
Theoretical Computer Science 135 (1994) 1 l-65

Elsevier

11

On the n-calculus and linear logic

G. Bellin*
Equipe de Logique, UniversitP de Paris VII, 2 Place Jussieu, I:-75251 Paris Cedex 05, France

P.J. Scott**
Department of Mathematics, University qfottawa, 585 King Edlvard, Ottawa, Ont., Canada KIN 6NS

Bellin, G. and P.J. Scott, On the n-calculus and linear logic, Theoretical Computer Science 135

(1994) 11-65.

We detail Abramsky’s “proofs-as-processes” paradigm for intxpreting classical linear logic (CLL)

(Girard, 1987) into a “synchronous” version of the n-cah:ulus recently proposed by Milner

(1992.1993). The translation is given at the abstract level of proof structures. We give a detailed

treatment of information flow in proof-nets and show how to mirror various evaluation strategies
for proof normalization. We also give soundness and complet :ness results for the process%alculus

translations of various fragments of CLL. The paper also gives 1 self-contained introduction to some

/ of the deeper proof-theory of CLL, and its process interpretation.

1. Introduction

Milner’s x-calculus [26,27] is a recent addition to a large and active literature on

the foundations of concurrent computation. These theories attempt to analyze and

clarify the world of concurrently communicating proce!;ses (and associated program-

ming languages) in much the same way as lambda calculus and other models of

computation have done for the sequential world [26].

In a different direction, Girard [13,16,17,18] has instituted the rapidly growing

area of linear logic, a radical modification of traditional logic which appears to have

strong connections with theoretical computer science. In several publications [15,161

Correspondence to: G. Bellin, Equipe de Logique, UA 753 du CNRS, Tour 45-55, 5e ktage, Universitk de
Paris VII, 2 Place Jussieu, F-75251 Paris Cedex 05, France. Email: I)ellin@logique.jussieu.fr.

* Research supported by Esprit grant BRA Project 3245.

**Research supported by an operating grant from the Natural Sciences and Engineering Research
Council of Canada, FCAR Team Grants from Qukbec, and a Bilaterz,J Exchange Grant from NSERC and
the Royal Society of Britain.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(94)00104-Q

12 G. P.J. Scott

Girard has suggested that linear logic should have deeper connections with parallel-

ism and concurrent computation. This suggestion was taken up more formally by

Abramsky [2] in an influential series of lectures, and in some unpublished work of

Milner [24].

The Abramsky view is essentially a modification of the familiar formulae-as-types

(Curry-Howard) isomorphism: instead of proofs being functions (qua lambda terms),

Abramsky views proofs as processes (e.g., rr-calculus or CCS terms). Processes are

thought of as communicating through distinguished ports or channels, named by free

variables. The key observation is that proof-theoretical communication (i.e., the Cut

rule in the Gentzen formalism) is modelled by communication along a private internal

channel (i.e. hiding) in the process-calculi world. It should follow that the dynamics of

logical computation, namely the cut-elimination or normalization process for proofs,

be reflected in the rewriting theory for process algebra terms.

Alas, this is precisely the point where the concurrency and logic worlds begin to

diverge. For example, the fundamental case of cut-elimination requires modular or

contextual rewriting (since we may need to eliminate a cut embedded high-up in

a proof tree). Most experts on concurrency theory are simply unwilling to allow

rewriting within all contexts, particularly those involving nondeterministic choice +;

typically an interaction with a process P + Q chooses one of the components, and the

other component is immediately destroyed. The question is: to what extent can we

represent logical computation within the accepted concurrency world?

Milner [25] recently developed a version of the rr-calculus (the synchronous

TC-calculus) purposely supporting some of the logical rewriting envisioned by

Abramsky. In this paper, we analyze the Abramsky view in detail for the synchronous

rr-calculus. We shall translate proofs (and certain normalization strategies) for the

three important levels of linear logic: the multiplicatives, the additives, and the

exponentials. In the case of multiplicative linear logic, the n-calculus translation

provides a lock-step simulation of proof net reduction. As soon as the additive and ex-

ponential connectives are included, again problems of rewriting in contexts begin to

appear (even for the synchronous rr-calculus). We show how we may soundly and

completely reflect the proof theory (though not necessarily lock-step simulation) by

different methods:

l Modify the x-calculus reduction strategies to more closely mimic those inherent in

logic (e.g., (i) by introducing guarding of terms [27] or (ii) by a version of Girard’s

theory of slicing of proof nets [7,13]).

l Modify linear logic evaluation strategies to take into account the extant theory of

rc-calculus (e.g., restriction to Geometry of Interaction-style evaluation strategies

CI7,181).
One of the theses of this work is that the Abramsky-style translations (of linear

logic) into the process world actually have less to do with logic than one might think:

they are essentially only about the abstract pluggings in proof structures [12,13,16],

and we formulate many of our results in this more general setting. This phenomenon

may be already expected by experts in concurrency theory, who view process algebras

On the n-calculus and linear logic 13

as a theory of “hand-shaking” protocols (which have nothing to do with logic) but it

came as a surprise to us. What seems particularly curious - given this “alogical”

nature of n-calculus - is that much of the theory (as described below) is nonetheless

coherent (and complete) for various logical proof reduction (normalization) strategies.

A second theme of this paper is that information flow in cut elimination is related to

sending/receiving protocols in n-calculus. In Section 5, this intuition is made precise in

a detailed analysis of information flow in pure nets [S, 11,221 which is a theory of

graphical networks for representing untyped lambda terms in the style of proof nets

for linear logic. We shall show how to dynamically orient a proof-net (assigning the

symbols I (for input) and 0 (for output)) in a manner coherent with respect to

introduction and elimination rules for natural deduction, and cut-elimination (nor-

malization). This permits a systematic analysis of orientation and information flow in

the Abramsky n-translation, obviating (for example) the need for bidirectional buffers.

Finally, the paper contains a survey of more advanced proof-theory for linear logic,

including additive boxes and Girard’s theory of slicing, and how to represent these

notions in the n-calculus.

At this point, we should mention a few papers on related themes. The paper of

Monteiro [29] gives a lock-step simulation of proof nets for multiplicative linear logic

into a version of CSP, although the author does not handle the additives or exponen-

tials. This paper is the first example of the kind of analysis considered here (apparently

independent of Abramsky [11) o a sound and faithful translation of logical deduction f

in a language of concurrency. The paper of Miller [23] is based on a logic program-

ming view of the n-calculus: Miller codes the x-calculus as a theory in linear logic, and

discusses how techniques of logic programming (proof search, etc.) are useful in

understanding some of the metatheory of the 7c-calculus. This paper has no direct

connection with the Abramsky program of proofs-as-processes, although some of the

syntactical considerations are mildly similar.

2. The n-calculus

The following version of the n-calculus [24,27] has recently been suggested by

Milner [25] for its possible connections to linear logic, a connection we shall develop

in more detail below.

2.1. Basic synchronous z-calculus

There is an infinite family X of variables called names. We shall denote names by

x, y, z, . . . EX and vectors of names by JE or .Z. The rc-calculus describes certain basic

entities known as processes, having the following syntactic forms:

l I (vx)P I P II Q I d’

where

14 G. Bellin, P.J. Scott

(i) The prefixes 7c are formal expressions of the form X(G) or x(G), where x is

a name, and 3 is a vector of names, possibly of length zero. We say P is the scope of

prefix 7c in the process rcP.

(ii) vx and (5) are name-binding operators with the obvious scopes. Thus in the

expression (vx)P, the name x is bound and the scope of vx is P; the operation v is

known as hiding: the variable x in the process (vx)P is said to be a hidden name.

Similarly, in the expression x(G)P, the names 5; are bound (and x is free) and P is the

sc0pe.l

The intended interpretation is that rc-calculus describes a theory of processes

concurrently communicating through distinguished ports or channels (think of tele-

phone systems or a computer network). The intended meaning of names [24] is that

they represent communication channels, i.e., ports for the communicating behaviour of

these interactive processes. A fundamental such operation is the “hand-shaking”

protocol, in which one agent’s channel identifies itself to another agent’s channel, and

the receiver signifies it is ready to receive the communication. This is encapsulated in

the two syntactic operations X(j)P, which means “send the names ; along the

channel x and then do process P”, and ~(3)P which means: “receive along x arbitrary

names for the bound names y “. Another fundamental operation is “hiding”, in which

a channel is declared private and so is inaccessible to the outside world. Finally P /I Q

denotes the process in which P and Q are acting concurrently (in parallel) while

l denotes the nil process.

The following rules govern the behaviour of n-calculus terms. We assume there is

a congruence relation = on n-terms which satisfies the following additional proper-

ties:

(1) w1 wzP= wlwl P provided no free variables become bound, nor any bound

variables become free.

(2) w(P 11 Q) = COP 11 Q, provided bn(a)nfn(Q)=@.

(3) I/ - as a binary operation on processes - satisfies the axioms of a commutative

monoid with unit l .

(4) (vx) 0 = 0.

(5) (v4(vY)P=(vY)(vx)P.
As usual, we identify processes which are identical except for change of bound

variables (a-conversion). We often omit writing the process l (cf. [27]), writing X (G)

in place of X(;)o.

We make the rc-calculus into a rewriting system by assuming the following notion of

basic 1 -step reduction:

X<j>P II x(t)Q > P II QL%l

1 More precisely, we may define the set of free and bound names in processes P (=fn(P) and bn(P),
respectively) as follows: (a) fn(o)=bn(o)=@. (b) fn(P 11 Q)=fn(P)ufn(Q); bn(P 11 Q)=bn(P)ubn(Q).

(c)fn(~(~)P)={~,~}ufn(P);bn(~(~)P)=bn(P).(d)fn(x(~)P)=fn(P)u{x};bn(x(~)P)=bn(P)u{~}.

(e) fn((vx)P)=fn(P)\{x}; bn((vx)P)=bn(P)u{x}.

On the n-calculus and linear logic 15

where Q [G/z] denotes the simultaneous substitution of the names yi for the (possibly

free) names Zi in Q. We consider the rewriting theory modulo =, so that for all

contexts %? we have: P > Q =S %[P] > %?[Q].

This version of the n-calculus allows some unexpected rewritings (modulo E);

for example: X(j)x(Z)P> P[$2]. Proof: X(y)x(Z)P=Z(j)(o 11 x(;)P)=

(X(3>.IIX(~)P)~PC~l~l.

2.2. Full synchronous n-calculus

We add to the syntax of the basic theory above, an additional process formation

rule: finite summation. That is, the processes now have the following form:

. I (vx)f’ I PII Q I nf’ I f’+Q

P+Q represents a process able to take part in one (but only one) of the alternatives

P, Q; however, the choice is not made by the process, but by the environment at the

time of a particular interaction. We add to the previous congruence rules for = the

following rule:

The operation + -considered as an operation on processes - satisfies the axioms of

a commutative monoid with identity l .

Moreover, we add to the reduction rules above the following additional basic

rewrite rule:

V’+xG)Q) II (b(jW)+S) > Q II RC;/:I

We do not assume > is a congruence with respect to + - i.e., we do not assume

rewriting under a +. It is worth remarking that the choice operator + above has

a powerful effect: it destroys all “side processes” P and S not actually involved in the

interaction.2 This is one of the main problematic operators in understanding rr-

calculus from the logical viewpoint.

Two important notions from the ordinary rc-calculus are guarding and distributiuity.

Guarding is a method of forcing certain communications to occur in a given order,

thus imposing a restriction on the evaluation strategies available for n-calculus terms.

Syntactically, a dot after a prefix, as in CO. P, denotes a process in which communica-

tion must occur with o before any communication can occur within P (so in a sense

the prefix CO “guards” P against contact with ambient processes, as well as preventing

internal communication within P until w is discharged). Writing the dot “. ” has no

other formal status than to denote this ordering of evaluation. If we speak of

synchronous z-calculus with guarding, we shall mean (unless otherwise stated) that all

’ In particular, S is arbitrary, so may itself be of the form x(j)S’. So, assuming commutativity of +, basic

interactions of the above form could sometimes (up to =) arbitrarily pick either component when rewriting

a summand.

16 G. Bellin, P.J. Scott

processes can have prefix sequences which may be mixtures of either guarded or

unguarded ones.

Rewriting theory in the presence of guarding is a slight modification of that of the

basic synchronous calculus above. We modify the rules mentioned in Section 2.1, as

follows:

l We can permute unguarded prefixes up to =, with the usual provisos on free and

bound variables, with the following restriction: properties (1) and (2) of the congru-

ence = do not apply if one of the prefixes Wi or o is a guarding prefix.

l A subterm w. P can only be reduced via communication with o, not through

reduction within P.

In particular, under guarding rewriting is not contextual or compositional.

II x(y)Q > P II QCz/yl

whereas the guarded term u(x). [X(z)P 11 x(y)Q] is at the moment inert: it cannot

have any internal action and can only communicate through the variable U.

Milner [27] uses guarding to constrain evaluation strategies (e.g., in simulating the

lazy A-calculus in the n-calculus). Similarly, in Section 6.2 we shall use guarding to

mirror certain restricted evaluation strategies in linear logic (needed for our complete-

ness theorems for additive proof net reduction).

Distributivity (of 11 and unguarded prefixes) with respect to + is discussed in [27]

and other references referred to there. The main feature (from our viewpoint) is that

distributive laws are needed to mirror the commutative reductions of linear logic

(cf. [131).

3. Proofs-as-processes

In this section we introduce a version of the Abramsky translation [l] mapping

proofs in linear logic into process calculi, and discuss Soundness and Completeness

Theorems for this translation. As mentioned in the introduction, our treatment is an

adaptation of the original Abramsky work to the synchronous 7r-calculus, a calculus

better suited to this kind of analysis. The idea is to assign to a proof annotated with

free variables, a process term whose free variables are exactly the variables in the

conclusion of the proof:

kx,:A,,...., x,:A, -+ Pxl,...,x,

One may think of the free variables x 1, x, as “communication ports” in an

interface connecting a process to its surroundings.

On the n-calculus and linear logic 17

We assume the reader is familiar with the usual presentations of classical linear

logic (CLL) by one-sided sequents [2,13]. We consider, in separate sections below, an

involutive negation ()I along with the three levels of CLL connectives emphasized by

Girard [13], which are pairwise related by de Morgan duality: (i) multiplicatiues: the

conectives { 0, ??}, i.e., tensor and dual tensor (= par), (ii) additives: the connectives

{&, @}, i.e., product and coproduct, (iii) exponentials: the connectives {!, ?}, which are

storage operators. We write MLL for the multiplicative fragment, MALL for the

multiplicative and additive fragment, and CLL for the full theory, Note that we ignore

the role of the units in all that follows. For simplicity, we also consider only atomic

axiom links.

Much of the proof theory used in this paper is standard; further details for the case

of linear logic are contained in Girard’s original paper [13], Troelstra’s recent book

[32], as well as in [6,7,12], etc.

3.1. The Abramsky translation: the multiplicatives

Logical rule

Ex:A,y:Al

;F .G

t%:I-,x:A I-?;:A,y:B

t%::,;:A,z:A@B
0

.F

t%::,x:A,y:B
?I?

k;:r,z: ATB

jF .G

I-;:r,x:C &:A,y:C’

I-;:I-,i;:A
cut

n-translation

Zxy=x(a)j(a)

$ (F, G) %;z = vxy(Z(xy) (F;x 11 Gijy))

(?j’;qy)(F)~z=z(xy)F?vxy

Cut’(F, G);Z;=vz(F; [z/x] 11 G; [z/y])

It is worth remarking that this translation makes two choices: we choose to

interpret @ uniformly as a sender and ~5’ uniformly as a receiver. Following the

terminology of Abramsky and Milner, the operator I in the translation of the axiom is

known as an axiom bufSer. Note that axiom buffers also translate positive atoms as

receivers and negative atoms as senders. A full discussion of information flow and

these choices is in Section 5 below. Superscripts on the rc-terms 0, 38, Cut denote

bound variables.

3.1.1. The cut algebra for MLL

The following equations represent, in functional (combinator) form, the cut-

elimination reductions in MLL.

18 G. Bellin, P.J. Scott

Symmetric reductions:

Cut”(F, G)= Cut”(G, F) (1)

CuP(Fx, Ixy) > F [y/xl (2)

Cut’ g (Fx, Gy), ‘18:‘Y(Hxy) > CutY(Gy, Cut”(Fx, Hxy)) (3) *

= Cut”(Fx, CutY(Hxy, Gy)) (4)

Commutative reductions:

CutX(.:,’ Fxcd, Gx)= T9~dCutX(Fxcd, Gx) (5)

Cut”

where in the first and second commutative reduction equations, 7%’ and @ do not react

with x.

Remark. Note that in the term ?k?zd CutX(Fxc, Gxd), Cut and Par obviously do not

permute. In order to permute inferences, one needs the additional information that c, d

occur in the same branch of the proof tree, as in (5) above.

Theorem 1 (Soundness). Let 29 be a proof in MLL and let ~(9) be it n-calculus

translation.

(i) If 9 > 1 9’ by a l-step symmetric reduction in the cut-elimination process, then

~$9) > 1 ~(9’) in the synchronous rc-calculus.

(ii) If 9 > 1 9’ by a l-step commutative reduction in the cut-elimination process, then

~~(9)s ~(9’) in the synchronous x-calculus.

Proof. By induction, following the steps in cut-elimination. 0

From part (ii) in the above theorem, we see that the 7~ translation really acts on

proofs modulo the order of the rules, thus on proof nets [13]. This theorem will be

generalized in Sections 4,5 below to the case of proof structures. We shall also discuss

the completeness (or in categorical language, the local fullness) of the 7c-calculus

translation.

It is important to observe that cut-elimination is a modular or compositional

property: a reduction 9 > 1 9’ may occur high up in the proof tree, not necessarily at

the bottom node. This requires that reduction in the associated n-terms must be

a congruence, i.e., reduction must be contextual. This will be the case for the n-terms

that arise in the MLL translation. But there will be problems with the additives and

exponentials, as we shall see below.

3.2. The Abramsky translation: the additives

Logical rule

.P

t-ii,:P,x:A

W+4@B6

On the n-calculus and linear logic

rc-translation

L:(P)Gz=(vx)(z(uv)u(x) Pi;X)

;P iQ
F%:T,x:A F%::,y:B

FG:l-,z:A&B
& &:Y(P,Q)~z=~(~~)Z(u~)[~(~)P;;,+~(y)Q;;.J]

3.2.1. The cut algebra: additives

The following equations are true for proofs in MALL:

Symmetric reductions:

Cut’(&:‘(P,, P,), WQ,)) > CuW’x> Q Cxlul)

Cut’(&:Y(P,, P,), WQ,)) > CWL Q Cxlul)

Commutative reductions:

(7)

(8)

(9)

Theorem 2 (Weak soundness). Let 9 be a proof in MALL and let rc(G8) be its

n-calculus translation. Then we have:

(1) Let G?? be any cut such that no &-rule occurs below %?. If 9 > I 9’ by a symmetric

reduction applied to the cut Gf? then rt(g) > n(g’).

(2) If the z-calculus admits distributivity of /I and prefixes (including hiding) over

+ and if9 > 1 9’ by a commutative reduction then z(s)=z(5@‘).

Note that this theorem says the n-translation is sound only for eliminating certain

specific cuts. This comes from the fact that > is not a congruence with respect to

+ (see the introduction and Section 2). For example, with respect to the restrictions in

Theorem 2, eliminating a cut in a term of the form &:‘(P,Q)Gz would involve

contextual rewriting under a +.

We include some examples of Theorem 2 (weak soundness for additives).

20 G. Bellin, P.J. Scott

Example 1. The proof below has a & below a cut.

Ex:A,p:AL Fy:A,p:AL Fx’:A,p’:Al

kw:A&A,p:Al
&I OL

kx’:A,w:A1@A’Cut

kp:A’,x’:A
1

Fy’:B,q’:B1

Ez:Z3,q”:B1 Ft:A1@Bl,x’:A kt:A1@B1,y’:B

kz:B,w’:Al@B1 tt:Al@W,w’:A&B

I-z:B,t:A1@B1
cutz

This reduces to (by a symmetric reduction to CutI, and axiom reduction)

IX’P

X7&7 . .
. 9 . ky’:B,q’:B1

Fz:B,q”:B~ Ft:AI@B1,x’:A Ft:Al@ZV,y’:B

I-z:B,w’:A1@BI t-t:Al@B1,w’:A&B

Fz:B,t:Al@B1
Cut,

To the first proof corresponds the rc-term (with Cut, and &i in bold)

z%z= CutW’(R$(Zzq”), &“,:L(Lp(cutw(&~~(zxp, Zyp), L$(Zx’p’))), R,4’(Zy’q’))).

The process of cut-elimination illustrated above corresponds to rewriting a subterm of

Ptz as follows: the left hand branch before (and after) Cut1 is eliminated corresponds

to the following subterm reductions:

(vwu~p’)(w(u~)Cu(x)(x(a)p(a))+~(Y)(Y(b)p(b))l II w(u~)u(P’>(x’(c)P’(c>)))

> (vp’)((p’(a)F(a>) II w(4P’(c>))

>* x’(c)p(c), after extruding x’, interaction, and eliminating bound p’.

=Zx’p, which is the denoted proof of t x’: A, p: A’.

This illustrates Part 1 of weak soundness, except the condition “no &-rule occurs

below a cut”. To understand this restriction, suppose we attempt to continue reduc-

tion of the proof, by a symmetric reduction of Cutz, noting that 8~ is below a cut. We

implement this by continuing to reduce the z-term Ptz (having already reduced the

inner subterm above.) The rightmost subterm of Ptz containing R$(Zy’q’) has the

form P,,-v’(y’)(vq’)t(r’s’)s’(q’)(y’(d)q’(d)). But in the n-calculus, we can rewrite

a term occurring in the scope of a sum only after choosing the relevant summand;

here, the term PO is discarded by the previous steps. If we were to continue cut-

elimination and apply a symmetric reduction to Cutz, then in the associated reduction

of the z-term Ptz, we eventually obtain an irreducible n-term which does not

correspond to a proof, because of the disappearance of PO. We leave the calculation to

the reader.

On the ~-calculus and linear logic 21

Example 2. We illustrate Part 2 of weak soundness. The proof

Fx:A,p:Al F)?:A,p:AL&

Fw:A&A,p:Al Fp:A,q:Al

Fw:A&A,q:Al
cut

becomes, after a commutative reduction

Fx:A,p:Al t-p:A,q:AlC& Fy:A,p:AL ä P:A,q:ALC,t

Ex:A,q:Al Ey:A,q:Al

Ew:A&A,q:Al
&

and eventually becomes (after axiom reductions)

kx:A,q:Al ty:A,q:Al&

Ew:A&A,q:Al

We can exactly represent these proof transformations by the following z-term rewrit-

ings, provided we allow distributivity of 11 over +:

(v~)((vuv)w(uv> Cu(x)x(a)p(a)+v(y)y(b)p(b)l~ p(c)q(c))

=(v~)((vuv)@<uv)Cu(x)x(a)P<a) II ~(c)q<c)+v(y)y(b)p<b) II ~(c)~<c)l)
>*(vuv)W(uu) [u(x)x(a)~(a)+v(y)y(b)~(b)] (after axiom reductions).

3.3. The Abramsky translation: the exponentiuls

Logical rule rc-translation

iQ
tzi:r

Fii:r,z:?AW

.Q
FZi:r,x:A

tli:l-,z:?A
d

iQ

W,(Q)l;z = z(wdc)wQ

D;(Q)uz=(vx)z(wdc)a(x)Q

tii:r,x:?A,y:?A

t-;:l-.z:?A x
C;,“(Q)Eiz=(vxy)(z(wdc)c(xy))Q

.Q
Eii:?r,x:B,

ki!:?I-,z:! B’

!;(Q);z = !:(Qiix)

=(vwdc)(z(wdc) Ij

22 G. Bellin. P.J. Scott

For the rest of this paper, we assume the existence of the term !:(Q)Gz (as a solution

to the appropriate recursion equation in the synchronous n-calculus). This deserves

some discussion. One of our goals is to see how much of the structure of linear

logic proofs is preserved in the translation to (synchronous) rr-calculus terms.

Milner’s congruence ! Q=Q /I ! Q (or a variant such as ! Q = ! Q 11 ! Q, etc.) equates

terms in a manner which does not directly correspond to proof reduction. In

particular, in linear logic the cut algebra for the exponentials (see below) allows

duplication of ! Q only as a rewriting step, not as a congruence. Nonetheless, with

such a rewriting interpretation of ! Q, the soundness of the cut algebra for the

exponentials (and, more generally, the proof net interpretation) follows, cf. Section

7 below.

Heuristically, in the above rr-translation of the exponentials, the variables “w, d, c”

represent the rules of weakening, dereliction, and contraction, resp. During commun-

ication (= cut-elimination), processes first identify themselves (“hand-shaking”) as

coming from one of these rules. Once these identifications establish that the commun-

ication can indeed occur, then cut-elimination is implemented through x-calculus

rewriting (see the cut algebra below).

3.4. The cut algebra: exponentials

The following equations are true for proofs in CLL:

Symmetric reductions:

CuWW’x), !:Q,) > CWP,, Qx)

C~t=(GV’x,), !:(Q;x))

> P” (CutZ’(Cut”‘(P[z’/x,z”/y],!;,Q’),!;..Q”))

(10)

(11)

(12)

where Q’ = Q cc’/;] (and similarly for Q”) and Ci”‘; /1 denotes an iterated sequence of

contraction combinators.

Commutative reductions:

(13)

Theorem 3 (Weak soundness). Let 9 be a proof in CLL and let ~(9) be its x-calculus

translation. Then we have: Let % be any cut such that no &- or !-rule occurs below Gf?. If
9 > 1 9’ by a symmetric reduction applied to the cut %?, then ~(9) > 1 ~(9’).

There is no straightforward version of soundness for the case of commutative

reductions in CLL.

On the a-calculus and linear logic 23

4. Translating MLL proof structures

We give a brief introduction to proof structures and nets, referring the reader to the

literature [2,7,12,13,16,30,32] for more details.

The Gentzen rules for one-sided sequents for CLL are given in Section 3 above

(in proof-term assignment form). In this section we consider multiplicative linear logic

MLL [12,14], whose formulas are built from { 0, T} using linear negation ()I and de

Morgan duality. In all that follows, we ignore the role of the units.

4.1 MLL proqf structures

A link is an m + n-ary relation between formula occurrences, for some m, n 30,

m+n#O. Suppose X1 ,..., X,,, are in a link: if m>O, then Xl,...,Xm are

called the premises of the link; if y1 >O, then X,+ r, X,,, are called the

conclusions of the link. If m = 0, the link is called an axiom link. Links are graphically

represented as

x x?n 1,

X m+1, ‘..>
X ?lL+n

We consider only logical axioms and multiplicative links of the forms

AAl AB AB

A A’ cut A@B ATB

The first two links are known as axiom and cut links, respectively. We assume that the

axiom and cut links are symmetric relations. Following common practice, we shall

sometimes avoid writing the word “cut” in a cut link.

A proof structure Y for propositional MLL consists of (i) a nonempty set of

formula-occurrences (i.e., a multiset of formulas) together with (ii) a set of logical

axioms and multiplicative links satisfying the properties:

(1) Every formula-occurrence in Y is the conclusion of one and only one link;

(2) Every formula-occurrence in Y is the premise of at most one link.

We shall draw proof structures in the familiar way as nonempty, not necessarily

planar, graphs.

Proof structures for MLL can be defined inductively, i.e., Y is a proof structure if it

results from a finite number of applications of the following clauses:

(i) an axiom X X’ is a proof structure;

(ii) if 9” and 9” are proof structures, then so is 9”uY”;

(iii) if

Y Y’

x XL
and

x Y

24 G. Bellin, P.J. Scott

are proof structures, then so are

x XL
and x *

x Y
and ~

XQY xv*

We define the following reductions on proof structures:

Axiom reductions:

x XL X reduces to X

Symmetric reductions:

. . . .
:1 :2 :3 :4

x Y XL Yl

X@Y XL9YL

reduces to

. . . .
:1 :3 :2 :4

x XL Y Yl

Definition. A Danos-Regnier switching s in a proof structure consists in the choice, for

each par link, of one of the premises of the link.

Definition. Given a proof structure 9 and a switching s, we define the undirected

Danos-Regnier graph 9?~(9’) as follows:
_ the vertices of %~(Y) are the formulas of 9’;
_ there is an edge between vertices X and Y exactly when:

(i) X and Y are the conclusions of a logical axiom or the premises of a cut link;

(ii) X is a premise and Y the conclusion of a times link;

(iii) Y is the conclusion of a par link and X is the occurrence selected by the

switching s.

Definition. A proof structure W is a proofnet for MLL if for every switching s of 9, the

graph 9$%?) is acyclic and connected (i.e., an undirected tree).

We shall denote the Danos-Regnier graph as s(9). For further information,

cf. [12,6].

Occasionally (e.g., in Section 5.3 below) we will consider the system of sequent

calculus for multiplicative linear logic, with the additional structural rule of mix, also

On the n-calculus and linear logic 25

called direct logic DL [4-6,10,11,31]:

t-r +A
mix:

I- r, A

Definition. A proof structure 9 is a proof net for Direct Logic DL if for every switching

s of 9, the graph %JW) is acyclic (but not necessarily connected.)

The following fundamental result (Girard [13]) relates sequent calculus and proof

nets for MLL.

Theorem 4 (Sequentialization theorem). There exists a map (.)- from sequent deriva-

tions in MLL to proof nets for MLL with the following properties:

(a) Let 9 be a derivation of r in the sequent calculus for MLL; then (9)- is a proof

net with conclusions r.

(b) (Sequentialization) Zf 92 is a proof net with conclusions r for MLL, then there is

a sequent calculus derivation 9 of T such that 9%‘=(B)-.

(c) If 9 reduces to 9’, then 9- reduces to ($2’)).

(d) If 9- reduces to 9’ then there is a 9’such that 9 reduces to 23’ and %?‘=(9’)-.

A similar result can be stated for direct logic ([7,11,31]).

Given an MLL proof structure A T A with distinguished conclusions AI, A, we
11 3 n

want to associate to it a basic synchronous rc-calculus term n
!A,%!

whose free

names will be in bijective correspondence with the conclusions. The key point of this

translation is that communication of rt terms may only occur in correspondence with

a cut link through a hidden channel. The hiding of this channel is explicitly given by

a v binding. This imposes a severe restriction on the behaviour of rc-calculus terms in

the image of our translation: free names will never communicate. This point will

become clear in Proposition 4 below. As we show, the graphical properties of a proof

structure will be faithfully reflected by the nesting of the bindings in the associated

rr-terms. Theorem 7 and its Corollaries below show this translation fully mirrors (in

the rr-calculus) the reduction process of proof structures (and thus proof nets).

Throughout this section, we will only be using the basic synchronous rc-calculus in

Section 2.

4.2. Translation of A4LL proof structures

The theorem below generalizes the entire discussion of Section 3.1 to the level of

structures, emphasizing one of our main points: that the communication in the

rc-calculus, insofar as it relates to linear logic, is really only about the pluggings in

proof structures, not the logic itself.

26 G. Bellin, P.J. Scott

It is convenient to use the notation (vx=y) defined and implemented as follows:

(VX=Y)PxY=def(VZY)(~(Y) II ZWXY)

> (VY) PXY c Y/Xl

= (VU)PXY [u/x, U/Y1

We now define a map n from proof structures to terms of synchronous n-calculus.

This mapping depends upon some fixed “typing assignment” of distinct names

(= variables) to all formula occurrences, which we suppose fixed once and for all.

(1) rc(A A’)=x(u)j(u), represented as

x:A y:A’

where x,y are in the (given) typing assignment.

(2) Let ncA ; I.) =Pxyd and let t be a name not occurring in P; then

=def bxy)t<xy> (pxYx”)

represented as

x:A y:B

t:A@B @

(3) let TC(~~~)=PXY. Then

=def tvx = Y)pxY

represented as

P#C

x:A x:A’

c4) Let n(A f ,-:)=def Pxyx” and let p be a name not occurring in P; then

=def P(xY)(pxYT)

On the z-calculus and linear logic 27

represented as

P1

x:A y:B

p:A??B T

(5) Let n(, ; I.) and nit z A) be the translations of two proof structures. Then

To fix terminology, in a prefix a(xi, x,) or ~(x,,x.) the occurrences of a or

z are called names in channel position (or simply channels) and the occurrences of

x1, . . . , x, are called names in message position (or simply messages). Among names in

channel position, a() is a sender and a() is a receiver.

Remark. The notation in the above translation is intended to signify the following: if

we erase the variable names, we obtain the proof structure; if we erase the formulas,

the notation indicates that the lowermost variables are the free names of the rc term

and the rest of the graph represents the binding structure of the variables in channel

position.

Example. The following is a proof structure W which is not a proof net:

?:A t7.I I
p:A?%?B p:AL@BL z:A??B d:B’ c:A’

cut r:(A?BB)@ B’

It has the following translation into a 7c term:

(vzd)u<zd)(v)(~(~~)(L, II I,,) II I,z)

where I denotes the translation of the appropriate axiom link, e.g., I,, is the term

u(u)c(u), corresponding to the axiom link u:A c : A ‘. (Recall we only consider

atomic axiom links.) We remark that, by Proposition 5 below, this translation will not

depend on the order of the inductive construction of the proof structure.

Example (Deadlock). The deadlocked proof structure A A’ has the translation

vx[x(u)x(a)].

The next proposition gives some important syntactic properties of those rc-terms

which translate linear logic proofs:

28 G. Bellin, P.J. Scott

Proposition 5. Let P=,(9), for some proof structure W. Then the following are true,

modulo u-conversion:

(i) Every name occurs at most once or twice in channel position.

(ii) If x occurs twice in channel position in a process P, then both occurrences are

bound by the same (vx), i.e., P can be written as (vx = y)Pxy, where x is a sender and

y a receiver. In particular, each free name x occurs at most once in a channel position.

(“a communicating channel corresponds to a cut”);

(iii) If ci(xI, x,) occurs in a process P, then x1, . . . , x, are bound, either by some

c(x1, ..., x,), (n= 1) or by (vxl , . . ., xn), (n =2). (“senders send only private names”)

Therefore, tf jab and .?cd occur in a process P, then a, b, c, d are all distinct. (“deferent

channels send difSerent messages”)

(iv) A message in a unary prefix is bound by (or binds) exactly one other unary prejx

(“unary channels correspond to axiom links”);

(v) If x and y occur as messages in a binary prefix, then both x and y occur in P also in

channel position (“binary channels correspond to binary links”).

Since proof structures are inductively generated, it is possible to characterize

exactly those n-terms which arise as the translation of proof structures, by adding

some clauses to Proposition 5. We shall refrain from doing this here.

Proposition 6. If 9 is a proof structure, then n(9), modulo --, does not depend on the

particular order of the inductive construction of 9.

Proof. By induction on the number of links in 6%. E.g., let .% be

and assume the lemma for ~(6%“‘) = P”xyuv. Then in the synchronous rr-calculus we

certainly have

p(uv)(vxy)t(xy)P”xyuv~(vxy)t(xy)p(uv)P”xyuv cl

We now state two theorems which completely characterize the relationship between

reducibility for proof structures (and thus for proof nets) and the n-calculus transla-

tion considered here.

Theorem 7 (Weak soundness). If 93, Y are proof structures for MLL, and if W > Y

then ~(99) > rr(Y).

Proof. This is a straightforward induction on the formation of proof structures. II

On the rr-calculus and linear logic 29

The above result generalizes to proof structures Abramsky’s result for proofs stated

earlier.

Theorem 8 (Local fullness). For any proof structure W, if x(93) > Q, then there is

a proof structure Y such that Q =x(9’) and 92 > 9, as illustrated by the following

diagram:

Proof. Suppose rc(B) > Q. Since 9 is inductively generated, so is rc(W) and we can

argue by induction on the formation of n(9). Then by Proposition 5, part (i), (ii) and

(iii), communication can occur only along a hidden channel

71, ,,..., ..(v4(~<x1,x.,)p+ ,.._, X. II a(yl,yn)Qrl ,..., J

> 71, ,,..., ..(p, I,..., x. II Q, ,...., JxrI~r> . ..>d~.l) (*)

Here Qy,, y. is the scope of the binder a(yl, y,) and rrX, ,.._, ,,. is a prefix binding

x1, . . . , x, whose scope in ~(9) does not extend beyond the subterm indicated in (*).

If n = 1, then by Proposition 5, part (iv) Qy, is a sender 6(y,) and communication

(*) corresponds to a reduction

a:X’ a:X b:X’ reduces to b:X’

cut

i.e., the desired Y is obtained from B by eliminating the cut and an axiom link as

indicated.

If n = 2, then by Proposition 5, part (v) communication (*) corresponds to a reduc-

tion from

:1 :2 :3 :4

x1:x x2: Y y,:xl y, : YL

a:X@ Y a:X’??Y’

cut

to

:1 :3 12 :4

x1:x x1:x1 x2:Y xz:Yl

cut cut

i.e., the desired Y is obtained from W by replacing the times, par and cut links with two

cuts as indicated. 0

30 G. Bellin, P.J. Scott

Example (of Theorem 7). The proof structure 99 above Proposition 5 was translated

by the term

4~)=(vz4~(zd)(vp)(p(ab)(~,, II Id II I,z).

It is easy to verify that z(W) > (vzd)F(zd)z(ab)(Z,, 11 Zbd). Call this latter term Q. But

then Q is the rc-calculus translation Q =X(Y) of the following structure Y (and

moreover 9 > 9):

I
a:A b:F

I

p:A%B d:B’ c:A’

r:(A%‘B)@ B’

Corollary. Zf x(W) > x(Y) and 2 is a proof net, then 9 is a proof net too.

An alternate proof of local fullness for MLL proof structures will be considered in

Section 5.3.

5. Information flow

The reader may have observed that there are some arbitrary choices made in the

above rr-calculus translation: (i) we have chosen axiom buffers to be unidirectional-

atoms become receivers, and negations of atoms senders, (ii) the times and par links

become senders and receivers respectively. This has a very serious consequence: the

translation is not preserved under substitution for propositional variables, since it

depends on the identification of an atomic occurrence in an axiom. For this reason in

the original Abramsky translation, axiom buffers were bidirectional, i.e., Abramsky

translated the axiom k x : A, y : A’ as

rc(x: A y:Al)=x(a)y(a)+y(a)x(a)

However, the use of + creates other problems, which will be discussed later in Section

6.1. Instead, we shall here develop an intrinsic notion of information flow for pure nets,

thus obviating the need for bidirectional buffers.3

Terms of the /2-calculus have a natural direction, namely from the inputs to the

output. This is obvious from the intended functional interpretation, as well as the

dynamics of evaluation. Danos, Regnier [l 1,22,30], Van de Wiele and others have

studied pure nets, a formalism of “proof nets” for untyped /l-calculus: pure nets are

3 The problem of substitution for propositional variables relates to whether the proofs-as-processes view

extends to second-order linear logic. We leave that issue open.

On the n-calculus and linear logic 31

nets built from “formulas” I and 0 (representing input and output, resp.), using links

of the forms

0 I ?I 0
IO ~ ~ TY

!O I
,o $! ?I...?1

cut 0
~ contr

?I

One motivation for this formalism is to think of the v-link as satisfying the

domain “equation” D g ! D - D (where we let D be 0). This is just the familiar domain

equation D ZD * D, under the Girard translation into linear logic [13]. Other

notions of pure nets for untyped lambda calculus arise by imposing different domain

equations [21].

One of the goals of the above work on pure nets is to understand information flow

in the process of B-reduction. But the same questions arise in the typed setting. When

we consider natural deduction derivations in intuitionistic logic under the

Curry-Howard correspondence (i.e., qua simply typed lambda terms), we find the

same flow of information in the process of normalization, and a direction in the

derivations statically considered (the elimination part of the proof-tree becomes the

input part and the introduction part of the proof-tree becomes the output part).

Proof nets could be designed as input-output graphs as well but, because of De

Morgan dualities for classical (linear) connectives and contraposition laws, one

expects that the roles of input and output should be fully interchangeable. In what

follows we make this precise. Following Bellin and Van de Wiele [S], we show that (at

least for MLL) we can always assign input-output directions to proof nets so that one

arbitrarily chosen conclusion is the output and all the others the inputs; when this is

done, we have an interpretation of the proof net as a natural deduction derivation.

Conversely, all natural deduction derivations correspond to a proof net with an

input-output orientation. Each translation of a classical net into intuitionistic natural

deduction obviously yields a linear 2 term, under the Curry-Howard correspondence.

Communication between rc-calculus processes also has a direction. Agents pass

names, i.e., access to information; some agents are senders, others are receivers.

A process of transfer of information, when regarded as a whole, has a certain direction.

Its implementation in the rc-calculus may involve a sequence of intermediate interac-

tions - some of which may simply be identification protocols, where the information

flows in both directions. These may have no direct logical meaning. Nevertheless, it

makes sense to ask that an efficient n-calculus translation of some logical system

should fundamentally reflect the flow of information in the “object calculus”. In

Section 5.5 below we examine in more detail Milner’s direct translation of linear

A-calculus into the 7c-calculus, and briefly compare it to the one arising from the

proofs-as-processes (and pure net) viewpoint.

5.1. Pure structures

It is convenient to prove soundness and local fullness in a more abstract form,

which does not depend on the particulars of the above translation. For this purpose,

32 G. Bellin, P.J. Scott

we introduce the notion of an untyped pure structure, in analogy to the notion of pure
net used in the study of untyped lambda calculi [11,22,30].

Definition. A pure structure 9 is a proof structure built from occurrences of the

symbols I, 0, (for input and output) together with a set of links of the form

M N MI M2

I 0 cut N

where M, Mi and N are occurrences of the symbols I, 0.

Remarks. (1) Notice that in pure structures we do not necessarily require premises of

cuts to be complementary: for example, g represents a deadlocked pure structure.

(2) Pure nets are a special class of pure structures in our sense (with additional

links).

(3) For the purpose of studying the translation of multiplicative proof structures,

the above links suffice. A more general setting (possibly useful for studying larger

classes of z-calculus terms) might allow axiom links of the forms 0 Or . . . 0,

IO r . . . O,, with ~30.

Pure structures, just like ordinary proof structures, can also be defined inductively:

cf. Section 4 above. Also in analogy with ordinary proof structures, we define the

following reductions on pure structures:

(1) Axiom reductions:

0 I 0 reduces to 0

(2) Symmetric reduction:

. . . .
:1 :2 :3 :4

M N M’ N’

I 0

reduces to

. . . .
:1 :3 12 :4

M M’ N N’

Definitions. Let 9 be a pure structure and 9’ be an ordinary proof structure. An

injective map z : B-+9’ is said to preserve a link 9’ of 9 if

9
x xnl 1, ..., H 4X,),G.)
Yl , . . . , Yn z(K), . ..J(Y.) .

On the n-calcu1u.s and linear logic 33

Similarly, an injective 6 : Y+P preserves 9 in Y if

L.z
x xnl 1, . ..1 Wl), ~..>W,)
Y I)...) Yn I-+ d(Y,))...) 6(y,)

An injective link-preserving map z:$??+Y is called a typing of 9’; an injective

link-preserving 6: Y+P is called an orientation of Y.

5.2. Translation qf pure structures into the x-calculus

Let P be the set of pure structures and let Q be a set of rr-calculus terms satisfying

conditions (i)-(v) of Proposition 4.

We define a representation rcpUre of pure structures into x-calculus terms as follows.

For each YEP we define a n-calculus term n lure(Y) by induction on the definition of

9. We will let npure(Z) be a receiver x(), and xpuJO) a sender X(). To verify that

rcpure(Y)~I;j, in particular, that all free names in rcnpure(Y) are pairwise distinct, we make

sure that at each step of the construction “fresh” free names are used. This can be

implemented as follows. We have two lists 8, and lb of names; at the beginning of the

process of translation we have an infinite 8, and empty 8,,. Let concatenation be

denoted by “.”

(i) npure(l O)=a(x)~<x)), where 8,=a. b. rest e,; now set &,:=rest e,, and

Jb :=x . lb respectively;

(ii) if B = 9” u Y”, then xnpure(Y) = xpure(Y’) I(TC~~~~(L?“‘), where xpUre(9’) and

xpure(9”) are previously given.

(iii) if 71 .9
Pure ! 1 “& J,C = P_ then

spume MgN =(vx=Y)p~,y=(vz)p,,~czlx~zlYl i 1
where z = first(ef). Now set /, := rest e, and b, := z . x . y . fb.

(iv) if 7r pure(A?‘..)= Px+ then

and

9

7$m? M N =(vx,Y)~(x,Y)Px,, I I 0

where a = first(e,). Now set 8, := rest(l,) and eb :=x . y . lb.

34 G. Bellin, P.J. Scott

Remark. There is also a dual translation rr’ pure which interchanges the roles of sender

and receiver, i.e., the interpretation of I and 0.

Analogously to the previous Theorem 6 (Soundness), one obtains for pure struc-

tures the following theorem.

Theorem 9 (Soundness). If 8,B’ are pure structures for MLL such that 9’ > P”, then

unpure > me and also &A~) > ~&W).

We now prove local fullness for pure structures.

Theorem 10 (Local fullness). For any pure structure 9, if n,,,,(9) > Q, then there is

a pure structure 9’ such that Q = rcPure(P’) and B > 9’, as illustrated by the following

diagram:

Proof. The proof is the same as that given in Section 4.2., with “pure structure” in

place of “proof structures”. 0

5.3. Deadlock-free structures

The next useful result shows that the two rc-calculus translations of pure structures

and ordinary proof structures (respectively) are the same, modulo an orientation:

Proposition. Let Y be a proof structurefor MLL with atomic axioms only. Let ~3’ be the

pure structure with the same form as Y but with all formula occurrences replaced by I’s

and O’s as follows: atoms map to I, negations of atoms map to 0. Then there is a unique

orientation 6 : Y-9 which maps atoms to I, negations of atoms to 0, satisfying

S(X)S(X’)=Z 0, 6(X @ Y)=O, s(x;lgY)=r. (90)

and which makes the following diagram commute:

The proof is immediate.

On the n-calculus and linear logic 35

Proposition. Let 9’ be a proof structure for MLL with atomic axioms only and let 6 be

an orientation satisfying ($0).

(i) Zf 9’ > 9”, then S(Y) > 6(Y’).

(ii) If S(Y) > 9’, then we can Jind a 9” such that Y > 9” and P’=S(Y’).

Proof. A reducible cut link p or A T?B A’ @ B’ in Y is mapped to a cut link of

the form ZO, which is reducible. Conversely, a reducible cut link m in 8(Y) can only

be the image of a reducible cut p or A %B A’ @ B’ in 9. 0

We now give an alternate proof of Local Fullness.

Theorem 11 (Local fullness). For any MLL proof structure 9, if ~(9) > Q as n-

calculus terms, then there is a proof structure Y’ such that Q=n(Y’) and Y > Y’, as

illustrated by the following diagram:

Proof. Consider the following diagram:

By the local fullness of pure structures, there is a pure structure 9’ filling-in the

bottom cell of the diagram. We thus must find a proof structure Y’ and an orientation

6 with the above properties. The previous two Propositions complete the proof. 0

Definitions. (i) A pure structure g is called deadlock-free if no links of the form II,

00 or IO occur in 9’.

(ii) A reduction sequence 9$ > PI > ... > 9, is deadlock-free if every I is dead-

lock free.

(iii) An orientation 6 : Y+P is computationally consistent if every reduction se-

quence starting from Y is mapped by 6 to a deadlock-free reduction sequence.

What are the general structures that are guaranteed to be deadlock-free?

We recall (see Section 4.1) that a proof structure satisfying the acyclicity condition

(but not necessarily connectedness) is a proof net for Direct Logic DL namely,

multiplicative linear logic MLL with the structural rule of Mix [4,6,10,16].

36

Theorem 12 (Deadlock-free nets). Let 9 be a proof netfor MLL or direct logic and let

6 be an orientation of Y satisfying ($3). Then 6 is computationally consistent.

Proof. The reader should check that under the assignment (@) to an axiom reduction

of proof nets (Section 4.1) there corresponds an axiom reduction of pure structures

(Section 5.1) and to a symmetric reduction of proof nets there corresponds a symmet-

ric reduction of pure structures where M is the dual of M’ and N is the dual of N’. It

remains to show that the orientation a cannot be obtained as a result of the

cut-elimination process, i.e., that the configuration E cannot be obtained as

a result of the cut-elimination process for proof-nets. This follows from the well-

known fact that cut-elimination preserves acyclicity of the D-R graphs. To check it,

suppose that a proof-structure 5%’ comes from 92 by a symmetric reduction and that

for some switching s, ~(92’) contains a cycle. Various cases occur depending on

whether or not the cycle passes through one or more of the “new” cut links in 92’; in

each case one may choose a switching for the indicated par links which yields a cycle

in 92, contrary to the hypothesis. For instance, if the cycle passes through both “new”

cutlinks,thenithaseithertheform(a)...XX’...YY’...ortheform(b)...X’X...

yyl.... In both cases there is a cycle in s(B) for any choice of the switch for the new

par link, etc. 0

Corollary. Let sPI,Y2 be proof nets for direct logic, let 9 result from YI and Y,

by adding a cut link between them. If S1 ,6, are orientations on YI,Y2, respec-

tively, satisfying (#), then the induced orientation 6 =dl uSz on Y is computationally

consistent.

Remark. The converse statement, that every computationally consistent pure struc-

ture is typable in direct or linear logic, is false. Indeed there are incorrect proof-

structures that reduce to a proof-net; for instance

AL A A Al AL A AL A AL A AL A - -
ABA A’??A’ reduces to cut cut

cut

Therefore the following pure structure is computationally consistent

- ~ ~ ~ - -
IOOIIO IOIOIO - - --

0 I reduces to cut cut

cut

So this pure structure, when typed, does not become a proof-net for either linear or

direct logic. Therefore our notion of computational consistency, which arises nat-

urally from the consideration of cut-elimination as logical computation and from the

notion of deadlock for a z-calculus term, is not sufficient to characterize proof-nets for

direct logic.

On the n-calculus and linear logic 37

Intuitively, the acyclicity condition for D-R-graphs (which characterizes proof-nets

in direct logic) seems to express absence of deadlock in a logical computation; clearly,

a stronger notion of deadlock than ours is needed to characterize correctness for such

nets. We shall not pursue the matter further here (cf. recent work of Asperti [S]).

Another example of computationally consistent orientation will be considered in

Section 5.4 below.

5.4. Orienting proof nets and linear A-terms

The present section is based on joint work by Bellin and Van de Wiele ([8]).

The system IMLL of intuitionistic multiplicative linear logic is based on a language

with the connectives --o and 0; there is a symbol forfalsity (we use I as in classical

linear logic) but no property of falsity is assumed for it here. Linear negation is defined

as A’ =dfAd 1. The sequent calculus rules and the associated term assignment (of

“linear” lambda terms) are familiar [1,203. For example, in addition to A-abstraction

and substitution, the following rules for @ are assumed:

0 L:
;:r,x:A,y:Btt:C

y:r,z:A@BFlet z be x@y in t:C

Finally, the related system of natural deduction for IMLL is also familiar and

unproblematic.

For simplicity, we consider only proof nets 9’ for MLL with the property that every

axiom link contains an atomicformula and its linear negation. Given such a proof net 9,

consider orientations 6 : Y-+(0, Z} (which can also be written as 6: LY’+P) satisfying

the following restrictions:

axiom: 0 z cut: _ z 0

tensor: (1) 7 (2) 7 (3) 7

par: (4) 7 (5) 7 (6) 7

As usual [l-1], axiom and cut links are assumed symmetric in I and 0.

Theorem 13 (Bellin, Van de Wiele). The following hold:

(a) Zf Y is a proof net with a chosen conclusion A, and s is a D-R switchingfor Y, then

s and A determine an orientation cY~,~: Y-+{Z, 0} satisfying (l)-(6). Moreover, if the

chosen conclusion is assigned 0 and all the other conclusions are assigned 1.

(b) There exists a map (.)‘from IMLL sequent derivations to MLL proof nefs with

orientations, satisjing:

38 G. Bellin, P.J. Scott

(b,) Let 9 be a derivation of r t- A in the for then ($3)’ is

a proof net with an orientation 01; conclusion Ts- A* of

Y is equivalent l-4 A in classical MLL.

(b2) 9 be a proof net conclusions for Y is

computationally consistent, then there exists T’I- A’ derivation

the sequent calculus IMLL such that (9)‘=Y.

Zf Y is a proof-net with cut and s’ is a partial switching undefined above all

then there exists such that the

(b4) If 9 reduces 9’, then

(b,) If S)=gi and then there is a 9’ such that 9 reduces

and Y‘=(9’)i.

the linear A-term assignment IMLL sequents, one from

following corollary.

14. M be a linear A-term as above. Then M corresponds net with

orientation 6: Y’+{I, 01. net with conclusion C, then

type

Thus, an oriented net classical MLL

type is assigned and whose arguments are assigned

13. Y be a proof with conclusions Ci, C,,

s be a switching Y together with Ci. We define an

orientation 6 : Y+{Z, 0) as follows.

l Let Ci t-+

encountered (O-paths);

l when, proceeding upwards, we reach an axiom P Q and assign 0, say, to P, then we

continue by letting Q H I and proceed downwards from Q;

l proceeding downwards - from a premise to the conclusion of a times link and from

the selected premise to the conclusion of a par link -we always assign I for formulas

(I-paths); however,

l in the case of a times link A’ A1

On the n-calculus and linear logic 39

connected, the assignment is total. Thus we have an orientation 6 : Y-+(1, 0} such

that if 6(Ci)=O, then 6(Cj)=Z, for all j#i.

Remark. It can also be proved that any I-O assignment satisfying conditions (l)-(6)

above, when applied to any proof net yields CiH 0 for some conclusion of the

proof-net in question. (In particular, this holds when applied to a subnet of an

oriented proof net.) Indeed, given 6 : Y-t{Z, 0) and a conclusion Cj with S(Cj)= I, we

proceed as follows:

proceeding upwards, follow the unique I-path up to an axiom;

proceeding downwards from an axiom, follow the unique O-path until either (i)

a conclusion Ci is reached with S(Ci) = 0, or (ii) a premise A, of a times link such

that 6(A,)=O but for the conclusion we have S(A, @ A,)= I;

since in case (ii) above we must have 6(A 1 _ i) = I, we continue upwards from A i _ i,

and so on.

Since the D-R graph is acyclic, case (ii) can occur only a finite number of times; thus

eventually we reach a conclusion Ci of Y such that S(Ci)= 0, as claimed (end of

remark).

Proof of Theorem 13 (continued). (b,)-(b,) (the rest is straightforward) Girard’s

sequentialization theorem (see Section 4.1) provides a map (.)- from classical MLL

sequent proofs (thus from IMLL proofs) to proof nets (cf. also [20]) which determines

a bijection between the inferences of a derivation 9 and the links of Y’=(g)-. The

active formulas and the principal formula of an inference in $3 correspond to the

premises and the conclusion, respectively, of a link in Y. Orientations exist, by (a).

This provides the map (.)’ in (b).

Case 1: Cut free proof nets. We consider first the translation of cut-free proof nets

(which are trivially computationally consistent). Given an orientation 6 : Y+{Z, 0},

by Girard’s theorem let 9 be a classical sequent derivation such that Y=(9)-. We

simultaneously define the intuitionistic derivation 9’ and for each formula A in 93’,

the translation A’. We write A0 if 6(A) = 0 and A, if 6(A) = I; we write Ai for the

translation of A when 6(A) = 0, etc.

l For P atomic, we let Pi = P = (Pi)’ and Pj = P’ = (P&)6. Thus

kP:,P, F+ PEP kPpo’,P, H PlFPl

l Given A& Bz, let (A @ B),f, = AA @ Bi; thus

tr,,Ao t- d,,Bo r;l-A; A;FB;

r,, AI I- (A 0 B)o r;,A;tA;@B;

l Given Ai, B,6, let (A 0 B),6=A& B,d; thus

40 G. Bellin, P.J. Scott

l Conversely, given A,d and Bi, let (A 0 B),d = B6 0 - A,d and proceed symmetrically to

the previous case.

l Given A,d, Bg, let (A VB)i=Af- Bi; thus

E Tr>A,&J r;, A,6 t B;

Er,,(AV% H r,“M,d-B;

l Conversely, given Ai and B,d, let (A ?3B)i = B,d -A: and proceed symmetrically to

the previous case.

l Finally, given A;, B,d, let (A TB): = A,d @ Bf; thus

ä T~,AI,BI,C~ I-;, A;, B,d F C:

E r,, (A TB),, Co H l-;,A;@B;Kj,

Case 2: proof nets with Cut. In the case of a proof-net 9 with Cut links, by the

sequentialization theorem we obtain a sequent derivation 9 containing subderiva-

tions

and we need to show that A,b=(A’)g or Ai=(A This is not true in general, if we

take arbitrary switchings on the par links occurring above A and A’ in 9’. Let 9” be

the subnet of 9 given by (9’)) and similarly, let &?“=(a”)-. Consider the pure

structures 8(.92’) =9” and s(B?“) =P”; in 9’ and 9” consider the subtrees correspond-

ing to the hereditary subformulas of A and A’: what we need is that such subtrees be

dual, e.g.,

10I00I01

I 0 0 I

0 I

cut

Using the cut-elimination theorem we show that this requirement can be met, by

induction on the length of the cut-elimination procedure.

l If the proof net .%?I reduces to W2 by an axiom reduction

P PL P reduces to P

and 62:WZ+{I,0} is computationally consistent, then it is immediate to define

a computationally consistent d1 : WI +{I, 0}, as no new par links are to be con-

sidered.

On the n-calculus and linear logic 41

l Suppose %!r reduces to ~8~ by a symmetric reduction

. . . .

:1 :2 :3 :4

A B AL BL
-Y

A@B A’%‘B’

reduces to

. . .
:1 :3 :2 14

A A’ B B’

and suppose we have a computationally consistent orientation d2 : 92,+{Z, 0} so

that A”=(A’)’ and B’=(B’)‘: we need to choose a switching for the new par link

.Y so as to extend d2 to a computationally consistent 6r : 3TI+{1, O}. By Girard’s

sequentialization theorem the above reduction step corresponds to the reduction

from 9r to g2, say, by the steps from

to

Notice that .!2”’ =(9”‘)) is a subnet of .9JT2 =(g2)-, and that by part (a) at most one

of A’, B’ can be assigned value 0 by fi2.

l case (i) d2(A’)=0: let the switch for the link 9 be Left;

l case (ii) d2(B’)=0: let the switch for the link 9 be Right;

l case (iii) c~~(A’)=Z=~~(B’): choose the switch for 9 arbitrarily.

In case (ii) we obtain 6r extending d2 with

. . . .
:1 :2 :3 :4

01 IO

I 0

which reduces to

. . . .
:1 :3 12 :4

01 IO

42 G. Bellin, P.J. Scott

Letting A = 0, C, we obtain a translation thus:

Indeed using the induction hypothesis we obtain

@‘=@=(B~)$+P);l and (A1),6’=(A1)~‘=A$=A~

hence Ai -B;‘=(AL)$o(BL);’ and the indicated Cut is correct.

Case (i) is symmetric.

In case (iii) we obtain d1 extending S2 with
. . . .
:1 12 :3 :4

00 II

I 0

which reduces to
. . . .
:1 :3 :2 :4

01 OI

Letting /1 =E, D, we obtain a translation thus:

indeed, using the induction hypothesis we obtain

A;=A$=(A1),62=(A~);1 and B$=B$=(B’)f’=(B’)f’

hence A: @ B$ =(A’):’ @I (B’),6’.

Finally it is not difficult to show that all translations are classically equivalent: we

argue by induction on the length of the sequent calculus derivation and use the

provable classical equivalence of A 0 B with (A-B’)’ and (B-A’)‘, etc. 0

Remarks. (1) For the purposes of the Corollary, we could argue directly and translate

each proof net for MLL with a computationally consistent orientation 6 : Y+{Z, 0}

into a natural deduction derivation in IMLL. This requires developing properties of

the subnets of a proof net. Instead we prefer to use Girard’s sequentialization theorem.

(2) As pointed out to us by Hyland, the procedure for constructing orientations in

(a) can be formulated as a finite game, where the opponent begins and chooses D-R

switches and O-paths, while the player replies by choosing Z-paths. This appears

related to recent work of Hyland and Ong on game-theoretic semantics for linear

logic.

On the n-calculus and linear logic 43

(3) The procedure to construct orientations in (a) can be extended to the whole

system of linear logic, but the translation (.)” in (br)-(b3) canl~ot be extended in

general. We omit the counterexamples; however the problem is contraction (either

explicitly in the exponentials or implicitly in the side doors of additive boxes).

A reasonable theory of computationally consistent orientations for additives has been

developed, but we omit it here for reasons of space.

Example. The proof net

with the choice of A @ B as output receives the orientation

I--- l
OOIOIOII ~ - ___ __

0 I I I

These data represent the natural deduction derivation

DO

C-B
D--c CDl_-E

C
R

-E

A
CA’ - Ql

A@B @E
A@B

The following gives another orientation of the same net, with the choice of D’ %‘A’ as

output:

1-j
IOIOIOIO ~ __ __ __

I I I 0

These data represent the natural deduction derivation

C-B
D--c PI_,

C

B-A’ B
-E

AL
+E

and so on.

44 G. Bellin, P.J. Scott

Define a map y on the hereditary premises of the cut formulas of 9 as follows. For

every cut link 9 : X XL, let

0 XHXl

. if?!$and??$ are hereditary premises of X,X’, respectively, and YH Y’, then

Yi- Y: and YZ- Y,‘.

Lemma. lf Y is a proof net for direct logic or multiplicative linear logic such that only

atomic formulas occur in axiom links, any orientation 6:Y-+P is computationally

consistent if and only if for every hereditary premise of a cut link in 9, the map

q1=&yo6-’ dualizes the orientation (i.e., q(l)=0 and cp(O)=Z).

Proof (sketch). Because of the assumption that only atomic formulas occur in axiom

links, the above definition is total on the set of the hereditary premises of all cut links.

Since Y is a proof net, a configuration X XL will never occur as a result of

cut-elimination from 9’. Given any orientation 6:P+9’, together with its inverse

z : 9’-+9, we prove by induction on the length of a reduction sequence that 6 0 cp 0 T

inverts I and 0 if and only if no pure structure in the reduction sequence contains an

irreducible cut. 17

Any Danos-Regnier switching, for example, induces such an orientation, by the

work in Section 5.4. We obtain a translation of proof nets into synchronous rc-calculus
%n..

by considering the composite Wb’ 9+ 71 pure(P). We could also use the

71 ,‘,,e translation. In all cases, soundness and local fullness hold, according to Section

5.2.

5.5. Milner’s linear A-terms

The following is Milner’s direct translation [25] of the linear /2-calculus into the

7c-calculus:

[AxMlj U =,Jer u(xu) [M] u

[MNJu=~~~(vu)([IM~ v 11 (vx)17(xu)x(w)[N] w) (where x is not free in N).

Ix]1 n =def x<u>

It is interesting to compare Milner’s translation of the linear I-calculus with our

“logical” translations into oriented proof nets: (i) the Abramsky translation n and (ii)

the translation 7~0 6 obtained from Bellin and Van de Wiele’s result.

Lambda abstraction: The following (intuitionist) proof represents lambda abstrac-

tion:

x:/Ii-M:B

I-Ax.M:A-B
- R.

On the n-calculus and linear logic 45

Using one-sided sequents (in classical linear logic) this becomes:

;M

kx:A’,v:B

F ?$‘(M):A’?$‘B
T>

which corresponds to the proof net

with orientation

3 (9)
I 0

<M))xu be Abramsky translation From the for 79,

obtain:

((lx.

Note that is precisely same translation Milner obtains. 6(A’ %‘B)=

hence the rco s(2) the dual of a

Application: The (intuitionist) proof application MN natu-

ral

M&B N’:A

which in sequent calculus becomes

;M BtB

FA-B
-L

cut
AFB F cut

t-B

into classical one-sided sequents A- B A’ TB)

reducing the cut yields following representation application

46 G. Bellin, P.J. Scott

The last proof translates into the following proof net:

iN

.M w:A z:B’

u:A’%‘B A@B’

u:B cut

with orientation

? (N)
is (M) 0 I 1
0 I 0

Let ((M >>u and ((N >w be rc-terms, with free names u (resp. w), translating the above

proofs by the Abramsky translation. We have

=vowz(<M>u II fi(wz)(W>w II u@)~@))).

We note that Milner’s term for MN is essentially an “optimized” version of our

term: the logic gives an additional axiom buffer I,, whereas Milner’s translation gives

a direct implementation. We may think of this axiom buffer as a “dangling wire”,

which a more efficient, direct implementation would avoid.

On the other hand, in the translation rro6(9), since we have 6(A @ B’)=I, the

agent corresponding to A @ B’ becomes a receiver, rather than a sender.

Variables: The variable x is interpreted as an axiom buffer, viz. u : A x:A’. So

we have:

We see that the Milner translation is more direct: instead of sending information from

x received through channel u, Milner directly sends u!

So how do we explain that both Milner and Abramsky translate linear 1 terms

using the dual of the rr 0 6 translation and turn an O-formula into a receiuer and an

Z-formula into a sender?

According to the basic philosophy of the rc-calculus, rc-terms consist of agents in an

interacting environment; thus A-calculus computations are interpreted into the rc-

calculus as interactions between certain agents and their environment. An environ-

ment in which a term Ax. M can interact is one where an input can be received for

x and a new environment is created for M with such an input. An environment

u making the application MN possible can be thought as an agent sending information

to M; in particular, such information includes the name x by which the main input

channel of M is identified henceforth, if such an input exists. The name x is also given

On the n-calculus and linear logic 41

to an input channel which controls the new environment of the term N; since the

names u and x are made private (i.e., are bound variables), the information flow is

tightly controlled in the new process.

6. The additives

6.1. Problems with the additives

To handle the additive connectives of linear logic, we consider the full synchronous

rr-calculus. Unfortunately, the additives illustrate the divergence of pure logic from the

concurrency world. We shall begin by illustrating the problems.

6.1.1. Problems with the axioms

Recall, in the last section, we mentioned that the original Abramsky translation

[2,3] considers the axioms as bidirectional buffers. That is, one translates4

7c(A AL)=x(u)y(u)+y(u)x(u)

Consider the proof net

y:A’ y:A

x:A cut z:A’

Assuming axioms are bidirectional buffers, we obtain the following x-term:

vy[x(u)ju + y(u)Xu I/ y(u)zu + z(u)ju]

Allowing distributivity (of 11 with respect to +) in the full synchronous rc-calculus

causes troubles: using distributivity, we may multiply out the expressions (like poly-

nomials). The two cross-terms x(u)& /I z(u)ju and y(u)% will be deadlocked.

There are at least three obvious choices of what to do.

(1) Use unidirectional buffers, as in the last section, which must then be shown to be

coherent with respect to the rest of the translation of the additives.

(2) Ban distributivity at the level of translation of axioms.

(3) Garbage collect deadlocked terms.

Although it seems fairly common in the concurrency world to consider garbage

collection as a reasonable solution in such problems [27], the logical status of

having deadlocked terms with garbage collection is somewhat unclear. It is certainly

contrary to the spirit of translating logical deduction in a sound and faithful

way.

4 As will become clear below, + is related to the translation of boxes. This seems to fit with the remark of

Girard [I 3, 2.4, p. 453 “Technically speaking ___ axioms are boxes”.

48 G. Bellin, P.J. Scott

6.1.2. Problems with additive reduction

We shall now discuss some of the thorny problems with additive reductions. The

reader unfamiliar with proof boxes might find it helpful to first read Section 6.2 (proof

structures with boxes) below, or to use it as a reference for what follows.

To analyze the representation of the additive connectives [13] in the synchronous

rc-calculus, consider the sequent calculus introduction rule for &

where r is a multiset of formula occurrences (often called a context).

Recall the behaviour of the cut-elimination process:

Symmetric reduction:

reduces to

Commutative reduction:

FC,l-,A FC,l-,B
t-C,r,A&B

&

kD,A,A&B
“‘W

reduces to

tC,r,A . . .
9

F c,r, B . . .

tD,A,A kD,A,B
99

tD,A,A&B
&

where 9 is a cut rule (cf. the Cut algebra in Section 3.2).

On the rc-calculus and linear loqic 49

In sequent calculus the introduction rule for & is contextual in the sense that the

contexts in the premises and conclusion must be the same multiset r; for the inference

to be correct, a test for the identity of the contexts is required.

However, proof-theory does not specify when such a test must be performed: by

permuting the & rule with the rules below it (as in commutative reductions) the test

could be delayed and performed on a larger context.

As pointed out by Girard [16] and Abramsky [l], the meaning of the connective

& (with) seems to involve notions of choice: A&B asserts the availability of two

courses of action, the choice being an “external” one, i.e. not determined by the subject

who makes the assertion, hence cannot be inferred from the given deductive context.

On the other hand, the dual connective 0 (plus) asserts an alternative “internal”

choice, which is determined by the speaker.

The key dynamical point is that, with respect to symmetric reductions, the choice

between the two subderivations $BO and LB1 leading to F r, A & B is determined

during the process of cut-elimination by the information contained in the derivation

gz of E A’ @ B’, d. If a formula Ci in E Ci, . . . , C,, A &B becomes itself a cut

formula, then the interaction expressed by the elimination of such a cut is j?ozen

unless and until interaction through A&B has happened. Additive commutative

reductions are therefore necessary if we want to either (i) change the order of

communication, or (ii) to make interaction through Ci possible, if interaction through

A & B never happens.

In the theory of proof-nets, the issue of finding an optimal representation for

additives is still under active research. There are at least three candidates: (i) additive

boxes, (ii) additive contraction links, and (iii) slices, of which (i) and (iii) find analogues

in the n-calculus translations considered below.

Proof boxes (see Section 6.2 below) were introduced by Girard [13] to corres-

pond to the contextually-dependent rules of sequent calculus. In particular,

the requirement “testing the identity of contexts” of the &-introduction rule

is expressed by “putting in a box” the proof-nets corresponding to the derivations

of the premises. As in sequent calculus, the choice of the context is not unique:

additive boxes can be expanded (cf. the Additive Commutative Reductions in

Section 6.1 below). This representation suggests the idea of breaking the &-rule

into three processes: two yielding the premises of the inference and a third one

starting with the “non-logical axiom” t r, A & B. This seems inappropri-

ate: we may insist that a unique flow of information runs through the three

processes and therefore search for a representation of proofs without the additive

box.

Additive contraction links together with a binary &-link

A B Cl Cl C, C,
A&B ~ ‘.. Cl C”

implement the idea of a unique flow of information. These links seem implicit in the

&-rule of sequent calculus; but to obtain an adequate representation we must also

50 G. Bellin. P.J. Scott

include information corresponding to testing for the identity of contexts, i.e., that

there are subnets 9, with conclusions A, r and 9; with conclusions B, r.

Slices were introduced in the appendix of Girard’s original paper [13]; the intuition

seems to be that at each &-rule we really have two independent subarguments, one

including a step A, the other a step &; Here additive contractions disappear but

an external test then verifies that the subarguments coincide from certain points of the

context; i.e., from those points different slices must be identified and only the set of all

slices with all these identifications has a correct logical meaning.

The different representations have different dynamical behaviours. The first two

representations, in presence of the additive commutative reductions, do not enjoy the

Church-Rosser property; for a simple example, consider the possible ways of eliminat-

ing the cut in the proof nets corresponding to

In the representation through slices, additive commutative reductions modify only the

places where the external test is performed, not the slices themselves. In fact, slices

were introduced by Girard [13] as an invariant in the cut-elimination process.

However, if the test of correctness has to be performed during cut-elimination, the

reduction steps in different slices must be correlated. Attempts to consider a math-

ematical theory of slices independently of the boxes of which they are slices have so far

produced a rather complicated syntax.

How does our z-calculus translation relate to the additives? The translation of the

& rule given in Section 3.2 corresponds closely to the translation of the corresponding

proof net with additive box: indeed communication through the channel 5 (corres-

ponding to the principal door of the box) yields a communication through one of the

channels u or v, i.e. a choice of one of the summands P;, or Q;;,. The problem is that in

the synchronous n-calculus it may also be possible to commute some of the prefixes

and to obtain a communication through some channel in G;, which yields a completely

arbitrary choice of one of the summands (cf. Section 2.2). Essentially for this reason,

local fullness fails for the translation of Section 3.2.5

To recover local fullness, we reintroduce some restrictions from the asynchronous

z calculus [27], namely the use of guarding prefixes, as in Section 2.2. Since guarding

prefixes prohibit rewriting in the guarded context, only certain logical reduction

strategies can be represented, see Theorem 14 below.

s Categorically speaking, the cut algebra for the additives (symmetric reductions) expresses the fact that

& must be a weak product; in most models & is actually a product. This is completely at odds with the
behaviour of +.

On the TT-calculus and linear logic 51

From the logical viewpoint, it would be desirable if the z-calculus could faithfully

represent the categorical notion of weak product (i.e., the additive connective &, with

its symmetric reductions). This would require a notion of congruence which permits

rewriting under the + as well as in a guarded context, but the theory of synchronous

rc-calculus has not yet decided this issue.

Additive commutative reductions can be naturally represented in the translation of

Section 2.2, if distributivity of ((with respect to + is permitted. This is clearly

incompatible with guarding. Therefore no evaluation strategy involving additive

commutative reduction can be fully represented.

To fully represent every reduction strategy we are led to avoid the use of + in

Abramsky’s translation, replacing it with 11, as first suggested in [24]. Once this idea is

fully developed, it turns out to provide a translation of Girtard’s theory of slices, as

shown in Theorem 18 below.

6.2. Proof structures with boxes

We consider proof structures for MLL extended with

l Nonlogical axioms i.e., links X, Xi, X,

For multiplicative and additive linear logic MALL (without constants) we use the

additive links

l Plus links

and the additive boxes

a & Boxes

A&B C, . . . C,

For the full propositional system (without constants) we also add links for the

exponential operator ? and the !-boxes as follows:

l Weakening Axiom ?A

In order to verify the correctness of proof nets weakening axioms are given with an

attachment to some other formula occurrence (we represent it by ?A - C).

l Dereliction Link 4

l Contraction Link y

l ! Boxes

L_ !A ?C1 . . . ?C, _.I

We give a precise definition of proof boxes.

52 G. Bellin, P.J. Scott

Definition. A proof box B(W1, 92,,, RI’) is a relation where B,,B,, are pairwise

disjoint proof structures and d is a non-logical axiom.

Any conclusion of a proof structure pi is called a premise of the box; occurrences in

the non-logical axiom d are called the conclusions of the box B. The premises and the

conclusions of each box will be in some correspondence with each other (to be

specified case by case); in all cases, a box B(W1, 4e,, X, X1, X,) has the property

that for each id k the conclusions of Bi are exactly Y, Xi, XA, where Y is an

immediate (proper) subformula of X and where Xl and Xj, j < n, are occurrences of the

same formula. The occurrence X is then called the principal door and Xi, X, the

auxiliary doors of the box.

l In a !-box B(W1, d), the axiom d must have the form !A,?T; the principal door is

the indicated occurrence of !A; the conclusions of W1 must be exactly A, ?r. (Here if

r=cr, . ..) C,, then ?T=?Ci, ?C,.)

l In a &-box B(9&, .9&, a?‘), the axiom d must have the form A & B, r; the principal

door is the indicated occurrence of A & B, the conclusions of W1 are exactly A, r

and the conclusions of 9& are exactly B, r.

Graphically:

?T,!A r,A&B

In this graphical representation it is intuitively clear what it means for a formula,

a substructure or a box to be inside or outside a given box.

We can define proof structures with boxes for full propositional Linear Logic

inductively as follows. Let Ink be a set of correct propositional links (logical axioms,

weakening axioms with attachments, times, par, plus, dereliction, contraction links).

Then

(1) a logical axiom is a proof structure with boxes;

(2) if W’ and 9” are proof structure with boxes, so is B?‘u.B”

(3) if

w a!” W”

A A’
and

A B
and

A

are proof structures with boxes and

A B A
~ or -

C C

On the n-calculus and linear logic

are links in Ink then

53

W’ .!sf”

9 93” A B A

A A’
and

A-_?B
and ~ and -

C C

and proof structures with boxes;

(4) if Y1 is a proof structure with boxes, whose conclusions are exactly

A,?B 1,?B. and d=!A,?B 1, . . . ,? B, is a nonlogical axiom, then Y, u 532 with the

box B(Y1, d) is a proof structure with boxes;

(5) if 9, and Y2 are proof structures with boxes, whose conclusions are exactly A, I-

and B, I-, respectively, and if ~2 = A & B, I- IS a nonlogical axiom, then Y1 u Y2 u ~2

together with the box B(Y1,Y2,,&) is a proof structure with boxes.

We may also give a direct definition of proof structures Y with boxes analogous to

that in Section 4.1. It is clear that if we remove the set of boxes box from the definition

of Y =(fml, Ink, box), then we obtain a collection (fml, Ink)= (Y1, . . . ,9$) of proof

structures with nonlogical axioms.

Definition. A switch for a contraction link a choice of one of the premises (cf. the par

link). Let Y be a proof structure with multiplicative links, and, in addition, nonlogical

axioms X, X1, . . . , X, and plus, weakening, dereliction, contraction links. Ifs is a switch-

ing for 9, then define the D-R graph as before, with the following additions:

l for each nonlogical axioms X,X,, X,, introduce edges (X,X,),(X,, X,),

(XV l>XA

l for each plus link Ai introduce an edge (A, @ A,, Ai); similarly for dereliction

links;
AoOAl

l for each weakening axiom with attachment, introduce an edge corresponding to the

attachment;

l for each contraction link, introduce an edge between the conclusion and the premise

chosen by the switching (as in a par link).

We say that 9’ is a proof net with nonlogical axioms if for each switching s, the graph

s(Y) is acyclic and connected. Finally, we say that a proof structure with boxes

Y=(fml,Ink, box) is a proof net with boxes if each Yi in (fml,lnk)=(YI, Yk) is

a proof net with nonlogical axioms.

Reductions for proof structures with additive boxes are (in addition to the pre-

viously defined MLL reductions):

Additive symmetric reductions:

54

reduces to

Additive commutative reduction:

reduces to

L 30 21 90 22
A D’ DTA, AD’ DTA,

-

A l- Al&A,

Exponential symmetric reductions:

Weakening /!I

?A’ !A ?C 1,?C.

reduces to

?C 1 . ..?C.

Dereliction I!:

‘?A’ !A ?l-

reduces to

21

A’ A ?r

On the n-calculus und linear logic 55

contraction i!:

91
?A’ ?AL L_J ?I-

!A

reduces to

?A’ !A ?r ?l- !A ?A’

contractions

?r

Exponential commutative reductions:

!A ?I- ?(D’) !D ?A

reduces to

A ?I- ?(D’) !D ?A

!A ?r

6.3. Slicings

An additive slice is a proof structure whose formulas are in the language of MALL

and whose links are logical axioms, cut, times and par links, and in addition

Ai

.&@A,
@ and & & for i=O,l

0 1

56 G. Bellin, P.J. Scott

A slicing YG(W) of a proof structure with boxes is a family (2?i, Zi)ieI where Z?i is

a slice and zi : view is an embedding such that X and r(X) are occurrences of the same

formula, defined by induction on the definition of W as follows:

(1) if 6% is a logical axiom &=X, XL, then Y4pe(~J?)= (&, id);

(2) if 2 is .%?I u.@.~ and sP/(S?r)= (Z!i, ri)ieI, Y/(B2) = (?I;, zJ)jsJ then we set

c!Yt(W)=(9iUZ?~, ZiU lJ)ieI,jsJ;

(3) let 0 be either 0 or 9; if

A B
a=-

AoB’
and Lf’t

then sP8(.%)= (pi, Zi)is, where

9’

A B
_gi=-

AoB

and Zi is z/ extended with the assignment A 0 B H A 0 B; similarly, if ~8 results from B’

by introducing a cut link, or a plus link;

(4) let xZ=AA,&A,,r; suppose W is B(%?1,,9?2,d) and Y~(~%,)=(2?~,rf)~~~,

~pe(~~)=(~~, II))jsJ, where I and J are disjoint; then let L~P/(LZS?))=(S?~,I~)~~,~~,

where

Al
“t?k=-

A2

AI &A2
if kEl, &=-

AI&A,
if kgJ

and where rk is z; (resp z;), extended with the assignment A & BI-+ A & B.

Girard [13, pp. 94-951, gives a slightly different definition of slicings equivalent to

the above in the case of proof-nets.

Within each slice we define symmetric reductions as for multiplicative structures

and, in addition,

Al Ai

A,i@A: Ao&AI

reduces to

On the n-calculus and linear logic

On the other hand, a slice with a link of the form

Ai+ Al-i

A:@A: A,&A,

represents a logical inconsistency and a computational deadlock (we shall call it

an additive deadlock) and must be deleted in the process of normalization (garbage

collection!).

The set of slices occurring in 9’4pe(92) is invariant under commutative reductions

(although the associated embeddings change):

Lemma. If W > 9' by a commutative reduction, then

yf(W)=(si,li)isl and ~~(~‘)= (pi, Il)isl

Let 9 be a proof structure with boxes. If we remove all boxes, we obtain

a set {WI, 92,,} of pairwise disjoint proof structures possibly with nonlogical

axioms. We say that 9 is a proof net with boxes if each C@i is a proof net with

nonlogical axioms.

We now give a version of soundness and local fullness for the representation of

additive proof nets (with boxes) via slicing. This is an extension of the discussion in

Girard [13]; for more details see Bellin [7].

Let 9 be a proof net with boxes and consider its set of slices (Z?i, rj)iel. Each cut

‘4? in W corresponds to a set of cuts %?i in the set of slices (by taking the inverse images

of the r’s). Reducing %? in one step will correspond to simultaneously reducing all the

Vi. However, in the case of additive reductions, some of the pi will be in an additive

deadlock. So when we do the cut-reduction, we put each deadlocked slice into

a garbage collector 9 (this will be regarded as a reduction step for that slice). Thus the

soundness theorem takes the following form:

Theorem 15 (Soundness for slicing). Let 9 be a proof net with boxes. Let 9 > 9’. Then

Yt!(.%‘) > YL(Y)u9, where 3 is the set of slices in an additive deadlock.

Local fullness takes the following form.

Theorem 16 (Local fullness for slicing). Let 9 be a proof net with boxes and

let %7 be a cut therein. If 9t!(B?) > F by a simultaneous reduction of all the cuts pi

in the inverse image of V under the z’s, then there exists a proof net Y such that 92 > Y

by reduction of the cut 92 and F =98(9)u9, where Y is a set of slices in additive

deadlock.

58 G. Brllin, P.J. Scott

6.4. Trmdrrtion of’ MALL proqf’structures

The 7r-translations given in Sections 3 and 4 can be extended to MALL as follows:

n =(vx)z(uu)u.x(P,,-)

and

71 = v(uu)F(uu) . [u(x). Q&,+u(y). Q$]

where P=n(BY), Q’=x(%!~), and Q”=x(&),

This can be represented as:

PT PT

.Y : A
and

.Y : A

z:A@B z:A@B

and

Q' Q"
Y : A M: : l- y : B G : l-

u U

-.A&BC:r, i.

Corresponding to the additive symmetric reductions we have

(vuu)[(\~x)ixP,~I~ [u(x).Q;,i+u(y).Q;l,~~]]

z

(v-u) Cp,., II Q;\il

and (**)

PO =(vz) [(vy)z(u u)vq’ PXs 11 V(U u)z(u u) . [u(x). Q;; + u(y). Q;:?]]

The names u and u in (vx)z(uu)U.u(P,,-) or (vx)z(~u)v.U(P,~) or ~(uu)Z(uu).

[u(x). Qkli + u(y). Q;$] will be called choice numes; these names determine which

subprocess will be retained or discarded in the above reduction. To emphasize their

role, we shall denote choice names by hold@e letters in what follows, and similarly for

the exponentials in the next section.

Now we prove a restricted form of soundness and local fullness of the n-translation

of proof structures for MALL.

Theorem 17. The 7c-translation of’proof’structures in MALL is .so~~nri and locally,fir/l

with respect to the normalization strategy reducing the cuts which lie outside all udditice

boxes.

Proof. Soundness is easy. For the local fullness, we argue by induction on the

formation of n(Y). The only successful communications will have the forms (*) (see

Theorem 8) and (**) above. The case of reduction (*) is as before, for the multiplica-

tives. For the sake of simplicity, we regard the two steps in (**) as a single rewriting

step. Suppose that the PO in (**) is a subterm of P*. By the properties of guarding

asynchronous prefixes no interaction involving a channel in Q:.,; or Q($ may occur in

P*. Hence only interaction with the choice terms u or u can determine the choice of

summand in PO. Therefore terms of the form

(VUU)C(VY)~Y PJJ II CW. Qkl

(additive deadlock) will never result in the reduction process. n

Thus we see that the “communication protocols” of the choice names determine

the behaviour of the relevant processes and guarantee that deadlocked slices are

deleted.

We also consider a z-translation of s/icings of a proof structure for MALL; to this

end, we extend the translation in Section 4.2. Let 9 be a proof structure with additive

boxes and let P=x(B). Moreover, let G be a function defined on the set all the

subterms of the form Q1+Q2 in P which chooses either Q1 or Q2; let P, be the

result of the following operations: (i) erase all guardings (i.e. dots), (ii) replace

each subterm of the form Q1 +Qz in P with o(Q, + Q2), Call such a P, a slice of the

term P. Finally, if C = { gl, . . , oni ’ is the set of all distinct slices of P, then we define the

60 G. Bellin, P.J. Scott

slicing of P to be

ll0E.Z PO

where we assume all the P, have disjoint free variables (if necessary, by renaming).

This definition of the translation corresponds exactly to the definition of slices in

Girard [13] (in the case of proof nets).

Alternatively, we can define the n-translation of the slices of a proof structure

directly. We proceed as in the case of additive proof structures, except that for the

&-links we omit guarding and take:

The two definitions coincide:

Proposition. Let F={2?i}isr be the set of slices in Y/(3?), and let IL= llassPo be the

slicing of the term n(W); then n(F)=lI.

In other words, there is a natural bijection between the different notions of slices,

whether at the level of proof structures or represented as n-terms.

The following proposition is also clear:

Proposition. Let 93 be a proof structure with additive boxes and let P = ~(9); Proposition

5 holds for each slice of P, with the exception of (iv), (v), which fail for choice names only.

The bijection between slices of nets vs slices of n-terms extends to the operational

(normalization) behaviour:

Theorem 18. The rt-translation of slicings in MALL is sound and locally full with

respect to every normalization strategy.

Proof. Since rc(Ye(B)) contains no +, it behaves as a term satisfying Proposition 5,

except perhaps for choice names. These choice names can only interact in reductions

of the form

P,, =(vz) [(vx)z(u u)ux P,.. 11 (vu u)Z(u u) [u(x). Q;$]]

>

(vu 4 C(vx)ux P,n II CW . Q:lill
>

(vx) Cf’x,, II Q&l

On the n-calculus and linear logic

and

61

(***I

additive deadlock

Dually, for the slicing which deletes the left summand. Thus we see that a reduction

in rc(Y”e(&‘)) yields an additive deadlock if and only if so does a reduction in

9/(w). 0

Finally, we can extend the Bellin-Van de Wiele orientations to the case

of proof nets for MALL, as well as for the exponentials, as mentioned in the remarks

after Theorem 13. Alas, not all such orientations are computationally consistent.

The n-translations resulting from such orientations are obtained as in the multiplica-

tive case, but with the additive part as defined at the beginning of this section.

Unfortunately, as mentioned in that remark (lot. cit.), the translation Od which

yields linear lambda terms (cf. Corollary 14) does not directly extend beyond the

multiplicatives.

7. The exponentials

What has been done for the additives can be extended to the exponentials: namely,

we may extend the translations z defined for MALL with the following. (The reader is

referred to the comments in Section 3.3.)

-
n(?A)=z(wdc)w

=(vx)z(wdc)d(x)P,

i 9

n ?A?A

\ ?A

r =(vxY)(z(wdc)E(xY))P,,

I

62 G. Bellin, P.J. Scott

and

I
wO~(lli~~P~"i(wdc)w)

+

= (vwdc)Z(wdc) d(x). Qxli
+

c(z’z”).(v~“‘~““)(Ili4l~lui(wdc)E(uf,~f’) 11 !:,QYis 11 !:*,Qxa,,).

Exponential symmetric reductions:

The reduction from

?A’ !A ?r

where ?T=?C1,?c. to

?C 1 . ..?C”

corresponds to

(vz)(z(~dc)W II !:Q.x~j) >* (Ili<l~l Ui(WdC)W)

using the recursive definition of !:Qxli and two ordinary reduction steps.

The reduction from

?A’ !A ?r

corresponds to

(vz)((vx~)(z(wdc)d(x))P, II !IQxii) >* (vx)(f’x II Q:li)

using the recursive definition of !:Qrli and two ordinary reduction steps.

On the n-calculus and linear logic

The reduction from

63

21
?A' ?A' sl A ?l-

?A’ !A ?r

to

?A' !A ?l- ?l- !A ?A’

contractions

?r

corresponds to

(vz)((vx~)(z(w~c)C(x~))~,, II !:Qxa)

using the recursive definition of !:Q,.; and two ordinary reduction steps.

Thus the above reductions are sound with respect to the reduction strategy that

applies symmetric reductions outside all boxes. Moreover, if rewriting using the

recursive dejinition of !:Qxa can be done without producing deadlocked terms-hence,

without garbage collection, then we can obtain local fullness as before, since the

summands in the right-hand side of that definition are guarded by their prefixes, as in

the additive case. As mentioned earlier, this would seem to depend on how the

rewriting theory of the recursive definition of n-terms such as !:Q\-c is implemented.

The latter awaits further development of the synchronous Tc-calculus. Moreover, for

now, nothing can be said about local fullness of the above translation until details of

such an implementation are given.

Acknowledgements

64 G. Bellin, P.J. Scott

G. Bellin wants to thank Gordon Plotkin and Robin Milner for their kind

invitation and support at the Laboratory for Computer Science, Edinburgh during

1990-92. P.J. Scott would also like to thank LFCS, its director G. Plotkin, and the

Department of Computer Science, University of Edinburgh, for their kind hospitality

during his Sabbatical (1991-92), when this work was carried out.

References

[l] S. Abramsky, Proofs-as-processes, Seminar talk, Dept. of Computer Science, University of Edinburgh,
1992.

[2] S. Abramsky, Computational Interpretations of Linear Logic, Theoret. Comput. Sci. 111 (1993) 3-57.

[3] S. Abramsky and R. Jagadeesan, New Foundations for the Geometry of Interaction, Inform. and

Comput. 111 (1994) 53-120.

[4] S. Abramsky and R. Jagadeesan, Games and full completeness theorem for multiplicative linear logic,

J. Symbolic Logic 59 (1994) 543-574.
[S] A. Asperti, Causal dependencies in multiplicative linear logic with MIX, manuscript.

[6] ‘G. Bellin, Mechanizing proof theory: resource-aware logics and proof-transformations to extract

implicit information, Ph.D. Thesis, Stanford University; Available as: Report CST-80-91, June 1990,

Dept. of Computer Science, Univ. of Edinburgh.

[7] G. Bellin, Proof nets for multiplicative and additive linear logic, Report LFCS-91-161, May 1991,

Dept. of Computer Science, Univ. of Edinburgh.
[S] G. Bellin and J. van de Weile, Proof nets and typed lambda calculus, manuscript.

[9] A. Blass, A game semantics for linear logic, Ann. Pure Appl. Logic 56 (1992) 183-220.

[lo] R. Blute, Linear logic, coherence and dinaturality, Theoret. Comput. Sci. 115 (1993) 3-41.
[l l] V. Danos, La logique linkaire appliquie B I’itude de divers processus de normalisation et principale-

ment du i-calcul, Thise de doctorat, U. Paris VII, April 1990.

[12] V. Danos and L. Regnier, The Structure of Multiplicatives, Arch. Math. Logic 28 (1989) 181-203.

[13] J-Y. Girard, Linear logic, Theoret. Comput. Sci. SO (1987) l-102.

[14] J-Y. Girard, Multiplicatives, Rend. Sem. Marem. (Torino), 1987 (Special Issue: Logic and Computer

Science, New Trends and Applications, Oct. 1986) 1 l-33.

[15] J-Y. Girard, Linear logic and parallelism, manuscript, 1987.
[16] J-Y. Girard, Towards a Geometry of Interaction, in: J.W. Gray and A. Scedrov, ed., Categories in

Computer Science and Logic, Contemp. Math, 92, AMS, 1989, pp. 69%108.
[17] J-Y. Girard, Geometry of Interaction 1: Interpretation of system F, in: R. Ferro, et al., eds., Logic

Cl81

Cl91

PO1
I211

c221

1231

~241
c251

Colloquium Vol. 88 (North-Holland, Amsterdam 1989) 221-260.

J-Y. Girard, Geometry of Interaction 2: Deadlock-free Algorithms, in: P. Martin-LGf, G. Mints, eds.,
COLOG-88, Lecture Notes in Computer Science Vol. 417 (Springer, Berlin, 1990) 76-93.

J-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge Tracts in Theorerical Computer

Science Vol. 7 (Cambridge University Press, Cambridge, 1989).

J-Y. Girard, A. Scedrov and P.J. Scott, Bounded linear logic, Theoret. Comput. Sci. 97 (1) l-66.
G. Gonthier, M. Abadi and J.J. Levy, Linear logic without boxes, in: Proc. of the Seventh Symposium

on Logic in Computer Science (LICS) (IEEE Computer Sot. Press, Silver Spring, MD, 1992).
P. Malacaria and L. Regnier, Some Results on the Interpretation of A-calculus in Operator Algebras,
Logics in Computer Science (LICS), (IEEE Computer Sot. Press, Silver Spring, MD, 1991) 63-72.

D. Miller, The x-calculus as a theory in linear logic: Preliminary results, in: E. Lamma and P. Mello,
eds., Proc. 1992 Workshop on Extensions to Logic Programming, Lecture Notes in Computer Science

Vol. 660 (Springer, Berlin, 1993) 242-265.

R. Milner, Personal notes.
R. Milner, The Synchronous n-Calculus, Unpublished lectures, Dept. of Computer Science, Univer-

sity of Edinburgh, 1992.

WI R. Milner, Turing Award Lecture, 1992.

On the n-calculus and linear logic 65

[27] R. Mimer, The polyadic a-Calculus: a tutorial, in: F.L. Bauer, W. Brauer, and H. Schwichtenberg, reds.,
Logic and Algebra of Specification (Springer, Berlin, 1993).

[28] R. Milner, Action Structures and the n-calculus, in: Proceedings of NA TO Advanced Study Institute,

Proof and Computation (he/d at Marktoberdorf), 1993. (Also available as an LFCS report, Dept. of

Computer Science, University of Edinburgh.)

[29] E. Monteiro, Linear logic as CSP, J. Logic and Computation, to appear.

[30] L. Regnier, Lambda-calcul et reseaux, These de doctorat, University of Paris VII, Mathematiques,

1992.

[31] C. Retore, Rksequx et Stquents Ordon& These de doctorat, University of Paris VII, Mathematiques,

1993.
1321 AS. Troelstra, Lectures on Linear Logic, CSLI Lecture Notes (Vol. 29) Center for the Study of

Language and Information, Stanford University, 1992.

