard [16] and Abramsky [l], the meaning of the connective 

& (with) seems to involve notions of choice: A&B asserts the availability of two 

courses of action, the choice being an “external” one, i.e. not determined by the subject 

who makes the assertion, hence cannot be inferred from the given deductive context. 

On the other hand, the dual connective 0 (plus) asserts an alternative “internal” 

choice, which is determined by the speaker. 

The key dynamical point is that, with respect to symmetric reductions, the choice 

between the two subderivations $BO and LB1 leading to F r, A & B is determined 

during the process of cut-elimination by the information contained in the derivation 

gz of E A’ @ B’, d. If a formula Ci in E Ci, . . . , C,, A &B becomes itself a cut 

formula, then the interaction expressed by the elimination of such a cut is j?ozen 

unless and until interaction through A&B has happened. Additive commutative 

reductions are therefore necessary if we want to either (i) change the order of 

communication, or (ii) to make interaction through Ci possible, if interaction through 

A & B never happens. 

In the theory of proof-nets, the issue of finding an optimal representation for 

additives is still under active research. There are at least three candidates: (i) additive 

boxes, (ii) additive contraction links, and (iii) slices, of which (i) and (iii) find analogues 

in the n-calculus translations considered below. 

Proof boxes (see Section 6.2 below) were introduced by Girard [13] to corres- 

pond to the contextually-dependent rules of sequent calculus. In particular, 

the requirement “testing the identity of contexts” of the &-introduction rule 

is expressed by “putting in a box” the proof-nets corresponding to the derivations 

of the premises. As in sequent calculus, the choice of the context is not unique: 

additive boxes can be expanded (cf. the Additive Commutative Reductions in 

Section 6.1 below). This representation suggests the idea of breaking the &-rule 

into three processes: two yielding the premises of the inference and a third one 

starting with the “non-logical axiom” t r, A & B. This seems inappropri- 

ate: we may insist that a unique flow of information runs through the three 

processes and therefore search for a representation of proofs without the additive 

box. 

Additive contraction links together with a binary &-link 

A B Cl Cl C, C, 
A&B ~ ‘.. Cl C” 

implement the idea of a unique flow of information. These links seem implicit in the 

&-rule of sequent calculus; but to obtain an adequate representation we must also 
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include information corresponding to testing for the identity of contexts, i.e., that 

there are subnets 9, with conclusions A, r and 9; with conclusions B, r. 

Slices were introduced in the appendix of Girard’s original paper [13]; the intuition 

seems to be that at each &-rule we really have two independent subarguments, one 

including a step A, the other a step &; Here additive contractions disappear but 

an external test then verifies that the subarguments coincide from certain points of the 

context; i.e., from those points different slices must be identified and only the set of all 

slices with all these identifications has a correct logical meaning. 

The different representations have different dynamical behaviours. The first two 

representations, in presence of the additive commutative reductions, do not enjoy the 

Church-Rosser property; for a simple example, consider the possible ways of eliminat- 

ing the cut in the proof nets corresponding to 

In the representation through slices, additive commutative reductions modify only the 

places where the external test is performed, not the slices themselves. In fact, slices 

were introduced by Girard [13] as an invariant in the cut-elimination process. 

However, if the test of correctness has to be performed during cut-elimination, the 

reduction steps in different slices must be correlated. Attempts to consider a math- 

ematical theory of slices independently of the boxes of which they are slices have so far 

produced a rather complicated syntax. 

How does our z-calculus translation relate to the additives? The translation of the 

& rule given in Section 3.2 corresponds closely to the translation of the corresponding 

proof net with additive box: indeed communication through the channel 5 (corres- 

ponding to the principal door of the box) yields a communication through one of the 

channels u or v, i.e. a choice of one of the summands P;, or Q;;,. The problem is that in 

the synchronous n-calculus it may also be possible to commute some of the prefixes 

and to obtain a communication through some channel in G;, which yields a completely 

arbitrary choice of one of the summands (cf. Section 2.2). Essentially for this reason, 

local fullness fails for the translation of Section 3.2.5 

To recover local fullness, we reintroduce some restrictions from the asynchronous 

z calculus [27], namely the use of guarding prefixes, as in Section 2.2. Since guarding 

prefixes prohibit rewriting in the guarded context, only certain logical reduction 

strategies can be represented, see Theorem 14 below. 

s Categorically speaking, the cut algebra for the additives (symmetric reductions) expresses the fact that 

& must be a weak product; in most models & is actually a product. This is completely at odds with the 
behaviour of +. 
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From the logical viewpoint, it would be desirable if the z-calculus could faithfully 

represent the categorical notion of weak product (i.e., the additive connective &, with 

its symmetric reductions). This would require a notion of congruence which permits 

rewriting under the + as well as in a guarded context, but the theory of synchronous 

rc-calculus has not yet decided this issue. 

Additive commutative reductions can be naturally represented in the translation of 

Section 2.2, if distributivity of (( with respect to + is permitted. This is clearly 

incompatible with guarding. Therefore no evaluation strategy involving additive 

commutative reduction can be fully represented. 

To fully represent every reduction strategy we are led to avoid the use of + in 

Abramsky’s translation, replacing it with 11, as first suggested in [24]. Once this idea is 

fully developed, it turns out to provide a translation of Girtard’s theory of slices, as 

shown in Theorem 18 below. 

6.2. Proof structures with boxes 

We consider proof structures for MLL extended with 

l Nonlogical axioms i.e., links X, Xi, . . . . X, 

For multiplicative and additive linear logic MALL (without constants) we use the 

additive links 

l Plus links 

and the additive boxes 

a & Boxes 

A&B C, . . . C, 

For the full propositional system (without constants) we also add links for the 

exponential operator ? and the !-boxes as follows: 

l Weakening Axiom ?A 

In order to verify the correctness of proof nets weakening axioms are given with an 

attachment to some other formula occurrence (we represent it by ?A - C). 

l Dereliction Link 4 

l Contraction Link y 

l ! Boxes 

L_ !A ?C1 . . . ?C, _.I 

We give a precise definition of proof boxes. 
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Definition. A proof box B(W1, . . . . 92,,, RI’) is a relation where B,, . . . . .B,, are pairwise 

disjoint proof structures and d is a non-logical axiom. 

Any conclusion of a proof structure pi is called a premise of the box; occurrences in 

the non-logical axiom d are called the conclusions of the box B. The premises and the 

conclusions of each box will be in some correspondence with each other (to be 

specified case by case); in all cases, a box B(W1, . . . . 4e,, X, X1, . . . . X,) has the property 

that for each id k the conclusions of Bi are exactly Y, Xi, . . . . XA, where Y is an 

immediate (proper) subformula of X and where Xl and Xj, j < n, are occurrences of the 

same formula. The occurrence X is then called the principal door and Xi, . . . . X, the 

auxiliary doors of the box. 

l In a !-box B(W1, d), the axiom d must have the form !A,?T; the principal door is 

the indicated occurrence of !A; the conclusions of W1 must be exactly A, ?r. (Here if 

r=cr, . ..) C,, then ?T=?Ci, . . . . ?C,.) 

l In a &-box B(9&, .9&, a?‘), the axiom d must have the form A & B, r; the principal 

door is the indicated occurrence of A & B, the conclusions of W1 are exactly A, r 

and the conclusions of 9& are exactly B, r. 

Graphically: 

?T,!A r,A&B 

In this graphical representation it is intuitively clear what it means for a formula, 

a substructure or a box to be inside or outside a given box. 

We can define proof structures with boxes for full propositional Linear Logic 

inductively as follows. Let Ink be a set of correct propositional links (logical axioms, 

weakening axioms with attachments, times, par, plus, dereliction, contraction links). 

Then 

(1) a logical axiom is a proof structure with boxes; 

(2) if W’ and 9” are proof structure with boxes, so is B?‘u.B” 

(3) if 

w a!” W” 

A A’ 
and 

A B 
and 

A 

are proof structures with boxes and 

A B A 
~ or - 

C C 
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are links in Ink then 
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W’ .!sf” 

9 93” A B A 

A A’ 
and 

A-_?B 
and ~ and - 

C C 

and proof structures with boxes; 

(4) if Y1 is a proof structure with boxes, whose conclusions are exactly 

A,?B 1, . . ..?B. and d=!A,?B 1, . . . ,? B, is a nonlogical axiom, then Y, u 532 with the 

box B(Y1, d) is a proof structure with boxes; 

(5) if 9, and Y2 are proof structures with boxes, whose conclusions are exactly A, I- 

and B, I-, respectively, and if ~2 = A & B, I- IS a nonlogical axiom, then Y1 u Y2 u ~2 

together with the box B(Y1,Y2,,&) is a proof structure with boxes. 

We may also give a direct definition of proof structures Y with boxes analogous to 

that in Section 4.1. It is clear that if we remove the set of boxes box from the definition 

of Y =(fml, Ink, box), then we obtain a collection (fml, Ink)= (Y1, . . . ,9$) of proof 

structures with nonlogical axioms. 

Definition. A switch for a contraction link a choice of one of the premises (cf. the par 

link). Let Y be a proof structure with multiplicative links, and, in addition, nonlogical 

axioms X, X1, . . . , X, and plus, weakening, dereliction, contraction links. Ifs is a switch- 

ing for 9, then define the D-R graph as before, with the following additions: 

l for each nonlogical axioms X,X,, . . . . X,, introduce edges (X,X,),(X,, X,), . . . . 

(XV l>XA 

l for each plus link Ai introduce an edge (A, @ A,, Ai); similarly for dereliction 

links; 
AoOAl 

l for each weakening axiom with attachment, introduce an edge corresponding to the 

attachment; 

l for each contraction link, introduce an edge between the conclusion and the premise 

chosen by the switching (as in a par link). 

We say that 9’ is a proof net with nonlogical axioms if for each switching s, the graph 

s(Y) is acyclic and connected. Finally, we say that a proof structure with boxes 

Y=(fml,Ink, box) is a proof net with boxes if each Yi in (fml,lnk)=(YI, . . . . Yk) is 

a proof net with nonlogical axioms. 

Reductions for proof structures with additive boxes are (in addition to the pre- 

viously defined MLL reductions): 

Additive symmetric reductions: 
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reduces to 

Additive commutative reduction: 

reduces to 

L 30 21 90 22 
A D’ DTA, AD’ DTA, 

- 

A l- Al&A, 

Exponential symmetric reductions: 

Weakening /!I 

?A’ !A ?C 1, . . ..?C. 

reduces to 

?C 1 . ..?C. 

Dereliction I!: 

‘?A’ !A ?l- 

reduces to 

21 

A’ A ?r 
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contraction i!: 

91 
?A’ ?AL L_J ?I- 

!A 

reduces to 

?A’ !A ?r ?l- !A ?A’ 

contractions 

?r 

Exponential commutative reductions: 

!A ?I- ?(D’) !D ?A 

reduces to 

A ?I- ?(D’) !D ?A 

!A ?r 

6.3. Slicings 

An additive slice is a proof structure whose formulas are in the language of MALL 

and whose links are logical axioms, cut, times and par links, and in addition 

Ai 

.&@A, 
@ and & & for i=O,l 

0 1 
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A slicing YG(W) of a proof structure with boxes is a family (2?i, Zi)ieI where Z?i is 

a slice and zi : view is an embedding such that X and r(X) are occurrences of the same 

formula, defined by induction on the definition of W as follows: 

(1) if 6% is a logical axiom &=X, XL, then Y4pe(~J?)= (&, id ); 

(2) if 2 is .%?I u.@.~ and sP/(S?r)= (Z!i, ri)ieI, Y/(B2) = (?I;, zJ)jsJ then we set 

c!Yt(W)=(9iUZ?~, ZiU lJ)ieI,jsJ; 

(3) let 0 be either 0 or 9; if 

A B 
a=- 

AoB’ 
and Lf’t 

then sP8(.%)= (pi, Zi)is, where 

9’ 

A B 
_gi=- 

AoB 

and Zi is z/ extended with the assignment A 0 B H A 0 B; similarly, if ~8 results from B’ 

by introducing a cut link, or a plus link; 

(4) let xZ=AA,&A,,r; suppose W is B(%?1,,9?2,d) and Y~(~%,)=(2?~,rf)~~~, 

~pe(~~)=(~~, II))jsJ, where I and J are disjoint; then let L~P/(LZS?))=(S?~,I~)~~,~~, 

where 

Al 
“t?k=- 

A2 

AI &A2 
if kEl, &=- 

AI&A, 
if kgJ 

and where rk is z; (resp z;), extended with the assignment A & BI-+ A & B. 

Girard [13, pp. 94-951, gives a slightly different definition of slicings equivalent to 

the above in the case of proof-nets. 

Within each slice we define symmetric reductions as for multiplicative structures 

and, in addition, 

Al Ai 

A,i@A: Ao&AI 

reduces to 
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On the other hand, a slice with a link of the form 

Ai+ Al-i 

A:@A: A,&A, 

represents a logical inconsistency and a computational deadlock (we shall call it 

an additive deadlock) and must be deleted in the process of normalization (garbage 

collection!). 

The set of slices occurring in 9’4pe(92) is invariant under commutative reductions 

(although the associated embeddings change): 

Lemma. If W > 9' by a commutative reduction, then 

yf(W)=(si,li)isl and ~~(~‘)= (pi, Il)isl 

Let 9 be a proof structure with boxes. If we remove all boxes, we obtain 

a set {WI, . . . . 92,,} of pairwise disjoint proof structures possibly with nonlogical 

axioms. We say that 9 is a proof net with boxes if each C@i is a proof net with 

nonlogical axioms. 

We now give a version of soundness and local fullness for the representation of 

additive proof nets (with boxes) via slicing. This is an extension of the discussion in 

Girard [13]; for more details see Bellin [7]. 

Let 9 be a proof net with boxes and consider its set of slices (Z?i, rj)iel. Each cut 

‘4? in W corresponds to a set of cuts %?i in the set of slices (by taking the inverse images 

of the r’s). Reducing %? in one step will correspond to simultaneously reducing all the 

Vi. However, in the case of additive reductions, some of the pi will be in an additive 

deadlock. So when we do the cut-reduction, we put each deadlocked slice into 

a garbage collector 9 (this will be regarded as a reduction step for that slice). Thus the 

soundness theorem takes the following form: 

Theorem 15 (Soundness for slicing). Let 9 be a proof net with boxes. Let 9 > 9’. Then 

Yt!(.%‘) > YL(Y)u9, where 3 is the set of slices in an additive deadlock. 

Local fullness takes the following form. 

Theorem 16 (Local fullness for slicing). Let 9 be a proof net with boxes and 

let %7 be a cut therein. If 9t!(B?) > F by a simultaneous reduction of all the cuts pi 

in the inverse image of V under the z’s, then there exists a proof net Y such that 92 > Y 

by reduction of the cut 92 and F =98(9)u9, where Y is a set of slices in additive 

deadlock. 
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6.4. Trmdrrtion of’ MALL proqf’structures 

The 7r-translations given in Sections 3 and 4 can be extended to MALL as follows: 

n =(vx)z(uu)u.x(P,,-) 

and 

71 = v(uu)F(uu) . [u(x). Q&,+u(y). Q$] 

where P=n(BY), Q’=x(%!~), and Q”=x(&), 

This can be represented as: 

PT PT 

.Y : A 
and 

.Y : A 

z:A@B z:A@B 

and 

Q' Q" 
Y : A M: : l- y : B G : l- 

u U 

-.A&BC:r, i. 

Corresponding to the additive symmetric reductions we have 

(vuu)[(\~x)ixP,~I~ [u(x).Q;,i+u(y).Q;l,~~]] 

z 

(v-u) Cp,., II Q;\il 



and (**) 

PO =(vz) [(vy)z(u u)vq’ PXs 11 V(U u)z(u u) . [u(x). Q;; + u(y). Q;:?]] 

The names u and u in (vx)z(uu)U.u(P,,-) or (vx)z(~u)v.U(P,~) or ~(uu)Z(uu). 

[u(x). Qkli + u(y). Q;$] will be called choice numes; these names determine which 

subprocess will be retained or discarded in the above reduction. To emphasize their 

role, we shall denote choice names by hold@e letters in what follows, and similarly for 

the exponentials in the next section. 

Now we prove a restricted form of soundness and local fullness of the n-translation 

of proof structures for MALL. 

Theorem 17. The 7c-translation of’proof’structures in MALL is .so~~nri and locally,fir/l 

with respect to the normalization strategy reducing the cuts which lie outside all udditice 

boxes. 

Proof. Soundness is easy. For the local fullness, we argue by induction on the 

formation of n(Y). The only successful communications will have the forms ( * ) (see 

Theorem 8) and ( ** ) above. The case of reduction ( * ) is as before, for the multiplica- 

tives. For the sake of simplicity, we regard the two steps in ( **) as a single rewriting 

step. Suppose that the PO in (**) is a subterm of P*. By the properties of guarding 

asynchronous prefixes no interaction involving a channel in Q:.,; or Q($ may occur in 

P*. Hence only interaction with the choice terms u or u can determine the choice of 

summand in PO. Therefore terms of the form 

(VUU)C(VY)~Y PJJ II CW. Qkl 

(additive deadlock) will never result in the reduction process. n 

Thus we see that the “communication protocols” of the choice names determine 

the behaviour of the relevant processes and guarantee that deadlocked slices are 

deleted. 

We also consider a z-translation of s/icings of a proof structure for MALL; to this 

end, we extend the translation in Section 4.2. Let 9 be a proof structure with additive 

boxes and let P=x(B). Moreover, let G be a function defined on the set all the 

subterms of the form Q1+Q2 in P which chooses either Q1 or Q2; let P, be the 

result of the following operations: (i) erase all guardings (i.e. dots), (ii) replace 

each subterm of the form Q1 +Qz in P with o(Q, + Q2), Call such a P, a slice of the 

term P. Finally, if C = { gl, . . , oni ’ is the set of all distinct slices of P, then we define the 
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slicing of P to be 

ll0E.Z PO 

where we assume all the P, have disjoint free variables (if necessary, by renaming). 

This definition of the translation corresponds exactly to the definition of slices in 

Girard [13] (in the case of proof nets). 

Alternatively, we can define the n-translation of the slices of a proof structure 

directly. We proceed as in the case of additive proof structures, except that for the 

&-links we omit guarding and take: 

The two definitions coincide: 

Proposition. Let F={2?i}isr be the set of slices in Y/(3?), and let IL= llassPo be the 

slicing of the term n(W); then n(F)=lI. 

In other words, there is a natural bijection between the different notions of slices, 

whether at the level of proof structures or represented as n-terms. 

The following proposition is also clear: 

Proposition. Let 93 be a proof structure with additive boxes and let P = ~(9); Proposition 

5 holds for each slice of P, with the exception of (iv), (v), which fail for choice names only. 

The bijection between slices of nets vs slices of n-terms extends to the operational 

(normalization) behaviour: 

Theorem 18. The rt-translation of slicings in MALL is sound and locally full with 

respect to every normalization strategy. 

Proof. Since rc(Ye(B)) contains no +, it behaves as a term satisfying Proposition 5, 

except perhaps for choice names. These choice names can only interact in reductions 

of the form 

P,, =(vz) [(vx)z(u u)ux P,.. 11 (vu u)Z(u u) [u(x). Q;$]] 

> 

(vu 4 C(vx)ux P,n II CW . Q:lill 
> 

(vx) Cf’x,, II Q&l 
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and 
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(***I 

additive deadlock 

Dually, for the slicing which deletes the left summand. Thus we see that a reduction 

in rc(Y”e(&‘)) yields an additive deadlock if and only if so does a reduction in 

9/(w). 0 

Finally, we can extend the Bellin-Van de Wiele orientations to the case 

of proof nets for MALL, as well as for the exponentials, as mentioned in the remarks 

after Theorem 13. Alas, not all such orientations are computationally consistent. 

The n-translations resulting from such orientations are obtained as in the multiplica- 

tive case, but with the additive part as defined at the beginning of this section. 

Unfortunately, as mentioned in that remark (lot. cit.), the translation Od which 

yields linear lambda terms (cf. Corollary 14) does not directly extend beyond the 

multiplicatives. 

7. The exponentials 

What has been done for the additives can be extended to the exponentials: namely, 

we may extend the translations z defined for MALL with the following. (The reader is 

referred to the comments in Section 3.3.) 

- 
n(?A)=z(wdc)w 

=(vx)z(wdc)d(x)P, 

i 9 

n ?A?A 

\ ?A 

r =(vxY)(z(wdc)E(xY))P,, 

I 
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and 

I 
wO~(lli~~P~"i(wdc)w) 

+ 

= (vwdc)Z( wdc) d(x). Qxli 
+ 

c(z’z”).(v~“‘~““)( Ili4l~lui(wdc)E(uf,~f’) 11 !:,QYis 11 !:*,Qxa,,). 

Exponential symmetric reductions: 

The reduction from 

?A’ !A ?r 

where ?T=?C1, . . ..?c. to 

?C 1 . ..?C” 

corresponds to 

(vz)(z(~dc)W II !:Q.x~j) >* (Ili<l~l Ui(WdC)W) 

using the recursive definition of !:Qxli and two ordinary reduction steps. 

The reduction from 

?A’ !A ?r 

corresponds to 

(vz)((vx~)(z(wdc)d(x))P, II !IQxii) >* (vx)(f’x II Q:li) 

using the recursive definition of !:Qrli and two ordinary reduction steps. 
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The reduction from 
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21 
?A' ?A' sl A ?l- 

?A’ !A ?r 

to 

?A' !A ?l- ?l- !A ?A’ 

contractions 

?r 

corresponds to 

(vz)((vx~)(z(w~c)C(x~))~,, II !:Qxa) 

using the recursive definition of !:Q,.; and two ordinary reduction steps. 

Thus the above reductions are sound with respect to the reduction strategy that 

applies symmetric reductions outside all boxes. Moreover, if rewriting using the 

recursive dejinition of !:Qxa can be done without producing deadlocked terms-hence, 

without garbage collection, then we can obtain local fullness as before, since the 

summands in the right-hand side of that definition are guarded by their prefixes, as in 

the additive case. As mentioned earlier, this would seem to depend on how the 

rewriting theory of the recursive definition of n-terms such as !:Q\-c is implemented. 

The latter awaits further development of the synchronous Tc-calculus. Moreover, for 

now, nothing can be said about local fullness of the above translation until details of 

such an implementation are given. 
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