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Abstract 

Girard, J.-Y., A. Scedrov and P.J. Scott, Bounded linear logic: a modular approach to polynomial- 

time computability, Theoretical Computer Science 97 (1992) l-66. 

Usual typed lambda-calculi yield input/output specifications; in this paper the authors show how 

to extend this paradigm to complexity specifications. This is achieved by means of a restricted 

version of linear logic in which the use of exponential connectives is bounded in advance. This 

bounded linear logic naturally involves polynomials in its syntax and dynamics. It is then proved 

that any functional term of appropriate type actually encodes a polynomial-time algorithm and 

that conversely any polynomial-time function can be obtained in this way. 
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1. Introduction 

In recent years, especially with the development of large-scale computation and 

with the possibility of machines making dramatic decisions, issues such as software 

reliability, maintenance, and verification have become essential in theoretical com- 

puter science. In other words, the study of these topics and of program specijcations 

as a means of facilitating them is now central, independently of traditional tenets 

such as the search for good algorithms. 

There are many forms of specifications. For example, one can think of input/out- 

put specifications, among the most basic being when one is asked to specify that 

an input is an integer. There are also probabilistic specifications, when a certain 

percentage of error is allowed. One can also have complexity specifications about 

space or time needed to execute a program. In all cases the specifications are 

well-defined mathematical properties, which can be expressed in the usual formalism 

for mathematics, even if they are somewhat unusual from the viewpoint of standard 

mathematics. In particular a classical mathematical proof that an algorithm meets 

a given specification will be considered as completely satisfactory, even if the proof 

is not constructive. The situation changes radically, however, if one now insists on 

a standardized, modular, “industrial” approach to the question. 

Since there has been much discussion about the merits of typed vs. untyped 

programming paradigms, and since our paper proposes yet another typed calculus, 

it is appropriate to say at the outset that if one absolutely insists on efficient programs, 

one should use languages that allow maximum flexibility. However, if one is 

interested in reliable programs that can be maintained in a changing systems 

environment, then a language will have to be concerned with specifications. In the 

first case one shall get a hand-crafted or one-off product that may be a marvel or 

might contain awful bugs-and such programs use so many “tricks” that proofs of 

their correctness with respect to a given specification will be rather exceptional. In 
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the second case the programming methods are limited-usually by a rather awkward 

system of basic specifications called types-but the product is guaranteed a certain 

industrial level of “quality control”.’ The two forms of programming will coexist 

forever, and the fact that the industrial approach is-at present-very inefficient is 

not an argument for the superiority of the other “hand-crafted” one. In particular, 

it does not make the slightest difference that the system that we are presenting here 

is so delicate to use that in its present form it has hardly any practical value. Rather, 

our paper shows the possibility of a logical (i.e., standardized, modular, industrial) 

approach to complexity specifications, and this phenomenon is radically new. 

The industrial approach to specifications therefore relies on an integrated compu- 

tational paradigm, where basic specifications are built together with the algorithms. 

At compilation time these basic specifications are checked, then erased to produce 

machine code. This is the description of the typed approach; in this approach we 

can combine instructions only in certain cases. Each program and subprogram is 

assigned a type which describes in shorthand which pluggings it accepts: for instance 

the type A implies B given to a program means that one can see it as a function 

waiting for an input labeled A and which can in turn give an output labeled B. 

Hence the main activity of typed programming is to match types, which can often 

be difficult in the extant systems. 

The activity of manipulating types was recognized a long time ago as analogous 

to proving theorems in intuitionistic logic-this is now technically known as the 

Curry-Howard isomorphism (or the propositions-as-types paradigm)-but the 

origins of this idea date back to old intuitionism in the early 1900s and especially 

to Heyting and Kolmogorov in the 1920s. The situation is actually more involved: 

the idea makes better sense when combined with formalist tradition: logic offers 

not only a paradigm for basic specifications but also a mode of execution, namely 

through cut-elimination or its variants, e.g., natural deduction, all dating back to 

Gentzen’s work in the 1930s. Here we show that this paradigm “computation as 

cut-elimination” is flexible enough to express a notion of jkasible computation. 

There are many typed lambda calculi, among them is system 9 introduced in 1970 

by one of the authors [ 12,201. This system is characterized by an extreme economy 

of means and the possibility of easy definition of many current specifications. 

Although the system is far from being as flexible as we would like it to be, it is fair 

’ The broader distinction between hand-crafted and industrial may be illustrated by the fact that a 

product such as the “daily special ” in a restaurant with traditional cuisine can be very good or very bad, 

with its price bearing no relation to its quality, whereas an industrial product such as fast food is just 

a “safe bet”-neither very good nor very bad-and with a good ratio between price and quality. Moreover, 

any quarrel between these two activities is nonsense as long as one of them does not pretend to invade 

the domain of the other-domains which are distinguished by verbs like to dine versus lo eat. Another 

important difference between one-off and industrial products usually becomes apparent when the product 

breaks down. Just imagine trying to get an antique clock repaired. It is very likely that the entire clock 
will have to be replaced or some of its parts will have to be custom made (at a great cost) because the 
parts or even the materials may be unavailable. On the other hand, if a modern watch breaks down, it 

probably needs just a new module. In other words, a one-off product is an indivisible object, while an 

industrial product is more an idea of an object, realized by exchangeable parts. 
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to say that 9 or its various improvements do not look ridiculous as integrated 

programming paradigms. The expressive power of 9 is immense and precisely for 

that reason, because it accepts too many functions, 9 only yields input/output 

specifications. Here let us be precise: it is true that we can abstractly measure the 

expressive power of typed systems, and that for instance certain restrictions can 

drastically lower the complexity of typed algorithms, but all current restrictions 

cannot be detected from the viewpoint of feasibility. For example, some authors 

insist on the impredicativity of 9 as a defect-as if one were still living in a world 

of lurking paradoxes-but restricting 9 to so-called ramified systems contradicts 

the flexibility of typing without yielding any feasibly detectable lowering of com- 

plexity. Rather, the issue lies already on the propositional level. One must keep in 

mind that even simply typed calculi have complexity measures which are towers of 

exponentials. 

In fact, prior to this paper there has been no example of an integrated typed 

system yielding complexity specifications; the input/output style of specification is 

the only one that has been treated. For instance, we understand that probabilistic 

specification needs a kind of probabilistic logic which is sorely missing. 

Before arriving at our solution, let us try to position it with respect to vaguely 

related works on the theme logic and complexity. There are obvious solutions to 

obtain a feasibly typed system; e.g., take system 9 and a clock: instead of typing 

something as INT implies INT (from integers to integers) we can type it as INT 

implies (ERR+INT), which means that when the time is over, the program (if it 

has not finished computing) returns an error message. The brutal character of this 

answer is plain but the true reason for its stupidity is not completely obvious: in 

our opinion this system guarantees temporal specifications but is no longer able to 

guarantee input/output specifications, which are much more basic! 

A more elaborate system, Cook and Urquhart’s feasible functionals of finite type 

[S, 71, proposes a generalization of polynomial time to finite types. Although this 

system is interesting in its own right, it is not helpful for our purposes because its 

higher type dependencies are not polynomial but hyperexponential. Furthermore, 

it cannot be used to check that a numerical function is polynomial time, since it 

takes as primitive all polynomial-time functions. 

The first connection between proof theory and polynomial-time computability 

was established in the work of Buss [3,2], who introduced first-order systems of 

“bounded arithmetic” with proof-theoretic strength corresponding to polynomial- 

time computation and in which precisely the polynomial-time functions could be 

defined by certain formulas. In this work the logical systems are external to the 

computational paradigm itself, which is given by a Turing machine with a clock (in 

the form of “bounded primitive recursion”). As far as we know, there has been no 

proposal of an integrated paradigm given by the inherent structure of proofs in the 

systems of bounded arithmetic. 

The originally interesting idea of a polynomially graded logic [27] did produce 

a type system with explicit resource bounds, but it stumbled on the impossibility 
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of having a notion of higher type feasible functional without artificial complications, 

which were partly caused by superimposing the external computational paradigm 

of a Turing machine with a clock onto the Curry-Howard paradigm. As was observed 

above, the notion proposed by Cook et al. is not really an answer since the higher 

type dependencies are hyperexponential, i.e., the inner structure of the systems in 

[S, 71 is not polynomial. In [27] the authors actually got closer to a true solution; 

unfortunately it was necessary to introduce indices of polynomial-time machines, 

i.e., to presuppose a polynomial time structure here, too. 

Outside proof theory, it is difficult not to be struck by the work on finite model 

theory [24, 31, 22, 23, 251, which has nothing to do a priori with typing but which 

has the inner coherence that is missing in all the approaches just discussed: in the 

finite model theory approach, polynomials appear for combinatorial reasons, simply 

because DATALOG computations can be bounded by means of binomial 

coefficients. Here it is important to remark that the computational mechanism of 

DATALOG itself (given by its forward chaining style) is not addressed by logical 

characterizations stemming from finite model theory. However, this lack of an 

integrated paradigm is compensated for by nontrivial results of Immerman [24] and 

Vardi [31], who show that polynomial-time functions receive a definition not in 

terms of polynomial time. This is obviously a great logical achievement, even if we 

are not seeking this kind of logical analysis here. What we shall present below has 

very little to do with this approach but the fact is that we will also derive polynomial 

time from something not presupposing polynomial time and that at a certain point 

combinatorial polynomials will play an essential role. In the future a connection 

between these two approaches would be very exciting, but proof theory and model 

theory are often such orthogonal approaches that one should not daydream too much. 

Our aim in this paper is not just to express polynomial time computability as 

provability of formulas in a logical system, but to provide a notion of polynomial 

time computation intrinsically within a logical system, according to the Curry- 

Howard paradigm “computation as cut elimination”. In other words, we propose 

a modular typed computation paradigm as an alternative to the paradigm of a 

Turing machine with a clock. Let us start with the idea of a complexity specification 

(not necessarily polynomial time). The above discussion of previous typed attempts 

makes it plain that taking the actual complexity as a primitive parameter does not 

lead to an integrated typed system. This should not be too surprising; in mathematics 

certain interesting notions never led to conceptualization for want of modularity 

(for instance, there is a noncommutative theory of groups but no theory of noncom- 

mutative groups). We therefore seek a notion more primitive than complexity, i.e., 

something that can produce complexity restrictions but which cannot be reduced 

to complexity. In our approach, this more primitive notion will basically be the 

contraction rule of the Gentzen sequent calculus, to which linear logic [13] gives a 

very special status. It will turn out that controlling contraction is an indirect way 

of controlling time complexity, but for instance no way-direct or indirect-is known 

of controlling space complexity in this manner. (Does this mean that space com- 



6 J.-Y. Girard et al, 

plexity has no logical meaning in the sense above, or does this only indicate that 

our present tools are desperately poor?) 

A first approximation to linear logic is rudimentary linear logic (RLL), i.e., sequent 

calculus without weakening and contraction. One of the most immediate features 

of RLL is its linear time normalization procedure: in fact it is easy to see that the 

number of rules strictly decreases during normalization, i.e., the procedure can be 

carried out in a kind of “shrinking space” which forces linear time. Moreover, and 

this should be emphasized, the situation still holds with full second order. So we 

begin to see a possible restriction of system 5 along feasibility lines. This is a 

fantastic medicine with respect to problems of complexity, except that the patient 

is dead! Without contraction the expressive power of logic is so weak that one can 

hardly program more than programs permuting the components of a pair. 

Fortunately, linear logic is not about the removal of contraction and weakening, 

but about their transformation into logical rules for special connectives, the so-called 

exponentials ! and ?. In fact by allowing the use of exponentials we compensate for 

the drastic fall of expressive power, compensate so much that we get the usual 

intuitionistic systems (this is no surprise since linear logic has been carefully designed 

to obtain roughly the same expressive power). Therefore our only hope is to seek 

an intermediate system between RLL and full linear logic. The first attempt will be 

successful. 

Linear logic is based on the idea of resources, an idea violently negated by the 

contraction rule. The contraction rule states precisely that a resource is potentially 

infinite, which is often a sensible hypothesis, but not always. The symbol ! can be 

used precisely to distinguish those resources for which there are no limitations. 

From a computational point of view !A means that the datum A is stored in the 

memory and may be referenced an unlimited number of times. In some sense, !A 

means “A forever”. In these times of great utopias falling, “forever” is no longer 

a viable expression, and in bounded linear logic (BLL) it is replaced by more realistic 

goals: reuse will be possible, but only a certain number of times limited in advance. 

Instead of !A BLL features bounded-reuse operators !,A, which intuitively mean 

that the datum A is stored in the memory and may be referenced up to x times. 

Now the fundamental point about BLL is that the basic properties involve poly- 

nomials. This is very easy to understand: the worst use of a bounded exclamation 

mark !,A is morally the same as using A and A and.. . and A, x times, when and 

is given the technical meaning of the multiplicative conjunction times (= 0). When 

we thus interpret the rules of exclamation mark we see polynomials occurring in a 

very natural way. In fact this translation can also be applied to proofs; in this case 

we discover that we have a locally polynomial translation from BLL to RLL: !z . . . !>A 

(n times) translates to &A, but !2X. . . !zXA translates to 02~~X,~A, a bound which is 

a polynomial in x. This is why, although the full translation is exponential, we can 

speak of local polynomiality, here xn. The combination of a locally polynomial 

procedure and a linear procedure (normalization in RLL) yields a locally poly- 

nomial-time way of computing. 
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Technically speaking what we have just explained is only a rough justification of 

our main result stated below; this way of computing should not be used because it 

is only polynomial space. Our main result states that if a function is typed in BLL 

from dyadic integers (i.e., integers in dyadic notation) to themselves, then normaliz- 

ation terminates in polynomially many steps in the length of the input (Theorem 

4.4). Furthermore, in this case the size of normalization is also polynomial in the 

length of the input and as a consequence, the function is polynomial time (Theorem 

5.3). Less unexpected, but of course also essential, is the converse theorem which 

says that all polynomial-time functions can be obtained in this way, i.e., can be 

typed in BLL (Theorem 6.1). Although the idea is clear, the main result is technically 

difficult and uses very refined techniques of linear logic; the converse simply avoids 

the trap of RLL, i.e., a system with no expressive power. We have basically justified 

that the input/output ratio (in terms of the number of rules ‘written) is locally 

polynomial. Common sense (and good experience in proof theory) is enough to 

convince one that the execution process itself should be polynomial time. If one is 

not satisfied with this kind of handwaving, then one must go into painful jus- 

tifications, for instance, in this paper we use sophisticated techniques from linear 

logic, variations of proof nets. An example of what might happen is that in the 

presence of quantifiers, n iterated substitutions can produce an exponential 

blow-up. This is why at run-time we erase the types (i.e., formulas) and only keep 

an underlying graph (a kind of proof net), which is enough for input/output 

encoding, and the size of which remains tame. On the other hand, we must 

admit that our way of representing polynomial-time functions in BLL is not 

very flexible and that in its present form BLL is not really practical . . so what 

did we achieve? 

Surely without the slightest doubt we have shown that a purely logical approach 

to complexity is not absurd. The polynomial-time functions arise from a bounded 

exclamation mark and nothing else. In addition, BLL has the capability of directly 

specifying computational complexity on various data types, by using their representa- 

tions as BLL types rather than encoding them as certain lists. (For instance we can 

type primality test of type TALLY INTEGERS implies BOOLE.) In BLL one also 

has all the usual facilities of polymorphism-even if we were a bit awkward here 

in making full use of them. From a strict logical viewpoint, as well as regarding the 

flexibility of the system, the main weakness of BLL is the presence of explicit 

resource parameters. Logic is useful only if it is implicit enough. If one prefers, 

logic is the maintenance of implicit data. At the moment we see no way to avoid 

mentioning the resources and still be able to synthesize them. An alternative way 

might be to forget resources by means of existential quantification over them, but 

unfortunately all our polynomial computations would break down immediately if 

we tried to do this. However, it must be noted that the resources occur in BLL only 

through input/output ratios and not at all as complexity measures: the complexity 

remains hidden and this is the reason why our approach avoids the problems 

encountered by previous ones. 
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2. Linear logic 

We recall Gentzen’s sequent calculus for intuitionistic logic, e.g. from [20]. A 

sequent is a formal expression r t A, where r is a finite list of formulas and A is 

a formula. One can informally interpret Tt A as meaning “hypotheses r intuition- 

istically entail A.” 

Gentzen’s sequent calculus involves three structural rules: 

Exchange 
r, A, B, A t C 

r, B,A,AtC’ 

Weakening 
rtc 

T,AFC’ 

Contraction 
r,A,AkC 

T,AFC ’ 

Although these rules are all problematic from the point of view of management 

of limited resources, Contraction is by far the worst, cf. [ 13, 17,291. The contraction 

rule expresses unlimited capability of duplication; it is also the reason for the 

potential infinity of disjunctions in Herbrand expansions. In this paper we are 

especially interested in the effect of Contraction on cut-elimination: 

fP 
IP :u 

TEA 
rFA 

A,A,A+B 

reduces to 
r,A,AtB 

r, r, A t- B 

r,AtB 

Here, one cut is replaced by two cuts and by instances of Contraction and 

Exchange on the formulas in r. Also notice that this step requires duplication of 

the entire proof of Tt A. The Contraction rule is the reason why termination of 

cut-elimination in intuition&tic propositional logic is not feasible (termination is 

well-known to be hyperexponential, see below). 

2.1. Rudimentary linear logic (RLL) 

Linear logic dispenses with the problematic structural rules Contraction and 

Weakening, see [13]. In the absence of these structural rules, the propositional 

connectives assume a different character. We first discuss one extreme case in this 

vein, a rudimentary propositional system in which Contraction and Weakening are 
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removed altogether. Our intuitive description of the connectives of this rudimentary 

system is based on the propositions-as-types paradigm mentioned in the introduction. 

The system RLL (rudimentary linear logic) has formulae defined inductively from 

atomic formulae (propositional letters) cy, p, . . by two binary propositional con- 

nectives: 

(i) A@ B (A tensor B = conjunction with no sharing of variables), 

(ii) A- B (A linearly implies B = the type of functions looking at 

their argument exactly once) 

instead of stating the Exchange Rule explicitly, it is convenient to formulate sequents 

as formal expressions rk A, where r is a finite multiset of formulas and A is a 

formula. The sequents satisfy the following axioms and rules: 

Axiom At-A 

l-l-A 
cut 

A,A+B 

T,A+B 

Logical OL 
r,A,BtC 

T,AOBtC 
@R ‘+A AkB 

r,AkA@B 

TFA 
-L 

A,BtC 
-+R 

r,AtB 
r,A,A-B+C rkA-B 

A proof in RLL of a sequent rt A is a finite labeled rooted tree in which the 

nodes are labeled by sequents in such a way that the leaves are labeled by instances 

of the Identity Axiom, the root is labeled by rk A, and the label of each node is 

obtained from the label of its immediate precessor(s) by one instance of a rule of 

RLL. In an instance of a Cut, the formula denoted by A is called the cut formula 

occurrence. We often simply refer to “the cut formula” in a Cut, when the context 

is clear. 

2.2. Normalization in RLL 

We now state the reduction steps in normalization (i.e. cut elimination) in RLL 

and we give a measure # on proofs in RLL that yields a polynomial upper bound 

on the number of reduction steps. This measure will in fact be a bound on the 

number of instances of the rules, including the axioms, in the resulting cut-free 

proof. As for the number of reduction steps, if one counts all the reduction steps, 

including the so-called commutative reductions (all described below), the upper 

bound is cubic in our measure. However, there is a more subtle approach based on 

proof nets [13] that yields a linear upper bound. 

Let #Axiom = 1. If a proof 7~ is obtained from a proof p by a unary rule, let 

#ST = #p + 1. If a proof v is obtained from proofs p and u by a binary rule except 

Cut, let #s- = #p + #a+ 1. If a proof 7~ is obtained from proofs p and u by an 

application of the Cut rule, let #V = #p + #a. (Because we are seeking a cut-free 

proof, we do not need to count the Cut rule.) 



10 J.-Y. Girard et al. 

The following figures state the reduction steps. We simultaneously compute the 

measures. 

2.2.1. Axiom reductions 

The reduction steps of this form apply when one premise of a Cut is an axiom. 

There are two cases. 

Case AL. 

:P 

At-A A,AkB !P 

A,AkB 
reduces to 

J,AFB. 

Case AR. 

:P 

TEA AFA iP 

r+A 
reduces to 

rtA' 

In both cases, the measure decreases from #p + 1 to #p. 

2.2.2. Symmetric reductions 

The intuitive motivation of these reductions is that they should apply when the 

left premise of a Cut comes by a logical right rule and the right premise comes by 

the corresponding left rule: 

Case SO. 

:q .P :w 

TtA A/-B A,A,BFC 

r.Al-AOB A.A@BcC 

r,A,ntc 

:r :w 

reduces to 
tP TEA A,A,BkC 

AtB r,A,BFC 

r, A, -4 F C 

Let m = #T, n = #p, k = #w. Before reduction the measure is m + n + k + 2; after 

reduction it is m + n + k. 
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Case S-. 

:r iP :w 
T,AFB AFA A, BEC 

TEA-B A,A,A-B+C 

r,A, AI-C 

iP :r 

A+A 
reduces to 

T,A+A ;w 

l-.AtB A. BtC 

l-, A, A t C 

Let m = # TT, n = #p, k = #w. Before reduction the measure is m + n + k + 2; after 

reduction it is m + n + k. 

2.2.3. Commutative reductions 

The intuitive motivation for commutative reductions is simply to change the order 

in which an instance of a Cut appears in a proof. Commutative reductions should 

apply when at least one premise of a Cut is a consequence of a rule that does not 

operate on the cut formula. 

Case CLOL. 

iP 

r, C, DFA ‘W 

r,C@D+A A,AI-B 

r,A,CODEB 

!P :w 

reduces to 
r, C, DFA A,A+B 

r,A,C,DtB 

T,A,CODtB ’ 

The measure is #p + #o + 1, both before and after this reduction step. 

Case CLAL. 

:P :c 

n-c A,DEA ;w 

I’.A.C-DtA A,A+B 

r,A,A,C-DEB 

reduces to 
iP A, DFA A,AkB 

r-kc A,A, DFB 

l-,A,A,C-oDtB . 

The measure is #p + #(T+ #w + 1 both before and after this reduction. 



12 J.-Y. Girard er al. 

Case CROR, 

:(+ *w 

iP A,AtB ACC 

l-l--A A.A.AkB@C 

r,A,AkB@C 

i&J ‘C 

reduces to 
rt-A A,AI-B .w 

r,AkB AtC 

T,A,AFBoc . 

The measure is #p + #a + #o + 1 both before and after the reduction. The case in 

which the cut formula A comes from the right premise of the OR rule is treated 

analogously. 

Case CRdR. 

:w 

.P A, A, CkD 

TEA A.AtC-D 

r.AkC-D 

:P :w 

reduces to 
rcA A,A, CFD 

r,A,CED 

r,AkC-D ’ 

The measure stays #p + #w + 1 during this step. 

Case CROL. 

:w 

iP A,A, C, DEB 

TtA A,A,COD+B 

r,A,C@DkB 

:P :w 

reduces to 
TtA A,A, C, Dt-B 

r,A,C,DkB 

1-,A,CODbB 

The measure stays #p + #w + 1 during this step. 
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Case CR+L. 

t/J AtC A,A,DkB 

l-l-A A.A.A. C-DEB 

r,A,A,C-D+B 

iP :QJ 

:r TFA 
reduces to 

A,A, DtB 

AtC I-.A. DkB 

The measure is #p + #V + #w + 1. The case in which the cut formula A comes from 

the left premise of the *L is treated analagously. 

In other words, the measure stays the same during each commutative reduction 

step. 

Now given a proof v and a Cut in 7~ (not necessarily at the root of r), we can 

use one of the reduction steps to replace the Cut and so obtain a proof n’. If this 

reduction step is one of the axiom reductions or the symmetric reductions, one 

obtains #r’ < #r. If the reduction step is one of the commutative reductions, one 

obtains #n’ = #n. 

In order to derive an upper bound on the total number of reduction steps starting 

with a given proof, we will use #n to estimate the number of consecutive commuta- 

tive reduction steps that can be performed starting with any proof n. To this end 

we introduce an auxiliary measure, the cut-size (~1 of a proof G-. The cut-size has 

the same inductive definition as #v, except that in the case of a Cut we let: 

IrJ=)rr,j+I7rzJ+#7r. 

Proposition 2.1. 1~1 c (#n)’ for each RLL proof rr. 

Proof. By induction on the complexity of the proof x. In the induction step the 

interesting case is when rr is obtained by a Cut from rr, and 7r2 : because the measure 

# is always a positive integer, one has #7r, + #rZ =S 2(#7ri)(#~r~), and thus lrr[ s 

(#~,)2+(#7T2)2+#*,+#~2~(#x1+#~2)2=(#*)2. 0 

We now verify that the cut-size decreases in commutative reductions. We continue 

the notation introduced above in the definitions of commutative reduction steps. 

Case CLOL: The cut-size before the reduction step is I~T(= (pi+ 1+ (WI+ #v. 

After the reduction step the cut-size is 17~‘l= Ip(+lol+(#7r- l)+ 1 = 

Ip~+JwJ+#7T’=~p(+~wI+#~<<~~. 
Case CL-L: The cut-size before the reduction step is 1~) = IpI + loI + I+ IwJ + #r. 

After the reduction step the cut-size is Irr’l = J(TJ + /WI + (#r’- #p - 1) + IpJ + 1 = 

Ipl+JaJ+IwJ+#~-#p<J~l. 
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Case CROR: Before reduction the cut-size is ]rr = IpI+IcI+IwI+ 1 +#n. After 

reduction it is I~T’]=I~I+IuI+(# ~‘-#w-l)+Jwl+l=Ip(+lal+Iwl+#~-#p< 

14 
Case CR-R: The cut-size before reduction is In] = Ip] + Iw] + 1 + #rr. On the 

other hand, after reduction (~‘I=~~I+~~~+IwI+(#~‘-~)+~=I~I+IwI+#~<I~~~. 

Case CROL: Before reduction the cut-size is Iz-]= lp] + loI+ 1+ #7r. After 

reduction it is I~‘l=lpl+IwI+(#~‘-l)+I=lpl+IwI+#~<I~l. 

Case CR-L: Here I~~=I~~+I(TI+IwI+~+##. After reduction lr’l= 

lpl+IWI+(#~‘-#a-l)+I~I+l=lpl+~~~+IWI+#~-#~<~~l. 

In summary, when normalizing an RLL proof m, there can be at most # rr axiom 

reduction steps or symmetric reduction steps, and between each of those steps there 

can be at most (#n)’ consecutive commutative reduction steps. Thus the total 

number of reduction steps can be at most (#n)‘. 

Another approach, which allows us to dispense with all commutative reductions, 

is to consider sequent calculus proofs up to the order of the rules, e.g. to consider 

the proof net representation introduced in [ 131. 

2.2.4. Proof nets 

For the discussion of this approach we assume that the reader is familiar with 

Chapters l-4 of [13] (or cf. [14] or Section 3 of [ 111.) First, RLL sequents and 

proofs may be represented in the one-sided sequent calculus for the multiplicative 

fragment of linear logic. Indeed, linear implication A-B is definable as A’ B B, 

i.e. (AOB1)l. An RLL sequent A,, . . . , A,+B is translated as the one-sided sequent 

tA:, . . . , A;, B. It is readily checked that this translation takes rules of inference 

to rules of inference (and hence proofs to proofs): the rules -+R and @L are 

translated as the P rule and the rule 4L is translated as the 0 rule. Let us also 

mention the fact that this translation is conservative, i.e., if the translation of an 

RLL sequent is provable in the multiplicative fragment of linear logic, then the 

sequent is provable in RLL. 

Second, we use the proof net representation of the one-sided sequent calculus 

for the multiplicative fragment of linear logic given in [13]. Combining the two 

interpretations then yields the proof net representation of RLL proofs. The converse 

follows from the conservativity of the first translation mentioned above, i.e. the 

Sequentialization Theorem in [13] also holds for RLL. 

We identify RLL proofs with the same proof net representation. In this way the 

only required reduction steps are axiom reductions and symmetric reductions. Any 

sequence of these reduction steps starting with an RLL proof r must terminate in 

at most #rr steps in a cut-free proof net representing a cut-free RLL proof. 

2.2.5. Discussion of second order RLL 

All of the properties of RLL described above, except conservativity of the transla- 

tion into one-sided sequent calculus, remain true if we add impredicative second 



Bounded linear logic 

order universal quantification over propositions. The additional rules are 

vL T’, A[CI := T]I-B TEA 

r, (Vcr)Ak B 
and VR 

r~(t’a)A’ 

where A[a := T] is the result of substituting a second order abstraction term T for 

all free occurrences of the propositional variable LY in A, and where in the rule VR 

the propositional variable (Y does not occur free in the formulas in K We often 

omit parentheses around quantifiers. 

In extending the measure #r and the cut-size 1~1 the rules VL and VR are treated 

simply as unary rules. Observe that the measure and the cut-size do not increase 

under substitution of second order abstraction terms. In normalization, the additional 

symmetric reduction step is: 

Case SV. 

fP :w 
l-l--A A, A[a := T]!-B 

rFVCYA A.VaAkB 

r,AtB 

&a:= T] :w 

reduces to 
rkA[a:= T] A, A[a:= T]kB 

r,AkB 

In this reduction of the proof v to r’, the measure decreases from #r = #p + #w + 2 

to #?r’=#p+#w<#7r. 

Let us also check the additional commutative reductions that involve the quantifier 

rules. 

Case CLVL. 

iP 

I-, C[a:= T]kA jw 

r.VaCtA A-AI-B 

iP :w 

reduces to 
r, C[a:= T]FA A,AkB 

r,A, C[(Y:= T]I--B 

r,A,VaCkB ’ 

The measure is #r = # &= #p + # + 1 both before and after this reduction step. 

The cut-size before reduction is (Z-I= (pi + 1 + Iw( + # rr. After reduction, it is IdI = 

Ipl+(w(+(#~‘-l)+l=(pl+lw(+#~, less than before reduction. 
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Case CRVR. 

:w 

tP A,AcB 

TkA A, A+VaB 

L’, A tVaB 

iP :w 

reduces to 
TkA A,AtB 

I’.AkB 

I-, A t-VaB 

We may assume that (Y does not occur free in I’, by renaming the bound variables 

in B if necessary (which does not change the measure or the cut-size). Note that 

#~=#~‘=#p+#w+l. Also I~l=l~(+I~]+l+#rr. ]rr’l=I~l+]wl+(#+-1)+ 

l=(pl+IwJ+#7r<J?rl. 

Case CRVL. 

:w 

iP A, A, C[a := T]t B 

rt-A A,A,tlac~B 

r,A,VcKtB 

reduces to 
rcA A,A, C[a:= T]kB 

r,A,C[cx:=T]kB 

Note that #n=#r’=#p+#o+l. Also lrrl=(~I+(w(+1+#7~. /~‘]=lpl+ 

JwJ+(#k-l)+l= Ip)+)w)+#~<]7r). Thus, even for second order RLL, there can 

be at most (# r)3 sequent reduction steps in the normalization of a proof rr. This 

upper bound can again be lowered to # 7~, this time by using the proof net representa- 

tion given in [15]. 

The results of Section 2.2 may be summarized as follows. 

Theorem 2.2. Let rr be a proof in RLL or in second order RLL. Any sequence of 

reduction steps on rr must terminate in a cut-free proof in at most (#GT)~ sequent 

calculus reduction steps. This cut-free proof is unique up to order of the instances of 

the rules. It has at most # rr instances of the rules, including the axioms. Furthermore, 

any sequence ofproof net reduction steps on the proof net representing v must terminate 

in at most #TT reduction steps. 

Remark. In fact, proof net reductions are completely asynchronous; they do not 

have to be performed sequentially [13, 151. 
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The Sequentialization Theorem [15] applies to the discussion of second order 

RLL only with respect to one-sided sequent calculus. There is no claim of conservativ- 

ity of one-sided sequent calculus over the two-sided style for the second order RLL 

considered here. However, the fact still remains that for these two presentations of 

the sequent calculus, there exists a natural correspondence of normal forms of 

certain types, for example 

VCr((a-Ja)@. . .@(a-+cr)-(a-a)). 

Hence for our purposes here, we can still freely use proof net interpretations for 

the two-sided sequent calculi. 

2.2.6. Adding unrestricted Weakening 

The phenomenon of shrinking proofs observed above remains valid even if one 

adds the structural rule of Weakening: 

or equivalently, if one reformulates the axioms as: 

In this latter system the measure of axiom is still 1. It is readily checked that if 

r is a proof of a sequent A t A, then for any finite multiset of formulas r, there is 

a proof p of the sequent r, A +A, where #p c n, IpJ 4 1~1, and p has the same 

underlying rooted tree as r. This fact allows us to transfer the measure of the 

computations given above to the system with axioms of the form r, At A. 

2.3. Linear logic 

While RLL and the related systems discussed above enjoy fast normalization, 

these systems have little expressive power. The problem of adding expressive power 

to RLL may be resolved by adding a new connective “!” for storage. !A means A 

can be reused ad nauseam. The system LL of linear logic is obtained from RLL by 

adding rules for !: 

!rtA 
Storage ~ 

!I-+!A 
Weakening r:LfB 

> . 

Contraction ” jA’ !AF B 
l-, !AE B 

Dereliction 
T,AFB 

r, !At B’ 

There is now a tremendous increase of expressive power: we can represent first 

order function types by AJB := !A --Q B [13]. It is folklore on finite types that 

there can be no realistic time bounds on computations. Specifically, take a ground 
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type 0 and define higher types n + I := n+ n. Now define the analog of Church 

numerals p of type n + 2, Y,P+* as A$fp, where the variable f is of type n + 1. One 

easily verifies that modulo p-conversion, 

Y,P+*(f) o Yn4+2cf) = Y,PXfL 

and Y,C+,( Y,“+z> = YZ’;, . 

y,p+* o YZ+2 = y,““,,, 

Therefore YitzYi+, . . . Y: = Yi, where c =222 is a tower of 2’s. 

Furthermore, adding full impredicative second order quantification (V) yields a 

system of LL2 as strong as system 9( =second-order polymorphic lambda calculus). 

In particular, every provably total recursive function of second order arithmetic is 

representable in the system. In other words, in order to produce a total numerical 

function which is not representable in LL*, one has to go beyond most current 

mathematics. 

2.4. Towards bounded linear logic 

We seek a system intermediate between second order RLL and full second-order 

linear logic, which would enjoy feasible normalization and would yet be powerful 

enough to express all feasible functions. To this end we consider bounded reuse, 

roughly !,A with the intuitive meaning that datum A may only be reused less than 

x times. Let us first present just a simplified version of the desired intermediate 

system and the basic intuition behind it; the precise consideration will be taken up 

in Sections 3 and 4. If r is A,, . . . , A,, we write !,r for !,,, A,, . . . , !,,,,A,. 

The rules for storage naturally induce polynomials: 

Storage Weakening 
TFB 

r , A~ B 
I .o 

Contraction 
l-, !,A, !,At B 

Dereliction 
T,AtB 

l-, !x+yAt B r, !,AFB’ 

We may interpret these rules in second-order RLL, by translating !,A as 

where there are exactly x tensor signs and where 1 may be thought of as Va(cu - (.y). 

This translation is logically sound only if we add to RLL the unrestricted weakening 

rules (see Section 2.2.6). A consequence of the latter is that from (n + l)-ary 

tensorization one can obtain the n-ary one. The addition of the unstricted weakening 

rules to RLL is of course not problematic. As observed at the end of Section 2.2.6, 

proofs still shrink under normalization. The weight (measure) associated to a proof 
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is a polynomial, the key cases of Storage and Contraction being: 

!$-+A P 

!,,I-t-!,A (p+l)x+2nx+n+l 

where n is the number of formulas in r, and: 

r, !,A, !,A+ B 

r, !x+,,A~ B 

p 

p+2 ’ 

In the cases of Weakening and Dereliction one adds 1. The axioms and cut are 

treated as in RLL. 

Discussion. These formulas basically follow from the translation into RLL men- 

tioned above, but they do involve some overestimates for the sake of uniformity in 

the cases x = 0, y = 0, or n = 0. Another advantage over the weights assigned to the 

Storage and Contraction rules in [21] ((p + 1)x + n and p + 1, respectively) is that 

the weight of a proof is always positive and hence it easily fits into the pattern 

discussed in Section 2.2. As in [21], however, there is still a problem in the reduction 

steps that apply when the cut formula is !,A and the left premise of a Cut rule is 

a consequence of a Storage rule with r nonempty, i.e. n > 0. The answer, as in [21], 

is to consider modified normalization in which such reduction steps are prohibited 

(see Section 4). Here we present a simplified version of two crucial cases of the 

modified normalization procedure. Observe that the weight strictly decreases. 

Reduction step: Storage vs. Contraction. 

:P :w 
t-A A, !,A, !,At- B 

k !,+,A A, !,+,A+B 

AtB 

:P 

!P F-A :w 
FA 

reduces to - 
k !,A A, !,,A, !,A+ B 

t !,A A, !,At B 

Let R and Q be the weights of the proofs p and w, respectively. Let t = u + v. The 

weight of the entire proof before the reduction step is (R+ 1)t + 1 +Q+ 2 = 

(R+l)t+Q+3. After the reduction step, the weight is (R+l)~+l+(R+l)~+l+ 

Q=(R+l)(u+v)+Q+2=(R+l)t+Q+2.Thereisalsoasimilarreductioninwhich 

the cuts in the reduct are done in a different order: the same weights arise in this case. 
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Reduction step: Storage vs. Storage. 

iP :” 

F-A !;A, !,A+B 

k !,,A !,;A, !,,At !,B 

!UjA + !,B 

:P 

I-A :w 

+ !,A !;A, !,,AE B 

reduces to !,At-B 

!,iA t- !,B 

Again let R and Q be the weights of the proofs p and w, respectively. Let t = vu. 

The weight of the entire proof before reduction is (R+ 1) t + 1 + (Q-t 1)~ + (2n + 1)v + 

n+2=(R+l)t+(Q+l)v+(2n+2)v+n+3. After reduction it is 

[(R+l)u+Q+2]~+1+2nv+n=(R+l)uv+(Q+l)v+v+1+2nv+n 

=(R+l)t+(Q+l)v+(2n+l)v+n+l. 

3. The syntax of hounded linear logic (BLL) 

3.1. Resource polynomials 

Let (z) be the usual binomial coefficient. In particular (0”) = 1. A monomial is any 

(finite) product of binomial coefficients, nT=, (2), where the variables Xi are distinct 

and nj are nonnegative integer constants. 

A resource polynomial is any finite sum of monomials, e.g. 0, 1, y, x + (z( z - 1)/2), 

etc. Resource polynomials are closed under sum, product, and composition. Such 

polynomials are exactly thefinite dilators of proof theory [ 161 and are closely related 

to combinatorial functors [9]. 

Given resource polynomials p, q write p&q to denote that q-p is a resource 

polynomial If p cp’ and q c q’, then their composites satisfy q 0 p G q’ 0 p’. 

3.2. Formulae of BLL 

Formulae (= types): atomic formulae have the form (Y ( p’); here (Y is a second-order 

variable of given finite positive arity and p’ here denotes an appropriate non-empty 

list of resource polynomials. 

Formulae are closed under the following operations: 

(i) AOB and A* B from RLL. 

(ii) (Va)A (second order universal quantzjication), 

(iii) !X<P A (bounded exclamation mark with p a resource polynomial not contain- 

ing x). 
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Positive and negative occurrences of resource terms in formulae are defined by 

induction as usual; in !XCp A, p occurs negatively and x is a bound variable not 

occurring in p. Let the free resource variables x, , . . . , x, occur only positively in B. 

Then Ax,, . . . , x,.B is a (second order) abstraction term, say T. A[ (Y := T] denotes 

the result of substituting T for a in A, i.e. of replacing the atoms CI( p,, . . . , p,,) in 

A by Np,,.. . , p,]. Given types A and A’, write ALA’ if A and A’ only differ in 

their choice of resource polynomials, and 

(i) for any positive occurrence of resource polynomial p in A, the homologous 

p’ in A’ is such that p cp’. 

(ii) for any negative occurrence of resource polynomial p in A, the homologous 

p’ in A’ is such that p’~p. 

If r and r’ are finite multisets of formulae, TET’ iff it is true componentwise. 

3.3. BLL sequents 

Sequents have the form TtB, where r is a finite (possibly empty) multiset of 

formulae. The formulae in r are considered indexed but not ordered. [Notation: 

parameters p, q, u, w range over resource polynomials. A[x:=p] denotes the 

substitution of p for all free occurrences of resource variable x in formula A. From 

now on we write 1 .,.<,A instead of the formula !,A (cf. Section 2.4).] We may 

intuitively think of ! J,<pA as lOA[y:=O]@. . .OA[y:=p-11. 

Axiom ( Waste of Resources) At A’, where A c A’ 

(Special case: A k A). 

cut 
TEA A, AFB 

r, AkB 

OL 
r,A,BtC TEA AtB 

r,A@BkC OR r,AFA@B 

TEA 
+L 

A,BkC 
+R 

r,AkB 

r,A,A--BEC rt-A-B 

vL r,A[cx:= T]kB TEA 

r, (V~)AEB IfR TF(Vcy)A 

(provided (Y is not free in r) 

( !W) Weakening 
rtB 

r, !,<,AF B 

( !D) Dereliction 
r,A[x:=O]tB 

i-1 , .x<,+w AtB 
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(!C) Contraction 
r, &,A, ! ,<,A[x:=p+y]tB 

r, !x<p+y+,vA t B 

where p + y is free for x in A. 

(S ! ) Storage 
L,,(\-~,[Y := u,(x) + ~1, . . . , L,,,w%,[y := v,,(x) + zl t B 

I ..bv.a,cp)+w,,A,, . . . , !.v<v,,~p~+n~,,A k !x<$ 

where Q(X)+Z is free for y in Aiy where Zli(X) =C,,, qi(z) and where 

all formulae to the left of the t have the indicated form. 

A proof of a sequent IV-A in the BLL sequent calculus is a finite labeled rooted 

tree in which the nodes are labeled by BLL sequents so that the leaves are labeled 

by instances of the axiom, the root is labeled by TtA, and the label of each node 

is obtained from the labels of its immediate predecessors(s) by an instance of a 

BLL rule. 

Remark. The rules of BLL are written in such a way that given any proof p of a 

sequent TEA and given any T’c r and A c A’ then a simple change of resource 

parameters will yield a proof p’ of TVA’ without altering the structure of the proof: 

3.3.1. Lambda term assignment for BLL proofs 

We remind the reader that in Gentzen sequent calculi, as well as in natural 

deduction calculi, proofs can be represented by lambda terms, cf. [20, Chapter 51. 

In particular, an axiom AkA’ is represented by a : A D a : A’, the logical rule -JR 

is represented by h-abstraction or currying: 

c’:T.x:A D t:B 

Z:l- D Ax.t:A+B 

while the logical rule -+L is represented by an application of a functional variable, 

here denoted by e: 

c’:T D t:A d:A.b:B D u:C 

c’:r,d:A,e:A--B D u[b:=e(t)]:C’ 

The cut rule may be represented by substitution: 

c’:T D t:A ~:A,u:A D u:B 

S-,&A D u[a:= t]:B ’ 

which is certainly denotationally consistent. (However, from a more dynamic view- 

point is would have been more appropriate to define: 

c’:T D t:A d:A.a:A D u:B 

c’:I’,d:A D leta=tinu:B ’ 

where the explicit substitution is only indicated: it is actually carried out by the 

reduction steps in cut-elimination.) 
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This assignment may be extended to the quantifier rules trivially, i.e. the quantifier 

rules have no effect on lambda terms. Since tensor A@B is definable as 

Va((A-+B-(Y)--o(Y ), the assignment given so far yields a lambda term assignment 

for the tensor rules. Finally, the lambda term assignment may be extended to BLL 

trivially, i.e. the storage rules have no effect on the lambda terms. 

This lambda term assignment is rather crude (for example, among its shortcomings 

are that storage and quantifier rules have no effect). Its sole purpose here is to serve 

as a framework for relating our definition of representability of functions in BLL 

(see Section 5) to the usual notion of representability of functions in lambda calculus. 

The question of a good syntax for term assignments to BLL proofs is open (but see 

[l] for the case of LL). 

3.4. Proof nets for BLL 

We now extend to BLL the proof net representation of RLL proofs mentioned 

in Section 2.2.4. Proof structures (with boxes), and in particular proof nets as 

discussed below, are defined almost exactly as in Chapter 2 of [13], with the 

quantifiers treated as in [ 151. The exceptions are that our axioms must reflect waste 

of resources, that we do not consider additive connectives at all, that we consider 

bounded operators !X<p and ?rip instead of ! and ?, resp., and that the weakening 

rule is treated as a link, not as a box. An alternative approach to proof nets, given 

in [lo, Chapters 3-61, and [ll, Section 31, provides an amenable framework for 

our treatment of the weakening rule. 

A proof of BLL sequent A,, . . . , A,+B will be represented by a proof net with 

conclusions A:, . . , Ai, B. For a BLL formula C, C’ is a formula defined as follows 

(see [ 131). First, translate A- B as Al @ B. Second, if C is an atomic BLL formula, 

let C’ be a new formula in an expanded language and let (C’)’ be C. (A@ B)l is 

A’63 B’, (A@ B)L is ALOB’, (VcuA)’ is a 3aA’, (!,,,A)L is ?,,,,Al, (?,,,,A)’ 

is ! .<,,A’. Then let (hx,, . . . , x,.B)l be Ax,, . . . , x,.B’. (The reader will note that 

Al’- is A.) If a resource term p occurs positively in A, it occurs negatively in A’ 

and vice versa. The relation Ac A' is extended accordingly. 

Proof structures are nonempty labeled graphs’ whose labels consist of (occurrences 

of) formulas, connected by various kinds of links or boxes in which there are certain 

distinguished multisets of premises and conclusions, as defined below. Links will 

correspond to the axiom and rules of inference of BLL and are defined as follows 

(where A, B, . . . denote formula occurrences). 

l (Axiom link) 

AA’, where A & A’. 

The conclusions of this link are A’ and A’. There are no premises. (This link 

represents the Axiom.) Note: since conclusions form a multiset, this link is 

’ not necessarily planar 
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considered to be the same as the link given by 

A,‘II, where A L A’. 

(Cut link) 

A AL 

is a link, with no conclusions and premises A and A’. (This link represents the 

Cut rule.) Note that since we identify ALi with A, this Cut link is considered to 

be the same as the one where we interchange (the positions of) A and AL. 
(Tensor link) 

A B 

A@B 

is a link whose conclusion is A@ B and whose premises are A and B. 

represents the rules OR and 4L.) Note that, unlike the Axiom and 

the tensor link is not symmetric in A and B. 

(B-link) 

(This link 

Cut links, 

A B 

APB 

is a link whose conclusion is A P B and whose premises are A and B. (This link 
represents the rules @L and +R.) As in the case of the tensor link, the @-link is 

not symmetric in A and B. 

(V-link) 

A 

VaA 

is a link whose conclusion is VaA and whose premise is A. Here a is the 

eigenvariable of the V-link and it is forbidden to use it as the eigenvariable of 

any other V-link, see [15]. (This link represents the rule VR.) 

(a-link) 

A[a := 7-l 

3CYA 

is a link whose conclusion is 3aA and whose premise is A[a := T]. (This link 

represents the rule VL.) 

The links for the operators ?X<P are as follows: 

(Weakening link) 

3 A fX<W 

is a link whose conclusion is ?,<, A and which has no premises. (This link 

represents the Weakening rule !W.) 
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l (Dereliction link) 

A[x := 0] 
7 .xc,+w A 

is a link whose conclusion is ? ,<l+,A and whose premise is A[x:= 01. (This link 

represents the Dereliction rule !D.) 

l (Contraction link) If p+y is free for x in A, then: 

7 A ? .x<p .y<,A[x:=p+yl 
7 .x</I+q+m, A 

is a link whose conclusion ?x<ptq+wA and whose premises are ?.x<pA and 
7 .,,_A[x:= p+y] (This link represents the Contraction rule !C.) 

Finally, proof structures may contain boxes [13], which could be considered as 

links of a special kind, defined as follows: 

l (!X<p boxes) 

7 
~y,<u,~p)+w, A, . . . ?r;,<u,,(,,j+w.,,A, L<,,B 

is a proof box (or simply: box) whose main door is !x<pB and whose auxiliary 

doors are ?,,,<U,CP,+W,Al,. . . , ?.v,l<Li,,~p~+W,, A,,. This box has as conclusions all of 

the doors, both main and auxiliary. (The box will represent the Storage rule S!.) 

We allow boxes to contain other proof structures. 

Proof structures are built from links and boxes as described above, subject to the 

following requirements. 

l Every occurrence of a formula in the proof structure is the conclusion of exactly 

one link or box, and a premise of at most one link. 

l Whenever a box contains a formula occurring in a link (either as a premise or a 

conclusion) then this box must contain all other formulas occurring in the link. 

l Given any two boxes in a proof structure, either (i) their respective contents and 

conclusions must be completely disjoint, or else (ii) one box must be properly 

contained in the other. 

The conclusions of a prooj- structure are the conclusions of its links (and of its 

boxes) that do not appear as premises of other links. 

Remark. Since a proof structure within a box may contain other boxes, etc., we 

have really given a definition of proof structure by induction on the depth of nested 

boxes. 

Following [13], one may assign proof structures to sequent calculus proofs in 

BLL. Among all possible proof structures, one can distinguish those which so 
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arise (i.e. from proofs in linear sequent calculus); these are called proofnets ([13]). 

There is a mathematical characterization (so-called correctness criterion) picking out 

those general proof structures which are actually proof nets. This criterion can be 

phrased in terms of trips as in [13], but for our purposes, the treatment by means 

of acyclic connected graphs [ 11, lo] is somewhat more amenable. In particular, the 

correctness criterion for a weakening link may be stated as the existence of a 

“pointer” to another link in the proof structure.3 The correctness criterion for V-links 

is stated by means of arbitrary pointers to the links in the proof structure that contain 

a free occurrence of the eigenvariable [15]. In either case, these pointers are not 

allowed to enter or exit any boxes. Regarding boxes in proof nets, they may 

themselves only contain arbitrary proof nets, rather than arbitrary structures. The 

correctness criterion for boxes can be found in Chapter 6 of [lo] (by means of 

acyclic connected graphs) or in [13] by means of trips. Finally, in addition to 

correctness criteria in proof nets, we restrict box formation so that one considers 

only boxes of the form shown in Fig. 1, where (T is a proof net whose conclusions 

are indicated, where 1 s j G n, and 0 c n, and the v, satisfy the same conditions as 

in the Storage rule. 

u 
. . . . 

7 .z<q,(x)Af[y, := VI(X) + zl “. ?z<q,(x#Y, := v,(x) + zl ... B 

L ?y,<v,(p)+u,,A: ‘.. ?y,<v,w+u,,Af ‘.. !x<pB J 

Fig. 1. 

As in Section 3.3 above, we observe that if A, c Ai, 1 s i c n and if the Ai’s are 

the conclusions of a proof net V, then there is another proof net V’ with the same 

graphical structure whose conclusions are the Ai’s. Finally, observe that the links 

and boxes presented above can also be thought of as inductive clauses in an inductive 

definition of a proof structure with given conclusions starting from the Axiom links 

(see also [lo] for a complete treatment). 

3.5. The weight of a BLL proof structure 

We assign a polynomial IIrl1 to every BLL proof structure r (and hence to every 

BLL proof). The polynomial 11~11 will be called the weight of VT. 

s This is not the way weakening links are treated in [lo]. Our precise correctness criterion for a proof 

structure with weakening links is the simultaneous exisrence for each weakening link of a “virtual premise”, 

i.e., the choice of another (occurrence of a) formula in the proof structure, in such a way that this bigger 
graph enjoys the correctness criterion known in the absence of weakening links, namely that each 
subgraph obtained in a certain way is acyclic and connected [ll, 151. The new criterion is easily shown 

to be correct, but it is not very satisfactory, because its preservation under cut-elimination is not 

conceptually immediate. Indeed, during cut-elimination some virtual premise may be destroyed. In such 

a case, we must show that we could have indeed chosen a virtual premise that has not been destroyed. 

This offers no difficulty, but one has to go through a big number of cases. 
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The weight of every link except Contraction is 1 (this includes the Axiom link). 

The weight of Contraction is 2. The weight of a box whose content is proof structure 

a, with n auxiliary doors and whose resource polynomial at the main door is p is 

C,,, (IIuII(x)+ 1)+2np+ n + 1. (If a box has no contents, we arbitrarily set llall = 0. 

This situation never arises in the case of proof nets.) Finally, the weight of a proof 

structure is defined to be the sum of the weights of its links and boxes. 

The following three propositions are readily checked. We use the pointwise order 

of polynomials with respect to nonnegative integer arguments. 

Proposition 3.1. Let A,, . . . , A,, be the conclusions of a proof net u and let A, E Ai, 

1 d i s n. Then a simple change of resource parameters in Y yields a proof net v’ whose 

conclusions are A;, . . . , AL, such that II ~‘11 s II VI/. 

Proposition 3.2. Let u be a proof net and let p be a resource polynomial free for 

substitution for thefree resource variable x in Y. Let Y[X := p] be the result of substituting 

p for all free occurrences of resource variable x in v. Then V[X := p] is a proof net and 

Il4x:=PlII s II vll[x:= PI. 

Proposition 3.3. Let v be a proof net and let T be a second order abstraction term 

Ax, . . . Ax,,. B, where all free occurrences of the resource variables x, , . . . , x, in B are 

positive. Let v[ (Y := T] be the result of substituting Tfor all free occurrences of a second 

order variable a in the proof net V. Then u is a proof net and II V[(Y := T]l/ s II ~11. 

The analogous properties hold for the BLL sequent calculus. 

4. Normalization and proof nets 

4.1. Normalization in BLL 

We shall refer only to proof nets. The analogous discussion for the BLL sequent 

calculus is indicated in Appendix A. Here we define the proof net reduction steps 

and simultaneously show that the weight of a proof net decreases. The weight 

analysis can be extended to the BLL sequent calculus reductions by using cut-size, 

analogously to Section 2.2 above. 

Definition 4.1. In BLL proof nets, an instance of the cut link is boxed when it is 

contained in a proof box. 

Our normalization procedure will eliminate only nonboxed cuts. We cannot 

eliminate boxed cuts because the polynomial p at the main door of a box may be 

0, in which case the weight is no longer strictly monotone under reduction. 
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Definition 4.2. In BLL proof nets, an instance of the cut link is irreducible if it is 

boxed or if one of its premises is a box with at least one auxiliary door, where the 

cut formula is at the main door, and the other premise is a conclusion of a Weakening, 

Dereliction, or Contraction link, or a box. 

Definition 4.3. A BLL proof net is irreducible if it contains only irreducible cuts 

(if any). 

It is understood that the reduction steps given below do not apply to irreducible 

cuts. 

Axiom reductions. 

l AL Let AL A’. Then: 

V V’ 

AlAl d’l reduces to A’, 

see Proposition 3.1. The weight decreases from 11 VII + 1 to II v’ll s Ilvll. 

l AR Again, ALA’. Then: 

V V’ 

A A-’ reduces to A’, 

see Proposition 3.1. The weight again decreases from II VII + 1 to II v’ll G II VII. 

Symmetric reductions. 

l SOP See Fig. 2, where AL and BL are among the conclusions of the given 

proof net o. The weight decreases from II v/l + IIp II + 11~ l/+2 to 11 v/I + 11~ II + 11~ 11. 

u P W 
. . u W P . . . . . . . . . . . . 

A B AL BL . . . . . . . . 

A@aB Al p Bl reduces to A Al BL B 

Fig. 2. 

l SV See Fig. 3. The weight decreases from /I VII + I)p II+2 to I] ~[a := T]]l + 11~ /I s 

II v 11 + II p I(, see Proposition 3.3. 

l SSW See Fig. 4. The weight decreases from I,<,, (I1vIl(x)+l)+ II/.4 +2 to 111*]1. 
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u P 
u[cy:= T] P 

A A’[n:= T] 

V’aA 3ClAL reduces to A[u :‘= T] .41[a:= T] 

Fig. 3. 

(UI p . . p . 
7 A’ .x<p B, .’ B,, reduces to B, ... B, 

Fig. 4. 

l SSD See Fig. 5. The weight decreases from CxC,+w (~~z~~(x)+1)+~~~~~+2 to 

II 4x := 0lII-t IIP II. 

u[x := O] P 

A[x := 0] A’[x := 01 

Fig. 5 

l SSC See Fig. 6. The weight decreases from C-c<p+y+,+ (II VII(X)+ l)+ ll~ll+3 to 

c (II~ll(X)+l)+ c ~Il~ll~P+~~+~~-tll~‘ll+~ *cp I”. y+* 

52 c (ll~ll(X)+~)+llP’lI+2 rtp+y+w 

s c (Il4l(x)+l)+ll/-ll+2 r;--p+y+w 

(See Proposition 3.1 for the latter inequality.) 

AL ?,ac4 Al[x:=p +y] 
7 .x<p+q+ui AL reduces to 

Fig. 6. 
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l SSS See Fig. 7. The weight decreases from 

1 (Ilvlt(vi)+l)+ C (Il~~/(x)+1)+(2n+2)p+n+3 
y,<u,(p)+%J, XCP 

to 

c (,;:f,,, (II~II( I( 1 ZI x +z)+l)+ll/1ll(x)+2 +2np+n+1 
XCP I > 

= c (,~~x,(l14( t( 1 ZI x +z)+1 + c ~~~~~(x)+1)+(2n+l)p+n+l 
X<P 

) 
x < p 

= c (IIyllb,)+l)+ c (II~ll(X)+1)+(2~+~)P+~+1 
.Y,<U,(P) XCP 

=G c (Il4(Y,)+l)+ c (Il~ll(X)+1)+(2n+l)P+n+1 
y,‘=u,(p)+w, X<P 

Therefore we have the following result. 

Theorem 4.4. In any BLL proof net v, any sequence of reductions on reducible cuts 

must terminate in at most II VII steps. 

It may be readily seen that the reductions are locally confluent (i.e. weak Church- 

Rosser), which leads to the following proposition. 

Proposition 4.5. The proof net reductions on reducible cuts satisfy the Church- Rosser 

property. 

Definition 4.6. The irreducible form of a proof net r is the result of eliminating all 

reducible cuts in r. 

Elimination of reducible cuts yields a kind of subformula property given in Lemma 

4.8 below. Let us first begin with a definition. 

Definition 4.7. A formula in the expanded language for BLL (see Section 3.4) is 

accessible if each negative occurrence of a universal quantifier or a bounded exclama- 

tion mark and each positive occurrence of an existential quantifier or a bounded 

question mark, is nested within a positive occurrence of a bounded exclamation 

mark (i.e. negative occurrence of a bounded question mark). 

The proof of the following lemma is left to the reader. 

Lemma 4.8. An irreducible proof net with accessible conclusions contains only boxed 

cuts. 
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While the analog of this lemma can be established within the BLL sequent calculus, 

the argument is much more direct and perspicuous by means of proof nets. 

BLL versions of polymorphic definitions of most common data types (lists, trees, 

etc.) will not be accessible in the sense of the definition above. The solution to this 

problem will be presented in the next section. 

5. Normalization in BLL as polynomial-time computation 

An aspect of modularity in BLL is that the notion of size of data is given by their 

type. For example, the data type of tally natural numbers of size at most x is: 

Nx = va !,.<,(a(~) --a(Y+1))~(~(o)--O~(x)) 

From now on, we simplify notation, associating the linear implication - to the 

right. Also the scope of the quantifier is the maximum possible. Note that erasing 

the resource information gives the linear logic version of the polymorphic type of 

natural numbers Va !( (Y - CY) - LY - (Y, ([ 13, Chapter 51) in which the (tally) natural 

numbers are represented as freely generated by a tally “successor” function, by 

reusing this function under iteration as much as one likes. Our definition of N, 

follows the same pattern, except that access to the “successor” function is allowed 

only up to x times (see Example 5.1). 

Similarly, we consider the type of lists on two symbols, of size at most x: 

Again, erasing the resource information yields the linear logic version of the 

polymorphic type of lists on two symbols 

where such lists are represented as freely generated by two “successor” functions 

(“append first symbol” or “append second symbol”), by reusing these functions 

under combinations of iteration and composition as much as one likes. Our definition 

of Nf; follows the same pattern, except that access to the two “successors” is allowed 

only up to x times (see Example 5.2). 

We choose to write the first symbol as 1 and the second symbol as 2, anticipating 

the dyadic notation used in Section 6. 

Most common data types (lists, trees, etc.) can be given a similar treatment in 

BLL, by maintaining the analogy with their representation in system 9 given, for 

example, in [20, Section 11.41. For the purposes of establishing the connection 

between normalization in BLL and the ordinary notion of polynomial time computa- 

bility, we shall concentrate on the type of dyadic lists and on a simpler but related 

type of tally natural numbers. 
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Example 5.1. The tally natural number 2 is represented by the cut-free BLL proof 

of I-N, shown in Fig. 8. (Hint: reading BLL proofs bottom up gives a much better 

understanding of the structure). 

The lambda term assignment mentioned in Section 3.3.1 assigns Church numeral 

2, i.e. A$Aa.f(f(a)), to the BLL proof in Fig. 8, see Fig. 9. Proof net representation 

is shown in Fig. 10. This proof net determines the BLL proof given in Fig. 8 uniquely 

up to the order of the rules +L and !D. The proof net is itself uniquely determined 

by its conclusion Nz and by the labeled graph with the indicated order on binary 

links, see Fig. 11. 

a(0) f--a(O) N(1) kc?(l) 

cu(O)-oa(l),ru(O) b a(l) 
*L 

a(2) + a(2) 

~(O)-ocu(l),a(l)-ocu~2),(Y(O) ka(2) 
4L 

!y<,ta(y)-oru(y + l)),a(l) *a(2),cu(O) k a(2) !D 

!y<,(a(y)~cu(y + l)),!,<l(a(Y + lbol(Y + 2)),a(O) ka(2) ;: 

!y<z(“(Y) -ou(.v + l)),u(O) k n(2) 

!ycz(a(y) -ocu(y + 1)) )- tr(O)-orr(2) 
+R 

t!y<*(U.(y)-ocu(y+ l)brr(O)+u(2) 
-oR 

t Va!y<2 ((Y(Y) -cu(.Y + 1)) *a(O) *a(2) 
VR 

Fig. 8. 

a: a(O) D a: cu(O) b: a(l) D b: u(l) AL 

f : a(O)-oa(l), a : a(O) D f(a) : a(l) C: a(2) D C: (u(2) 

f : B(O) -a(l), g : a(l) -0ff(2), a: a(O) D g(f(a)) : m(2) 

f:$<,MY)~~(Y+ l)),g. u(l) 

“FD 

-3u(2), U: a(o) D &'(f(u)): c?(2) 

S:!.“<l(“(Y)-oa(Y+ l)),g:!y<,(“(Y+ 1) -Oa(Y + 2)), U: a(O) D g(f(U)) : a(2) 
!D 

f :!,<z(Q(Y)-Oab + l)),U: a(o) D f(f(u)): u(2) OR 
!C 

f :$<2(a(J’) -oc~b’ + 1)) D hf(f(u)) : cr(0)-oa(2) 

D ~vf.~a.f(f(a)) :!y<2(a(y) *a(y + 1)) +a(O) -3tr(2) 
-JR 

D ~f.~a.f(f(a)) : V”!,<2(a(y) -orr(y + 1)) *a(O) -3a(2) 
VR 

Fig. 9. 

I I 7 
(r(o) CY(l)l (U(l) (X(2)1 

a(O) @a( m(l) @tr(2)1 
1 

3 .v<l(Ol(Y)@a(Y + l)i) ?V<l (~~(Y + 1) @ trb + 2)l) tr(O)l a(2) 

7 .,yz(N(Y)@‘(Y(y + lJL) @(OIL pn(2) 
7 
.,<2(~~(Y)63’u(Y + l)I)~,(tr(O)l~,tr(2)) 

V~~?y,z((Y(Y)@~Y(Y+ l)i)511((Y(O)1&/[~(2)) 

Fig. 10 
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Fig. 11. 

We shall use this important fact in the disucssion of polynomial-time computation 

by normalization, given below. 

All the facts mentioned in this example easily generalize to any Church numeral 

hJha.f(f. . . (f(a) . . .)). Note that because of waste of resources expressed by axioms 

and rules, the tally natural number n can be represented by a cut-free proof of tN,, 

for any n G k. q 

Example 5.2. The dyadic list 112 is represented by the cut-free proof of C N: shown 

in Fig. 12. 

The associated lambda term is A$Ag.ha.g(f(f(a))) : N:. The proof net representa- 

tion of the cut-free proof in Fig. 12 is displayed in Fig. 14. This proof net determines 

Fig. 12. 
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the cut-free proof given above uniquely up to the order of the rules. The proof net 

is in turn uniquely determined by its conclusion N: and by the labeled graph of 

Fig. 13. This important fact will be used in the discussion of polynomial time 

computation by normalization (see below). The facts stated in this example easily 

generalize to all dyadic lists. As in Example 5.1, note that because of waste of 

resources expressed by axioms and rules, any dyadic list of length s k can be 

represented by a cut-free proof of Nz. 0 

Fig. 13. 

Example 5.3. The successor on the tally natural numbers is represented by the 

cut-free BLL proof of N,t-N,+, shown in Fig. 15. 

The reader will easily verify that the lambda term assignment mentioned in Section 

3.3.1 yields: 

e : N, D AGa._ff(e(f)(a)) : NY+, , 

or, equivalently, 

e:N, D JV~~(~(~)):N,+,- 

The proof net representation of this BLL proof is shown in Fig. 16. 0 

Example 5.4. There are two successors on dyadic lists. One of them, “Append l”, 

is displayed in Fig. 17. The lambda term assignment mentioned in Section 3.3.1 yields: 

e:N, D hJhg.Aa.~(e(f)(g)(a)):N~. 
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The proof net corresponding to the BLL proof given in Fig. 17 is shown in 

Fig. 18. Cl 

Example 5.5. A Reuse or Storage Functional on dyadic lists is given by the following 

proof kN:-c !+, Nz, where x, y are resource variables. Let v be the canonical proof 

of t Ni representing the empty list (analogous to Example 5.2), and let s1 and s2 

be the canonical proofs of Nz+NZ+, , representing the two dyadic successors (see 

Example 5.4). Consider the following proof &: 

and consider the proofs u, , u2, where u, is: 

where the reader will notice that &, 1 = 1, as required in the formulation of the 

rule S! in Section 3.3. CT> is built from s2 accordingly. We proceed as follows, writing 

T[X] for !Y<lNz and B[x] for 

Then 

: m2 : Eo 

kT[z]-T[z+l] 
S! 

k r[O] T[X] t T[Xl 

~!;<,(7[2]-7[2+11) 7[0]~7[X]~T[X] 

l !;,,(7[2]~7[2+1])~~[0]~7[x]~7[x] 

This completes the construction of the reuse functional of type Nz-+ !,,,Nz. A 

similar and somewhat simpler definition can be given for the reuse functional of 

type N, -0 !+ r N,. These functionals are the BLL versions of the “shaving” or 

“linearizing” functionals discussed in [ 18, Theorem 31. They are also closely related 

to Krivine’s recent work on “storage functionals” [26]. 

Let E, S, , SZ be the lambda terms assigned to the proofs E,, (T, , c2, resp. Then 

r= Ab.b(S,)(S,)(&) is the term assigned to the reuse functional of type Nz+ !yCINt. 

Here F is AjI:hg.Aa.a, S, is Ae.Af.‘Ag.Aa.f(e(f)(g)(a)), and SZ is 

Ae.AJ.‘Ag.Aa.g(e(f)(g)(a)). We conclude this example by observing that the part of 

the construction of the reuse functional given by the last proof figure displayed 
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above works for any type T[X] with x positive, for any proof p of t r[O], and for 

any proofs $J and y of + r[z]--o T[Z + 11. If the corresponding lambda terms are t, 

F, and G, then the lambda term assigned to the resulting proof of t Ntd T[X] is 

hb.b( F)( G)( t), see the Iteration Lemma in Section 6. A similar observation holds 

for tally natural numbers N, instead of dyadic lists NT. We shall also denote by r 

the lambda term associated to the tally reuse functional N, ---o !,.,,N,. 0 

Example 5.6. Let 112 be the cut-free BLL proof of t N: representing the dyadic 

list 112, given in Example 5.2. Consider the BLL proof shown in Fig. 20, and its 

corresponding proof net shown in Fig. 21. 

Esample 5.5 

Fig. 21 

We urge the reader to work out the complete analysis of the reduction in this 

simple example. One important observation here is that in the configuration shown 

in Fig. 22, where !,,._.,N;‘+, is at the main door and neither !V_ ,Nf nor ?,.,,(Nf+,)l 

is a conclusion of an axiom link, the cut involving the main door cannot be eliminated 

until the cut involving the auxiliary door has been eliminated (cf. the reduction step 

SSS). In turn, the cut involving the auxiliary door cannot be eliminated unless its 

other premise !,._,,Nf is at the main door of a box that has no auxiliary doors (again, 

cf. the reduction step SSS). Thus, at some point in the reduction process, we may 

encounter at worst the configuration of Fig. 23. 

$<IN? I,,,:I-- ?y<lN;+lL ,, . If1 

Fig. 22. 
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LYJz7-J L--y-J 
.Y<l 0 .Y<l 0 .Y<l 1 .Y<l 1 1 . 

Fig. 23. 

At this point, the 0 box must first “enter” the 1 box through its auxiliary 

by the reduction step SSS (Fig. 24). 
door 

Now the 1 box must first enter the 2 box through its auxiliary door by the reduction 

step SSS (Fig. 25), etc. 

The irreducible form of this proof net is shown in Fig. 26, where C, g, G are 

proof net representations of the proofs v, s, and s2, resp. from Example 5.5. This 

proof net comes from the following BLL proof, up to the order of the rules (Fig. 27). 

Fig. 24. 

I r I 

1 r,l ?y<lN:L j !y<,N: J ?y<lN:L j 

I !)<,N; ’ 
Fig. 25 

- 

I’ 
; %(I := 0) 

ID 

N; 21 
No N: 

N2 21 
Y<l 0 7 .y<~No j q(z := 1) 

N’I 
I N; 

&IN:- 7 .y<,N:L S(z :== 2) 

N? : 

!y<,N; - a N: 

!yc& 
Fig. 26. 
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iv i s,(z:=O) 

t N; 

--?? ‘! 
N; k NT 

b! Y-cl II !y<,N'; t N'; ‘c” t ; Sl(Z := 1) 

l-N2 
u 

1 S! 
NftN; 

t! Y<l N: !y<,Nf t N; !D 
t N2 

cut 
2 S! 

t! y<,N; 
t N; 

___ S! 
t! N; YCI 

Fig. 27. 

Recall from Examples 5.2 and 5.5 that b = Af.‘Ag.Aa.g(f(f(a))) is the lambda term 

assigned to the proof 1 I2 and that r = Ab.b(S,)(S,)(E) is the lambda term assigned 

to the reuse functional on dyadic lists. The lambda term assigned to the proof given 

at the beginning of this example is r(b) : !?<, Ni. It is important to observe that the 

lambda term assigned to the last BLL proof just considered, which corresponds to 

the irreducible form, is nor the ordinary normal form of r(b), since the irreducible 

proof (net) still does contain some cuts. 

Furthermore, it is important to observe that an 

given above can be recovered up to waste of 

containing: 

irreducible form such as the one 

resources from the information 

l the conclusion !.“<,NE; 

l the formal structure obtained by forgetting the types but keeping the boxes and 

the rule labels, including those inside the boxes, which in this example is as 

shown in Fig. 28; and 

l the knowledge that each p, comes either one of the dyadic successors s, , s2. 

ln particular, the formal structures /3,, pj,. . . distinguish between the two suc- 

cessors. A similar and somewhat easier observation of this nature can be made in 

the case of 1 .,,<iNk. (For a deeper analysis of the last point, see Lemma 5.1 below.) 

We conclude this example by noting that, in contrast to the situation just described, 

the cut-free proof net representing the dyadic list 112 (see Example 5.2) is the 

Fig. 28. 
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irreducible form of 

.V is,(x:=o) : .f,(x:= 1) ; S,(x := 2) 

N,Z N:- N: NfL N; N;l N:. 

This proof net represents the proof 

‘2’ ;s,(x:=o) 

F-N; N,+N: js,(x:= 1) 

t N: N:FN: ; s*(x := 2) 

for which the associated lambda term is 

Af.‘Ag.Aa.(AjAg.Au(AjAg.Aa.(AjAg.Au.~)(j-)(g)(u)) 

(f)(g)(a))(f)(g)(a) :N:. 

The normal form of this term is AJAg.Au.g(f(f(u))), the term associated to the 

proof representing 112 (see Example 5.2). 0 

Now we can formulate the solution to the problem mentioned at the end of 

Section 4, that N, and N: are not accessible. The main idea is to employ the reuse 

functional and rather than normalizing reducible cuts in the proof net representation 

of a given proof r of Nz, we instead normalize reducible cuts in the proof net 

representation of 

Example 5.5 

NZ,tN; !,<,N;F!,,~N:. 

EN’,- !.,.<,N; N;--l .?<,N;, N$!!,,,N; 
--L 

:T 

tN; N:t !l,< ,N: 
cut 

cut 
C! ?<,NZ 

The conclusion ! ,,~, N: is accessible and Lemma 4.8 will apply (similarly, we work 

with !,,<, N, instead of N,). 

As we have already mentioned, this method is motivated independently by two 

sources. One is in the notions of “shaving” or “linearizing” functionals in [18], 

Theorem 3. The other source is Krivine’s recent work [26], the point of which is to 

use leftmost reduction in lambda calculus: in spite of the obvious fact that leftmost 

reduction can force us to compute the same integer several times, Krivine manages 

to force the evaluation to occur exactly once. His storage functionals do not yield 

the ordinary normal form of the integer but rather something like n cuts applied 

to 0 and successor. Similar methods have been applied in linear logic in recent work 

of Regnier. 
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Now the rules we use in BLL are a kind of symmetrization of leftmost reduction. 

The idea is that the only relevant difference between left and right is that in f(a), 

a is inside an S! box. 

Lemma 5.1 below is stated for the particular case of tally integers. The case of 

dyadic lists is completely analogous. 

Lemma 5.1. In bounded linear logic, one can construct proofs with associated lambda 

terms as follows: 

(i) D 0. 1 ‘?“_1 No 

(ii) D S: !,._-,N,+ !,._ ,N,+, 

(iii) D r:N,--O!,.c,N_y 

such that whenever a tally integer n is the ordinary normalform of a closed term f : Nk, 

then an irreducible proof with associated term S”(O) : !.,.<, Nh is the result of eliminating 

alI reducible cuts from rhe proof with associated term r(t) : !,._ ,NL. 

Before we give the proof of Lemma 5.1, let us explain the irreducible forms we 

are looking for. We describe them in the framework of sequent calculus; up to the 

order of rules this will contain all possible irreducible forms. We remind the reader 

of Examples 5.5 and 5.6. In particular, part (iii) of the statement of Lemma 5.1 

concerns the tally version of the reuse functional given in Example 5.5. 

A zero-proof Z,, where a is a nonnegative integer, is the only proof of !,.- ,N, 

obtained by waste of resources from the cut-free proof with associated Church 

numeral 0 = Ajha.a (recall Example 5.1). 

A successor step Sohr, where the nonnegative integers a, 6, c satisfy a s b < c, is 

the only cut-free obtained from the cut-free proof S, of N;fiN,+, given in Fig. 15 

by the following steps: let x = b, obtaining a proof Nh t Nh+, . Then waste N, into 

Nh and N,,+, into N,,, obtaining a proof N,, EN,.. Applying !D, we obtain So,,<, which 

proves !,.<,N,t-N,. 

If n is a proof of a formula !,..,, N,, a successor of n is any proof n’ of some 

!,..-,N,. obtained from KI by first applying a cut with some So,,<, then applying the 

S! rule. 

The irreducible proof that we obtain will consist of iterated successors of some 

zero-proof, analogous to Example 5.6. 

We emphasize that for the eventual computation, resources will be erased and 

therefore only the number of successors made from zero will be remembered. 

Proof of Lemma 5.1. By induction on k ‘G k+ 1 we shall show that either the 

irreducible form of r(t) is some iterated successor of zero, the number of iterations 

being less than k’, or it is a k’-iterated successor of a proof of some !,.<,N,, which 

is an S! box. With k’ = k + 1 only the first possibility remains. As in the case of 

Lemma 4.8, the argument can be formulated either by means of sequents or proof 

nets, the difference being that the latter dispenses with a lot of bureaucracy. In the 

case k’ = 0 we just have to show that the irreducible form of r(t) is a box, which is 
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plain from Lemma 4.8. To move from k’ to k’+ 1 we can assume that the irreducible 

form of r(t) is the k’th iterated successor of some box which proves !y<,Na. Now 

observe that any exclamation mark box in the irreducible proof net has a well-defined 

ancestor in the original proof r(t). Now it may be seen that the ancestor of this box 

cannot lie within f. This is because in the reduction step SV the second order 

abstraction term AZ.!,, ,NZ has been substituted in t for a generic predicate, i.e. for 

a second order variable which has no internal structure. Therefore, the ancestor is 

located within r. Among the candidates, only two boxes type-check. First, the box 

for 0, which yields the first possibility of the case k’+ 1. The second one is the box 

for S (which comes from S, mentioned above by applying successively !D and S!); 

this box for S has two conclusions and it can be changed into a box with one 

conclusion only by making some proof 17 “enter” S through cut-elimination. In 

this case our proof r(t) will be a (k’+ l)-iteration of 17. Now when l7 enters some 

descendent of this box for S, l7 must be a box: this comes from the restrictions on 

cut-elimination for storage rules. This yields the second possibility of the case 

k’+l. 0 

Remark. The reasoning in this proof clearly applies to linear logic when the resource 

information is omitted. 

Recalling the discussion before the proof of Lemma 5.1 and Examples 5.5 and 

5.6 and the subsequent discussion, let us give the following definition. 

Definition 5.2. A function 4 from dyadic lists to dyadic lists is represented in bounded 

linear logic by a proof F of N’,-Nz,,, if for every dyadic list b of length 4 n and 

the corresponding cut-free proof b of NE, the irreducible proof net with conclusion 

’ N2 .I’<, ,,(“) that corresponds to the dyadic list d(b) is the irreducible form of the 

proof net representation of the BLL proof displayed in Fig. 19. 

A function 4 from dyadic lists to dyadic lists is representable in bounded linear 

logic if there exists a resource polynomial p(x) and a BLL proof of tNz-oNi(,) 

that represents 4. Similarly for functions on tally natural numbers and for functions 

of several arguments, perhaps some tally, some dyadic. 

We again emphasize that in the actual computation by cut-elimination, much of 

the type information is erased first, so the result will be a graphical configuration 

of the successors “applied 1” and “append 2” that uniquely determines 4(b). 

Discussion. In regard to Definition 5.2 above, note first of all that the lambda term 

f associated to the BLL proof F has type N2+N2 in system 9 (erase all resource 

information and exclamation marks from the BLL proof F). Thus if 6 is the dyadic 

Church numeral corresponding to the cut-free proof b, then f(b) has a normal form 

which must be a dyadic Church numeral. Let r be the lambda term associated to 

the reuse functional given in Example 5.5. r(f(b)) is the term associated to the proof 
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given in Fig. 19. Furthermore, because of the dyadic case of Lemma 5.1, the 

irreducible form in the situation described in Definition 5.2 and the irreducible form 

of 

+L 

cut 

both have the same associated lambda term. In other words, because of the dyadic 

case of Lemma 5.1, we may equivalently require that the ordinary normal form of 

f(i) must represent 4(b). Lemma 5.1 seemingly states only one direction, but the 

other follows also by Lemma 5.1 because of the Church-Rosser property and because 

f(b) has a normal form. However, our representation by irreducible forms rather 

than by normal forms is much more economical from the point of view of computa- 

tion. In particular, our approach yields a feasible computation. 

Theorem 5.3. Any function from dyadic lists to dyadic lists represented by a proof of 

t-Nf;-+N&, in bounded linear logic is computable in polynomial time. Furthermore, 

the required polynomial can be obtained explicitly from the weight of the representing 

BLL proofof kN:+N&,. 

Proof. Let F be a proof of tNf,-N$,, that represents a function 4 from dyadic 

lists to dyadic lists. Let I( Fll(x) be the weight of F and let p(x) be the weight of 

the proof that defines the reuse functional, given in Example 5.5. For any dyadic 

list b of length at most n, let b be the cut-free proof of t_Ni representing b (see 

Example 5.2). Observe that the weight /lb/( . 1 1s inear in n. Referring to the proof 

displayed in Fig. 19, we readily see that its weight is Q(n) = 11 Fll( n) +p(n) + kn + 1, 

for some constants k and 1. By Theorem 4.4, therefore, the irreducible form of this 

proof, which by Lemma 5.1 and by the discussion after Definition 5.2 uniquely 

determines d(b) will be reached in at most Q(n) steps. Thus it suffices to show that 

the computation uses only polynomial space with respect to resource parameters 

(if we have a procedure that uses polynomially many steps and is polynomial space, 

then it is polynomial time.) The argument will apply to any proof net with conclusion 

NZ,. 

We first observe that we may erase the types (i.e. formulas) and keep only the 

information about links and boxes. This information suffices to carry out the 

reduction steps. As we have noted in Example 5.6 and Lemma 5.1, after eliminating 

all reducible cuts, we are left with a formal trace of the irreducible form of a given 

proof, from which the irreducible form can be uniquely determined. In fact, the 

formal trace itself already determines the required dyadic list 4(b) uniquely. 
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However, we are still left with the problem of duplication of boxes in the reduction 

step SSC. 

The solution will involve creating a new pointer to the address of the box instead 

of duplicating the box explicitly. More precisely, let us assume that we have a finite 

list of signatures l l l * + . l ; l , which are basically natural numbers. (A natural 

number n is intended to indicate n auxiliary doors of a black box.) We shall consider 

a “dynamical proof net” without formulas, by using formal axioms from the given 

finite list of signatures. Such a dynamical proof net may have many formal axiom 

links that have any positive number of conclusions. Any such formal axiom link 

with n + 1 conclusions will refer to a unique item on the list of signatures, which is 

an occurrence of n. Such a formal axiom link with n + 1 conclusions is intended to 

replace a maximal box with n + 1 doors in a proof net without formulas. Therefore, 

these formal axiom links will also refer to a list of certain formal boxes in a way 

that will be inductively defined below. We will establish that the size of this dynamical 

proof net evolves polynomially during the elimination of reducible cuts. 

The initial structure may be described as follows. Let pi be the immediate content 

of the ith box in the formal structure obtained from a given proof net by erasing 

the formulas but keeping the names of links. PO is taken as minimal, i.e., there are 

no boxes inside PO. The signature of /3,, is obvious: there must be a bijection between 

the signature and the doors of &,, which relates the distinguished dot to the main 

door. p, , on the other hand, might use & as a module. We indicate that by using, 

if needed, only the formal axiom link that refers to the signature of PO. Furthermore, 

/3, has its own signature defined as in the case of PO, etc. Notice that for this initial 

configuration, the structure of using a box inside another will be quite limited, 

because the nested structure in a nonrooted tree, and if the same box should occur 

in two different places in this tree, we cannot expect to see that at compile time. 

Because we are referring only to immediate subboxes, a formal box can be referred 

to by at most one other formal box later in the list. 

The list of formal boxes will increase during the elimination of reducible cuts, 

but the increase will take place only in the case SSS, see Section 4. Each time such 

a reduction step takes place, a new formal box is created because a minor premise 

(a formal box with signature ; 0) enters a major premise (a formal box with arbitrary 

signature) through a distinguished auxiliary door. Therefore the new formal box is 

uniquely described by: 

l the address of the major premise in the previously created list, 

l the address of the minor premise in the previously created list, 

l the signature of the new formal box, and 

l an integer j G n, where n refers to the signature of the major premise. 

Let us recall that in each reduction step the weight strictly decreases, and therefore 

the list of formal boxes is polynomial in the resource parameters. Let us also observe 

that there is a fixed bound, say N, on the number of auxiliary doors of each formal 

box in the created list. 
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During the elimination of reducible cuts, at each moment we have a dynamical 

proof net with pointers to the list of formal boxes and to their signatures. We now 

show that the size of these dynamical proof nets evolves polynomially. 

We have to count the number of links. This is mainly taken care of by the weight. 

In particular, for the formal axiom links that replace boxes with n + 1 doors, the 

weight is at least n + 1 (see Section 3.5). However, the weight does not count cuts, 

which therefore must be counted separately. Given a cut, consider the two links 

leading to the premises and arbitrarily pick one of them. Recall (from Section 3.5) 

that each link except cut has a positive weight. Because of the presence of formal 

axiom links in a dynamical proof net, links may have at most max{N + 1,2} s N + 2 

conclusions. 

Since we chose an injection from cuts to other links, then each such link in a 

dynamical proof net is related to at most N+2 cuts. Thus the number of cuts is at 

most (N+2) times the weight. Therefore the total size is linear in the weight. 

It remains to state the reduction steps involving formal boxes, but relying only 

on the information available at each step. There are four cases (see Section 4): 

SSW: Note that one simply destroys a part of the structure. 

SSC: Create a copy of a formal axiom link (not the whole box) together with a 

pointer to the same place as the original. 

SSS: Remove the cut with the minor premise, replace the major premise with 

another formal axiom with a smaller number of conclusions, and make a pointer 

to the new box described above. 

SSD: Consider the formal box y involved in the cut. Trace back through the 

hereditary major premises until we get to the initial list of formal boxes, say to the 

item i. Make a cut with the conclusion of pi that gives rise to the main door of the 

ith formal box on the initial list. However, this formal box has side doors, all of 

which are linked to formal boxes through 

minor i 

minor Mqjor 

minor Major 

Y 

where the Majors give the addresses for the relevant side doors. In pi make cuts 

between these side doors and new axioms, each with exactly one conclusion. Each 

of these new axioms should now refer to the corresponding minor, the address of 

which is known (see the four items in the creation of new boxes discussed above). 0 

The argument is analogous in the tally case. We obtain the following theorem. 

Theorem 5.4. Any function from tally natural numbers to tally natural numbers rep 

resented by a proof of t N, - NpCx, in bounded linear logic is computable in polynomial 
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time with respect to tally length. Furthermore, the required polynomial can be obtained 

explicitly from the weight of the representing BLL proof of kNN,-Np(xI. 

Another proof of Theorem 5.4 will be given at the end of Section 6. 

6. Representing polynomial-time functions in BLL 

In this section we show the converse of Theorem 5.3. 

Theorem 6.1. Every polynomial-time computablefunction can be represented in bounded 

linear logic by a proof of t N: --o N$,, , for some resource polynomial p. 

The reader will recall that the notion of “function represented by a proof in BLL” 

is specified in Definition 5.2. 

This section is simply a series of exercises about the flexibility of the typing rules 

of BLL. Let us point out that the lambda terms associated to the BLL proofs (cf. 

3.3.1) that we construct for the purpose of representing polynomial time functions 

on natural numbers are convertible to the type erasures of lambda terms ordinarily 

used for representing these functions in system 9 as functions on dyadic lists, i.e. 

as terms of type N2+N2. Thus, from this point of view, we do not actually construct 

any new representations. In particular, the question of representing fast algorithms 

and the question of tightness of time bounds arising from BLL representations will 

be studied elsewhere. Here we simply check that resource information is incorporated 

into the BLL inference rules in a way flexible enough to express the ordinary lambda 

term representations of certain functions on dyadic lists. We rely on Cobham’s 

well-known characterization of the class of polynomial-time functions 9’ as the 

smallest class of functions closed under composition and limited recursion on 

notation, and containing certain initial functions [5]. 

Remark. The presentations in the literature of Cobham’s characterization of 9’ vary, 

e.g. [28] considers functions whose inputs and outputs are only those binary lists 

that encode natural numbers under the usual binary encoding, while [30] and [32] 

consider functions whose inputs and outputs are natural numbers in dyadic notation. 

We consider dyadic notation, customarily written as lists of l’s and 2’s, instead of 

binary lists of O’s and 1’s. Denote the function that appends symbol i to (the end 

of) list 1 by I* i. Formally, we define dya(0) = E = the empty list; dya(2i+ 1) = 

dya(i) * 1, dya(2i+2) = dya(i) * 2. In this way we obtain a one-to-one correspon- 

dence between natural numbers and dyadic lists. 

The following two lemmas are obtained by straightforward generalization of the 

construction given in Example 5.5. 
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Lemma 6.2 (Iteration Lemma). 

(1) Tally case. Let r[ z] be a type in which all free occurrences of resource parameter 

z are positive. Given BLL proofs of t7[0] and ä T[Z]-T[Z+ 11 with associated 

lambda terms t and F, respectively, one can construct a proof of kN,- T[X] with 

associated lambda term hn.(n)( F)( t). 

(2) Dyadic case. Let r[z] be a type in which the free occurrences of resource 

parameter z are positive. Given a BLL proof of Er[O], and two BLL proofs of 

k T[Z] - T[ z + l] with associated lambda terms t, F and G, respectively, one can 

construct a BLL proof of t- Nz+ T[X] with associated lambda term Aw.( w)( F)( G)( t). 

Intuitively, the role of the Iteration Lemma (say, its dyadic case) may be described 

as follows. For instance, T[Z] may be N:,,, and the given BLL proofs of +Ni,,, 

and (two proofs of) ›N~~z~~N~~z+,~ may represent a dyadic list cr and functions 

f and g, respectively. Then the function h defined by iteration 

h(e) = a, h(b * 1) =f(h(b)), h(b * 2) = g(h(b)), 

will be represented by the proof of EN:-N~,,,. (Strictly speaking, the sense in 

which the two given BLL proofs of ›N~~z~-N~~z+,~ represent functions f and g, 

respectively, is not specified by Definition 5.2, but the required more general 

definition is obvious from Definition 5.2.) 

Lemma 6.3 (Reuse Lemma). 

(1) Tally case: Let 0 and S be lambda terms expressing the tally numeral zero and 

the tally successor, respectively, described in Examples 5.1 and 5.3. One can construct 

a BLL proof of EN, - !l’<y, N, with associated lambda term An.n(S)(O). 

(2) Dyadic case: Let E,-S~, and S2 be lambda terms expressing the empty list and 

the two successors “Append 1” and “Append 2”, respectively, described in Examples 

5.4 and 5.5. One can construct a BLL proof of i-N:- !,,+Nz with associated lambda 

term Ab.b(S,)(S,)(E). 

In either case of Lemma 6.3, we denote the resulting lambda term by r. 

Among the consequences of the Reuse Lemma are the following derived inference 

rules: 
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i.e., unrestricted Weakening and Contraction on Nz and N,. Furthermore, the 

induced lambda term assignment is: 

c’:T D t:B c’:l- D t:B 

c’:I’,a:Nz D t:B F:I’,a:N, D t:B 

c’:T, a:Nz, b:N$ D t: B 

c’:I’,a:N, D t[a:=r(a), b:=r(a)]:B 

c’:T. a:N,. b:N, D t: B 

c’:I’,a:N, D t[a:=r(a),b:=r(a)]:B’ 

Another way to apply the Reuse Lemma is through interaction with the S! rule, 

e.g. as in the proof of Proposition 6.5 below. 

Let us first show that polynomials on tally natural numbers are representable 

in BLL 

Proposition 6.4. Tally addition is representable by a BLL proof of F N, @ N,, -N,+,.. 

Proof. As in system 9 and untyped lambda calculus, the intuitive motivation for 

this representation is the equation 

f"of"=f"+" 

where f k is the k-fold composition f 0 f 0 . . . 0 f of an endofunction with itself. First, 

using 4L and VL with N,, as VaA and Az.a(x+z) as T yields a BLL proof of 

N,, !z<Ja(x+ 1 z -o(Y(x+z+l)),Ly(x) t- (.y(x+y). 

On the other hand, a BLL proof of: 

N,, !,<,(a(~)-~(z+l)), a(0) t a(x) 

is readily obtained by VL and -L. Now we use Cut on these two proofs, with cr (x) 

as the cut formula, and thus obtain a BLL proof of: 

N,,Ny, 4<x(a(z)+a(z+l)), !z<y (a(X+z)~cy(X+z+l)), a(0) F a(x+yy), 

whence by Contraction: 

Nx, N,, !z<x+y(a(z) -J(Y(z+ l)), a(0) t- (Y(x+ y). 

By +R and VR we obtain: 

N,, N,EN,+,. 

Now the desired BLL proof of 

tN,ON,,~N,tY 

is obtained by OL and -+R. 0 
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Proposition 6.5. Tally multiplication is representable by a BLL proof of 

tN,ON,,-NN,,,. 

Proof. Again as in system 9, the intuitive motivation for this representation is the 

equation: 

(f”)“=f”” 

where f k is the k-fold composition f 0 f 0 + . . 0 f of an endofunction with itself. First, 

using +L and using VL with N,, as VaA and hz’.a (zy + z’) as T yields a BLL proof 

of 

N,, L,<,(~(zY + z’) --oQ(ZY +z’+ I)), Ly(ZY) t a(z), l tYL 

hence by +R 

N,, !~,<,(~(zY+z’)~~(zY+z’+~)) t ~(zY)-~zY+Y), 

and thus by Dereliction 

!,,<,N,, !Z~<Y(~(~y+z’)-oa(zy+z’+l)) t a(zy)-a(zy+y). 

One now applies the S! rule,4 where the formula (Y (zy + z’) - a (zy + z’+ 1) is thought 

of as a(~‘)-cu(y’+l)[y’:= zy+z’], and where y’ does not occur in !Z,<lN,,. One 

obtains a BLL proof of 

I .,“<X N,., !,.,<~~(~(Y’)-~(Y’+~)) + LQ(zY)-~(zY+Y). 

On the other hand, using +L and using VL, with N, as VaA and Az.a(zy) as T 

yields a BLL proof of 

Nx, !~<,(~(zY)-~(zY+Y)), a(O) E I. 

Now use Cut on the two proofs constructed, with !,<,( a( zy) 4 cx(zy + y)) as the 

cut formula, obtaining a BLL proof of 

Nx, $<.xNv, !y.<.w(~(y’) +a(y’+ l)), a(O) t a(xy). 

hence by -R and VR 

N,, !+NY k N,,. 

By the Reuse Lemma and by using Cut, one obtains 

Nx, N, k N,, 

and thus the desired BLL proof of 

tN,ON,,-NN,, 

can be obtained by OL and -R. 0 

4 In which we set, in order, y = y’, z = z’, x = z, p = x, 9,(z) = 1, 92(z) = y; thus, u,(p) = p, and u2( p) = py. 
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Corollary 6.6. Any polynomial p( x, , . . . , xk) in k arguments with nonnegative integer 

coeficients is representable by a BLL proof of 

+Nx,@N,@. * *@Nq-~Np(x ,,._., xk). 

Proof. First, note that any such polynomial is a resource polynomial. Next, since 

xk=x.... . x (k times), the proof of Proposition 6.5 yields a BLL proof of: 

N,, . . . , N,kN,r 

and hence by multiple contraction on N, (justified by the Reuse Lemma) one obtains 

a BLL proof on N, tN,h and hence of k N, AN,& by -JR. Similarly, nx can be 

represented by a BLL proof of N, I- N,,. Now the corollary follows by Proposition 

6.4 and by Reuse. q 

We have already represented in BLL dyadic constants, the two dyadic successors, 

and projections, cf. Examples 5.2 and 5.4 and comments after Reuse Lemma (Lemma 

6.3). We now represent in BLL a relatively fast-growing function that can be used 

to majorize the initial functions in Cobham’s characterization of ??. 

Proposition 6.7. Let g(a, b) be dejined by iteration on 6: 

g(a, E) =2, 

g(a, b * i) =f(a, g(a, b)) i-1,2, 

where f(a, d) is itself defined by iteration on a: 

f(e,d)=d, 

f(a*i,d)=(f(a,d))*l i-1,2. 

The function f is representable by a BLL proof of +Nz@N$-NC,, . The function g 

is representable by a BLL proof of FN~@N~-N&+, . 

Proof. First we shall use the dyadic case of the Iteration Lemma (Lemma 6.2) to 

representj It suffices to consider Ad.$ Let a[ Z] be Nt --o Nt,, . For z = 0 let E Nz -N: 

be obtained from an Axiom by -+R. 

Both cases of the iterative step are the same. The required BLL proof of 

E (Y [ z] - a[ z + l] is constructed as follows. Consider the BLL proof s, of Nz t Nf;,, 

given in Fig. 17 (which represents the successor “Append 1”) and set x := y + z in 

that entire BLL proof (with the bound resource variable y renamed to y’). We obtain 

aBLLproofofN;.+ZtN:+,+, . Also consider the BLL proof of Nz.- Nt,, , Nz. t Nttz 

obtained by applying one instance of -L to two Axioms. Now use Cut, where the 

cut formula is N:+Z, thus concluding NGdNt+Z, Nf, t Nf,,;,, . Now use -+R twice. 

The Iteration Lemma then yields a BLL proof of i- N$-= (Nf - N:,,). The corres- 

ponding BLL proof of kNtON:.-N:,, represents the function f introduced above. 
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Now let us represent the function g. We consider Aa.g. Let ~[z] be N:-Ntz+, . 

For z = 0, let EN: be the BLL proof representing the list 2, cf. Example 5.2 for 

comparison. Apply weakening on Nt, as justified by the Reuse Lemma (cf. the 

comments after Lemma 6.3) and thus obtain a BLL proof of Nzt N:. Apply -JR. 

The resulting BLL proof of +Nt-N: represents the constant function 2. 

In the iterative step both cases are the same. The desired BLL proof of t r[z] - 

[z+ l] may be obtained as follows. From the BLL proof of ä N~ON~.-Nt+, that 

represents .f; given above, and the BLL proof of N:, Nt., Nt@Nt - N,:,, + N:,, 

obtained by OR and +L from Axioms, one can construct a BLL proof of N:, 

N;. + $+.x by using Cut, where the cut formula is N~ON~+N~+, . Let y = xz + 1 

in this entire BLL proof, renaming bound variables if necessary. One obtains a BLL 

proof of N2, N:Z+, t N~~z+l~+l. On the other hand, a BLL proof of Nz-Nzz+, , 

N2, k N:,+I is readily available by using -JL on Axioms. Now use Cut on the latter 

two BLL proofs, where the cut formula is N:,,, , yielding: 

2 
N;, N:, N:-NI-z+, + N:cz+,,+,. 

Now use contraction on Nf; as justified by the Reuse Lemma (cf. the comments 

after Lemma 6.3). One obtains: 

N:, N:-N%+, t- Nf-(,+I,+,. 

Now use -JR twice to obtain the required BLL proof oft ~[z]- T[Z + 11. Hence 

by the Iteration Lemma (Lemma 6.2) one constructs a BLL proof of 

N:-o(N2,+N&+, ). The corresponding BLL proof of k Nz 0 Nt - N&+, represents 

the function g. 0 

We now show how to represent several auxiliary functions. 

Proposition 6.8. The functions p,(u) = 1 * a and pz(a) = 2 * a are representable by 

BLL proofs of +Nz+Nf;+, . 

Proof. We consider p,, the representation of pz being analogous. Recall the BLL 

proof s, that was given in Fig. 17, which represents the successor S, , “Append 1”. 

We modify that proof as follows. Consider the larger (left) branch above the lowest 

instance of +L. Throughout that branch, except in Nt, replace each instance of 

L,(~(Y)--a(~ + 1)) and of !.vcr+l(a(~) --(y+l)) by !,~::(~(~+l)~a(y+2)), 

a(O) by a(l), and a(x) by a(x+ 1). The last rule in the branch is VL, but now with 

hy.cu(y+ 1) as T (instead of hy.cl(y), as in Fig. 17). The branch now concludes with: 

Nf, !,C;~(LU(Y+~)~(~(Y+~)), !.~<,(~(~+1)~~(~+2)),~(1) F a(x+l). 

We can use -L on this proof and on axiom a(O) t- a(0) to obtain 

N:, (~(0)--0(~(1), !~~~(~(Y+~)-ocu(Y+~)), 

!,.<X(a(y+ 1) --(y+2)), Q(O) t- (-y(x+l), 
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hence by Dereliction: 

and then by Contraction: 

N:, l,.<x+,(a(y) --(y+l)), !,<x(~(Y+l)~a(Y+2)),cu(O) t- a(x+l). 

Another instance of !,~,(~y(y)--o(~(y+l)) can be introduced by Weakening, and 

then Contraction can be used with respect to the other !,,.<, to conclude: 

N’ 1 X, .,<.X+,(Q(Y)“@(Y+l)), !~<~+,(~(Y)~~(Y+l)),~(o) k a(x+l), 

from which one obtains ä N~-N~+, by three applications of +R, one application 

of VR, and another application of +R. Note that the lambda term associated to 

this entire BLL proof is Ae.Af.‘Ag.Aa.e(f)(g)(f(a)). 0 

The function reversing dyadic lists, rev, may be defined by iteration from p, and p2: 

rev(E) = E, reu(b * 1) =p,(rev(b)), rev(b * 2) =p*(rev(b)) 

The dyadic case of the Iteration Lemma (Lemma 6.2) and Proposition 6.8 readily 

yield the following corollary. 

Corollary 6.9. The function rev reversing dyadic lists may be represented by a BLL 
2 proof of EN;-N,. 

Let us define, for any types A and B: 

AOB dzf Vcu !,<,(A-cr(O))-o!,,,(B-o~~(0))~~~(0). 

Note that erasing all resource information results in the usual definition of weak 

sum in system 9. Furthermore, as in system .9, in BLL one can derive: 

so that the associated lambda terms are type erasures of the canonical polymorphic 

left and right inclusions and of the polymorphic “definition by cases” in system 9, 

respectively. 

Although the analog of Lemma 5.1 can be established for type N~ON~ON~, for 

our purposes it suffices to state the following proposition by means of lambda terms 

associated to BLL proofs. The reader should recall the notion of the lambda term 

ci representing a dyadic list a as discussed in Example 5.2 as well as the discussion 

after Definition 5.2. 
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Proposition 6.10. One can construct a BLL proof Bpd of 

EN~,+N@N;ON: 

whose associated lambda term bpd satisfies for any dyadic list a: 

bpd(e) = left(E), bpd(S,(a))= mid(a), bpd(S,(ti))= right(ti). 

in the sense of convertibility, where 6 is the lambda term representing a, and where 

left, mid, and right are type erasures of the canonical polymorphic inclusions into the 

weak sum. 

Proof. We use the dyadic case of the Iteration Lemma (Lemma 6.2). Let T[Z] be 

N~@N~@N~. When z = 0 take the BLL proof obtained by Cut from the canonical 

BLL proof representing the empty list E and the canonical BLL proof “Left” 

Ni+Ni@N:@Ni. Its associated lambda term is left(e). In the iterative step for S,, 

first consider the BLL proof of N~@N~@N~EN~+, defined “by Cases” from Axiom 

N&N;+, , from the BLL proof s, of N~EN~+, g iven in Fig. 17 (with z for x), and 

from the BLL proof s2 of Nzt Nz,, . Then cut this BLL proof defined by cases with 

the canonical BLL proof “Mid” of NT,, t NiO Nz,, ON:,, . Now use -+R to obtain 

the BLL proof of l $Z]-JT[Z+ 11; let M be its associated lambda term. In the 

iterative step for Sz, the construction is the same, but with “Right” instead of “Mid”. 

Consider the BLL proof of k ~[z] 4 T[ z + l] so obtained and let R be its associated 

lambda term. Apply the dyadic case of the Iteration Lemma to obtain the BLL 

proof Bpd of EN,-+N~@N~ON~ and let bpd be its associated lambda term. 

One easily checks that bpd (S,( a)) = M( bpd (8)) = mid (ii) and bpd ( S2( a)) = 

R(bpd(G)) = right(8) for all binary lists a. q 

As a step in representing limited recursion on notation, we represent cutoff on 

dyadic lists. 

Proposition 6.11. The cut-of function 1, where a [n = the list of jrst n digits of a 

dyadic list a, is representable by a BLL proof of kN,@N_f,-Nf;. 

Proof. Here one has to be somewhat crafty. We shall use tally iteration (Lemma 

6.2), but more to the point, in the iteration we shall first reverse the list and we 

shall also keep track of the tail that will have been cut off. Let ~[z] be N:,-Nf@N_t; 

the Iteration Lemma (tally case) will yield a BLL proof of EN, -N;.+N’,ON;. 

From this we consider the associated BLL proof of EN,@N~-N~ON~ and then 

take the left projection (available as a consequence of reuse) and thus obtain the 

desired BLL proof of tN,ON;-N:. Observe that because of the occurrences of 

resource variable x, iteration has to be on N,, i.e., it has to be tally iteration. Before 

we describe the base and the iteration step, let us give a sample computation which 

we will be representing. Consider the list 112. Then: 

l for n = 0: (E, 211); 
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l for n = 1: (1,21); 

l for n =2: (11,2); 

l for n=3: (112,s); 

l for na4: (11&E). 

Note that we can use bpd of the right component at stage k (cf. Proposition 6.10) 

to define the left component stage k+ 1 by cases. 

Now let us describe the base and the iteration step of this tally iteration. In the 

base, first take the BLL proof of ENi representing the empty list (cf. Example 5.2 

for comparison). Second, take the BLL proof of i-N:,-+Nt that represents reverse 

(cf. Corollary 6.9) and cut with the canonical BLL proof of N:-+N:, N:tNz. 

(built from two axioms by -L) obtaining a BLL proof of N:t-N;. Now use OR 

on the two BLL proofs constructed and then “R, yielding + N: - NiO N:, i.e. r[O]. 

In the iteration step, it suffices to construct a BLL proof of ~[z]I-T[Z+ 11, i.e., of 

N;-N;ON:, E N+N:+, ON:. This BLL proof will be obtained by 4-R from a 

BLL of Nz. - Ni 0 N; , N: t- NT,, ON:, which in turn can be obtained by -L from 

an instance of an axiom N; +Nt. and from a certain BLL proof of NZONt+ Nz,, 0 

NG , which we now describe. First consider a BLL proof of NiO N$O N$ t N: defined 

by cases, where the left case is a waste of resources N~EN~ (i.e., an instance of an 

axiom) and the mid and right cases are the identity Ntt Nt. (again an instance of 

an axiom). Now use Cut with the BLL proof of Ntt NiONtONf corresponding 

to the BLL proof Bpd built in Proposition 6.10, and thus obtain a BLL proof of 

Nt t Nz,. By the Reuse Lemma and weakening, obtain a BLL proof of Nt , Nf. E Nt , 

which we shall here call 3. On the other hand, consider the following BLL proof 

of N:, N;ON@N;. t N:,, defined by cases. The left case is the BLL proof of N:, 

N; k NT+, obtained by Reuse and weakening from waste of resources Nz t- Nt,, . 

The mid case is the BLL proof of Nz, N”y t- Nz,, obtained by Reuse and weakening 

from the BLL proof of Nzt Nz,, given in Fig. 17 in order to represent “Append 

1”. The right case is similar, with “Append 2” instead. Now cut this BLL proof of 

NT, N:,ON;ON; E N;,, with the BLL proof of N~,~N~ON~ON~ (corresponding 

to the BLL proof Bpd built in Proposition 6.10), and therefore obtain a BLL proof 

of N;, N.t. t Nf,, which we shall here call 2. Applying OR to d;p and % yields: 

N;, N;, N;, N; I- N:+,ON;, 

whence by Reuse and contractions we obtain: 

N&N;. t N:+,ON;.. 

Now apply OL. I7 

We now represent in BLL the length function from dyadic lists to tally natural 

numbers. 

Proposition 6.12. 7’he function lth from dyadic lists to tally natural numbers, Eth( a) = 

the number of symbols in a, is representable by a BLL proof of EN:-N,. 
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Proof. Since M(e) = 0, Zth( a * i) = Ith( a) + 1, i = 1, 2, we may use dyadic iteration, 

see Lemma 6.2. Simply let T[Z] be N,, in the base take the cut-free proof of +N, 

representing numeral 0 (see Example 5.1 for comparison), and in either iteration 

step take the BLL proof of tN,-N,+, representing the tally successor (obtained 

by +R from Fig. 15 with z for x). 0 

Let us now consider limited recursion on notation, usually written as follows. Given 

function g, h, , hZ, and I, the function f is defined by limited recursion on notation 

if it satisfies: 

f(U,,.‘.,%, E) = Aa,, . . . , an), 

f(a,, . . . , a,, b * 1) = h,(a,, . . . , a,, b,f(a,, . . . , an, b)), 

.!-(a,, . . . , an, b * 2) = Ma,, . . . , an, b,f(a,, . . , an, b)), 

f(a,, . . . , an, b) s Ita,, . . . , an, b), 

Recalling the cut-off function ] discussed in Proposition 6.11, it suffices to consider 

the following schema instead of limited recursion on notation: 

.f(% 3.. ., unr &I = Aa,, . . . , U”L 

f(a,, . . . , a,, b * 1) = h,(a,, . . , an, b,f(a,, . . . , an, b)) 

1q(k,...,k,,m+l), 

ffa,, . . . , a,, b * 2) = Ma,, . . . , an, b,f(a,, . . , a,, b)) 

idk,,...,kn,m+l), 

where q is a polynomial on tally natural numbers with tally natural numbers as 

coefficients, the length of dyadic list a, is k,, 1 < i< n, the length of dyadic list b is 

m, and the length of dyadic list g(u,, . . . , a,) is at most q(k, , . , k,, 0). We shall 

refer to this schema as Schema (*). 

Proposition 6.13. Let f be defined by Schema (*) from dyudic functions g, h, , hz, and 

from tally polynomial q. Let g be representable by a BLL proof of 

Let hi = 1, 2, be representable by a BLL proof of 

for some resource polynomials pi, i = 1, 2. Then f is representable by a BLL proof of 

tN;,@ 2x 2 2 
. .ON,,~ONx-oN,c,,I ,..., y,,,x). 
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Proof. We suppress parameters for the sake of simplicity. (We may do so because 

of +R and +L.) We shall use dyadic iteration (see Lemma 6.2) with T[Z] being 

NZON:,,,, and then take the right projection. A representation of tally polynomial 

q was given in Corollary 6.6. In the base case, we take the BLL proof of tNi@Ni,,, 

obtained by OR from cut-free BLL proofs representing the empty list and the dyadic 

list g. In the iteration step, let us consider the case i = 1; the case i = 2 is completely 

analogous. 

Consider the BLL proof of N,, Nt E N: corresponding (by +L and Cut) to the 

BLL proof built in Proposition 6.11 to represent the cut-off function 1, and let 

x = q(z+ l), y =p,(z, q(z)). Now we will use Cut, where the cut formula is N~,(r,q(z)J 

and where the left premise of the Cut is obtained by letting x = z and u = q(z) in 

the BLL proof of Nz, NE t Ni,,,,, that corresponds (by -JL and Cut) to the given 

BLL proof representing the function h, Thus we obtain Nycr+,), Nz, N$;, t N$Z+,J. 

Now we Cut again, where the cut formula is N q(z+,), and where the left premise of 

the Cut is the BLL proof obtained by letting x = z + 1 in the BLL proof of t- Nz+Ni(,, 

that corresponds (by 4-L and Cut) to a BLL proof of EN, -NqcV.) that represents 

the polynomial q, see Corollary 6.6. We thus have N,,, , NT, N$,, + N:,,,,. This 

will now be the right premise of a Cut, where the cut formula is N,,, and where 

the left premise is the BLL proof of NSEN,,, , which is in turn obtained by Cut 

from the BLL proofs of N~ENZ,, and of Nz,, EN,,, , themselves obtained by the 

obvious change of resource parameters (and by AL and Cut) from the BLL proofs 

representing “Append 1” and lth (see Fig. 17 and Proposition 6.12). In this way 

we reach Nz, Nz, N:,,, C N$z+l). Now apply OR, the other premise being the BLL 

proof of NZENZ,, , which corresponds (by 4L and Cut) to the BLL proof represent- 

ing “Append 1”. We thus reach Nz, Nt, N:, N$,, E N~+,ON$z+,). The Reuse 

Lemma (Lemma 6.3) allows contractions on Nz, so we obtain NT, Ni(,, E Nz+,O 

N:cz+,, . Note that the lambda term associated to the BLL proof we built is the term 

(informally written as) 

(S,(r(b)), h,(r(b), c) rq(lth(S,(r(b))))). 

We complete the construction by applying OL and +R. 0 

The reader will readily check that among the first consequences of Proposition 

6.13 are BLL representations of the numerical functions n + 1,2n and n - 1 in dyadic 

notation. Combining these with Proposition 6.7 expresses Cobham’s initial functions. 

We can now give the proof of Theorem 6.1. 

Proof of Theorem 6.1. Lemmas 6.1 and 6.2, Propositions 6.3-6.13, and Corollaries 

6.6 and 6.9 yield that the class of dyadic functions representable in BLL includes 

Cobham’s initial functions and is closed under limited recursion on notation. By 

using Cut (and -L and -+R), the class is also closed under general substitution. 

Hence this class contains all polynomial time computable functions. 0 
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Although the Cobham-style characterization is not known for the tally case, the 

tally analog of Theorem 6.1 may be obtained by using Theorem 6.1 and the 

representation of the length function given in Proposition 6.12. 

Theorem 6.14. Every function from tally natural numbers to tally natural numbers 

computable in polynomial time in tally length can be represented in bounded linear 

logic by a proof of k N, - NpCII, for some resource polynomial p. 

Proof. Let F by a function from tally natural numbers to tally natural numbers 

computable in polynomial time in tally length. Every tally list is a dyadic list (in 

which all symbols are 1); this defines a function D from tally natural numbers to 

dyadic lists such that D(E) = E, D( a * 1) = D(a) * 1. The function D is representable 

by a BLL proof of +N,-N’,, obtained by tally iteration. Recall the function lth 

from dyadic lists to tally natural numbers discussed in Proposition 6.12. The function 

D 0 F 0 Ith is clearly polynomial time computable in dyadic length. So by Theorem 

6.1, D 0 F 0 lth is representable by a BLL proof of, say, kN;--N&, . But then 

lth 0 D 0 F 0 lth 0 D is representable by a BLL proof of + N, ---o N,,(,, obtained by -oL, 

Cut and -R from BLL proofs representing D, D 0 F 0 lth and Ith. Since Ith 0 D = 

identity, it is the case that F = lth 0 D 0 F 0 lth 0 D, and hence F is representable 0 

A similar argument may be used to derive the converse of Theorem 6.14, Theorem 

5.4, from Theorem 5.3. 
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Appendix A. Normalization in BLL sequent calculus 

We outline a similar analysis to Section 4, based on sequents. The basic definitions 

are as follows. In BLL sequent calculus we have: 

l An instance of the cut rule is boxed when it is above a rule S!. 
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l A cut is irreducible if it is boxed or if its left premise is S! with a nonempty context 

and its right premise is either !W, !C, !D or S!. 

l A BLL sequent calculus proof is irreducible it is contains only irreducible cuts 

(if any). 

l A BLL sequent is accessible if each negative occurrence of a universal quantifier 

or a bounded exclamation mark is nested within a positive ossurrence of a bounded 

exclamation mark. 

It is understood that none of the reduction steps given below apply to irreducible 

cuts. 

Axiom reductions. 

AL 

iP 
AtA’ r,A’+B 

reduces to 
!P’ 

r,AkB r,AtB 

(see the remark on waste of resources in BLL sequent calculus proofs in Section 3.3). 

AR 

.P 

rtA AkA’ iP’ 

TFA' 
reduces to 

TFA' 

(again, see the remark on waste of resources in BLL sequent calculus proofs in 

section 3.3). 

Symmetric reductions. 
In addition to the reduction steps S 0, S--, and SV described in Section 2.2, we 

stipulate the following four steps in which the cut formula begins with a bounded 

exclamation mark and the left premise of a Cut is obtained by an instance of the 

S! rule in which the context is empty, i.e., there are no formulas to the left of the I-: 

SS!D 

iP :w 
FA A,A[x:=O]tB 

k!x<,+wA A, L<,+,At--B 
r,AkB 

ip(x:=0) :w 

reduces to 
tA[x:= 0] A,A[x:=O]k-B 

AFB 
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SS!C 

63 

iP :w 

t-A a A, &A, &< 

E L<p+q+wA 4 L-cp+q+wA~ B 

AkB 

reduces to 

;p(x:=p+y) 

tP tA[x:=p+y] .W’ 

F A k !y<y+,<,A[~ := p +y] A, !x<,,A, !,<,+,A[i := p + y] F B 

F! A .X-Z/l A, !,<,At- B 

At-B 

where W’ is obtained from w as a special case of the remark on waste of resources 

in BLL sequent calculus proofs, Section 3.3. 

SS!W 

iP :” 

FA AEB 

k !,,,A A, !,y,,Ak B 

A-B 

SS!S! See Fig. 29. 

reduces to 
:w 

A t B. 

reduces t.0 

; p(y, := 21,(z) + 2) 

t A,[?/, := U,(J) + z] iw 
t !;<y,crjA,[yz := W(P) + z] _. !.-<p,~r~A,I2/, := u,(z) + z]. . !.-<< ,,,, ,.,A,[w := v,(z) + i], t B 

!,<,~z~A,[y, := v,(r) + z] _. 1 I3 
!y,<i.,(p)+“, A, k !r<,,L1 

Fig. 29 

Commutative reductions. 

In addition to the reduction steps CL0 L, CL- L, CLVL, CR@ R, CR-J R, CRVR, 

CROL, CR-L and CRtlL described in Sections 2.2.3 and 2.2.5, we stipulate the 

following commutative reduction steps. 
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CL!W 
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tP IP :* 

TtA :w r+A A,AkB 

r, !,<w CkA A,AtB reduces to r,AtB 

~,A,!,,,CFB r, A, !,<,Ct B 

CL!D 

.P iP :w 
r,C[x:=O]FA ;w r, c[x:=o]~-A A,AFB 

r, ! ,x<,+t*L,Ck- A,AtB reduces to r,A,C[x:=O]tB 

r,A,!.<,+,CtB r, A, !,,,+,CFB 

CL!C 

:P 

r, lx+ C,!,.<,C[x:=p+y]tA ;w 

r, Lp+q+,C)-A A,AFB 

r, A, L<p+q+wC+B 

iP :m 

r, !+c, !_<y C[x:=p+y]~A A,AtB 

reduces to r, !x&+, !y.&[x := p + y], A F B 
r,A,! r<,,+c,+naC k B 

CR!W 

:w iP :w 

iP A,AtB rtA A,AkB 

TEA A,A,!,<,CkB reduces to r,AFB 

r, A, !,<&I-- r,A, !,<,CtB 

CR!D 

:w iP :w 

.P A,A,C[x:=O]kB TEA A,A,C[x:=O]t-B 

rfiA A,A,!,,,+,C+B reduces to r,A,C[x:=O]kB 

r,A, L<,+wC~B r, A, L<,+&tB 
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CR!C 
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:” 

!P A, A, Lc& $,-a, C[x:=p+y]FB 

l-t-A A, A, ! .x<p+y+wC t B 
I-, A, ! rc.,,+y+wC E B 

!P :w 

TEA A, A, Lc,,C, !y<q C[x:=p+y]kB 

reduces to r, A, !x<p C, !,.<,C[x:=p+y]~-B 

r, 4 !x<p+q+wC t B 

The analog of Theorem 4.4 can be extended to BLL sequent calculus by using 

cut-size (cf. Section 2.2), in which case all reductions terminate in at most ([/VII)’ 

steps. 
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