
Theoretical Computer Science 97 (1992) 1-66

Elsevier

Fundamental Study

Bounded linear logic: a modular
approach to polynomial-time
computability

Jean-Yves Girard
kquipe de logique, UA 753 du CNRS Mathdmatiques, tour 45-55, Universiti Paris 7, 2 Place

Jussieu, 75251 Paris Cedex 05, France

Andre Scedrov
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA

Philip J. Scott
Department of Mathematics, University of Ottawa, 585 King Edward, Ottawa, Ont., Canada

KIN 6N5

Communicated by P. Freyd

Received August 1991

Abstract

Girard, J.-Y., A. Scedrov and P.J. Scott, Bounded linear logic: a modular approach to polynomial-

time computability, Theoretical Computer Science 97 (1992) l-66.

Usual typed lambda-calculi yield input/output specifications; in this paper the authors show how

to extend this paradigm to complexity specifications. This is achieved by means of a restricted

version of linear logic in which the use of exponential connectives is bounded in advance. This

bounded linear logic naturally involves polynomials in its syntax and dynamics. It is then proved

that any functional term of appropriate type actually encodes a polynomial-time algorithm and

that conversely any polynomial-time function can be obtained in this way.

Contents

1. Introduction.. .. 2
2. Linearlogic ... 8

2.1. Rudimentary linear logic (RLL) ... 8

0304-3975/92/$05.00 @) 1992-Elsevier Science Publishers B.V. All rights reserved

2 J.-Y. Girard et al.

2.2. Normalization in RLL
2.3. Linear logic ..
2.4. Towards bounded linear logic

3. The syntax of bounded linear logic (BLL)
3.1. Resource polynomials.
3.2. Formulae of BLL ..
3.3. BLLsequents ...

3.4. Proof nets for BLL
3.5. The weight of a BLL proof structure

4. Normalization and proof nets
4.1. Normalization in BLL

5. Normalization in BLL as polynomial-time computation
6. Representing polynomial-time functions in BLL

Acknowledgment ..

A. Appendix. Normalization in BLL sequent calculus
References ...

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

9

17

18

20
20

20

21

23

26
27

27

32

50
61

. 61

65

1. Introduction

In recent years, especially with the development of large-scale computation and

with the possibility of machines making dramatic decisions, issues such as software

reliability, maintenance, and verification have become essential in theoretical com-

puter science. In other words, the study of these topics and of program specijcations

as a means of facilitating them is now central, independently of traditional tenets

such as the search for good algorithms.

There are many forms of specifications. For example, one can think of input/out-

put specifications, among the most basic being when one is asked to specify that

an input is an integer. There are also probabilistic specifications, when a certain

percentage of error is allowed. One can also have complexity specifications about

space or time needed to execute a program. In all cases the specifications are

well-defined mathematical properties, which can be expressed in the usual formalism

for mathematics, even if they are somewhat unusual from the viewpoint of standard

mathematics. In particular a classical mathematical proof that an algorithm meets

a given specification will be considered as completely satisfactory, even if the proof

is not constructive. The situation changes radically, however, if one now insists on

a standardized, modular, “industrial” approach to the question.

Since there has been much discussion about the merits of typed vs. untyped

programming paradigms, and since our paper proposes yet another typed calculus,

it is appropriate to say at the outset that if one absolutely insists on efficient programs,

one should use languages that allow maximum flexibility. However, if one is

interested in reliable programs that can be maintained in a changing systems

environment, then a language will have to be concerned with specifications. In the

first case one shall get a hand-crafted or one-off product that may be a marvel or

might contain awful bugs-and such programs use so many “tricks” that proofs of

their correctness with respect to a given specification will be rather exceptional. In

Bounded linear logic

the second case the programming methods are limited-usually by a rather awkward

system of basic specifications called types-but the product is guaranteed a certain

industrial level of “quality control”.’ The two forms of programming will coexist

forever, and the fact that the industrial approach is-at present-very inefficient is

not an argument for the superiority of the other “hand-crafted” one. In particular,

it does not make the slightest difference that the system that we are presenting here

is so delicate to use that in its present form it has hardly any practical value. Rather,

our paper shows the possibility of a logical (i.e., standardized, modular, industrial)

approach to complexity specifications, and this phenomenon is radically new.

The industrial approach to specifications therefore relies on an integrated compu-

tational paradigm, where basic specifications are built together with the algorithms.

At compilation time these basic specifications are checked, then erased to produce

machine code. This is the description of the typed approach; in this approach we

can combine instructions only in certain cases. Each program and subprogram is

assigned a type which describes in shorthand which pluggings it accepts: for instance

the type A implies B given to a program means that one can see it as a function

waiting for an input labeled A and which can in turn give an output labeled B.

Hence the main activity of typed programming is to match types, which can often

be difficult in the extant systems.

The activity of manipulating types was recognized a long time ago as analogous

to proving theorems in intuitionistic logic-this is now technically known as the

Curry-Howard isomorphism (or the propositions-as-types paradigm)-but the

origins of this idea date back to old intuitionism in the early 1900s and especially

to Heyting and Kolmogorov in the 1920s. The situation is actually more involved:

the idea makes better sense when combined with formalist tradition: logic offers

not only a paradigm for basic specifications but also a mode of execution, namely

through cut-elimination or its variants, e.g., natural deduction, all dating back to

Gentzen’s work in the 1930s. Here we show that this paradigm “computation as

cut-elimination” is flexible enough to express a notion of jkasible computation.

There are many typed lambda calculi, among them is system 9 introduced in 1970

by one of the authors [12,201. This system is characterized by an extreme economy

of means and the possibility of easy definition of many current specifications.

Although the system is far from being as flexible as we would like it to be, it is fair

’ The broader distinction between hand-crafted and industrial may be illustrated by the fact that a

product such as the “daily special ” in a restaurant with traditional cuisine can be very good or very bad,

with its price bearing no relation to its quality, whereas an industrial product such as fast food is just

a “safe bet”-neither very good nor very bad-and with a good ratio between price and quality. Moreover,

any quarrel between these two activities is nonsense as long as one of them does not pretend to invade

the domain of the other-domains which are distinguished by verbs like to dine versus lo eat. Another

important difference between one-off and industrial products usually becomes apparent when the product

breaks down. Just imagine trying to get an antique clock repaired. It is very likely that the entire clock
will have to be replaced or some of its parts will have to be custom made (at a great cost) because the
parts or even the materials may be unavailable. On the other hand, if a modern watch breaks down, it

probably needs just a new module. In other words, a one-off product is an indivisible object, while an

industrial product is more an idea of an object, realized by exchangeable parts.

4 J.-Y. Girard ef al.

to say that 9 or its various improvements do not look ridiculous as integrated

programming paradigms. The expressive power of 9 is immense and precisely for

that reason, because it accepts too many functions, 9 only yields input/output

specifications. Here let us be precise: it is true that we can abstractly measure the

expressive power of typed systems, and that for instance certain restrictions can

drastically lower the complexity of typed algorithms, but all current restrictions

cannot be detected from the viewpoint of feasibility. For example, some authors

insist on the impredicativity of 9 as a defect-as if one were still living in a world

of lurking paradoxes-but restricting 9 to so-called ramified systems contradicts

the flexibility of typing without yielding any feasibly detectable lowering of com-

plexity. Rather, the issue lies already on the propositional level. One must keep in

mind that even simply typed calculi have complexity measures which are towers of

exponentials.

In fact, prior to this paper there has been no example of an integrated typed

system yielding complexity specifications; the input/output style of specification is

the only one that has been treated. For instance, we understand that probabilistic

specification needs a kind of probabilistic logic which is sorely missing.

Before arriving at our solution, let us try to position it with respect to vaguely

related works on the theme logic and complexity. There are obvious solutions to

obtain a feasibly typed system; e.g., take system 9 and a clock: instead of typing

something as INT implies INT (from integers to integers) we can type it as INT

implies (ERR+INT), which means that when the time is over, the program (if it

has not finished computing) returns an error message. The brutal character of this

answer is plain but the true reason for its stupidity is not completely obvious: in

our opinion this system guarantees temporal specifications but is no longer able to

guarantee input/output specifications, which are much more basic!

A more elaborate system, Cook and Urquhart’s feasible functionals of finite type

[S, 71, proposes a generalization of polynomial time to finite types. Although this

system is interesting in its own right, it is not helpful for our purposes because its

higher type dependencies are not polynomial but hyperexponential. Furthermore,

it cannot be used to check that a numerical function is polynomial time, since it

takes as primitive all polynomial-time functions.

The first connection between proof theory and polynomial-time computability

was established in the work of Buss [3,2], who introduced first-order systems of

“bounded arithmetic” with proof-theoretic strength corresponding to polynomial-

time computation and in which precisely the polynomial-time functions could be

defined by certain formulas. In this work the logical systems are external to the

computational paradigm itself, which is given by a Turing machine with a clock (in

the form of “bounded primitive recursion”). As far as we know, there has been no

proposal of an integrated paradigm given by the inherent structure of proofs in the

systems of bounded arithmetic.

The originally interesting idea of a polynomially graded logic [27] did produce

a type system with explicit resource bounds, but it stumbled on the impossibility

Bounded linear logic 5

of having a notion of higher type feasible functional without artificial complications,

which were partly caused by superimposing the external computational paradigm

of a Turing machine with a clock onto the Curry-Howard paradigm. As was observed

above, the notion proposed by Cook et al. is not really an answer since the higher

type dependencies are hyperexponential, i.e., the inner structure of the systems in

[S, 71 is not polynomial. In [27] the authors actually got closer to a true solution;

unfortunately it was necessary to introduce indices of polynomial-time machines,

i.e., to presuppose a polynomial time structure here, too.

Outside proof theory, it is difficult not to be struck by the work on finite model

theory [24, 31, 22, 23, 251, which has nothing to do a priori with typing but which

has the inner coherence that is missing in all the approaches just discussed: in the

finite model theory approach, polynomials appear for combinatorial reasons, simply

because DATALOG computations can be bounded by means of binomial

coefficients. Here it is important to remark that the computational mechanism of

DATALOG itself (given by its forward chaining style) is not addressed by logical

characterizations stemming from finite model theory. However, this lack of an

integrated paradigm is compensated for by nontrivial results of Immerman [24] and

Vardi [31], who show that polynomial-time functions receive a definition not in

terms of polynomial time. This is obviously a great logical achievement, even if we

are not seeking this kind of logical analysis here. What we shall present below has

very little to do with this approach but the fact is that we will also derive polynomial

time from something not presupposing polynomial time and that at a certain point

combinatorial polynomials will play an essential role. In the future a connection

between these two approaches would be very exciting, but proof theory and model

theory are often such orthogonal approaches that one should not daydream too much.

Our aim in this paper is not just to express polynomial time computability as

provability of formulas in a logical system, but to provide a notion of polynomial

time computation intrinsically within a logical system, according to the Curry-

Howard paradigm “computation as cut elimination”. In other words, we propose

a modular typed computation paradigm as an alternative to the paradigm of a

Turing machine with a clock. Let us start with the idea of a complexity specification

(not necessarily polynomial time). The above discussion of previous typed attempts

makes it plain that taking the actual complexity as a primitive parameter does not

lead to an integrated typed system. This should not be too surprising; in mathematics

certain interesting notions never led to conceptualization for want of modularity

(for instance, there is a noncommutative theory of groups but no theory of noncom-

mutative groups). We therefore seek a notion more primitive than complexity, i.e.,

something that can produce complexity restrictions but which cannot be reduced

to complexity. In our approach, this more primitive notion will basically be the

contraction rule of the Gentzen sequent calculus, to which linear logic [13] gives a

very special status. It will turn out that controlling contraction is an indirect way

of controlling time complexity, but for instance no way-direct or indirect-is known

of controlling space complexity in this manner. (Does this mean that space com-

6 J.-Y. Girard et al,

plexity has no logical meaning in the sense above, or does this only indicate that

our present tools are desperately poor?)

A first approximation to linear logic is rudimentary linear logic (RLL), i.e., sequent

calculus without weakening and contraction. One of the most immediate features

of RLL is its linear time normalization procedure: in fact it is easy to see that the

number of rules strictly decreases during normalization, i.e., the procedure can be

carried out in a kind of “shrinking space” which forces linear time. Moreover, and

this should be emphasized, the situation still holds with full second order. So we

begin to see a possible restriction of system 5 along feasibility lines. This is a

fantastic medicine with respect to problems of complexity, except that the patient

is dead! Without contraction the expressive power of logic is so weak that one can

hardly program more than programs permuting the components of a pair.

Fortunately, linear logic is not about the removal of contraction and weakening,

but about their transformation into logical rules for special connectives, the so-called

exponentials ! and ?. In fact by allowing the use of exponentials we compensate for

the drastic fall of expressive power, compensate so much that we get the usual

intuitionistic systems (this is no surprise since linear logic has been carefully designed

to obtain roughly the same expressive power). Therefore our only hope is to seek

an intermediate system between RLL and full linear logic. The first attempt will be

successful.

Linear logic is based on the idea of resources, an idea violently negated by the

contraction rule. The contraction rule states precisely that a resource is potentially

infinite, which is often a sensible hypothesis, but not always. The symbol ! can be

used precisely to distinguish those resources for which there are no limitations.

From a computational point of view !A means that the datum A is stored in the

memory and may be referenced an unlimited number of times. In some sense, !A

means “A forever”. In these times of great utopias falling, “forever” is no longer

a viable expression, and in bounded linear logic (BLL) it is replaced by more realistic

goals: reuse will be possible, but only a certain number of times limited in advance.

Instead of !A BLL features bounded-reuse operators !,A, which intuitively mean

that the datum A is stored in the memory and may be referenced up to x times.

Now the fundamental point about BLL is that the basic properties involve poly-

nomials. This is very easy to understand: the worst use of a bounded exclamation

mark !,A is morally the same as using A and A and.. . and A, x times, when and

is given the technical meaning of the multiplicative conjunction times (= 0). When

we thus interpret the rules of exclamation mark we see polynomials occurring in a

very natural way. In fact this translation can also be applied to proofs; in this case

we discover that we have a locally polynomial translation from BLL to RLL: !z . . . !>A

(n times) translates to &A, but !2X. . . !zXA translates to 02~~X,~A, a bound which is

a polynomial in x. This is why, although the full translation is exponential, we can

speak of local polynomiality, here xn. The combination of a locally polynomial

procedure and a linear procedure (normalization in RLL) yields a locally poly-

nomial-time way of computing.

Bounded linear logic

Technically speaking what we have just explained is only a rough justification of

our main result stated below; this way of computing should not be used because it

is only polynomial space. Our main result states that if a function is typed in BLL

from dyadic integers (i.e., integers in dyadic notation) to themselves, then normaliz-

ation terminates in polynomially many steps in the length of the input (Theorem

4.4). Furthermore, in this case the size of normalization is also polynomial in the

length of the input and as a consequence, the function is polynomial time (Theorem

5.3). Less unexpected, but of course also essential, is the converse theorem which

says that all polynomial-time functions can be obtained in this way, i.e., can be

typed in BLL (Theorem 6.1). Although the idea is clear, the main result is technically

difficult and uses very refined techniques of linear logic; the converse simply avoids

the trap of RLL, i.e., a system with no expressive power. We have basically justified

that the input/output ratio (in terms of the number of rules ‘written) is locally

polynomial. Common sense (and good experience in proof theory) is enough to

convince one that the execution process itself should be polynomial time. If one is

not satisfied with this kind of handwaving, then one must go into painful jus-

tifications, for instance, in this paper we use sophisticated techniques from linear

logic, variations of proof nets. An example of what might happen is that in the

presence of quantifiers, n iterated substitutions can produce an exponential

blow-up. This is why at run-time we erase the types (i.e., formulas) and only keep

an underlying graph (a kind of proof net), which is enough for input/output

encoding, and the size of which remains tame. On the other hand, we must

admit that our way of representing polynomial-time functions in BLL is not

very flexible and that in its present form BLL is not really practical . . so what

did we achieve?

Surely without the slightest doubt we have shown that a purely logical approach

to complexity is not absurd. The polynomial-time functions arise from a bounded

exclamation mark and nothing else. In addition, BLL has the capability of directly

specifying computational complexity on various data types, by using their representa-

tions as BLL types rather than encoding them as certain lists. (For instance we can

type primality test of type TALLY INTEGERS implies BOOLE.) In BLL one also

has all the usual facilities of polymorphism-even if we were a bit awkward here

in making full use of them. From a strict logical viewpoint, as well as regarding the

flexibility of the system, the main weakness of BLL is the presence of explicit

resource parameters. Logic is useful only if it is implicit enough. If one prefers,

logic is the maintenance of implicit data. At the moment we see no way to avoid

mentioning the resources and still be able to synthesize them. An alternative way

might be to forget resources by means of existential quantification over them, but

unfortunately all our polynomial computations would break down immediately if

we tried to do this. However, it must be noted that the resources occur in BLL only

through input/output ratios and not at all as complexity measures: the complexity

remains hidden and this is the reason why our approach avoids the problems

encountered by previous ones.

8 J.-Y. Girard et al.

2. Linear logic

We recall Gentzen’s sequent calculus for intuitionistic logic, e.g. from [20]. A

sequent is a formal expression r t A, where r is a finite list of formulas and A is

a formula. One can informally interpret Tt A as meaning “hypotheses r intuition-

istically entail A.”

Gentzen’s sequent calculus involves three structural rules:

Exchange
r, A, B, A t C

r, B,A,AtC’

Weakening
rtc

T,AFC’

Contraction
r,A,AkC

T,AFC ’

Although these rules are all problematic from the point of view of management

of limited resources, Contraction is by far the worst, cf. [13, 17,291. The contraction

rule expresses unlimited capability of duplication; it is also the reason for the

potential infinity of disjunctions in Herbrand expansions. In this paper we are

especially interested in the effect of Contraction on cut-elimination:

fP
IP :u

TEA
rFA

A,A,A+B

reduces to
r,A,AtB

r, r, A t- B

r,AtB

Here, one cut is replaced by two cuts and by instances of Contraction and

Exchange on the formulas in r. Also notice that this step requires duplication of

the entire proof of Tt A. The Contraction rule is the reason why termination of

cut-elimination in intuition&tic propositional logic is not feasible (termination is

well-known to be hyperexponential, see below).

2.1. Rudimentary linear logic (RLL)

Linear logic dispenses with the problematic structural rules Contraction and

Weakening, see [13]. In the absence of these structural rules, the propositional

connectives assume a different character. We first discuss one extreme case in this

vein, a rudimentary propositional system in which Contraction and Weakening are

Bounded linear logic 9

removed altogether. Our intuitive description of the connectives of this rudimentary

system is based on the propositions-as-types paradigm mentioned in the introduction.

The system RLL (rudimentary linear logic) has formulae defined inductively from

atomic formulae (propositional letters) cy, p, . . by two binary propositional con-

nectives:

(i) A@ B (A tensor B = conjunction with no sharing of variables),

(ii) A- B (A linearly implies B = the type of functions looking at

their argument exactly once)

instead of stating the Exchange Rule explicitly, it is convenient to formulate sequents

as formal expressions rk A, where r is a finite multiset of formulas and A is a

formula. The sequents satisfy the following axioms and rules:

Axiom At-A

l-l-A
cut

A,A+B

T,A+B

Logical OL
r,A,BtC

T,AOBtC
@R ‘+A AkB

r,AkA@B

TFA
-L

A,BtC
-+R

r,AtB
r,A,A-B+C rkA-B

A proof in RLL of a sequent rt A is a finite labeled rooted tree in which the

nodes are labeled by sequents in such a way that the leaves are labeled by instances

of the Identity Axiom, the root is labeled by rk A, and the label of each node is

obtained from the label of its immediate precessor(s) by one instance of a rule of

RLL. In an instance of a Cut, the formula denoted by A is called the cut formula

occurrence. We often simply refer to “the cut formula” in a Cut, when the context

is clear.

2.2. Normalization in RLL

We now state the reduction steps in normalization (i.e. cut elimination) in RLL

and we give a measure # on proofs in RLL that yields a polynomial upper bound

on the number of reduction steps. This measure will in fact be a bound on the

number of instances of the rules, including the axioms, in the resulting cut-free

proof. As for the number of reduction steps, if one counts all the reduction steps,

including the so-called commutative reductions (all described below), the upper

bound is cubic in our measure. However, there is a more subtle approach based on

proof nets [13] that yields a linear upper bound.

Let #Axiom = 1. If a proof 7~ is obtained from a proof p by a unary rule, let

#ST = #p + 1. If a proof v is obtained from proofs p and u by a binary rule except

Cut, let #s- = #p + #a+ 1. If a proof 7~ is obtained from proofs p and u by an

application of the Cut rule, let #V = #p + #a. (Because we are seeking a cut-free

proof, we do not need to count the Cut rule.)

10 J.-Y. Girard et al.

The following figures state the reduction steps. We simultaneously compute the

measures.

2.2.1. Axiom reductions

The reduction steps of this form apply when one premise of a Cut is an axiom.

There are two cases.

Case AL.

:P

At-A A,AkB !P

A,AkB
reduces to

J,AFB.

Case AR.

:P

TEA AFA iP

r+A
reduces to

rtA'

In both cases, the measure decreases from #p + 1 to #p.

2.2.2. Symmetric reductions

The intuitive motivation of these reductions is that they should apply when the

left premise of a Cut comes by a logical right rule and the right premise comes by

the corresponding left rule:

Case SO.

:q .P :w

TtA A/-B A,A,BFC

r.Al-AOB A.A@BcC

r,A,ntc

:r :w

reduces to
tP TEA A,A,BkC

AtB r,A,BFC

r, A, -4 F C

Let m = #T, n = #p, k = #w. Before reduction the measure is m + n + k + 2; after

reduction it is m + n + k.

Bounded linear logic 11

Case S-.

:r iP :w
T,AFB AFA A, BEC

TEA-B A,A,A-B+C

r,A, AI-C

iP :r

A+A
reduces to

T,A+A ;w

l-.AtB A. BtC

l-, A, A t C

Let m = # TT, n = #p, k = #w. Before reduction the measure is m + n + k + 2; after

reduction it is m + n + k.

2.2.3. Commutative reductions

The intuitive motivation for commutative reductions is simply to change the order

in which an instance of a Cut appears in a proof. Commutative reductions should

apply when at least one premise of a Cut is a consequence of a rule that does not

operate on the cut formula.

Case CLOL.

iP

r, C, DFA ‘W

r,C@D+A A,AI-B

r,A,CODEB

!P :w

reduces to
r, C, DFA A,A+B

r,A,C,DtB

T,A,CODtB ’

The measure is #p + #o + 1, both before and after this reduction step.

Case CLAL.

:P :c

n-c A,DEA ;w

I’.A.C-DtA A,A+B

r,A,A,C-DEB

reduces to
iP A, DFA A,AkB

r-kc A,A, DFB

l-,A,A,C-oDtB .

The measure is #p + #(T+ #w + 1 both before and after this reduction.

12 J.-Y. Girard er al.

Case CROR,

:(+ *w

iP A,AtB ACC

l-l--A A.A.AkB@C

r,A,AkB@C

i&J ‘C

reduces to
rt-A A,AI-B .w

r,AkB AtC

T,A,AFBoc .

The measure is #p + #a + #o + 1 both before and after the reduction. The case in

which the cut formula A comes from the right premise of the OR rule is treated

analogously.

Case CRdR.

:w

.P A, A, CkD

TEA A.AtC-D

r.AkC-D

:P :w

reduces to
rcA A,A, CFD

r,A,CED

r,AkC-D ’

The measure stays #p + #w + 1 during this step.

Case CROL.

:w

iP A,A, C, DEB

TtA A,A,COD+B

r,A,C@DkB

:P :w

reduces to
TtA A,A, C, Dt-B

r,A,C,DkB

1-,A,CODbB

The measure stays #p + #w + 1 during this step.

Bounded linear logic 13

Case CR+L.

t/J AtC A,A,DkB

l-l-A A.A.A. C-DEB

r,A,A,C-D+B

iP :QJ

:r TFA
reduces to

A,A, DtB

AtC I-.A. DkB

The measure is #p + #V + #w + 1. The case in which the cut formula A comes from

the left premise of the *L is treated analagously.

In other words, the measure stays the same during each commutative reduction

step.

Now given a proof v and a Cut in 7~ (not necessarily at the root of r), we can

use one of the reduction steps to replace the Cut and so obtain a proof n’. If this

reduction step is one of the axiom reductions or the symmetric reductions, one

obtains #r’ < #r. If the reduction step is one of the commutative reductions, one

obtains #n’ = #n.

In order to derive an upper bound on the total number of reduction steps starting

with a given proof, we will use #n to estimate the number of consecutive commuta-

tive reduction steps that can be performed starting with any proof n. To this end

we introduce an auxiliary measure, the cut-size (~1 of a proof G-. The cut-size has

the same inductive definition as #v, except that in the case of a Cut we let:

IrJ=)rr,j+I7rzJ+#7r.

Proposition 2.1. 1~1 c (#n)’ for each RLL proof rr.

Proof. By induction on the complexity of the proof x. In the induction step the

interesting case is when rr is obtained by a Cut from rr, and 7r2 : because the measure

is always a positive integer, one has #7r, + #rZ =S 2(#7ri)(#~r~), and thus lrr[s

(#~,)2+(#7T2)2+#*,+#~2~(#x1+#~2)2=(#*)2. 0

We now verify that the cut-size decreases in commutative reductions. We continue

the notation introduced above in the definitions of commutative reduction steps.

Case CLOL: The cut-size before the reduction step is I~T(= (pi+ 1+ (WI+ #v.

After the reduction step the cut-size is 17~‘l= Ip(+lol+(#7r- l)+ 1 =

Ip~+JwJ+#7T’=~p(+~wI+#~<<~~.
Case CL-L: The cut-size before the reduction step is 1~) = IpI + loI + I+ IwJ + #r.

After the reduction step the cut-size is Irr’l = J(TJ + /WI + (#r’- #p - 1) + IpJ + 1 =

Ipl+JaJ+IwJ+#~-#p<J~l.

14 J.-Y. Girard et al.

Case CROR: Before reduction the cut-size is]rr = IpI+IcI+IwI+ 1 +#n. After

reduction it is I~T’]=I~I+IuI+(# ~‘-#w-l)+Jwl+l=Ip(+lal+Iwl+#~-#p<

14
Case CR-R: The cut-size before reduction is In] = Ip] + Iw] + 1 + #rr. On the

other hand, after reduction (~‘I=~~I+~~~+IwI+(#~‘-~)+~=I~I+IwI+#~<I~~~.

Case CROL: Before reduction the cut-size is Iz-]= lp] + loI+ 1+ #7r. After

reduction it is I~‘l=lpl+IwI+(#~‘-l)+I=lpl+IwI+#~<I~l.

Case CR-L: Here I~~=I~~+I(TI+IwI+~+##. After reduction lr’l=

lpl+IWI+(#~‘-#a-l)+I~I+l=lpl+~~~+IWI+#~-#~<~~l.

In summary, when normalizing an RLL proof m, there can be at most # rr axiom

reduction steps or symmetric reduction steps, and between each of those steps there

can be at most (#n)’ consecutive commutative reduction steps. Thus the total

number of reduction steps can be at most (#n)‘.

Another approach, which allows us to dispense with all commutative reductions,

is to consider sequent calculus proofs up to the order of the rules, e.g. to consider

the proof net representation introduced in [131.

2.2.4. Proof nets

For the discussion of this approach we assume that the reader is familiar with

Chapters l-4 of [13] (or cf. [14] or Section 3 of [111.) First, RLL sequents and

proofs may be represented in the one-sided sequent calculus for the multiplicative

fragment of linear logic. Indeed, linear implication A-B is definable as A’ B B,

i.e. (AOB1)l. An RLL sequent A,, . . . , A,+B is translated as the one-sided sequent

tA:, . . . , A;, B. It is readily checked that this translation takes rules of inference

to rules of inference (and hence proofs to proofs): the rules -+R and @L are

translated as the P rule and the rule 4L is translated as the 0 rule. Let us also

mention the fact that this translation is conservative, i.e., if the translation of an

RLL sequent is provable in the multiplicative fragment of linear logic, then the

sequent is provable in RLL.

Second, we use the proof net representation of the one-sided sequent calculus

for the multiplicative fragment of linear logic given in [13]. Combining the two

interpretations then yields the proof net representation of RLL proofs. The converse

follows from the conservativity of the first translation mentioned above, i.e. the

Sequentialization Theorem in [13] also holds for RLL.

We identify RLL proofs with the same proof net representation. In this way the

only required reduction steps are axiom reductions and symmetric reductions. Any

sequence of these reduction steps starting with an RLL proof r must terminate in

at most #rr steps in a cut-free proof net representing a cut-free RLL proof.

2.2.5. Discussion of second order RLL

All of the properties of RLL described above, except conservativity of the transla-

tion into one-sided sequent calculus, remain true if we add impredicative second

Bounded linear logic

order universal quantification over propositions. The additional rules are

vL T’, A[CI := T]I-B TEA

r, (Vcr)Ak B
and VR

r~(t’a)A’

where A[a := T] is the result of substituting a second order abstraction term T for

all free occurrences of the propositional variable LY in A, and where in the rule VR

the propositional variable (Y does not occur free in the formulas in K We often

omit parentheses around quantifiers.

In extending the measure #r and the cut-size 1~1 the rules VL and VR are treated

simply as unary rules. Observe that the measure and the cut-size do not increase

under substitution of second order abstraction terms. In normalization, the additional

symmetric reduction step is:

Case SV.

fP :w
l-l--A A, A[a := T]!-B

rFVCYA A.VaAkB

r,AtB

&a:= T] :w

reduces to
rkA[a:= T] A, A[a:= T]kB

r,AkB

In this reduction of the proof v to r’, the measure decreases from #r = #p + #w + 2

to #?r’=#p+#w<#7r.

Let us also check the additional commutative reductions that involve the quantifier

rules.

Case CLVL.

iP

I-, C[a:= T]kA jw

r.VaCtA A-AI-B

iP :w

reduces to
r, C[a:= T]FA A,AkB

r,A, C[(Y:= T]I--B

r,A,VaCkB ’

The measure is #r = # &= #p + # + 1 both before and after this reduction step.

The cut-size before reduction is (Z-I= (pi + 1 + Iw(+ # rr. After reduction, it is IdI =

Ipl+(w(+(#~‘-l)+l=(pl+lw(+#~, less than before reduction.

16 J.-Y Girard et al.

Case CRVR.

:w

tP A,AcB

TkA A, A+VaB

L’, A tVaB

iP :w

reduces to
TkA A,AtB

I’.AkB

I-, A t-VaB

We may assume that (Y does not occur free in I’, by renaming the bound variables

in B if necessary (which does not change the measure or the cut-size). Note that

#~=#~‘=#p+#w+l. Also I~l=l~(+I~]+l+#rr.]rr’l=I~l+]wl+(#+-1)+

l=(pl+IwJ+#7r<J?rl.

Case CRVL.

:w

iP A, A, C[a := T]t B

rt-A A,A,tlac~B

r,A,VcKtB

reduces to
rcA A,A, C[a:= T]kB

r,A,C[cx:=T]kB

Note that #n=#r’=#p+#o+l. Also lrrl=(~I+(w(+1+#7~. /~‘]=lpl+

JwJ+(#k-l)+l= Ip)+)w)+#~<]7r). Thus, even for second order RLL, there can

be at most (# r)3 sequent reduction steps in the normalization of a proof rr. This

upper bound can again be lowered to # 7~, this time by using the proof net representa-

tion given in [15].

The results of Section 2.2 may be summarized as follows.

Theorem 2.2. Let rr be a proof in RLL or in second order RLL. Any sequence of

reduction steps on rr must terminate in a cut-free proof in at most (#GT)~ sequent

calculus reduction steps. This cut-free proof is unique up to order of the instances of

the rules. It has at most # rr instances of the rules, including the axioms. Furthermore,

any sequence ofproof net reduction steps on the proof net representing v must terminate

in at most #TT reduction steps.

Remark. In fact, proof net reductions are completely asynchronous; they do not

have to be performed sequentially [13, 151.

Bounded linear logic 17

The Sequentialization Theorem [15] applies to the discussion of second order

RLL only with respect to one-sided sequent calculus. There is no claim of conservativ-

ity of one-sided sequent calculus over the two-sided style for the second order RLL

considered here. However, the fact still remains that for these two presentations of

the sequent calculus, there exists a natural correspondence of normal forms of

certain types, for example

VCr((a-Ja)@. . .@(a-+cr)-(a-a)).

Hence for our purposes here, we can still freely use proof net interpretations for

the two-sided sequent calculi.

2.2.6. Adding unrestricted Weakening

The phenomenon of shrinking proofs observed above remains valid even if one

adds the structural rule of Weakening:

or equivalently, if one reformulates the axioms as:

In this latter system the measure of axiom is still 1. It is readily checked that if

r is a proof of a sequent A t A, then for any finite multiset of formulas r, there is

a proof p of the sequent r, A +A, where #p c n, IpJ 4 1~1, and p has the same

underlying rooted tree as r. This fact allows us to transfer the measure of the

computations given above to the system with axioms of the form r, At A.

2.3. Linear logic

While RLL and the related systems discussed above enjoy fast normalization,

these systems have little expressive power. The problem of adding expressive power

to RLL may be resolved by adding a new connective “!” for storage. !A means A

can be reused ad nauseam. The system LL of linear logic is obtained from RLL by

adding rules for !:

!rtA
Storage ~

!I-+!A
Weakening r:LfB

> .

Contraction ” jA’ !AF B
l-, !AE B

Dereliction
T,AFB

r, !At B’

There is now a tremendous increase of expressive power: we can represent first

order function types by AJB := !A --Q B [13]. It is folklore on finite types that

there can be no realistic time bounds on computations. Specifically, take a ground

18 J.-Y. Girard et al.

type 0 and define higher types n + I := n+ n. Now define the analog of Church

numerals p of type n + 2, Y,P+* as A$fp, where the variable f is of type n + 1. One

easily verifies that modulo p-conversion,

Y,P+*(f) o Yn4+2cf) = Y,PXfL

and Y,C+,(Y,“+z> = YZ’;, .

y,p+* o YZ+2 = y,““,,,

Therefore YitzYi+, . . . Y: = Yi, where c =222 is a tower of 2’s.

Furthermore, adding full impredicative second order quantification (V) yields a

system of LL2 as strong as system 9(=second-order polymorphic lambda calculus).

In particular, every provably total recursive function of second order arithmetic is

representable in the system. In other words, in order to produce a total numerical

function which is not representable in LL*, one has to go beyond most current

mathematics.

2.4. Towards bounded linear logic

We seek a system intermediate between second order RLL and full second-order

linear logic, which would enjoy feasible normalization and would yet be powerful

enough to express all feasible functions. To this end we consider bounded reuse,

roughly !,A with the intuitive meaning that datum A may only be reused less than

x times. Let us first present just a simplified version of the desired intermediate

system and the basic intuition behind it; the precise consideration will be taken up

in Sections 3 and 4. If r is A,, . . . , A,, we write !,r for !,,, A,, . . . , !,,,,A,.

The rules for storage naturally induce polynomials:

Storage Weakening
TFB

r , A~ B
I .o

Contraction
l-, !,A, !,At B

Dereliction
T,AtB

l-, !x+yAt B r, !,AFB’

We may interpret these rules in second-order RLL, by translating !,A as

where there are exactly x tensor signs and where 1 may be thought of as Va(cu - (.y).

This translation is logically sound only if we add to RLL the unrestricted weakening

rules (see Section 2.2.6). A consequence of the latter is that from (n + l)-ary

tensorization one can obtain the n-ary one. The addition of the unstricted weakening

rules to RLL is of course not problematic. As observed at the end of Section 2.2.6,

proofs still shrink under normalization. The weight (measure) associated to a proof

Bounded linear logic 19

is a polynomial, the key cases of Storage and Contraction being:

!$-+A P

!,,I-t-!,A (p+l)x+2nx+n+l

where n is the number of formulas in r, and:

r, !,A, !,A+ B

r, !x+,,A~ B

p

p+2 ’

In the cases of Weakening and Dereliction one adds 1. The axioms and cut are

treated as in RLL.

Discussion. These formulas basically follow from the translation into RLL men-

tioned above, but they do involve some overestimates for the sake of uniformity in

the cases x = 0, y = 0, or n = 0. Another advantage over the weights assigned to the

Storage and Contraction rules in [21] ((p + 1)x + n and p + 1, respectively) is that

the weight of a proof is always positive and hence it easily fits into the pattern

discussed in Section 2.2. As in [21], however, there is still a problem in the reduction

steps that apply when the cut formula is !,A and the left premise of a Cut rule is

a consequence of a Storage rule with r nonempty, i.e. n > 0. The answer, as in [21],

is to consider modified normalization in which such reduction steps are prohibited

(see Section 4). Here we present a simplified version of two crucial cases of the

modified normalization procedure. Observe that the weight strictly decreases.

Reduction step: Storage vs. Contraction.

:P :w
t-A A, !,A, !,At- B

k !,+,A A, !,+,A+B

AtB

:P

!P F-A :w
FA

reduces to -
k !,A A, !,,A, !,A+ B

t !,A A, !,At B

Let R and Q be the weights of the proofs p and w, respectively. Let t = u + v. The

weight of the entire proof before the reduction step is (R+ 1)t + 1 +Q+ 2 =

(R+l)t+Q+3. After the reduction step, the weight is (R+l)~+l+(R+l)~+l+

Q=(R+l)(u+v)+Q+2=(R+l)t+Q+2.Thereisalsoasimilarreductioninwhich

the cuts in the reduct are done in a different order: the same weights arise in this case.

20 J.-Y. Girard et al.

Reduction step: Storage vs. Storage.

iP :”

F-A !;A, !,A+B

k !,,A !,;A, !,,At !,B

!UjA + !,B

:P

I-A :w

+ !,A !;A, !,,AE B

reduces to !,At-B

!,iA t- !,B

Again let R and Q be the weights of the proofs p and w, respectively. Let t = vu.

The weight of the entire proof before reduction is (R+ 1) t + 1 + (Q-t 1)~ + (2n + 1)v +

n+2=(R+l)t+(Q+l)v+(2n+2)v+n+3. After reduction it is

[(R+l)u+Q+2]~+1+2nv+n=(R+l)uv+(Q+l)v+v+1+2nv+n

=(R+l)t+(Q+l)v+(2n+l)v+n+l.

3. The syntax of hounded linear logic (BLL)

3.1. Resource polynomials

Let (z) be the usual binomial coefficient. In particular (0”) = 1. A monomial is any

(finite) product of binomial coefficients, nT=, (2), where the variables Xi are distinct

and nj are nonnegative integer constants.

A resource polynomial is any finite sum of monomials, e.g. 0, 1, y, x + (z(z - 1)/2),

etc. Resource polynomials are closed under sum, product, and composition. Such

polynomials are exactly thefinite dilators of proof theory [161 and are closely related

to combinatorial functors [9].

Given resource polynomials p, q write p&q to denote that q-p is a resource

polynomial If p cp’ and q c q’, then their composites satisfy q 0 p G q’ 0 p’.

3.2. Formulae of BLL

Formulae (= types): atomic formulae have the form (Y (p’); here (Y is a second-order

variable of given finite positive arity and p’ here denotes an appropriate non-empty

list of resource polynomials.

Formulae are closed under the following operations:

(i) AOB and A* B from RLL.

(ii) (Va)A (second order universal quantzjication),

(iii) !X<P A (bounded exclamation mark with p a resource polynomial not contain-

ing x).

Bounded linear logic 21

Positive and negative occurrences of resource terms in formulae are defined by

induction as usual; in !XCp A, p occurs negatively and x is a bound variable not

occurring in p. Let the free resource variables x, , . . . , x, occur only positively in B.

Then Ax,, . . . , x,.B is a (second order) abstraction term, say T. A[(Y := T] denotes

the result of substituting T for a in A, i.e. of replacing the atoms CI(p,, . . . , p,,) in

A by Np,,.. . , p,]. Given types A and A’, write ALA’ if A and A’ only differ in

their choice of resource polynomials, and

(i) for any positive occurrence of resource polynomial p in A, the homologous

p’ in A’ is such that p cp’.

(ii) for any negative occurrence of resource polynomial p in A, the homologous

p’ in A’ is such that p’~p.

If r and r’ are finite multisets of formulae, TET’ iff it is true componentwise.

3.3. BLL sequents

Sequents have the form TtB, where r is a finite (possibly empty) multiset of

formulae. The formulae in r are considered indexed but not ordered. [Notation:

parameters p, q, u, w range over resource polynomials. A[x:=p] denotes the

substitution of p for all free occurrences of resource variable x in formula A. From

now on we write 1 .,.<,A instead of the formula !,A (cf. Section 2.4).] We may

intuitively think of ! J,<pA as lOA[y:=O]@. . .OA[y:=p-11.

Axiom (Waste of Resources) At A’, where A c A’

(Special case: A k A).

cut
TEA A, AFB

r, AkB

OL
r,A,BtC TEA AtB

r,A@BkC OR r,AFA@B

TEA
+L

A,BkC
+R

r,AkB

r,A,A--BEC rt-A-B

vL r,A[cx:= T]kB TEA

r, (V~)AEB IfR TF(Vcy)A

(provided (Y is not free in r)

(!W) Weakening
rtB

r, !,<,AF B

(!D) Dereliction
r,A[x:=O]tB

i-1 , .x<,+w AtB

22 J.-Y. Girard et al

(!C) Contraction
r, &,A, ! ,<,A[x:=p+y]tB

r, !x<p+y+,vA t B

where p + y is free for x in A.

(S !) Storage
L,,(\-~,[Y := u,(x) + ~1, . . . , L,,,w%,[y := v,,(x) + zl t B

I ..bv.a,cp)+w,,A,, . . . , !.v<v,,~p~+n~,,A k !x<$

where Q(X)+Z is free for y in Aiy where Zli(X) =C,,, qi(z) and where

all formulae to the left of the t have the indicated form.

A proof of a sequent IV-A in the BLL sequent calculus is a finite labeled rooted

tree in which the nodes are labeled by BLL sequents so that the leaves are labeled

by instances of the axiom, the root is labeled by TtA, and the label of each node

is obtained from the labels of its immediate predecessors(s) by an instance of a

BLL rule.

Remark. The rules of BLL are written in such a way that given any proof p of a

sequent TEA and given any T’c r and A c A’ then a simple change of resource

parameters will yield a proof p’ of TVA’ without altering the structure of the proof:

3.3.1. Lambda term assignment for BLL proofs

We remind the reader that in Gentzen sequent calculi, as well as in natural

deduction calculi, proofs can be represented by lambda terms, cf. [20, Chapter 51.

In particular, an axiom AkA’ is represented by a : A D a : A’, the logical rule -JR

is represented by h-abstraction or currying:

c’:T.x:A D t:B

Z:l- D Ax.t:A+B

while the logical rule -+L is represented by an application of a functional variable,

here denoted by e:

c’:T D t:A d:A.b:B D u:C

c’:r,d:A,e:A--B D u[b:=e(t)]:C’

The cut rule may be represented by substitution:

c’:T D t:A ~:A,u:A D u:B

S-,&A D u[a:= t]:B ’

which is certainly denotationally consistent. (However, from a more dynamic view-

point is would have been more appropriate to define:

c’:T D t:A d:A.a:A D u:B

c’:I’,d:A D leta=tinu:B ’

where the explicit substitution is only indicated: it is actually carried out by the

reduction steps in cut-elimination.)

Bounded linear logic 23

This assignment may be extended to the quantifier rules trivially, i.e. the quantifier

rules have no effect on lambda terms. Since tensor A@B is definable as

Va((A-+B-(Y)--o(Y), the assignment given so far yields a lambda term assignment

for the tensor rules. Finally, the lambda term assignment may be extended to BLL

trivially, i.e. the storage rules have no effect on the lambda terms.

This lambda term assignment is rather crude (for example, among its shortcomings

are that storage and quantifier rules have no effect). Its sole purpose here is to serve

as a framework for relating our definition of representability of functions in BLL

(see Section 5) to the usual notion of representability of functions in lambda calculus.

The question of a good syntax for term assignments to BLL proofs is open (but see

[l] for the case of LL).

3.4. Proof nets for BLL

We now extend to BLL the proof net representation of RLL proofs mentioned

in Section 2.2.4. Proof structures (with boxes), and in particular proof nets as

discussed below, are defined almost exactly as in Chapter 2 of [13], with the

quantifiers treated as in [151. The exceptions are that our axioms must reflect waste

of resources, that we do not consider additive connectives at all, that we consider

bounded operators !X<p and ?rip instead of ! and ?, resp., and that the weakening

rule is treated as a link, not as a box. An alternative approach to proof nets, given

in [lo, Chapters 3-61, and [ll, Section 31, provides an amenable framework for

our treatment of the weakening rule.

A proof of BLL sequent A,, . . . , A,+B will be represented by a proof net with

conclusions A:, . . , Ai, B. For a BLL formula C, C’ is a formula defined as follows

(see [131). First, translate A- B as Al @ B. Second, if C is an atomic BLL formula,

let C’ be a new formula in an expanded language and let (C’)’ be C. (A@ B)l is

A’63 B’, (A@ B)L is ALOB’, (VcuA)’ is a 3aA’, (!,,,A)L is ?,,,,Al, (?,,,,A)’

is ! .<,,A’. Then let (hx,, . . . , x,.B)l be Ax,, . . . , x,.B’. (The reader will note that

Al’- is A.) If a resource term p occurs positively in A, it occurs negatively in A’

and vice versa. The relation Ac A' is extended accordingly.

Proof structures are nonempty labeled graphs’ whose labels consist of (occurrences

of) formulas, connected by various kinds of links or boxes in which there are certain

distinguished multisets of premises and conclusions, as defined below. Links will

correspond to the axiom and rules of inference of BLL and are defined as follows

(where A, B, . . . denote formula occurrences).

l (Axiom link)

AA’, where A & A’.

The conclusions of this link are A’ and A’. There are no premises. (This link

represents the Axiom.) Note: since conclusions form a multiset, this link is

’ not necessarily planar

24 J.-Y. Girard et al.

considered to be the same as the link given by

A,‘II, where A L A’.

(Cut link)

A AL

is a link, with no conclusions and premises A and A’. (This link represents the

Cut rule.) Note that since we identify ALi with A, this Cut link is considered to

be the same as the one where we interchange (the positions of) A and AL.
(Tensor link)

A B

A@B

is a link whose conclusion is A@ B and whose premises are A and B.

represents the rules OR and 4L.) Note that, unlike the Axiom and

the tensor link is not symmetric in A and B.

(B-link)

(This link

Cut links,

A B

APB

is a link whose conclusion is A P B and whose premises are A and B. (This link
represents the rules @L and +R.) As in the case of the tensor link, the @-link is

not symmetric in A and B.

(V-link)

A

VaA

is a link whose conclusion is VaA and whose premise is A. Here a is the

eigenvariable of the V-link and it is forbidden to use it as the eigenvariable of

any other V-link, see [15]. (This link represents the rule VR.)

(a-link)

A[a := 7-l

3CYA

is a link whose conclusion is 3aA and whose premise is A[a := T]. (This link

represents the rule VL.)

The links for the operators ?X<P are as follows:

(Weakening link)

3 A fX<W

is a link whose conclusion is ?,<, A and which has no premises. (This link

represents the Weakening rule !W.)

Bounded linear logic 25

l (Dereliction link)

A[x := 0]
7 .xc,+w A

is a link whose conclusion is ? ,<l+,A and whose premise is A[x:= 01. (This link

represents the Dereliction rule !D.)

l (Contraction link) If p+y is free for x in A, then:

7 A ? .x<p .y<,A[x:=p+yl
7 .x</I+q+m, A

is a link whose conclusion ?x<ptq+wA and whose premises are ?.x<pA and
7 .,,_A[x:= p+y] (This link represents the Contraction rule !C.)

Finally, proof structures may contain boxes [13], which could be considered as

links of a special kind, defined as follows:

l (!X<p boxes)

7
~y,<u,~p)+w, A, . . . ?r;,<u,,(,,j+w.,,A, L<,,B

is a proof box (or simply: box) whose main door is !x<pB and whose auxiliary

doors are ?,,,<U,CP,+W,Al,. . . , ?.v,l<Li,,~p~+W,, A,,. This box has as conclusions all of

the doors, both main and auxiliary. (The box will represent the Storage rule S!.)

We allow boxes to contain other proof structures.

Proof structures are built from links and boxes as described above, subject to the

following requirements.

l Every occurrence of a formula in the proof structure is the conclusion of exactly

one link or box, and a premise of at most one link.

l Whenever a box contains a formula occurring in a link (either as a premise or a

conclusion) then this box must contain all other formulas occurring in the link.

l Given any two boxes in a proof structure, either (i) their respective contents and

conclusions must be completely disjoint, or else (ii) one box must be properly

contained in the other.

The conclusions of a prooj- structure are the conclusions of its links (and of its

boxes) that do not appear as premises of other links.

Remark. Since a proof structure within a box may contain other boxes, etc., we

have really given a definition of proof structure by induction on the depth of nested

boxes.

Following [13], one may assign proof structures to sequent calculus proofs in

BLL. Among all possible proof structures, one can distinguish those which so

26 J.-Y. Girard et al.

arise (i.e. from proofs in linear sequent calculus); these are called proofnets ([13]).

There is a mathematical characterization (so-called correctness criterion) picking out

those general proof structures which are actually proof nets. This criterion can be

phrased in terms of trips as in [13], but for our purposes, the treatment by means

of acyclic connected graphs [11, lo] is somewhat more amenable. In particular, the

correctness criterion for a weakening link may be stated as the existence of a

“pointer” to another link in the proof structure.3 The correctness criterion for V-links

is stated by means of arbitrary pointers to the links in the proof structure that contain

a free occurrence of the eigenvariable [15]. In either case, these pointers are not

allowed to enter or exit any boxes. Regarding boxes in proof nets, they may

themselves only contain arbitrary proof nets, rather than arbitrary structures. The

correctness criterion for boxes can be found in Chapter 6 of [lo] (by means of

acyclic connected graphs) or in [13] by means of trips. Finally, in addition to

correctness criteria in proof nets, we restrict box formation so that one considers

only boxes of the form shown in Fig. 1, where (T is a proof net whose conclusions

are indicated, where 1 s j G n, and 0 c n, and the v, satisfy the same conditions as

in the Storage rule.

u
. . . .

7 .z<q,(x)Af[y, := VI(X) + zl “. ?z<q,(x#Y, := v,(x) + zl ... B

L ?y,<v,(p)+u,,A: ‘.. ?y,<v,w+u,,Af ‘.. !x<pB J

Fig. 1.

As in Section 3.3 above, we observe that if A, c Ai, 1 s i c n and if the Ai’s are

the conclusions of a proof net V, then there is another proof net V’ with the same

graphical structure whose conclusions are the Ai’s. Finally, observe that the links

and boxes presented above can also be thought of as inductive clauses in an inductive

definition of a proof structure with given conclusions starting from the Axiom links

(see also [lo] for a complete treatment).

3.5. The weight of a BLL proof structure

We assign a polynomial IIrl1 to every BLL proof structure r (and hence to every

BLL proof). The polynomial 11~11 will be called the weight of VT.

s This is not the way weakening links are treated in [lo]. Our precise correctness criterion for a proof

structure with weakening links is the simultaneous exisrence for each weakening link of a “virtual premise”,

i.e., the choice of another (occurrence of a) formula in the proof structure, in such a way that this bigger
graph enjoys the correctness criterion known in the absence of weakening links, namely that each
subgraph obtained in a certain way is acyclic and connected [ll, 151. The new criterion is easily shown

to be correct, but it is not very satisfactory, because its preservation under cut-elimination is not

conceptually immediate. Indeed, during cut-elimination some virtual premise may be destroyed. In such

a case, we must show that we could have indeed chosen a virtual premise that has not been destroyed.

This offers no difficulty, but one has to go through a big number of cases.

Bounded linear logic 27

The weight of every link except Contraction is 1 (this includes the Axiom link).

The weight of Contraction is 2. The weight of a box whose content is proof structure

a, with n auxiliary doors and whose resource polynomial at the main door is p is

C,,, (IIuII(x)+ 1)+2np+ n + 1. (If a box has no contents, we arbitrarily set llall = 0.

This situation never arises in the case of proof nets.) Finally, the weight of a proof

structure is defined to be the sum of the weights of its links and boxes.

The following three propositions are readily checked. We use the pointwise order

of polynomials with respect to nonnegative integer arguments.

Proposition 3.1. Let A,, . . . , A,, be the conclusions of a proof net u and let A, E Ai,

1 d i s n. Then a simple change of resource parameters in Y yields a proof net v’ whose

conclusions are A;, . . . , AL, such that II ~‘11 s II VI/.

Proposition 3.2. Let u be a proof net and let p be a resource polynomial free for

substitution for thefree resource variable x in Y. Let Y[X := p] be the result of substituting

p for all free occurrences of resource variable x in v. Then V[X := p] is a proof net and

Il4x:=PlII s II vll[x:= PI.

Proposition 3.3. Let v be a proof net and let T be a second order abstraction term

Ax, . . . Ax,,. B, where all free occurrences of the resource variables x, , . . . , x, in B are

positive. Let v[(Y := T] be the result of substituting Tfor all free occurrences of a second

order variable a in the proof net V. Then u is a proof net and II V[(Y := T]l/ s II ~11.

The analogous properties hold for the BLL sequent calculus.

4. Normalization and proof nets

4.1. Normalization in BLL

We shall refer only to proof nets. The analogous discussion for the BLL sequent

calculus is indicated in Appendix A. Here we define the proof net reduction steps

and simultaneously show that the weight of a proof net decreases. The weight

analysis can be extended to the BLL sequent calculus reductions by using cut-size,

analogously to Section 2.2 above.

Definition 4.1. In BLL proof nets, an instance of the cut link is boxed when it is

contained in a proof box.

Our normalization procedure will eliminate only nonboxed cuts. We cannot

eliminate boxed cuts because the polynomial p at the main door of a box may be

0, in which case the weight is no longer strictly monotone under reduction.

28 J.-Y. Girard et al.

Definition 4.2. In BLL proof nets, an instance of the cut link is irreducible if it is

boxed or if one of its premises is a box with at least one auxiliary door, where the

cut formula is at the main door, and the other premise is a conclusion of a Weakening,

Dereliction, or Contraction link, or a box.

Definition 4.3. A BLL proof net is irreducible if it contains only irreducible cuts

(if any).

It is understood that the reduction steps given below do not apply to irreducible

cuts.

Axiom reductions.

l AL Let AL A’. Then:

V V’

AlAl d’l reduces to A’,

see Proposition 3.1. The weight decreases from 11 VII + 1 to II v’ll s Ilvll.

l AR Again, ALA’. Then:

V V’

A A-’ reduces to A’,

see Proposition 3.1. The weight again decreases from II VII + 1 to II v’ll G II VII.

Symmetric reductions.

l SOP See Fig. 2, where AL and BL are among the conclusions of the given

proof net o. The weight decreases from II v/l + IIp II + 11~ l/+2 to 11 v/I + 11~ II + 11~ 11.

u P W
. . u W P

A B AL BL

A@aB Al p Bl reduces to A Al BL B

Fig. 2.

l SV See Fig. 3. The weight decreases from /I VII + I)p II+2 to I] ~[a := T]]l + 11~ /I s

II v 11 + II p I(, see Proposition 3.3.

l SSW See Fig. 4. The weight decreases from I,<,, (I1vIl(x)+l)+ II/.4 +2 to 111*]1.

Bounded linear logic 29

u P
u[cy:= T] P

A A’[n:= T]

V’aA 3ClAL reduces to A[u :‘= T] .41[a:= T]

Fig. 3.

(UI p . . p .
7 A’ .x<p B, .’ B,, reduces to B, ... B,

Fig. 4.

l SSD See Fig. 5. The weight decreases from CxC,+w (~~z~~(x)+1)+~~~~~+2 to

II 4x := 0lII-t IIP II.

u[x := O] P

A[x := 0] A’[x := 01

Fig. 5

l SSC See Fig. 6. The weight decreases from C-c<p+y+,+ (II VII(X)+ l)+ ll~ll+3 to

c (II~ll(X)+l)+ c ~Il~ll~P+~~+~~-tll~‘ll+~ *cp I”. y+*

52 c (ll~ll(X)+~)+llP’lI+2 rtp+y+w

s c (Il4l(x)+l)+ll/-ll+2 r;--p+y+w

(See Proposition 3.1 for the latter inequality.)

AL ?,ac4 Al[x:=p +y]
7 .x<p+q+ui AL reduces to

Fig. 6.

30 J.-Y. Girard et al.

l SSS See Fig. 7. The weight decreases from

1 (Ilvlt(vi)+l)+ C (Il~~/(x)+1)+(2n+2)p+n+3
y,<u,(p)+%J, XCP

to

c (,;:f,,, (II~II(I(1 ZI x +z)+l)+ll/1ll(x)+2 +2np+n+1
XCP I >

= c (,~~x,(l14(t(1 ZI x +z)+1 + c ~~~~~(x)+1)+(2n+l)p+n+l
X<P

)
x < p

= c (IIyllb,)+l)+ c (II~ll(X)+1)+(2~+~)P+~+1
.Y,<U,(P) XCP

=G c (Il4(Y,)+l)+ c (Il~ll(X)+1)+(2n+l)P+n+1
y,‘=u,(p)+w, X<P

Therefore we have the following result.

Theorem 4.4. In any BLL proof net v, any sequence of reductions on reducible cuts

must terminate in at most II VII steps.

It may be readily seen that the reductions are locally confluent (i.e. weak Church-

Rosser), which leads to the following proposition.

Proposition 4.5. The proof net reductions on reducible cuts satisfy the Church- Rosser

property.

Definition 4.6. The irreducible form of a proof net r is the result of eliminating all

reducible cuts in r.

Elimination of reducible cuts yields a kind of subformula property given in Lemma

4.8 below. Let us first begin with a definition.

Definition 4.7. A formula in the expanded language for BLL (see Section 3.4) is

accessible if each negative occurrence of a universal quantifier or a bounded exclama-

tion mark and each positive occurrence of an existential quantifier or a bounded

question mark, is nested within a positive occurrence of a bounded exclamation

mark (i.e. negative occurrence of a bounded question mark).

The proof of the following lemma is left to the reader.

Lemma 4.8. An irreducible proof net with accessible conclusions contains only boxed

cuts.

Bounded linear logic 31

. . . q

. . . .

7
+

;;
u,
2

!!_

I

. . . =I

!!_
”
-I._
-T
3
6 V

c:

32 J.-Y. Girard et al

While the analog of this lemma can be established within the BLL sequent calculus,

the argument is much more direct and perspicuous by means of proof nets.

BLL versions of polymorphic definitions of most common data types (lists, trees,

etc.) will not be accessible in the sense of the definition above. The solution to this

problem will be presented in the next section.

5. Normalization in BLL as polynomial-time computation

An aspect of modularity in BLL is that the notion of size of data is given by their

type. For example, the data type of tally natural numbers of size at most x is:

Nx = va !,.<,(a(~) --a(Y+1))~(~(o)--O~(x))

From now on, we simplify notation, associating the linear implication - to the

right. Also the scope of the quantifier is the maximum possible. Note that erasing

the resource information gives the linear logic version of the polymorphic type of

natural numbers Va !((Y - CY) - LY - (Y, ([13, Chapter 51) in which the (tally) natural

numbers are represented as freely generated by a tally “successor” function, by

reusing this function under iteration as much as one likes. Our definition of N,

follows the same pattern, except that access to the “successor” function is allowed

only up to x times (see Example 5.1).

Similarly, we consider the type of lists on two symbols, of size at most x:

Again, erasing the resource information yields the linear logic version of the

polymorphic type of lists on two symbols

where such lists are represented as freely generated by two “successor” functions

(“append first symbol” or “append second symbol”), by reusing these functions

under combinations of iteration and composition as much as one likes. Our definition

of Nf; follows the same pattern, except that access to the two “successors” is allowed

only up to x times (see Example 5.2).

We choose to write the first symbol as 1 and the second symbol as 2, anticipating

the dyadic notation used in Section 6.

Most common data types (lists, trees, etc.) can be given a similar treatment in

BLL, by maintaining the analogy with their representation in system 9 given, for

example, in [20, Section 11.41. For the purposes of establishing the connection

between normalization in BLL and the ordinary notion of polynomial time computa-

bility, we shall concentrate on the type of dyadic lists and on a simpler but related

type of tally natural numbers.

Bounded linear logic 33

Example 5.1. The tally natural number 2 is represented by the cut-free BLL proof

of I-N, shown in Fig. 8. (Hint: reading BLL proofs bottom up gives a much better

understanding of the structure).

The lambda term assignment mentioned in Section 3.3.1 assigns Church numeral

2, i.e. A$Aa.f(f(a)), to the BLL proof in Fig. 8, see Fig. 9. Proof net representation

is shown in Fig. 10. This proof net determines the BLL proof given in Fig. 8 uniquely

up to the order of the rules +L and !D. The proof net is itself uniquely determined

by its conclusion Nz and by the labeled graph with the indicated order on binary

links, see Fig. 11.

a(0) f--a(O) N(1) kc?(l)

cu(O)-oa(l),ru(O) b a(l)
*L

a(2) + a(2)

~(O)-ocu(l),a(l)-ocu~2),(Y(O) ka(2)
4L

!y<,ta(y)-oru(y + l)),a(l) *a(2),cu(O) k a(2) !D

!y<,(a(y)~cu(y + l)),!,<l(a(Y + lbol(Y + 2)),a(O) ka(2) ;:

!y<z(“(Y) -ou(.v + l)),u(O) k n(2)

!ycz(a(y) -ocu(y + 1)))- tr(O)-orr(2)
+R

t!y<*(U.(y)-ocu(y+ l)brr(O)+u(2)
-oR

t Va!y<2 ((Y(Y) -cu(.Y + 1)) *a(O) *a(2)
VR

Fig. 8.

a: a(O) D a: cu(O) b: a(l) D b: u(l) AL

f : a(O)-oa(l), a : a(O) D f(a) : a(l) C: a(2) D C: (u(2)

f : B(O) -a(l), g : a(l) -0ff(2), a: a(O) D g(f(a)) : m(2)

f:$<,MY)~~(Y+ l)),g. u(l)

“FD

-3u(2), U: a(o) D &'(f(u)): c?(2)

S:!.“<l(“(Y)-oa(Y+ l)),g:!y<,(“(Y+ 1) -Oa(Y + 2)), U: a(O) D g(f(U)) : a(2)
!D

f :!,<z(Q(Y)-Oab + l)),U: a(o) D f(f(u)): u(2) OR
!C

f :$<2(a(J’) -oc~b’ + 1)) D hf(f(u)) : cr(0)-oa(2)

D ~vf.~a.f(f(a)) :!y<2(a(y) *a(y + 1)) +a(O) -3tr(2)
-JR

D ~f.~a.f(f(a)) : V”!,<2(a(y) -orr(y + 1)) *a(O) -3a(2)
VR

Fig. 9.

I I 7
(r(o) CY(l)l (U(l) (X(2)1

a(O) @a(m(l) @tr(2)1
1

3 .v<l(Ol(Y)@a(Y + l)i) ?V<l (~~(Y + 1) @ trb + 2)l) tr(O)l a(2)

7 .,yz(N(Y)@‘(Y(y + lJL) @(OIL pn(2)
7
.,<2(~~(Y)63’u(Y + l)I)~,(tr(O)l~,tr(2))

V~~?y,z((Y(Y)@~Y(Y+ l)i)511((Y(O)1&/[~(2))

Fig. 10

34 J.-Y. Girard et nl

Fig. 11.

We shall use this important fact in the disucssion of polynomial-time computation

by normalization, given below.

All the facts mentioned in this example easily generalize to any Church numeral

hJha.f(f. . . (f(a) . . .)). Note that because of waste of resources expressed by axioms

and rules, the tally natural number n can be represented by a cut-free proof of tN,,

for any n G k. q

Example 5.2. The dyadic list 112 is represented by the cut-free proof of C N: shown

in Fig. 12.

The associated lambda term is A$Ag.ha.g(f(f(a))) : N:. The proof net representa-

tion of the cut-free proof in Fig. 12 is displayed in Fig. 14. This proof net determines

Fig. 12.

Bounded linear logic 35

the cut-free proof given above uniquely up to the order of the rules. The proof net

is in turn uniquely determined by its conclusion N: and by the labeled graph of

Fig. 13. This important fact will be used in the discussion of polynomial time

computation by normalization (see below). The facts stated in this example easily

generalize to all dyadic lists. As in Example 5.1, note that because of waste of

resources expressed by axioms and rules, any dyadic list of length s k can be

represented by a cut-free proof of Nz. 0

Fig. 13.

Example 5.3. The successor on the tally natural numbers is represented by the

cut-free BLL proof of N,t-N,+, shown in Fig. 15.

The reader will easily verify that the lambda term assignment mentioned in Section

3.3.1 yields:

e : N, D AGa._ff(e(f)(a)) : NY+, ,

or, equivalently,

e:N, D JV~~(~(~)):N,+,-

The proof net representation of this BLL proof is shown in Fig. 16. 0

Example 5.4. There are two successors on dyadic lists. One of them, “Append l”,

is displayed in Fig. 17. The lambda term assignment mentioned in Section 3.3.1 yields:

e:N, D hJhg.Aa.~(e(f)(g)(a)):N~.

1
1

-
c

I

Fi
g.

14

.

a(
0)

I-

a(
0)

a(

x)

I-
a(

z)

!y
<

M
Y

)
--

o
4Y

 +
 1

))
 I-

 !y
<

zb
Y

(Y
) -0

a(
y

+
 1

))

@
)

-0

a(
z)

, Q
(O

) t-
 Q

(5
)
-O

L

!y
<

&
(Y

)
-0

4Y

 +
 1

))
 -0

40

)
-0

+

c>
, &<

&
J(

Y
)

-0

a(
?/

 +
 I

))
,

Q
(O

) t-
 a

(x
)

-O
L

N

z,
 $

<
&

(Y
)

-0

4Y
 +

 l)
>,

 4
0)

 I
-

Q
(Z

)
V

L
++

1)

I-

a(
a:

+

1)

N
z

, $
,<

&
(Y

)
-0

a(

$/
 +
 I

))
,

a(
z)

 -
0

(Y
(5

 +
 l

),
 (

Y
(O

) t-
 Q

(5
 +

 1
)

-0
L

N
z

, $
<

&
$Y

)
--

o
4~

 +
 I

))
,

$<
I(

+

+
 Y

)
--

o
4~

 +
 Y

 +

l))
,

a(
o)

 I-
 a

(~
 +

 1
)

;;

N
T

 >
 !y

<
r+

l M
Y

)
-0

a(

y
+

 I
))

,
a(

0)
 I

-
(Y

(z
 +

 1
)

N
*

I
!,

<z
+l

(h
/)

--

o
c&

j-
t-

1
)
)
 I
-
 c
x
(
O
)
-
-
o
a
(
5

+
1
)

d
R

N
z

I
-
 (
!
y
<
z
+
&
(
~
)
 -

-o
 ‘

y(
y+

l
)
)
)
-
o
 a
(
O
)
 -
+
J
 a
(
z
 +
1
)

--
O

R

N
z

I
-
 N
z
+
l

V
R

Fi
g.

 15
.
T
h
e
 ta

lly

su
cc

es
so

r
N

,
tN

,+
,,

Bounded linear logic 31

-I L- +
H

x
‘;; --
u

I

,

.

,

,

.

.

c

38 J.-Y. Girard et al.

The proof net corresponding to the BLL proof given in Fig. 17 is shown in

Fig. 18. Cl

Example 5.5. A Reuse or Storage Functional on dyadic lists is given by the following

proof kN:-c !+, Nz, where x, y are resource variables. Let v be the canonical proof

of t Ni representing the empty list (analogous to Example 5.2), and let s1 and s2

be the canonical proofs of Nz+NZ+, , representing the two dyadic successors (see

Example 5.4). Consider the following proof &:

and consider the proofs u, , u2, where u, is:

where the reader will notice that &, 1 = 1, as required in the formulation of the

rule S! in Section 3.3. CT> is built from s2 accordingly. We proceed as follows, writing

T[X] for !Y<lNz and B[x] for

Then

: m2 : Eo

kT[z]-T[z+l]
S!

k r[O] T[X] t T[Xl

~!;<,(7[2]-7[2+11) 7[0]~7[X]~T[X]

l !;,,(7[2]~7[2+1])~~[0]~7[x]~7[x]

This completes the construction of the reuse functional of type Nz-+ !,,,Nz. A

similar and somewhat simpler definition can be given for the reuse functional of

type N, -0 !+ r N,. These functionals are the BLL versions of the “shaving” or

“linearizing” functionals discussed in [18, Theorem 31. They are also closely related

to Krivine’s recent work on “storage functionals” [26].

Let E, S, , SZ be the lambda terms assigned to the proofs E,, (T, , c2, resp. Then

r= Ab.b(S,)(S,)(&) is the term assigned to the reuse functional of type Nz+ !yCINt.

Here F is AjI:hg.Aa.a, S, is Ae.Af.‘Ag.Aa.f(e(f)(g)(a)), and SZ is

Ae.AJ.‘Ag.Aa.g(e(f)(g)(a)). We conclude this example by observing that the part of

the construction of the reuse functional given by the last proof figure displayed

I
r-

I

I
a(

O
)

a(
+

I--

l
!v

<
.(

4Y
)
i3

 “(Y
 +

 1
yp

o(

0)
 @

J a
(

!v
<z

(4
Y

) @
cu

(y
 +

l)
l)

L

! w
(4

Y)

53
 “

(Y

+
1)1

)1@

(a
(O

)
@

cl(
Z)

~
)

1 .Y
<=

(4

4)

@
 4

Y
+

1P
)I

8
(M

a(
Y)

c3

 (
Y(

y
+

l)l
f

63
 (

a(
0)

8

am
))

Fi
g.

18

.
Pr

oo
f

ne
t

fo
r

A
pp

en
d

1.

“P
C

”)

Fi
g.

19

.
F

re
pr

es
en

ts

th
e

fu
nc

tio
n

4.

Bounded linear logic 41

above works for any type T[X] with x positive, for any proof p of t r[O], and for

any proofs $J and y of + r[z]--o T[Z + 11. If the corresponding lambda terms are t,

F, and G, then the lambda term assigned to the resulting proof of t Ntd T[X] is

hb.b(F)(G)(t), see the Iteration Lemma in Section 6. A similar observation holds

for tally natural numbers N, instead of dyadic lists NT. We shall also denote by r

the lambda term associated to the tally reuse functional N, ---o !,.,,N,. 0

Example 5.6. Let 112 be the cut-free BLL proof of t N: representing the dyadic

list 112, given in Example 5.2. Consider the BLL proof shown in Fig. 20, and its

corresponding proof net shown in Fig. 21.

Esample 5.5

Fig. 21

We urge the reader to work out the complete analysis of the reduction in this

simple example. One important observation here is that in the configuration shown

in Fig. 22, where !,,._.,N;‘+, is at the main door and neither !V_ ,Nf nor ?,.,,(Nf+,)l

is a conclusion of an axiom link, the cut involving the main door cannot be eliminated

until the cut involving the auxiliary door has been eliminated (cf. the reduction step

SSS). In turn, the cut involving the auxiliary door cannot be eliminated unless its

other premise !,._,,Nf is at the main door of a box that has no auxiliary doors (again,

cf. the reduction step SSS). Thus, at some point in the reduction process, we may

encounter at worst the configuration of Fig. 23.

$<IN? I,,,:I-- ?y<lN;+lL ,, . If1

Fig. 22.

42 J.-Y. Chard et al.

LYJz7-J L--y-J
.Y<l 0 .Y<l 0 .Y<l 1 .Y<l 1 1 .

Fig. 23.

At this point, the 0 box must first “enter” the 1 box through its auxiliary

by the reduction step SSS (Fig. 24).
door

Now the 1 box must first enter the 2 box through its auxiliary door by the reduction

step SSS (Fig. 25), etc.

The irreducible form of this proof net is shown in Fig. 26, where C, g, G are

proof net representations of the proofs v, s, and s2, resp. from Example 5.5. This

proof net comes from the following BLL proof, up to the order of the rules (Fig. 27).

Fig. 24.

I r I

1 r,l ?y<lN:L j !y<,N: J ?y<lN:L j

I !)<,N; ’
Fig. 25

-

I’
; %(I := 0)

ID

N; 21
No N:

N2 21
Y<l 0 7 .y<~No j q(z := 1)

N’I
I N;

&IN:- 7 .y<,N:L S(z :== 2)

N? :

!y<,N; - a N:

!yc&
Fig. 26.

Bounded linear logic 43

iv i s,(z:=O)

t N;

--?? ‘!
N; k NT

b! Y-cl II !y<,N'; t N'; ‘c” t ; Sl(Z := 1)

l-N2
u

1 S!
NftN;

t! Y<l N: !y<,Nf t N; !D
t N2

cut
2 S!

t! y<,N;
t N;

___ S!
t! N; YCI

Fig. 27.

Recall from Examples 5.2 and 5.5 that b = Af.‘Ag.Aa.g(f(f(a))) is the lambda term

assigned to the proof 1 I2 and that r = Ab.b(S,)(S,)(E) is the lambda term assigned

to the reuse functional on dyadic lists. The lambda term assigned to the proof given

at the beginning of this example is r(b) : !?<, Ni. It is important to observe that the

lambda term assigned to the last BLL proof just considered, which corresponds to

the irreducible form, is nor the ordinary normal form of r(b), since the irreducible

proof (net) still does contain some cuts.

Furthermore, it is important to observe that an

given above can be recovered up to waste of

containing:

irreducible form such as the one

resources from the information

l the conclusion !.“<,NE;

l the formal structure obtained by forgetting the types but keeping the boxes and

the rule labels, including those inside the boxes, which in this example is as

shown in Fig. 28; and

l the knowledge that each p, comes either one of the dyadic successors s, , s2.

ln particular, the formal structures /3,, pj,. . . distinguish between the two suc-

cessors. A similar and somewhat easier observation of this nature can be made in

the case of 1 .,,<iNk. (For a deeper analysis of the last point, see Lemma 5.1 below.)

We conclude this example by noting that, in contrast to the situation just described,

the cut-free proof net representing the dyadic list 112 (see Example 5.2) is the

Fig. 28.

44 J.-Y. Girard et al.

irreducible form of

.V is,(x:=o) : .f,(x:= 1) ; S,(x := 2)

N,Z N:- N: NfL N; N;l N:.

This proof net represents the proof

‘2’ ;s,(x:=o)

F-N; N,+N: js,(x:= 1)

t N: N:FN: ; s*(x := 2)

for which the associated lambda term is

Af.‘Ag.Aa.(AjAg.Au(AjAg.Aa.(AjAg.Au.~)(j-)(g)(u))

(f)(g)(a))(f)(g)(a) :N:.

The normal form of this term is AJAg.Au.g(f(f(u))), the term associated to the

proof representing 112 (see Example 5.2). 0

Now we can formulate the solution to the problem mentioned at the end of

Section 4, that N, and N: are not accessible. The main idea is to employ the reuse

functional and rather than normalizing reducible cuts in the proof net representation

of a given proof r of Nz, we instead normalize reducible cuts in the proof net

representation of

Example 5.5

NZ,tN; !,<,N;F!,,~N:.

EN’,- !.,.<,N; N;--l .?<,N;, N$!!,,,N;
--L

:T

tN; N:t !l,< ,N:
cut

cut
C! ?<,NZ

The conclusion ! ,,~, N: is accessible and Lemma 4.8 will apply (similarly, we work

with !,,<, N, instead of N,).

As we have already mentioned, this method is motivated independently by two

sources. One is in the notions of “shaving” or “linearizing” functionals in [18],

Theorem 3. The other source is Krivine’s recent work [26], the point of which is to

use leftmost reduction in lambda calculus: in spite of the obvious fact that leftmost

reduction can force us to compute the same integer several times, Krivine manages

to force the evaluation to occur exactly once. His storage functionals do not yield

the ordinary normal form of the integer but rather something like n cuts applied

to 0 and successor. Similar methods have been applied in linear logic in recent work

of Regnier.

Bounded linear logic 45

Now the rules we use in BLL are a kind of symmetrization of leftmost reduction.

The idea is that the only relevant difference between left and right is that in f(a),

a is inside an S! box.

Lemma 5.1 below is stated for the particular case of tally integers. The case of

dyadic lists is completely analogous.

Lemma 5.1. In bounded linear logic, one can construct proofs with associated lambda

terms as follows:

(i) D 0. 1 ‘?“_1 No

(ii) D S: !,._-,N,+ !,._ ,N,+,

(iii) D r:N,--O!,.c,N_y

such that whenever a tally integer n is the ordinary normalform of a closed term f : Nk,

then an irreducible proof with associated term S”(O) : !.,.<, Nh is the result of eliminating

alI reducible cuts from rhe proof with associated term r(t) : !,._ ,NL.

Before we give the proof of Lemma 5.1, let us explain the irreducible forms we

are looking for. We describe them in the framework of sequent calculus; up to the

order of rules this will contain all possible irreducible forms. We remind the reader

of Examples 5.5 and 5.6. In particular, part (iii) of the statement of Lemma 5.1

concerns the tally version of the reuse functional given in Example 5.5.

A zero-proof Z,, where a is a nonnegative integer, is the only proof of !,.- ,N,

obtained by waste of resources from the cut-free proof with associated Church

numeral 0 = Ajha.a (recall Example 5.1).

A successor step Sohr, where the nonnegative integers a, 6, c satisfy a s b < c, is

the only cut-free obtained from the cut-free proof S, of N;fiN,+, given in Fig. 15

by the following steps: let x = b, obtaining a proof Nh t Nh+, . Then waste N, into

Nh and N,,+, into N,,, obtaining a proof N,, EN,.. Applying !D, we obtain So,,<, which

proves !,.<,N,t-N,.

If n is a proof of a formula !,..,, N,, a successor of n is any proof n’ of some

!,..-,N,. obtained from KI by first applying a cut with some So,,<, then applying the

S! rule.

The irreducible proof that we obtain will consist of iterated successors of some

zero-proof, analogous to Example 5.6.

We emphasize that for the eventual computation, resources will be erased and

therefore only the number of successors made from zero will be remembered.

Proof of Lemma 5.1. By induction on k ‘G k+ 1 we shall show that either the

irreducible form of r(t) is some iterated successor of zero, the number of iterations

being less than k’, or it is a k’-iterated successor of a proof of some !,.<,N,, which

is an S! box. With k’ = k + 1 only the first possibility remains. As in the case of

Lemma 4.8, the argument can be formulated either by means of sequents or proof

nets, the difference being that the latter dispenses with a lot of bureaucracy. In the

case k’ = 0 we just have to show that the irreducible form of r(t) is a box, which is

46 X-Y Girard et al.

plain from Lemma 4.8. To move from k’ to k’+ 1 we can assume that the irreducible

form of r(t) is the k’th iterated successor of some box which proves !y<,Na. Now

observe that any exclamation mark box in the irreducible proof net has a well-defined

ancestor in the original proof r(t). Now it may be seen that the ancestor of this box

cannot lie within f. This is because in the reduction step SV the second order

abstraction term AZ.!,, ,NZ has been substituted in t for a generic predicate, i.e. for

a second order variable which has no internal structure. Therefore, the ancestor is

located within r. Among the candidates, only two boxes type-check. First, the box

for 0, which yields the first possibility of the case k’+ 1. The second one is the box

for S (which comes from S, mentioned above by applying successively !D and S!);

this box for S has two conclusions and it can be changed into a box with one

conclusion only by making some proof 17 “enter” S through cut-elimination. In

this case our proof r(t) will be a (k’+ l)-iteration of 17. Now when l7 enters some

descendent of this box for S, l7 must be a box: this comes from the restrictions on

cut-elimination for storage rules. This yields the second possibility of the case

k’+l. 0

Remark. The reasoning in this proof clearly applies to linear logic when the resource

information is omitted.

Recalling the discussion before the proof of Lemma 5.1 and Examples 5.5 and

5.6 and the subsequent discussion, let us give the following definition.

Definition 5.2. A function 4 from dyadic lists to dyadic lists is represented in bounded

linear logic by a proof F of N’,-Nz,,, if for every dyadic list b of length 4 n and

the corresponding cut-free proof b of NE, the irreducible proof net with conclusion

’ N2 .I’<, ,,(“) that corresponds to the dyadic list d(b) is the irreducible form of the

proof net representation of the BLL proof displayed in Fig. 19.

A function 4 from dyadic lists to dyadic lists is representable in bounded linear

logic if there exists a resource polynomial p(x) and a BLL proof of tNz-oNi(,)

that represents 4. Similarly for functions on tally natural numbers and for functions

of several arguments, perhaps some tally, some dyadic.

We again emphasize that in the actual computation by cut-elimination, much of

the type information is erased first, so the result will be a graphical configuration

of the successors “applied 1” and “append 2” that uniquely determines 4(b).

Discussion. In regard to Definition 5.2 above, note first of all that the lambda term

f associated to the BLL proof F has type N2+N2 in system 9 (erase all resource

information and exclamation marks from the BLL proof F). Thus if 6 is the dyadic

Church numeral corresponding to the cut-free proof b, then f(b) has a normal form

which must be a dyadic Church numeral. Let r be the lambda term associated to

the reuse functional given in Example 5.5. r(f(b)) is the term associated to the proof

Bounded linear logic 41

given in Fig. 19. Furthermore, because of the dyadic case of Lemma 5.1, the

irreducible form in the situation described in Definition 5.2 and the irreducible form

of

+L

cut

both have the same associated lambda term. In other words, because of the dyadic

case of Lemma 5.1, we may equivalently require that the ordinary normal form of

f(i) must represent 4(b). Lemma 5.1 seemingly states only one direction, but the

other follows also by Lemma 5.1 because of the Church-Rosser property and because

f(b) has a normal form. However, our representation by irreducible forms rather

than by normal forms is much more economical from the point of view of computa-

tion. In particular, our approach yields a feasible computation.

Theorem 5.3. Any function from dyadic lists to dyadic lists represented by a proof of

t-Nf;-+N&, in bounded linear logic is computable in polynomial time. Furthermore,

the required polynomial can be obtained explicitly from the weight of the representing

BLL proofof kN:+N&,.

Proof. Let F be a proof of tNf,-N$,, that represents a function 4 from dyadic

lists to dyadic lists. Let I(Fll(x) be the weight of F and let p(x) be the weight of

the proof that defines the reuse functional, given in Example 5.5. For any dyadic

list b of length at most n, let b be the cut-free proof of t_Ni representing b (see

Example 5.2). Observe that the weight /lb/(. 1 1s inear in n. Referring to the proof

displayed in Fig. 19, we readily see that its weight is Q(n) = 11 Fll(n) +p(n) + kn + 1,

for some constants k and 1. By Theorem 4.4, therefore, the irreducible form of this

proof, which by Lemma 5.1 and by the discussion after Definition 5.2 uniquely

determines d(b) will be reached in at most Q(n) steps. Thus it suffices to show that

the computation uses only polynomial space with respect to resource parameters

(if we have a procedure that uses polynomially many steps and is polynomial space,

then it is polynomial time.) The argument will apply to any proof net with conclusion

NZ,.

We first observe that we may erase the types (i.e. formulas) and keep only the

information about links and boxes. This information suffices to carry out the

reduction steps. As we have noted in Example 5.6 and Lemma 5.1, after eliminating

all reducible cuts, we are left with a formal trace of the irreducible form of a given

proof, from which the irreducible form can be uniquely determined. In fact, the

formal trace itself already determines the required dyadic list 4(b) uniquely.

48 J.-Y. Girard et al.

However, we are still left with the problem of duplication of boxes in the reduction

step SSC.

The solution will involve creating a new pointer to the address of the box instead

of duplicating the box explicitly. More precisely, let us assume that we have a finite

list of signatures l l l * + . l ; l , which are basically natural numbers. (A natural

number n is intended to indicate n auxiliary doors of a black box.) We shall consider

a “dynamical proof net” without formulas, by using formal axioms from the given

finite list of signatures. Such a dynamical proof net may have many formal axiom

links that have any positive number of conclusions. Any such formal axiom link

with n + 1 conclusions will refer to a unique item on the list of signatures, which is

an occurrence of n. Such a formal axiom link with n + 1 conclusions is intended to

replace a maximal box with n + 1 doors in a proof net without formulas. Therefore,

these formal axiom links will also refer to a list of certain formal boxes in a way

that will be inductively defined below. We will establish that the size of this dynamical

proof net evolves polynomially during the elimination of reducible cuts.

The initial structure may be described as follows. Let pi be the immediate content

of the ith box in the formal structure obtained from a given proof net by erasing

the formulas but keeping the names of links. PO is taken as minimal, i.e., there are

no boxes inside PO. The signature of /3,, is obvious: there must be a bijection between

the signature and the doors of &,, which relates the distinguished dot to the main

door. p, , on the other hand, might use & as a module. We indicate that by using,

if needed, only the formal axiom link that refers to the signature of PO. Furthermore,

/3, has its own signature defined as in the case of PO, etc. Notice that for this initial

configuration, the structure of using a box inside another will be quite limited,

because the nested structure in a nonrooted tree, and if the same box should occur

in two different places in this tree, we cannot expect to see that at compile time.

Because we are referring only to immediate subboxes, a formal box can be referred

to by at most one other formal box later in the list.

The list of formal boxes will increase during the elimination of reducible cuts,

but the increase will take place only in the case SSS, see Section 4. Each time such

a reduction step takes place, a new formal box is created because a minor premise

(a formal box with signature ; 0) enters a major premise (a formal box with arbitrary

signature) through a distinguished auxiliary door. Therefore the new formal box is

uniquely described by:

l the address of the major premise in the previously created list,

l the address of the minor premise in the previously created list,

l the signature of the new formal box, and

l an integer j G n, where n refers to the signature of the major premise.

Let us recall that in each reduction step the weight strictly decreases, and therefore

the list of formal boxes is polynomial in the resource parameters. Let us also observe

that there is a fixed bound, say N, on the number of auxiliary doors of each formal

box in the created list.

Bounded linear logic 49

During the elimination of reducible cuts, at each moment we have a dynamical

proof net with pointers to the list of formal boxes and to their signatures. We now

show that the size of these dynamical proof nets evolves polynomially.

We have to count the number of links. This is mainly taken care of by the weight.

In particular, for the formal axiom links that replace boxes with n + 1 doors, the

weight is at least n + 1 (see Section 3.5). However, the weight does not count cuts,

which therefore must be counted separately. Given a cut, consider the two links

leading to the premises and arbitrarily pick one of them. Recall (from Section 3.5)

that each link except cut has a positive weight. Because of the presence of formal

axiom links in a dynamical proof net, links may have at most max{N + 1,2} s N + 2

conclusions.

Since we chose an injection from cuts to other links, then each such link in a

dynamical proof net is related to at most N+2 cuts. Thus the number of cuts is at

most (N+2) times the weight. Therefore the total size is linear in the weight.

It remains to state the reduction steps involving formal boxes, but relying only

on the information available at each step. There are four cases (see Section 4):

SSW: Note that one simply destroys a part of the structure.

SSC: Create a copy of a formal axiom link (not the whole box) together with a

pointer to the same place as the original.

SSS: Remove the cut with the minor premise, replace the major premise with

another formal axiom with a smaller number of conclusions, and make a pointer

to the new box described above.

SSD: Consider the formal box y involved in the cut. Trace back through the

hereditary major premises until we get to the initial list of formal boxes, say to the

item i. Make a cut with the conclusion of pi that gives rise to the main door of the

ith formal box on the initial list. However, this formal box has side doors, all of

which are linked to formal boxes through

minor i

minor Mqjor

minor Major

Y

where the Majors give the addresses for the relevant side doors. In pi make cuts

between these side doors and new axioms, each with exactly one conclusion. Each

of these new axioms should now refer to the corresponding minor, the address of

which is known (see the four items in the creation of new boxes discussed above). 0

The argument is analogous in the tally case. We obtain the following theorem.

Theorem 5.4. Any function from tally natural numbers to tally natural numbers rep

resented by a proof of t N, - NpCx, in bounded linear logic is computable in polynomial

50 J.-Y. Girard et al.

time with respect to tally length. Furthermore, the required polynomial can be obtained

explicitly from the weight of the representing BLL proof of kNN,-Np(xI.

Another proof of Theorem 5.4 will be given at the end of Section 6.

6. Representing polynomial-time functions in BLL

In this section we show the converse of Theorem 5.3.

Theorem 6.1. Every polynomial-time computablefunction can be represented in bounded

linear logic by a proof of t N: --o N$,, , for some resource polynomial p.

The reader will recall that the notion of “function represented by a proof in BLL”

is specified in Definition 5.2.

This section is simply a series of exercises about the flexibility of the typing rules

of BLL. Let us point out that the lambda terms associated to the BLL proofs (cf.

3.3.1) that we construct for the purpose of representing polynomial time functions

on natural numbers are convertible to the type erasures of lambda terms ordinarily

used for representing these functions in system 9 as functions on dyadic lists, i.e.

as terms of type N2+N2. Thus, from this point of view, we do not actually construct

any new representations. In particular, the question of representing fast algorithms

and the question of tightness of time bounds arising from BLL representations will

be studied elsewhere. Here we simply check that resource information is incorporated

into the BLL inference rules in a way flexible enough to express the ordinary lambda

term representations of certain functions on dyadic lists. We rely on Cobham’s

well-known characterization of the class of polynomial-time functions 9’ as the

smallest class of functions closed under composition and limited recursion on

notation, and containing certain initial functions [5].

Remark. The presentations in the literature of Cobham’s characterization of 9’ vary,

e.g. [28] considers functions whose inputs and outputs are only those binary lists

that encode natural numbers under the usual binary encoding, while [30] and [32]

consider functions whose inputs and outputs are natural numbers in dyadic notation.

We consider dyadic notation, customarily written as lists of l’s and 2’s, instead of

binary lists of O’s and 1’s. Denote the function that appends symbol i to (the end

of) list 1 by I* i. Formally, we define dya(0) = E = the empty list; dya(2i+ 1) =

dya(i) * 1, dya(2i+2) = dya(i) * 2. In this way we obtain a one-to-one correspon-

dence between natural numbers and dyadic lists.

The following two lemmas are obtained by straightforward generalization of the

construction given in Example 5.5.

Bounded linear logic 51

Lemma 6.2 (Iteration Lemma).

(1) Tally case. Let r[z] be a type in which all free occurrences of resource parameter

z are positive. Given BLL proofs of t7[0] and ä T[Z]-T[Z+ 11 with associated

lambda terms t and F, respectively, one can construct a proof of kN,- T[X] with

associated lambda term hn.(n)(F)(t).

(2) Dyadic case. Let r[z] be a type in which the free occurrences of resource

parameter z are positive. Given a BLL proof of Er[O], and two BLL proofs of

k T[Z] - T[z + l] with associated lambda terms t, F and G, respectively, one can

construct a BLL proof of t- Nz+ T[X] with associated lambda term Aw.(w)(F)(G)(t).

Intuitively, the role of the Iteration Lemma (say, its dyadic case) may be described

as follows. For instance, T[Z] may be N:,,, and the given BLL proofs of +Ni,,,

and (two proofs of) ›N~~z~~N~~z+,~ may represent a dyadic list cr and functions

f and g, respectively. Then the function h defined by iteration

h(e) = a, h(b * 1) =f(h(b)), h(b * 2) = g(h(b)),

will be represented by the proof of EN:-N~,,,. (Strictly speaking, the sense in

which the two given BLL proofs of ›N~~z~-N~~z+,~ represent functions f and g,

respectively, is not specified by Definition 5.2, but the required more general

definition is obvious from Definition 5.2.)

Lemma 6.3 (Reuse Lemma).

(1) Tally case: Let 0 and S be lambda terms expressing the tally numeral zero and

the tally successor, respectively, described in Examples 5.1 and 5.3. One can construct

a BLL proof of EN, - !l’<y, N, with associated lambda term An.n(S)(O).

(2) Dyadic case: Let E,-S~, and S2 be lambda terms expressing the empty list and

the two successors “Append 1” and “Append 2”, respectively, described in Examples

5.4 and 5.5. One can construct a BLL proof of i-N:- !,,+Nz with associated lambda

term Ab.b(S,)(S,)(E).

In either case of Lemma 6.3, we denote the resulting lambda term by r.

Among the consequences of the Reuse Lemma are the following derived inference

rules:

52 J.-Y. Girard et al.

i.e., unrestricted Weakening and Contraction on Nz and N,. Furthermore, the

induced lambda term assignment is:

c’:T D t:B c’:l- D t:B

c’:I’,a:Nz D t:B F:I’,a:N, D t:B

c’:T, a:Nz, b:N$ D t: B

c’:I’,a:N, D t[a:=r(a), b:=r(a)]:B

c’:T. a:N,. b:N, D t: B

c’:I’,a:N, D t[a:=r(a),b:=r(a)]:B’

Another way to apply the Reuse Lemma is through interaction with the S! rule,

e.g. as in the proof of Proposition 6.5 below.

Let us first show that polynomials on tally natural numbers are representable

in BLL

Proposition 6.4. Tally addition is representable by a BLL proof of F N, @ N,, -N,+,..

Proof. As in system 9 and untyped lambda calculus, the intuitive motivation for

this representation is the equation

f"of"=f"+"

where f k is the k-fold composition f 0 f 0 . . . 0 f of an endofunction with itself. First,

using 4L and VL with N,, as VaA and Az.a(x+z) as T yields a BLL proof of

N,, !z<Ja(x+ 1 z -o(Y(x+z+l)),Ly(x) t- (.y(x+y).

On the other hand, a BLL proof of:

N,, !,<,(a(~)-~(z+l)), a(0) t a(x)

is readily obtained by VL and -L. Now we use Cut on these two proofs, with cr (x)

as the cut formula, and thus obtain a BLL proof of:

N,,Ny, 4<x(a(z)+a(z+l)), !z<y (a(X+z)~cy(X+z+l)), a(0) F a(x+yy),

whence by Contraction:

Nx, N,, !z<x+y(a(z) -J(Y(z+ l)), a(0) t- (Y(x+ y).

By +R and VR we obtain:

N,, N,EN,+,.

Now the desired BLL proof of

tN,ON,,~N,tY

is obtained by OL and -+R. 0

Bounded linear logic 53

Proposition 6.5. Tally multiplication is representable by a BLL proof of

tN,ON,,-NN,,,.

Proof. Again as in system 9, the intuitive motivation for this representation is the

equation:

(f”)“=f””

where f k is the k-fold composition f 0 f 0 + . . 0 f of an endofunction with itself. First,

using +L and using VL with N,, as VaA and hz’.a (zy + z’) as T yields a BLL proof

of

N,, L,<,(~(zY + z’) --oQ(ZY +z’+ I)), Ly(ZY) t a(z), l tYL

hence by +R

N,, !~,<,(~(zY+z’)~~(zY+z’+~)) t ~(zY)-~zY+Y),

and thus by Dereliction

!,,<,N,, !Z~<Y(~(~y+z’)-oa(zy+z’+l)) t a(zy)-a(zy+y).

One now applies the S! rule,4 where the formula (Y (zy + z’) - a (zy + z’+ 1) is thought

of as a(~‘)-cu(y’+l)[y’:= zy+z’], and where y’ does not occur in !Z,<lN,,. One

obtains a BLL proof of

I .,“<X N,., !,.,<~~(~(Y’)-~(Y’+~)) + LQ(zY)-~(zY+Y).

On the other hand, using +L and using VL, with N, as VaA and Az.a(zy) as T

yields a BLL proof of

Nx, !~<,(~(zY)-~(zY+Y)), a(O) E I.

Now use Cut on the two proofs constructed, with !,<,(a(zy) 4 cx(zy + y)) as the

cut formula, obtaining a BLL proof of

Nx, $<.xNv, !y.<.w(~(y’) +a(y’+ l)), a(O) t a(xy).

hence by -R and VR

N,, !+NY k N,,.

By the Reuse Lemma and by using Cut, one obtains

Nx, N, k N,,

and thus the desired BLL proof of

tN,ON,,-NN,,

can be obtained by OL and -R. 0

4 In which we set, in order, y = y’, z = z’, x = z, p = x, 9,(z) = 1, 92(z) = y; thus, u,(p) = p, and u2(p) = py.

54 J.-Y. Girard et al.

Corollary 6.6. Any polynomial p(x, , . . . , xk) in k arguments with nonnegative integer

coeficients is representable by a BLL proof of

+Nx,@N,@. * *@Nq-~Np(x ,,._., xk).

Proof. First, note that any such polynomial is a resource polynomial. Next, since

xk=x.... . x (k times), the proof of Proposition 6.5 yields a BLL proof of:

N,, . . . , N,kN,r

and hence by multiple contraction on N, (justified by the Reuse Lemma) one obtains

a BLL proof on N, tN,h and hence of k N, AN,& by -JR. Similarly, nx can be

represented by a BLL proof of N, I- N,,. Now the corollary follows by Proposition

6.4 and by Reuse. q

We have already represented in BLL dyadic constants, the two dyadic successors,

and projections, cf. Examples 5.2 and 5.4 and comments after Reuse Lemma (Lemma

6.3). We now represent in BLL a relatively fast-growing function that can be used

to majorize the initial functions in Cobham’s characterization of ??.

Proposition 6.7. Let g(a, b) be dejined by iteration on 6:

g(a, E) =2,

g(a, b * i) =f(a, g(a, b)) i-1,2,

where f(a, d) is itself defined by iteration on a:

f(e,d)=d,

f(a*i,d)=(f(a,d))*l i-1,2.

The function f is representable by a BLL proof of +Nz@N$-NC,, . The function g

is representable by a BLL proof of FN~@N~-N&+, .

Proof. First we shall use the dyadic case of the Iteration Lemma (Lemma 6.2) to

representj It suffices to consider Ad.$ Let a[Z] be Nt --o Nt,, . For z = 0 let E Nz -N:

be obtained from an Axiom by -+R.

Both cases of the iterative step are the same. The required BLL proof of

E (Y [z] - a[z + l] is constructed as follows. Consider the BLL proof s, of Nz t Nf;,,

given in Fig. 17 (which represents the successor “Append 1”) and set x := y + z in

that entire BLL proof (with the bound resource variable y renamed to y’). We obtain

aBLLproofofN;.+ZtN:+,+, . Also consider the BLL proof of Nz.- Nt,, , Nz. t Nttz

obtained by applying one instance of -L to two Axioms. Now use Cut, where the

cut formula is N:+Z, thus concluding NGdNt+Z, Nf, t Nf,,;,, . Now use -+R twice.

The Iteration Lemma then yields a BLL proof of i- N$-= (Nf - N:,,). The corres-

ponding BLL proof of kNtON:.-N:,, represents the function f introduced above.

Bounded linear logic 55

Now let us represent the function g. We consider Aa.g. Let ~[z] be N:-Ntz+, .

For z = 0, let EN: be the BLL proof representing the list 2, cf. Example 5.2 for

comparison. Apply weakening on Nt, as justified by the Reuse Lemma (cf. the

comments after Lemma 6.3) and thus obtain a BLL proof of Nzt N:. Apply -JR.

The resulting BLL proof of +Nt-N: represents the constant function 2.

In the iterative step both cases are the same. The desired BLL proof of t r[z] -

[z+ l] may be obtained as follows. From the BLL proof of ä N~ON~.-Nt+, that

represents .f; given above, and the BLL proof of N:, Nt., Nt@Nt - N,:,, + N:,,

obtained by OR and +L from Axioms, one can construct a BLL proof of N:,

N;. + $+.x by using Cut, where the cut formula is N~ON~+N~+, . Let y = xz + 1

in this entire BLL proof, renaming bound variables if necessary. One obtains a BLL

proof of N2, N:Z+, t N~~z+l~+l. On the other hand, a BLL proof of Nz-Nzz+, ,

N2, k N:,+I is readily available by using -JL on Axioms. Now use Cut on the latter

two BLL proofs, where the cut formula is N:,,, , yielding:

2
N;, N:, N:-NI-z+, + N:cz+,,+,.

Now use contraction on Nf; as justified by the Reuse Lemma (cf. the comments

after Lemma 6.3). One obtains:

N:, N:-N%+, t- Nf-(,+I,+,.

Now use -JR twice to obtain the required BLL proof oft ~[z]- T[Z + 11. Hence

by the Iteration Lemma (Lemma 6.2) one constructs a BLL proof of

N:-o(N2,+N&+,). The corresponding BLL proof of k Nz 0 Nt - N&+, represents

the function g. 0

We now show how to represent several auxiliary functions.

Proposition 6.8. The functions p,(u) = 1 * a and pz(a) = 2 * a are representable by

BLL proofs of +Nz+Nf;+, .

Proof. We consider p,, the representation of pz being analogous. Recall the BLL

proof s, that was given in Fig. 17, which represents the successor S, , “Append 1”.

We modify that proof as follows. Consider the larger (left) branch above the lowest

instance of +L. Throughout that branch, except in Nt, replace each instance of

L,(~(Y)--a(~ + 1)) and of !.vcr+l(a(~) --(y+l)) by !,~::(~(~+l)~a(y+2)),

a(O) by a(l), and a(x) by a(x+ 1). The last rule in the branch is VL, but now with

hy.cu(y+ 1) as T (instead of hy.cl(y), as in Fig. 17). The branch now concludes with:

Nf, !,C;~(LU(Y+~)~(~(Y+~)), !.~<,(~(~+1)~~(~+2)),~(1) F a(x+l).

We can use -L on this proof and on axiom a(O) t- a(0) to obtain

N:, (~(0)--0(~(1), !~~~(~(Y+~)-ocu(Y+~)),

!,.<X(a(y+ 1) --(y+2)), Q(O) t- (-y(x+l),

56 J.-Y. Girard et al.

hence by Dereliction:

and then by Contraction:

N:, l,.<x+,(a(y) --(y+l)), !,<x(~(Y+l)~a(Y+2)),cu(O) t- a(x+l).

Another instance of !,~,(~y(y)--o(~(y+l)) can be introduced by Weakening, and

then Contraction can be used with respect to the other !,,.<, to conclude:

N’ 1 X, .,<.X+,(Q(Y)“@(Y+l)), !~<~+,(~(Y)~~(Y+l)),~(o) k a(x+l),

from which one obtains ä N~-N~+, by three applications of +R, one application

of VR, and another application of +R. Note that the lambda term associated to

this entire BLL proof is Ae.Af.‘Ag.Aa.e(f)(g)(f(a)). 0

The function reversing dyadic lists, rev, may be defined by iteration from p, and p2:

rev(E) = E, reu(b * 1) =p,(rev(b)), rev(b * 2) =p*(rev(b))

The dyadic case of the Iteration Lemma (Lemma 6.2) and Proposition 6.8 readily

yield the following corollary.

Corollary 6.9. The function rev reversing dyadic lists may be represented by a BLL
2 proof of EN;-N,.

Let us define, for any types A and B:

AOB dzf Vcu !,<,(A-cr(O))-o!,,,(B-o~~(0))~~~(0).

Note that erasing all resource information results in the usual definition of weak

sum in system 9. Furthermore, as in system .9, in BLL one can derive:

so that the associated lambda terms are type erasures of the canonical polymorphic

left and right inclusions and of the polymorphic “definition by cases” in system 9,

respectively.

Although the analog of Lemma 5.1 can be established for type N~ON~ON~, for

our purposes it suffices to state the following proposition by means of lambda terms

associated to BLL proofs. The reader should recall the notion of the lambda term

ci representing a dyadic list a as discussed in Example 5.2 as well as the discussion

after Definition 5.2.

Bounded linear logic

Proposition 6.10. One can construct a BLL proof Bpd of

EN~,+N@N;ON:

whose associated lambda term bpd satisfies for any dyadic list a:

bpd(e) = left(E), bpd(S,(a))= mid(a), bpd(S,(ti))= right(ti).

in the sense of convertibility, where 6 is the lambda term representing a, and where

left, mid, and right are type erasures of the canonical polymorphic inclusions into the

weak sum.

Proof. We use the dyadic case of the Iteration Lemma (Lemma 6.2). Let T[Z] be

N~@N~@N~. When z = 0 take the BLL proof obtained by Cut from the canonical

BLL proof representing the empty list E and the canonical BLL proof “Left”

Ni+Ni@N:@Ni. Its associated lambda term is left(e). In the iterative step for S,,

first consider the BLL proof of N~@N~@N~EN~+, defined “by Cases” from Axiom

N&N;+, , from the BLL proof s, of N~EN~+, g iven in Fig. 17 (with z for x), and

from the BLL proof s2 of Nzt Nz,, . Then cut this BLL proof defined by cases with

the canonical BLL proof “Mid” of NT,, t NiO Nz,, ON:,, . Now use -+R to obtain

the BLL proof of l $Z]-JT[Z+ 11; let M be its associated lambda term. In the

iterative step for Sz, the construction is the same, but with “Right” instead of “Mid”.

Consider the BLL proof of k ~[z] 4 T[z + l] so obtained and let R be its associated

lambda term. Apply the dyadic case of the Iteration Lemma to obtain the BLL

proof Bpd of EN,-+N~@N~ON~ and let bpd be its associated lambda term.

One easily checks that bpd (S,(a)) = M(bpd (8)) = mid (ii) and bpd (S2(a)) =

R(bpd(G)) = right(8) for all binary lists a. q

As a step in representing limited recursion on notation, we represent cutoff on

dyadic lists.

Proposition 6.11. The cut-of function 1, where a [n = the list of jrst n digits of a

dyadic list a, is representable by a BLL proof of kN,@N_f,-Nf;.

Proof. Here one has to be somewhat crafty. We shall use tally iteration (Lemma

6.2), but more to the point, in the iteration we shall first reverse the list and we

shall also keep track of the tail that will have been cut off. Let ~[z] be N:,-Nf@N_t;

the Iteration Lemma (tally case) will yield a BLL proof of EN, -N;.+N’,ON;.

From this we consider the associated BLL proof of EN,@N~-N~ON~ and then

take the left projection (available as a consequence of reuse) and thus obtain the

desired BLL proof of tN,ON;-N:. Observe that because of the occurrences of

resource variable x, iteration has to be on N,, i.e., it has to be tally iteration. Before

we describe the base and the iteration step, let us give a sample computation which

we will be representing. Consider the list 112. Then:

l for n = 0: (E, 211);

58 J.-Y. Girard et al

l for n = 1: (1,21);

l for n =2: (11,2);

l for n=3: (112,s);

l for na4: (11&E).

Note that we can use bpd of the right component at stage k (cf. Proposition 6.10)

to define the left component stage k+ 1 by cases.

Now let us describe the base and the iteration step of this tally iteration. In the

base, first take the BLL proof of ENi representing the empty list (cf. Example 5.2

for comparison). Second, take the BLL proof of i-N:,-+Nt that represents reverse

(cf. Corollary 6.9) and cut with the canonical BLL proof of N:-+N:, N:tNz.

(built from two axioms by -L) obtaining a BLL proof of N:t-N;. Now use OR

on the two BLL proofs constructed and then “R, yielding + N: - NiO N:, i.e. r[O].

In the iteration step, it suffices to construct a BLL proof of ~[z]I-T[Z+ 11, i.e., of

N;-N;ON:, E N+N:+, ON:. This BLL proof will be obtained by 4-R from a

BLL of Nz. - Ni 0 N; , N: t- NT,, ON:, which in turn can be obtained by -L from

an instance of an axiom N; +Nt. and from a certain BLL proof of NZONt+ Nz,, 0

NG , which we now describe. First consider a BLL proof of NiO N$O N$ t N: defined

by cases, where the left case is a waste of resources N~EN~ (i.e., an instance of an

axiom) and the mid and right cases are the identity Ntt Nt. (again an instance of

an axiom). Now use Cut with the BLL proof of Ntt NiONtONf corresponding

to the BLL proof Bpd built in Proposition 6.10, and thus obtain a BLL proof of

Nt t Nz,. By the Reuse Lemma and weakening, obtain a BLL proof of Nt , Nf. E Nt ,

which we shall here call 3. On the other hand, consider the following BLL proof

of N:, N;ON@N;. t N:,, defined by cases. The left case is the BLL proof of N:,

N; k NT+, obtained by Reuse and weakening from waste of resources Nz t- Nt,, .

The mid case is the BLL proof of Nz, N”y t- Nz,, obtained by Reuse and weakening

from the BLL proof of Nzt Nz,, given in Fig. 17 in order to represent “Append

1”. The right case is similar, with “Append 2” instead. Now cut this BLL proof of

NT, N:,ON;ON; E N;,, with the BLL proof of N~,~N~ON~ON~ (corresponding

to the BLL proof Bpd built in Proposition 6.10), and therefore obtain a BLL proof

of N;, N.t. t Nf,, which we shall here call 2. Applying OR to d;p and % yields:

N;, N;, N;, N; I- N:+,ON;,

whence by Reuse and contractions we obtain:

N&N;. t N:+,ON;..

Now apply OL. I7

We now represent in BLL the length function from dyadic lists to tally natural

numbers.

Proposition 6.12. 7’he function lth from dyadic lists to tally natural numbers, Eth(a) =

the number of symbols in a, is representable by a BLL proof of EN:-N,.

Bounded linear logic 59

Proof. Since M(e) = 0, Zth(a * i) = Ith(a) + 1, i = 1, 2, we may use dyadic iteration,

see Lemma 6.2. Simply let T[Z] be N,, in the base take the cut-free proof of +N,

representing numeral 0 (see Example 5.1 for comparison), and in either iteration

step take the BLL proof of tN,-N,+, representing the tally successor (obtained

by +R from Fig. 15 with z for x). 0

Let us now consider limited recursion on notation, usually written as follows. Given

function g, h, , hZ, and I, the function f is defined by limited recursion on notation

if it satisfies:

f(U,,.‘.,%, E) = Aa,, . . . , an),

f(a,, . . . , a,, b * 1) = h,(a,, . . . , a,, b,f(a,, . . . , an, b)),

.!-(a,, . . . , an, b * 2) = Ma,, . . . , an, b,f(a,, . . , an, b)),

f(a,, . . . , an, b) s Ita,, . . . , an, b),

Recalling the cut-off function] discussed in Proposition 6.11, it suffices to consider

the following schema instead of limited recursion on notation:

.f(% 3.. ., unr &I = Aa,, . . . , U”L

f(a,, . . . , a,, b * 1) = h,(a,, . . , an, b,f(a,, . . . , an, b))

1q(k,...,k,,m+l),

ffa,, . . . , a,, b * 2) = Ma,, . . . , an, b,f(a,, . . , a,, b))

idk,,...,kn,m+l),

where q is a polynomial on tally natural numbers with tally natural numbers as

coefficients, the length of dyadic list a, is k,, 1 < i< n, the length of dyadic list b is

m, and the length of dyadic list g(u,, . . . , a,) is at most q(k, , . , k,, 0). We shall

refer to this schema as Schema (*).

Proposition 6.13. Let f be defined by Schema (*) from dyudic functions g, h, , hz, and

from tally polynomial q. Let g be representable by a BLL proof of

Let hi = 1, 2, be representable by a BLL proof of

for some resource polynomials pi, i = 1, 2. Then f is representable by a BLL proof of

tN;,@ 2x 2 2
. .ON,,~ONx-oN,c,,I ,..., y,,,x).

60 J.-Y. Girard et al.

Proof. We suppress parameters for the sake of simplicity. (We may do so because

of +R and +L.) We shall use dyadic iteration (see Lemma 6.2) with T[Z] being

NZON:,,,, and then take the right projection. A representation of tally polynomial

q was given in Corollary 6.6. In the base case, we take the BLL proof of tNi@Ni,,,

obtained by OR from cut-free BLL proofs representing the empty list and the dyadic

list g. In the iteration step, let us consider the case i = 1; the case i = 2 is completely

analogous.

Consider the BLL proof of N,, Nt E N: corresponding (by +L and Cut) to the

BLL proof built in Proposition 6.11 to represent the cut-off function 1, and let

x = q(z+ l), y =p,(z, q(z)). Now we will use Cut, where the cut formula is N~,(r,q(z)J

and where the left premise of the Cut is obtained by letting x = z and u = q(z) in

the BLL proof of Nz, NE t Ni,,,,, that corresponds (by -JL and Cut) to the given

BLL proof representing the function h, Thus we obtain Nycr+,), Nz, N$;, t N$Z+,J.

Now we Cut again, where the cut formula is N q(z+,), and where the left premise of

the Cut is the BLL proof obtained by letting x = z + 1 in the BLL proof of t- Nz+Ni(,,

that corresponds (by 4-L and Cut) to a BLL proof of EN, -NqcV.) that represents

the polynomial q, see Corollary 6.6. We thus have N,,, , NT, N$,, + N:,,,,. This

will now be the right premise of a Cut, where the cut formula is N,,, and where

the left premise is the BLL proof of NSEN,,, , which is in turn obtained by Cut

from the BLL proofs of N~ENZ,, and of Nz,, EN,,, , themselves obtained by the

obvious change of resource parameters (and by AL and Cut) from the BLL proofs

representing “Append 1” and lth (see Fig. 17 and Proposition 6.12). In this way

we reach Nz, Nz, N:,,, C N$z+l). Now apply OR, the other premise being the BLL

proof of NZENZ,, , which corresponds (by 4L and Cut) to the BLL proof represent-

ing “Append 1”. We thus reach Nz, Nt, N:, N$,, E N~+,ON$z+,). The Reuse

Lemma (Lemma 6.3) allows contractions on Nz, so we obtain NT, Ni(,, E Nz+,O

N:cz+,, . Note that the lambda term associated to the BLL proof we built is the term

(informally written as)

(S,(r(b)), h,(r(b), c) rq(lth(S,(r(b))))).

We complete the construction by applying OL and +R. 0

The reader will readily check that among the first consequences of Proposition

6.13 are BLL representations of the numerical functions n + 1,2n and n - 1 in dyadic

notation. Combining these with Proposition 6.7 expresses Cobham’s initial functions.

We can now give the proof of Theorem 6.1.

Proof of Theorem 6.1. Lemmas 6.1 and 6.2, Propositions 6.3-6.13, and Corollaries

6.6 and 6.9 yield that the class of dyadic functions representable in BLL includes

Cobham’s initial functions and is closed under limited recursion on notation. By

using Cut (and -L and -+R), the class is also closed under general substitution.

Hence this class contains all polynomial time computable functions. 0

Bounded linear logic 61

Although the Cobham-style characterization is not known for the tally case, the

tally analog of Theorem 6.1 may be obtained by using Theorem 6.1 and the

representation of the length function given in Proposition 6.12.

Theorem 6.14. Every function from tally natural numbers to tally natural numbers

computable in polynomial time in tally length can be represented in bounded linear

logic by a proof of k N, - NpCII, for some resource polynomial p.

Proof. Let F by a function from tally natural numbers to tally natural numbers

computable in polynomial time in tally length. Every tally list is a dyadic list (in

which all symbols are 1); this defines a function D from tally natural numbers to

dyadic lists such that D(E) = E, D(a * 1) = D(a) * 1. The function D is representable

by a BLL proof of +N,-N’,, obtained by tally iteration. Recall the function lth

from dyadic lists to tally natural numbers discussed in Proposition 6.12. The function

D 0 F 0 Ith is clearly polynomial time computable in dyadic length. So by Theorem

6.1, D 0 F 0 lth is representable by a BLL proof of, say, kN;--N&, . But then

lth 0 D 0 F 0 lth 0 D is representable by a BLL proof of + N, ---o N,,(,, obtained by -oL,

Cut and -R from BLL proofs representing D, D 0 F 0 lth and Ith. Since Ith 0 D =

identity, it is the case that F = lth 0 D 0 F 0 lth 0 D, and hence F is representable 0

A similar argument may be used to derive the converse of Theorem 6.14, Theorem

5.4, from Theorem 5.3.

Acknowledgment

This work was begun during a visit by the first and third authors to the Department

of Mathematics of the University of Pennsylvania in the fall semester of 1987. They

would both like to thank the Department for its hospitality. Girard’s visit to the

University of Pennsylvania was partially supported by NSF Grant CCR-87-05596.

Scedrov’s research is partially supported by ONR contract NOOOl4-88K-0635, NSF

Grant CCR-87-05596, and a Young Faculty Award of the Natural Sciences Associ-

ation of the University of Pennsylvania. Scedrov thanks John C. Mitchell, the

Computer Science Department, and the Center for the Study of Language and

Information at Stanford University for their hospitality during his 1989-90 Sabbatical

leave. Scott’s research is supported by an operating grant from the Natural Sciences

and Engineering Research Council of Canada and by an FCAR (Quebec) team grant.

Appendix A. Normalization in BLL sequent calculus

We outline a similar analysis to Section 4, based on sequents. The basic definitions

are as follows. In BLL sequent calculus we have:

l An instance of the cut rule is boxed when it is above a rule S!.

62 J.-Y. Girard et al.

l A cut is irreducible if it is boxed or if its left premise is S! with a nonempty context

and its right premise is either !W, !C, !D or S!.

l A BLL sequent calculus proof is irreducible it is contains only irreducible cuts

(if any).

l A BLL sequent is accessible if each negative occurrence of a universal quantifier

or a bounded exclamation mark is nested within a positive ossurrence of a bounded

exclamation mark.

It is understood that none of the reduction steps given below apply to irreducible

cuts.

Axiom reductions.

AL

iP
AtA’ r,A’+B

reduces to
!P’

r,AkB r,AtB

(see the remark on waste of resources in BLL sequent calculus proofs in Section 3.3).

AR

.P

rtA AkA’ iP’

TFA'
reduces to

TFA'

(again, see the remark on waste of resources in BLL sequent calculus proofs in

section 3.3).

Symmetric reductions.
In addition to the reduction steps S 0, S--, and SV described in Section 2.2, we

stipulate the following four steps in which the cut formula begins with a bounded

exclamation mark and the left premise of a Cut is obtained by an instance of the

S! rule in which the context is empty, i.e., there are no formulas to the left of the I-:

SS!D

iP :w
FA A,A[x:=O]tB

k!x<,+wA A, L<,+,At--B
r,AkB

ip(x:=0) :w

reduces to
tA[x:= 0] A,A[x:=O]k-B

AFB

Bounded linear logic

SS!C

63

iP :w

t-A a A, &A, &<

E L<p+q+wA 4 L-cp+q+wA~ B

AkB

reduces to

;p(x:=p+y)

tP tA[x:=p+y] .W’

F A k !y<y+,<,A[~ := p +y] A, !x<,,A, !,<,+,A[i := p + y] F B

F! A .X-Z/l A, !,<,At- B

At-B

where W’ is obtained from w as a special case of the remark on waste of resources

in BLL sequent calculus proofs, Section 3.3.

SS!W

iP :”

FA AEB

k !,,,A A, !,y,,Ak B

A-B

SS!S! See Fig. 29.

reduces to
:w

A t B.

reduces t.0

; p(y, := 21,(z) + 2)

t A,[?/, := U,(J) + z] iw
t !;<y,crjA,[yz := W(P) + z] _. !.-<p,~r~A,I2/, := u,(z) + z]. . !.-<< ,,,, ,.,A,[w := v,(z) + i], t B

!,<,~z~A,[y, := v,(r) + z] _. 1 I3
!y,<i.,(p)+“, A, k !r<,,L1

Fig. 29

Commutative reductions.

In addition to the reduction steps CL0 L, CL- L, CLVL, CR@ R, CR-J R, CRVR,

CROL, CR-L and CRtlL described in Sections 2.2.3 and 2.2.5, we stipulate the

following commutative reduction steps.

64

CL!W

J.-Y. Girard et al.

tP IP :*

TtA :w r+A A,AkB

r, !,<w CkA A,AtB reduces to r,AtB

~,A,!,,,CFB r, A, !,<,Ct B

CL!D

.P iP :w
r,C[x:=O]FA ;w r, c[x:=o]~-A A,AFB

r, ! ,x<,+t*L,Ck- A,AtB reduces to r,A,C[x:=O]tB

r,A,!.<,+,CtB r, A, !,,,+,CFB

CL!C

:P

r, lx+ C,!,.<,C[x:=p+y]tA ;w

r, Lp+q+,C)-A A,AFB

r, A, L<p+q+wC+B

iP :m

r, !+c, !_<y C[x:=p+y]~A A,AtB

reduces to r, !x&+, !y.&[x := p + y], A F B
r,A,! r<,,+c,+naC k B

CR!W

:w iP :w

iP A,AtB rtA A,AkB

TEA A,A,!,<,CkB reduces to r,AFB

r, A, !,<&I-- r,A, !,<,CtB

CR!D

:w iP :w

.P A,A,C[x:=O]kB TEA A,A,C[x:=O]t-B

rfiA A,A,!,,,+,C+B reduces to r,A,C[x:=O]kB

r,A, L<,+wC~B r, A, L<,+&tB

Bounded linear logic

CR!C

65

:”

!P A, A, Lc& $,-a, C[x:=p+y]FB

l-t-A A, A, ! .x<p+y+wC t B
I-, A, ! rc.,,+y+wC E B

!P :w

TEA A, A, Lc,,C, !y<q C[x:=p+y]kB

reduces to r, A, !x<p C, !,.<,C[x:=p+y]~-B

r, 4 !x<p+q+wC t B

The analog of Theorem 4.4 can be extended to BLL sequent calculus by using

cut-size (cf. Section 2.2), in which case all reductions terminate in at most ([/VII)’

steps.

References

ill
PI

[31

r41

r51

[61

[71

[81

[91
[lOI

[Ill
[I21

[I31
[I41

[I51
t161
r171

S. Abramsky, Computational interpretation of linear logic, Theoret. Comput. Sci., to appear.

S.R. Buss, BoundedArithmetic (Bibliopolis, Naples, 1986) (revised version of Ph.D. thesis, Princeton,

1985).
S.R. Buss, The polynomial hierarchy and intuitionistic bounded arithmetic, in: Structure in Com-

plexity, Lecture Notes in Computer Science, Vol. 223 (Springer, Berlin, 1986) 77-103.

S.R. Buss and P.J. Scott, eds., Feasible Mathematics, Proc. M.SI Workshop, Ithaca, NY (June, 1989),
Progress in Computer Science and Appli.ed Logic, Vol. 9 (Birkhauser, Boston, 1990).

A. Cobham, The intrinsic computational diffic&y of functions, in: Y. Bar-Hillel, ed., Proc. 1964

Internat. Congress for Logic, Methodology and Philosophy of Science (North-Holland, Amsterdam,

1964) 24-30.

S.A. Cook, Feasibly constructive proofs and the propositional calculus, in: Proc. 7th Annual ACM

Symp. on Theory of Computing (1975) 83-97.

S.A. Cook and B.M. Kapron, Characterizations of the basic feasible functionals of finite type, in:

[4], pp. 71-96.

S.A. Cook and A. Urquhart, Functional interpretations of feasibly constructive arithmetic, Tech.
Report 210/88, Dept. of Computer Science, Univ. of Toronto, June, 1988. (Extended Abstract in:

Proc. 21st ACM Symp. on Theory of Computation (1989) 107-l 12.)

J. Crossley and A. Nerode, Combinatorial Funcrors (Springer, Berlin, 1974).

V. Danos, La logique lineaire appliquee B l’ttude de divers processus de normalisation et principale-

ment du A-calcul, These de doctorat, Universite Paris VII, April 1990.

V. Danos and L. Regnier, The structure of multiplicatives, Arch. M&h. Logic 28 (1989) 181-203.

J-Y. Girard, Une extension de I’interpretation de Code1 a I’analyse, et son application a l’elimination

des coupures dans l’analyse et la theorie des types, in: J.E. Fenstad, ed., Proc. 2nd Scandinavian

Logic Symposium (North-Holland, Amsterdam, 1971) 63-92.
J-Y. Girard, Linear logic, 7heoret. Comput. Sci. 50 (1987) I-102.

J-Y. Girard, Multiplicatives, Rend. Sem. Mat. Univ. Po[irec. Torino (1987) 11-33 (Special Issue:

Logic and Computer Science, New Trends and Applications, Oct. 1986).

J-Y. Girard, Quantifiers in linear logic II, P&publications Paris 7 Logique, 6\ro. 19, +nuary, 1991.
J-Y. Girard, n$logic, part 1: Dilators, Ann. Math. Logic 21 (1981) 75-219.:.

J-Y. Girard, Towards a geometry of interaction, in: J. W. Gray and A. Scedrk ,d _, Categories in

Cornpurer Science and Logic, Contemporary Mathematics, Vol. 92 (American Mathematical Sot.,

Providence, RI, 1989) 69-108.

66 J.-Y. Girard et al

[I81 J-Y. Girard, Geometry of interaction I: Interpretation of system F, in: R. Ferro et al., eds., Logic
Colloquium ‘88 (North-Holland, Amsterdam, 1989) 221-260.

[19] J-Y. Girard, Geometry of interaction 2: Deadlock-free algorithms, COLOG-88, P. Martin-Liif and

G. Mints, eds., Lecture Notes in Computer Science Vol. 417 (Springer, Berlin, 1990) 76-93.

[20] J-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge Tracts in Theoretical Computer

Science, Vol. 7 (Cambridge University Press, Cambridge, 1989).

[2I] J-Y. Girard, A. Scedrov, and P.J. Scott, Bounded linear logic: a modular approach to polynomial

time computability (Extended Abstract), in: [4], pp. 195-209.

[22] Y. Gurevich, Toward logic tailored for computational complexity, in: Computation and Proof Theory,

Lecture Notes in Math., Vol. 1104 (Springer, Berlin, 1984) 175-216.

[23] Y. Gurevich, Logic and the challenge of computer science, in: E. Border, ed., Current Trends in

Theoretical Computer Science (Computer Science Press, Rockville, MD, 1988) I-57.

[24] N. Immerman, Relational queries computable in polynomial time, Inform. and Control 68 (1986)

86-104.

[25] Ph.G. Kolaitis and M.Y. Vardi, On the expressive power of Datalog: tools and a case study, in:

Proc. 9th ACM Symp. on Principles qf Database Systems (1990) 61-71.

[26] J-L. Krivine, Operateurs de mise en memoire et traduction de Godel, Arch. Math. Logic 30 (1990)

241-267.

[27] A. Nerode, J.B. Remmel and A. Scedrov, Polynomially graded logic I: a graded version of system
T, in: Fourth IEEE Symposium on Logic in Computer Science, Pacific Grove, CA, June, 1989, pp.
375-385.

[28] H.E. Rose, Subrecurxion, Oxford Logic Guides, Vol. 9 (Oxford Univ. Press, New York, 1984).

[29] A. Scedrov, A brief guide to linear logic, EATCS Bulletin 41 (1990) 154-165.

[30] G.J. Tourlakis, Computability (Prentice-Hall, Englewood Cliffs, NY, 1984).

[31] M.Y. Vardi, The complexity of relational query languages, F’roc. 14th ACM Symp. on Theory of

Computing (1982) 137-146.

[32] K. Wagner and G. Wechsung, Computational Complexity (Reidel, Dordrecht, 1986).

