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Abstract

We prove a full completeness theoremfor multiplicative–additive linear logic (i.e.MALL) using
a double gluing construction applied to Ehrhard’s∗-autonomous category of hypercoherences. This
is the first non-game-theoretic full completeness theorem for this fragment. Our main result is that
every dinatural transformation between definable functors arises from the denotation of a cut-free
MALL proof.

Our proof consists of three steps. We show:
•• Dinatural transformations on this category satisfy Joyal’s softness property for products and

coproducts.
• Softness, together with multiplicative full completeness, guarantees that every dinatural

transformation corresponds to a GirardMALL proof-structure.
• The proof-structure associated with any dinatural transformation is aMALL proof-net, hence

a denotation of a proof. This last step involves a detailed study of cycles in additive proof-
structures.

The second step is a completely general result, while the third step relies on the concrete structure of
adouble gluing construction over hypercoherences.
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1. Introduction

1.1. History of full completeness

Linear logic [16] first arose from Girard’s semantic investigations of the categoryCoh
of coherent spaces with stable maps, a simplification of Scott domains. As Girard [16] says:
“Linear logic first appeared as a kind of linear algebra built on coherent spaces. . .”. Later
Thomas Ehrhard [15] established a substantial refinement ofCoh, thecategoryHCoh of
hypercoherences. Hypercoherences arose from the Bucciarelli–Ehrhard investigations [11]
of sequentiality, using strong stability in qualitative domains endowed with coherences.
Sequentiality itself is an important issue in programming language semantics, closely re-
lated to the so-calledfull abstraction problem[12]. The key property of the hypercoherence
model is that it eliminates certain well known nonsequential boolean functions, namelyn-
ary analogs of Berry’s “Gustave” functions, which are extensions of the familiarparallel-
or.

The logical counterpart to full abstraction is full completeness (the terminology comes
from Abramsky–Jagadeesan [1]). Full completeness theorems are completeness theorems
at the level ofproofs, rather thanprovability . More precisely, given a logicL, we say a
(categorical) modelM for L is fully completeif in the uniqueM-interpretation − of

L, every morphism A
f→ B ∈ M is the interpretation of a proofπ of A � B.

At the level of categories, full completeness is a kind ofrepresentation theorem. If we
identifyL with an appropriately structured free categoryF , then full completeness says the
unique free functor − : F → M is full. Of course it would be preferable if the unique
interpretation functor − were fully faithful. This has been the case in our previous full
completeness results forMLL [9,10,22,23]. For the additives, this involves subtle problems
concerning equality of proofs. This is discussed further in the conclusion.

The first fully complete models for multiplicative fragments of linear logic were
in Abramsky–Jagadeesan [1] for MLL+Mix and Hyland–Ong [28] for MLL, and
were based on game semantics. More recently, variations of the categorical notion of
dinatural transformationshave been seen to provide a useful semantical framework for
discussing full completeness. They were first proposed in [5] as a powerful functorial
semantics forpolymorphism, and later extended to intuitionistic logic [21] and linear
logic [7]. Dinaturality provides a framework for imposing uniformity conditions on the
interpretation in the model. Blute and Scott [9] proved that dinatural transformations
over topological vector spaces provide a fully complete model forMLL+Mix. They
also [10] extended their full completeness theorems to cyclic linear logic, by considering
dinaturals invariant under (continuous) action of Hopf algebras on these vector spaces.
Hamano [22] used Pontrjagin duality to extend the dinatural framework in [9,10] to get full
completeness forMLL. Recently, Abramsky and Melli`es [2] announced a full completeness
theorem forMALL, based on a dinatural framework over their notion ofconcurrent
games.

In a different direction, Loader’s thesis [32] contained a dinatural approach to full
completeness. This work was generalized by Hyland and his student Tan [33], to certain
∗-autonomousdouble gluingcategoriesGC. The construction arose from a generalization
of Loader’s linear logical predicates [32] in the case where the categoryC is the category
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Rel of sets and relations. More generally, this construction begins with any∗-autonomous
categoryC (i.e. a model ofMLL) [6] andyields a new∗-autonomous categoryGC which
is a better denotational model of proofs (“better” in that many unwanted morphisms are
eliminated in the construction), seeSection 2. For example, in most cases of interest,
double gluing allows us to eliminate theMix rule.

More fundamentally, double gluing is used in building fully completeMLL models [32,
33]. In the framework of Girard’s coherent spaces, Tan [33] proved afull completeness
theorem for the multiplicative fragmentMLL+Mix, which states that every nontrivial
dinatural transformation betweenMLL-definable multivariant functors onCoh is the
denotation of anMLL+Mix proof. While dinaturality played a crucial role, another key
fact was thatCoh is fully and faithfully embedded intoGRel. A somewhatrelated
full completeness result forMLL using connections betweenCoh and Chu spaces was
shown by Devarajan, Hughes, Plotkin, and Pratt [14]. This employs the stronger notion of
relational parametricity [5], rather than dinaturality.

However it is impossible to extend Tan’s full completeness theorem forCoh to
Multiplicative Additive Linear Logic (MALL) becauseCoh, although it has (co)products,
admits a variant of Berry’s Gustave function which does not correspond to any proof. This
was first mentioned by Girard [18] and is also a direct consequence of the Abramsky–
Melli ès’ version [3] of a 3-ary Gustave function inGRel. Thehistory of this is discussed
in [4] and also inProposition 2.11.

One of the main advantages of Ehrhard’s hypercoherences over coherence spaces is
that they eliminate such functions. So there arises a natural question as to whether the
dinatural interpretation ofHCoh could provide aMALL fully complete model. The purpose
of this paper is to provide an affirmative answer to this question. We prove that the
dinatural interpretation over the double gluing categoryGHCoh is fully complete for
MALL (withoutMix). We alsoshow inSection 7thatHCoh itself (without double gluing)
does not permit aMALL+Mix full completeness theorem. Using double gluing onHCoh
also allows us to eliminate theMix rule. In fact, the status of this rule in the presence of
additive connectives turns out to be a subtle problem (seeSection 8).

One important notion we shall focus on is Joyal’ssoftness property[27,29]. Softness
refers to a factorization property of morphisms between products and coproducts (see
Section 2). In the case of lattices, it corresponds to ann-ary version of Whitman’s property
of free lattices [29,34]. Moreover, by cut-elimination, the syntax ofMALL (considered as
a free category) satisfies softness; so this condition is necessary for any fully complete
model.

1.2. Outline of the proof ofMALL full completeness

Now let us outline the main ideas of our proof. We assume the framework of
functorial polymorphism (see [2,9,10,22,32,33]) which is an appropriate setting for our
full completeness theorems. The theorem has three main steps:

(i) Softness ofHCoh.

(ii) Softness implies that Dinats yieldMALL proof structures.

(iii) The Dinats in (ii) actually yieldMALL proof-nets.
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For (i), we begin by demonstrating the softness of Ehrhard’s hypercoherencesHCoh in
Proposition 2.9of Section 2. This will be shown byobserving that there exists a sequence
of intermediate∗-autonomous categories{Cohn | 3 ≤ n ≤ ω}, whereCoh = Coh3 and
HCoh = Cohω. We show that Cohn is m-ary soft for allm < n but is not n-ary soft
(Proposition 2.11of Section 2); in particular,HCoh is soft.

In (ii), we develop an important consequence of softness (seeProposition 4.16of
Section 4). Let C be a ∗-autonomous category with (co)products. Suppose the dinats
on C satisfy a softness condition and areMLL+Mix fully complete and furthermore
suppose that theMix map is monic. Then every dinatural transformationρ corresponds
to a Girard MALL proof-structureΘρ . The proof of this theorem proceeds via a
preliminary full completeness theorem for certain fragments ofMALL (seeTheorem 4.1).
In particular the theorem applies toHCoh (see Corollary 4.2). Hence we show that
every dinatural transformation ofHCoh corresponds to aMALL proof-structureΘρ (see
Corollary 4.55).

Recall that Girard introducedMALL proof-structures as a natural extension to the
additives of Danos–Regnier’sMLL structures (see [13,16]). These are obtained by
enriching links and formulas with elements of certain boolean algebras while imposing
some additional technical algebraic conditions. We interpret the above results as
establishing one direction of the connection between Girard’sMALL structures and Joyal’s
softness condition. More generally, an “equivalence” betweenMALL proof-structures and
softness is discussed in the second author’s paper [24].

In (iii), to show that the proof-structures obtained above are actuallyMALL nets, we use
the Loader–Hyland–Tan double-gluing construction, applied to the∗-autonomous category
HCoh. Weobtain a category we callGHCoh, whichdoes not satisfy theMix rule. Our goal
is to proveMALL full completeness for dinats onGHCoh (Theorem 6.4of Section 6). A
key observation is that there is a canonical inclusionDinat-GHCoh ↪→ Dinat-HCoh, so we
may use the previous results to guaranteeGHCoh dinats also yieldMALL proof-structures.

Let PS(ρ) denote the set of proof-structures associated with the dinatρ by (ii). This
set PS(ρ) is nonempty. We assume for contradiction thatρ is not a denotation of any
MALL proof. Then our association guarantees that proof-structures inPS(ρ) enjoy certain
important properties:

• theunique link property,
• theno duplicate axiom-link propertyand
• contain certain simple oriented cycles (see below).

We will then show that this will lead us to a contradiction (to the fact thatρ is a
dinatural family). Namely, using the embeddingsHCoh ↪→ Coh ↪→ GRel, we construct
an object ofCoh, whose cliques and co-cliques intersect with cardinality≥ 2. This is a
contradiction.

We note thatPS(ρ) above is no longer necessarily a singleton, in sharp contrast
to previous MLL full completeness proofs [1,9]. In those papers, given a (di)natural
transformation, one constructs auniqueassociated proof-structure and then demonstrates
that it must be a proof-net. The contrast arises because, in our proof, we crucially use
Girard’s natural extensionof the Danos/Regnier criterion for hisMALL proof-structures.
In this case, although Girard’s criterion is simple enough, the possibility arises that from
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a single dinat there may beseveral different associated proof-structures.1 Careful analysis
is required to show that the associated setPS(ρ) is sound (cf.Corollary 4.53); i.e., ρ is
a denotation if and only if∀Θ ∈ PS(ρ) Θ is a proof-net. Hence in (iii) we prove every
element ofPS(ρ) is aMALL net, thusρ is the denotation of aMALL proof (Theorem 6.2
of Section 5). Our proof uses a new characterization of cycles in such structures,which we
call simple oriented cycles. Oriented cycles were first introduced by Abramsky–Melli`es;
but for thepurposes of our proof, it suffices to cut down to a smaller class of what we call
simple cycles, which we study in detail.

The paper is organized as follows: inSection 2 we introduce categoriesCohn
intermediate between Girard’sCoh and Ehrhard’sHCoh and observe thatHCoh is
n-ary soft, for all natural numbersn. In Section 3we show thatDinat-HCoh is fully
complete forMLL+Mix. In Section 4we prove that every dinatural transformation of
HCoh corresponds to some GirardMALL proof-structure. InSection 5we investigate
simple oriented cycles inMALL proof-structures. InSection 6we prove thatthe proof-
structure associated with every dinatural transformation ofGHCoh is a proof-net for
MALL; i.e., we obtainMALL full completeness inDinat-GHCoh. In Section 7we discuss
theMix rule in the presence of the additives.

1.3. Related works

The first dinatural full completeness theorem forMALL was established in the work
of Abramsky–Melliès [2,3]. This work extended the game-theoreticfull completeness
theorems for MLL+Mix by Abramsky and Jagadeesan [1] by introducing the notion of
concurrent games. In this setting, certain winning strategies yield dinatural transformations
which denoteMALL proofs. Both the results of Abramsky–Melli`es and our own work can
be considered as enrichingRel-models with additional structure.

The preliminary stages of the present paper were influenced by considering what
we here callthe Abramsky–Melliès Gustave function. Abramsky and Melli ès also gave
a detailed study of certain oriented cycles inMALL proof-structures. As previously
mentioned, these ideas alsoinfluenced the work here; however our presentation is self-
contained and uses the more restricted notion of simple cycle.

In a quite different direction, Girard’s recent work onludicsandthe logic of rules[19,
20] establishes a full completeness theorem forMALL, although not using the dinatural
framework. Ludics is a drastic reinterpretation of the semantics of proof theory, combining
ideas from proof search and cut-elimination into a kind of abstract game semantics.
It would be very interesting to obtain explicit connections between ludics and our
hypercoherence-based fully complete models.

It would be important to find a relationship between our complicated association of
proof-structures with dinats and Hughes–van Glabbeek’s [26] new notion of MALL proof-
structures and their associated correctness criterion, which is stronger than Girard’s original
notion. We make further comments on their work in the conclusion.

1 Recently Hughes and van Glabbeek [26] have considerably extended our understanding of the theory of
additive proof-structures. This is discussed in the conclusion.
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Notation 1.1. Let A denote a set andP(A) the power set ofA. We denote the finite power
set Pfin(A) := {α ∈ P(A) | α is a finite set}. P∗

fin(A) := Pfin(A) \ {∅}. P(∗)<n (A) := {α ∈
P(∗)fin (A) | #α < n}, where # denotes the cardinality. We writeX ⊆∗

fin Y when X is
a finite and nonempty subset ofY and write X ⊆∗

<n Y when X is a nonempty subset
of Y such that #X < n. A × B denotes the cartesian product of setsA and B. For
C ⊆ A × B, we useπ1(C) := {a ∈ A | ∃b ∈ B (a,b) ∈ C} for its first projection
and useπ2(C) := {b ∈ B | ∃a ∈ A (a,b) ∈ C} for its second projection.A + B denotes
the disjoint union of setsA and B, i.e., A + B := {(1,a) | a ∈ A} ∪ {(2,b) | b ∈ B}.
For C ⊆ A + B, we useC1 := {a ∈ A | (1,a) ∈ D} for its first component and use
C2 := {b ∈ B | (2,b) ∈ D} for its second component. ForU,V ⊆ P(A), we define
U�V := {u + v | u ∈ U andv ∈ V}.

We denote vectors of quantities by underlining or overlining (depending on ease of
reading), so for exampleA or A denote vectors(A1, . . . , An) of length n, for somen.
Multivariant functorsF : (Cop)n × Cn → C are denoted on objects byF(X; Y), for
X,Y ∈ Cn.

2. Categories Cohn of n-coherences and m-ary softness of Cohn, m< n ≤ ω

2.1. Categories of n-coherences

The purpose of this section is to introduce the categoriesCohn for 2 < n ≤ ω, which
are intermediate between Girard’sCoh [16], which is Coh3, and Ehrhard’s HCoh [15],
which is Cohω in our terminology. Consequently there arises a hierarchy of coherent
spacesCohn betweenCoh andHCoh. The existence of such a hierarchy is part of the
folklore; e.g., Lamarche [30] also discussed it under the name of Girard quantale-valued
sets. Howeverone of our contributions in this section is to establish that the categories
of these hierarchical coherent spaces are soft (Proposition 2.11). In particular our result
on softness ofHCoh (Corollary 2.10) is exactly a counterpart of Ehrhard’s first order
sequentiality, which is the origin of his discovery ofHCoh. For hypercoherences, we often
follow the text of Amadio–Curien [4] in addition to Ehrhard [15].

Definition 2.1 (n-CoherenceE). An n-coherence Eis a pair

E := (| E |,Γ (E))
where| E | is a set andΓ (E) ⊆ P∗

<n(| E |) suchthat∀a ∈ | E | {a} ∈ Γ (E).

We use the notationΓ ∗(E) := {u ∈ Γ (E) | #u > 1}. An n-coherenceE is identified with
a hypergraph, each of whose edges is a set of vertices of cardinality less thann: namely
| E | determines the set of nodes and each element ofΓ (E) determines a hyperedge on| E |.
Definition 2.2 (The SetD(E) of States for ann-CoherenceE). For an n-coherenceE,
the setD(E) of statesfor E is

D(E) := {X ⊆ | E | | ∀u ⊆∗
<n X u ∈ Γ (E)}

whereB ⊆∗
<n A meansB is anonempty subset ofA of cardinality< n.
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Definition 2.3 (Linear Implication ofn-Coherences). Forn-coherencesE and F , the
n-coherenceE −◦ F , calledlinear implicationof E andF , is

E −◦ F := (| E | × | F |,Γ (E −◦ F))

wherew ∈ Γ (E −◦ F) iff

(i) w ⊆ |E| × |F |, #w < n
(ii) π1(w) ∈ Γ (E) ⇒ (π2(w) ∈ Γ (F) ∧ (#π2(w) = 1 ⇒ #π1(w) = 1)).

Definition 2.4 (The Intermediate CategoryCohn). The categoryCohn consists of the
following: objects: n-coherencesE := (| E |,Γ (E))

morphisms: Cohn(E, F) := D(E −◦ F).

It can be checked (as in Proposition 5 of [15]) that the above data indeed defines a category:
for E, F ∈ Cohn

(1) IdE := {(a,a) | a ∈| E |} ∈ D(E −◦ E)
(2) If R ∈ D(E −◦ F) andS ∈ D(F −◦ G) then

S◦ R := {(a, c) | ∃b((a,b) ∈ R ∧ (b, c) ∈ S)} ∈ D(E −◦ G).

Proposition 2.5. Cohn becomes a∗-autonomous category with products and coproducts.

We indicate the structure on objects, following [4]:

(linear negation:)E⊥ := (| E |,Γ (E⊥)) where

Γ ∗(E⊥) := P∗
<n(| E |) \ Γ ∗(E).

(tensor:)E ⊗ F := (| E | × | F |,Γ (E ⊗ F)) where

w ∈ Γ (E ⊗ F) iff
w ⊆| E | × | F |,#w < n and
(w1 ∈ Γ (E) ∧ w2 ∈ Γ (F)).

(product:)E& F = (| E | + | F |,Γ (E& F)) where

w ∈ Γ (E& F) iff
w ⊆| E | + | F |,#w < n and
(w2 = ∅ ⇒ w1 ∈ Γ (E)) ∧ (w1 = ∅ ⇒ w2 ∈ Γ (F)).

Hence we have by de Morgan duality:
(par:)E

................................................
............
................................... F := (| E | × | F |,Γ (E ................................................

............
................................... F)) where

w ∈ Γ ∗(E ................................................
...........
.................................... F) iff

w ⊆| E | × | F |,#w < n and
(w1 ∈ Γ ∗(E) ∨w2 ∈ Γ ∗(F)).

(coproduct:)E ⊕ F := (| E | + | F |,Γ (E ⊕ F)) where

w ∈ Γ (E ⊕ F) iff
w ⊆| E | + | F |,#w < n and
(w1 ∈ Γ (E) ∧ w2 = ∅) ∨ (w1 = ∅ ∧ w2 ∈ Γ (F)).

1 denotes the uniquen-coherence such that| 1 | is the singleton{�}. Then1 = 1⊥ and1
becomes the unit both for⊗ and

................................................
...........
.................................... .
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Cohn has additional canonical morphismsMix : E ⊗ F → E
................................................

............
................................... F , which are given by

Id|E|×|F|. Note thatMix is monic in Cohn.

Remark 2.6.

(i) It appears that the definition of coproduct is somehow more “natural”. So we could
equally take the coproduct as primitive and define the product by de Morgan duality.

(ii) Observe thatCoh2 is exactly the categoryRel, whose objects are sets, whose
morphisms are binary relations, and where composition means relational composition.

(iii) The above definition ofn-coherence is an intermediate notion to Girard’s coherences
and Ehrhard’s hypercoherences, in that ifn = 3 weobtain the categoryCoh and if
n = ω weobtain the categoryHCoh.

2.2. n-ary softness and double gluing

Before going toProposition 2.9, we remind the reader of the definition ofn-ary softness
due to Joyal [29].

Definition 2.7 (n-ary Softness (cf. Joyal [29])). A morphism f is calledn-ary softwhen
the following holds: if f is of the form(A11& A12)⊗ · · · ⊗ (Am−1,1& Am−1,2)−→(Am1 ⊕
Am2)

................................................
............
................................... · · · ................................................

............
................................... (An1 ⊕ An2), then there existsk (1 ≤ k ≤ n) such that f factors through

either a product projection fromAk1& Ak2 (k < m) or a coproduct injection intoAk1⊕ Ak2
(k ≥ m); namely, either of the following two triangle diagrams commutes:

(Am1 ⊕ Am2)
................................................

............
................................... · · · ................................................

............
................................... Aki

................................................
............
................................... · · · ................................................

............
................................... (An1 ⊕ An2)

..
..

..
..

..
..

..

∃ f ′ � �
�

�
�

inj

�
(A11& A12)⊗ · · · ⊗ (Am−1,1& Am−1,2)

f � (Am1 ⊕ Am2)
................................................

............
................................... · · · ................................................

............
................................... (An1 ⊕ An2)

�
�

�
�

proj
� ..

..
..

..
..

..
..

∃ f ′′
�

(A11& A12)⊗ · · · ⊗ Aki ⊗ · · · ⊗ (Am−1,1& Am−1,2)

Throughout the rest of thisSection 2and the nextSection 3, we often simply say
softnessto meann-ary softness for all natural numbersn (be careful: afterSection 3, this
terminology will be used in a stronger sense (cf. the bottom ofSection 3)).

A ∗-autonomous category with products and coproducts is calledsoft if all its
morphisms are soft. In a∗-autonomous category with products and co-products, the above
f is transposed intôf : 1 → (A⊥

11 ⊕ A⊥
12)

................................................
............
................................... · · · ................................................

............
................................... (A⊥

m−1,1 ⊕ A⊥
m−1,2)

................................................
............
................................... (Am1 ⊕ Am2)

................................................
............
................................... · · · ................................................

............
................................... (An1 ⊕ An2) and vice versa. Hence it suffices to consider the case withm = 1, in

which case the lower triangle in the diagram does not exist.
Observe that for a∗-autonomous categoryC with products and coproducts, the condition

that all thedinats ofC aren-ary soft can be characterized by means of ann-dimensional
weak pushout (cf. Joyal [29]). E.g., whenn = 3 the condition is equivalent to the fact



R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1–63 9

that the following cube is a three-dimensional weak pushout, whereD denotes the functor
C × C × C → Set defined byD(A, B,C) := C(1, A

................................................
............
................................... B

................................................
............
................................... C) and

∐
denotes disjoint

union inSet.

∐
i, j,k

D(Ai , Bj ,Ck) � ∐
j,k

D(
⊕

i
Ai , Bj ,Ck)

�
��

�
��∐

i,k
D(Ai ,

⊕
j

Bj ,Ck) � ∐
k

D(
⊕

i
Ai ,

⊕
j

Bj ,Ck)

∐
i, j

D(Ai , Bj ,
⊕

k
Ck)

�
� ∐

j
D(

⊕
i

Ai , Bj ,
⊕

k
Ck)

�

�
��

�
��∐

i
D(Ai ,

⊕
j

Bj ,
⊕

k
Ck)

�
� D(

⊕
i

Ai ,
⊕

j
Bj ,

⊕
k

Ck)

�

We observe that originally Joyal required the above diagram to be a pushout, not just a
weak pushout. The weak notion suffices for our purposes here, and corresponds closer to
the syntax, as in the following remark.

Remark 2.8 (Necessity of Softness). Softness is a necessary condition for aMALL full
completeness theorem. First, observe that the syntax is “soft” in the following sense: if we
consider the representation of a cut-free proof of a sequent representing a morphism, say
(A11& A12) ⊗ · · · ⊗ (Am−1,1& Am−1,2) � (Am1 ⊕ Am2)

................................................
............
................................... · · · ................................................

............
................................... (An1 ⊕ An2) it must

end with either a &-left, or a⊕-right rule.2 This guarantees softness for any fully complete
categorical model as follows: by abuse of notation, if in a model we have a morphism
(A11& A12)⊗· · ·⊗ (Am−1,1& Am−1,2) → (Am1 ⊕ Am2)

................................................
............
................................... · · · ................................................

............
................................... (An1 ⊕ An2), by fullness

this arises from a (cut-free) proof of a sequent as above. Hence by the softness of the
syntax, the proof factors through either a projection on the left or an injection on the right.
By the Soundness Theorem, this factorization is transformed (by the interpretation of the
syntax in the model) into a factorization of the original morphism.

Proposition 2.9. Cohn is m-ary soft for all m < n ≤ ω with n> 2.

Proof. We assumem ≥ 2 sincethe assertion whenm = 1 automatically holds by virtue of
the definition of product. Suppose for derivinga contradiction that there exists a morphism
R : (E1,1& E1,2) ⊗ · · · ⊗ (Em−1,1& Em−1,2) −→ (Em,1 ⊕ Em,2) in Cohn such that
R does not factor through any & explicitly appearing in the domain nor through the⊕
explicitly appearing in the codomain. Note for example, to say thatR factors through
E1,1& E1,2 means that there exists aj ∈ {1,2} such that for all vectorsx = (x1, . . . , xm) ∈
R ⊆ |E1,1& E1,2| × · · · × |Em−1,1& Em−1,2| × |Em,1 ⊕ Em,2|, it follows that{x1} j = ∅,
i.e. x1 /∈ |E1, j |.

2 Strictly speaking, proof theorists would replace the⊗s on the leftside and
................................................

............
................................... s on the right side of the sequent

by commas.
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We shall choose a subsetu ⊆ R, whosecardinality ism,

u := {xi := (xi
1, x

i
2, . . . , x

i
m)}1≤i≤m

wherexi
k ∈ |Ek,1& Ek,2|,1 ≤ k ≤ m − 1 andxi

m ∈ |Em,1 ⊕ Em,2| by induction oni as
follows:
(For x1 and x2) By our supposition,R does not factor through the first or the second
component. Sox1 := (x1

1, x
1
2, . . .) and x2 := (x2

1, x
2
2, . . .) can be chosen such that

∀ j ∈ {1,2}({x1
1, x

2
1} j �= ∅ ∧ {x1

2, x
2
2} j �= ∅).

(For xi+1) The i + 1-th componentxi+1
i+1 ∈| Ei+1,1& Ei+1,2 | of xi+1 can be chosen as

follows: by considering the setv := {x1
i+1, x

2
i+1, . . . , x

i
i+1} of thei + 1-th components for

xk with 1 ≤ k ≤ i , wecan takexi+1
i+1 suchthat∀ j ∈ {1,2} (v ∪ {xi+1

i+1}) j �= ∅ by virtue of
the fact thatR does not factor through thei + 1-th component.

For such achoice of subsetu of cardinalitym, we have

∀i ∈ {1, . . . ,m} ∀ j ∈ {1,2} (πi (u)) j �= ∅. (1)

This condition implies that if we project to the firstm − 1 components, we obtain
π1,...,m−1(u) ∈ Γ ((E1,1& E1,2) ⊗ · · · ⊗ (Em−1,1& Em−1,2)). Thusπm(u) ∈ Γ (Em,1 ⊕
Em,2) sinceu ∈ Γ ((E1,1& E1,2) ⊗ · · · ⊗ (Em−1,1& Em−1,2) −◦ (Em,1 ⊕ Em,2)). Hence
∃ j ∈ {1,2}(πm(u)) j = ∅ from the definition of ⊕. This is acontradiction to (1) when
i = m. �

Corollary 2.10 (Softness ofHCoh). HCoh is n-ary soft for all natural numbers n.

Proof. This follows becauseHCoh is Cohω. �

Proposition 2.11 (Existence ofn-ary Gustave Functions).If 2 < n < ω thenCohn is
not n-ary soft.

Proof. ForobjectsE1, . . . , En−1, let D denote the following object inCohn:

((E1& · · · & En−1)⊕ En)
................................................

............
................................... ((E2& · · · & En)⊕ E1)

................................................
............
................................... · · ·

· · · ................................................
............
................................... ((En−1& · · · & En−3)⊕ En−2)

................................................
............
................................... ((En& · · · & En−2)⊕ En−1)

whereEn := E⊥
1 ⊗ · · · ⊗ E⊥

n−1.

Observe that this object denotes a provable formula ofMALL. Let Sn be the symmetric
group onn. Forσ ∈ Sn, Rσ ⊆| D | is defined by

Rσ :=
{
((iσ(1),aσ(1)), . . . , (iσ(k),aσ(k)),

. . . , (iσ(n),aσ(n)))
∣∣∣am ∈| Em | if m �= n
an := (a1, . . . ,an−1)

}

whereiσ(k) denotes the natural numberm suchthat Eσ(k) occurs as them-th component
of (Ek& · · · & En& E1& · · ·) ⊕ Ek−1. In particular whenσ is the cyclic permutation
(n,n − 1, . . . ,2,1), Rσ is exactly the denotation of a proof of the formula denoted above,
henceRσ ∈ Cohn(1, D).
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Now we defineR ∈ Cohn(1, D) to be theunion of Rσ when σ runs overS′
n :=

Sn \ {(n,n − 1, . . . ,2,1)}:
R :=

⋃
σ∈S′

n

Rσ

Rdoes not factor through any explicitly occurring⊕, i.e. R is notn-ary soft. The morphism
R is called ann-ary Gustavefunction. �

For example, whenn = 3 in the above proof, we obtain the following Gustave function,
first discussed by Girard [18] and alsoby Abramsky and Melli`es [3]:

R := {((1,a1), (2,a3), (3,a2)) | a1 ∈| E1 | ∧ a2 ∈| E2 | ∧ a3 = (a1,a2)}
∪

{((3,a3), (1,a2), (2,a1)) | a1 ∈| E1 | ∧ a2 ∈| E2 | ∧ a3 = (a1,a2)}
∪

{((2,a2), (3,a1), (1,a3)) | a1 ∈| E1 | ∧ a2 ∈| E2 | ∧ a3 = (a1,a2)}
∪

{((1,a1), (1,a2), (1,a3)) | a1 ∈| E1 | ∧ a2 ∈| E2 | ∧ a3 = (a1,a2)}
∪

{((2,a2), (2,a3), (2,a1)) | a1 ∈| E1 | ∧ a2 ∈| E2 | ∧ a3 = (a1,a2)}.

It was shown by Tan [33] that Coh (in our terminologyCoh3) is fully and faithfully
embedded into Loader’s categoryGRel of linear logical predicates[32]. This construction
has been generalized by Hyland and Tan [33] to a generaldouble gluingconstructionGC
over certain categoriesC. This is described later inSection 3.2.

Definition 2.12 (GRel (cf. Loader [32] and Tan [33])). GRel denotesthe double gluing
category over the categoryRel defined as follows:

Objects: triplesA = (|A |,Ap,Acp) where|A | is an object ofRel,
Ap ⊆ Rel(I , |A |) andAcp ⊆ Rel(|A |, I ).

Morphisms: A morphismf : A → B of GRel is a morphismR :|A |→|B | of
Rel such that the following conditions hold:

(image condition:) ∀α ∈ Ap [α]R := {b ∈|B | | ∃ a ∈ α(a,b) ∈ R} ∈ Bp

(co-image condition:)∀β ∈ Bcp R[β] := {a ∈|A | | ∃ b ∈ β(a,b) ∈ R} ∈ Acp.

GRel becomes a∗-autonomous category with products and coproducts, given by the
following structure on objects:

(linear negation:)A⊥ = (|A |,Acp,Ap).
(tensor:) the tensorA ⊗ B is defined by|A ⊗ B |=|A | × |B | and

(A ⊗ B)p = {α × β | α ∈ Ap andβ ∈ Bp} := Ap × Bp

(A ⊗ B)cp = GRel(A,B⊥) = GRel(B,A⊥).
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1 := (I , {idI },Rel(I , I )) becomes the tensor unit.

(product:) the productA&B is defined by|A&B |:=|A | + |B | and

(A&B)p = {α + β | α ∈ Ap andβ ∈ Bp} := Ap
� Bp

(A&B)cp = Acp + Bcp.

Hence we have by de Morgan duality:

(par:)A ................................................
............
................................... B := (A⊥ ⊗ B⊥)⊥: Explicitly

(A ................................................
............
................................... B)p = GRel(A⊥,B) = GRel(B⊥,A)

(A ................................................
............
................................... B)cp = {α′ × β ′ | α′ ∈ Acp andβ ′ ∈ Bcp} := Acp × Bcp.

(coproduct:)A ⊕ B := (A⊥&B⊥)⊥: Explicitly

(A ⊕ B)p = Ap + Bp

(A ⊕ B)cp = {α + β | α ∈ Acp andβ ∈ Bcp} := Acp
� Bcp.

Recall fromRemark 2.6thatCoh3 is Girard’s categoryCoh of coherence spaces.

Proposition 2.13 (Tan [33]). 3 Coh is equivalent to the full subcategory of GRel
consisting of the objectsA := (|A |,Ap,Acp) satisfying:

– α ∈ Ap iff ∀β ∈ Acp #(α ∩ β) ≤ 1
– β ∈ Acp iff ∀α ∈ Ap #(α ∩ β) ≤ 1
– |A |= ⋃

α∈Ap
α = ⋃

β∈Acp
β.

3. Multiplicative full completeness of HCoh and GHCoh

3.1. MLL+Mix full completeness ofCohn with 2< n ≤ ω

We assume familiarity with dinatural transformations, hereafterdinats, and functorial
polymorphism (see [5,7,9,21]). This is the most appropriate setting for our full
completeness theorems.

Definition 3.1. Dinat-C denotes the structure whose objects areMALL-definable
multivariant functors inC and whose morphisms are dinatural transformations between
them.

Fromnow on, dinatural transformations will always be assumed to be between definable
functors in some (perhaps proper) fragment ofMALL. As is well known,Dinat-C is not in
general a category, since dinaturals need not compose. One of the interesting consequences
of a full completeness theorem (for a fragment of linear logic) is that dinaturals do form a
category, but we do not know this fact untilafterwe haveproven the theorem! The reason is
that syntax is compositional and a fully complete modelling has a precise correspondence

3 A further study is done in a tech report [25] on a relationship betweenCohn+1 and the iterated double gluing
categoryGn−1Rel.
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to the syntax. Nonetheless, we will use categorical terminology when referring to the
structureDinat-C, as if it were acategory.

In the introduction, we discussed the problem offull completenessfor a logicL with
respect to a categorical structureM. In what follows, the categorical structureM will be
Dinat-C. In this structure, we interpret (one-sided) sequents� Γ as multivariant functors,
as usual in functorial polymorphism [5,9]. We interpret proofs of sequents� Γ as dinatural
transformations of the form1 → Γ , where1 is the constant functor with value the
tensor unit 1. Full completeness now becomes the statement:Every dinat1 → Γ is
the denotation of a proof. TheMLL full completeness theorems in this section are all fully
faithful representations.

Tan [33] proved thefollowing multiplicative full completeness theorem via the full and
faithful embedding:Coh3 ↪→ GRel, whereMix is the inference rule:

� Γ � ∆
� Γ ,∆ Mix

.

Fact 3.2 (Tan [33]). Dinat-Coh3 is fully complete forMLL+Mix.

For anobjectE ∈ Cohn andm< n, wecan defineΓ<m(E) := {X ∈ Γ (E) | #X < m}.
Then(| E |,Γ<m(E)) is an object ofCohm.

Definition 3.3 (FunctorUnm). Let 3≤ m< n ≤ ω. Then the functor

Unm : Cohn → Cohm

is definedby mapping(| E |,Γ (E)) to (| E |,Γ<m(E)) and R : E −◦ F to R : Unm(E)
−◦ Unm(F). Unm is full and preserves∗-autonomy, as well as (co)products. Composition
of functors satisfiesUml ◦ Unm = Unl .

Remark 3.4. As in Ehrhard [15], we can define the functorPN : Cohn → (Cohn
−)+,

where⊆∗
fin in his definitions of positive/negative hypercoherences is replaced by⊆∗

<n. Then
Un3 can be identified withPN because(Cohn

−)+ can be considered asCoh.

Lemma 3.5. Let ρ ∈ Dinat-Cohn(A(X; X), B(X; X)). If E and F are vectors of objects
fromCohn such that Un3(E) = Un3(F) then Un3(ρE) = Un3(ρF ).

Proof. For each objectE ∈ Cohn, considerE• := (| E |,Γ<3(E)) ∈ Cohn. Then it can
be checked thatId|E| ∈ Cohn(E•, E). MoreoverUn3(E) = Un3(F) implies thatE• = F•.
Thus it suffices to prove thatUn3(ρE) = Un3(ρE•). But this is obvious by chasing the
hexagonal diagram of dinaturality forId|E| : E• → E. �

Given a dinatural transformationρ := {ρE′ : A(E′; E′) → B(E′; E′)} in Cohn, let us
apply the functorUn3, sayU for short, to every morphismρE′ . Then we have theCoh-
morphismU(ρE′) = ρE′ : A(U(E′); U(E′)) → B(U(E′); U(E′)) sinceU preserves
∗-autonomy with (co)products. ByLemma 3.5, if U(E′) = U(F ′) thenU(ρE′ ) = U(ρF ′).
ThusU(ρ) determines the following family, sayJn(ρ), of morphisms indexed byCoh
objects:

Jn(ρ) := {Jn(ρ)E := ρE′ : A(E; E) → B(E; E) | E = U(E′) andE ∈ Coh}.
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The fact thatU is full assures thatJn(ρ) becomes a dinatural transformation inCoh:
the conditionB(idE; R) ◦ Jn(ρ)E ◦ A(R; idE) = B(R; idF ) ◦ Jn(ρ)F ◦ A(idF ; R)
should be checked for everyR ∈ Coh(E, F). SinceU is full, ∃ E′, F ′ ∈ Cohn such
thatE = U(E′), F = U(F ′) andR ∈ Cohn(E′, F ′). Thuswe have the condition inCohn
that B(idE′ ; R) ◦ ρE′ ◦ A(R; idE′) = B(R; idF ′) ◦ ρF ′ ◦ A(idF ′ ; R), from which we can
derive the required condition inCoh by applying the functorU . Moreover the functorJn

so defined satisfies the following:

Proposition 3.6 (The Faithful FunctorJn). The full functor Un3 determines a faithful
functor

Jn : Dinat-Cohn −→ Dinat-Coh.

Note thatJn is not full sinceDinat-Cohn with n > 3 is 3-ary soft butDinat-Coh is not
3-ary soft. Note also thatJn preserves composition, when defined.

Proof. Take dinatural transformationsρ and σ of Cohn such that Jn(ρ) = Jn(σ ).
Analogously toRemark 3.4above, and by Sections 5 and 6 of [15], we can define the
inclusion functorI+

n : Coh3 → Cohn when ⊆∗
fin in Ehrard’s definition of positive

hypercoherences is replaced by⊆∗
<n. Now Jn(ρ) = Jn(σ ) is equivalent to saying that

if E is a vectorof objects from the image ofI+
n thenρE = σE. Thus with the help of

Lemma 3.5ρ andσ are the same since for allE ∈ Cohn there existsE′ ∈ I+
n (Coh3) such

thatU(E) = U(E′). �

Fact 3.2together withProposition 3.6implies the following:

Proposition 3.7 (MLL+Mix Full Completeness).
For 2< n ≤ ω, Dinat-Cohn is fully complete forMLL+Mix.

The above multiplicative full completeness theorem forDinat-Cohn cannot be extended
to the level ofMALL+Mix if n �= ω (and even forn = ω wemust introduce double gluing
to getMALL full completeness, as we show below). The reason for the failure is that the
categoriesDinat-Cohn, n �= ω fail to be soft:

Proposition 3.8. For all n < ω, the categories Dinat-Cohn are not n-ary soft and hence
fail to beMALL+Mix fully complete.

Proof. The n-ary Gustave functions inProposition 2.11can be shown to be the
components of a dinatural transformationR. �

Hence from now on we shall restrict our attention toCohω = HCoh.

3.2. The double gluing construction

We now present the Hyland–Tan double gluing construction. We will follow Chapter 1
of Tan [33], observing that the gluing construction applies to general∗-autonomous
categories, not just compact closed ones.
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Definition 3.9. Let C = (C,⊗, 1, (−)⊥) be a∗-autonomous category. LetH denote the
covariantpoints functor C(1,−) : C −→ Set and K denote the contravariantcopoints
functorC(−, 1⊥) ∼= C(1, (− )⊥) : Cop −→ Set.

We define a new category,GC, thedouble gluing categoryof C, whose objects are triples
A = (A,Ap,Acp) whereA := |A| is an object ofC, whereAp ⊆ H (|A|) = C(1, A) is a
set ofpoints ofA andAcp ⊆ K (|A|) = C(A, 1⊥) ∼= C(1, A⊥) is a set of copoints ofA.

A morphism f : A −→ B in GC is a morphism f : |A| −→ |B| in C suchthat
H f : Ap −→ Bp andK f : Bcp −→ Acp are well definedSet-maps, i.e.f (Ap) ⊆ Bp

and f ⊥(Bcp) ⊆ Acp.
Given f : A −→ B andg : B −→ C in GC, thecompositiong f : A −→ C is induced

from the underlying composition inC. Similarly, the identity morphism onA is given by
the identity morphism on|A| in C.

Fact 3.10. For any∗-autonomous categoryC, GC is a∗-autonomous category.

Proof. We first describe the tensor productA ⊗ B:

A ⊗ B = (|A| ⊗ |B|, (A⊗ B)p, (A ⊗ B)cp) where

(A ⊗ B)p = {α ⊗ β|α ∈ Ap, β ∈ Bp}
(A ⊗ B)cp = GC(A,B⊥).

Note that this last equality makes sense, because:

GC(A,B⊥) ⊆ C(|A|, |B|⊥) ∼= C(|A| ⊗ |B|, 1⊥).

We also define the unit for the tensor product by1G = (1, {id1}, C(1, 1)).
We definelinear negation by the formula:

A⊥ = (|A|⊥,Acp,Ap).

It is straightforward to verify that these definitions give a symmetric monoidal category
and( )⊥ defines a contravariant, involutive functor with the appropriate properties. Thus
GC is ∗-autonomous. �

We remark that in a logical setting one can think of an objectA ∈ GC as a formulaA
in C together with a collection of proofs ofA (the setAp) and a collection of refutations
of A (the setAcp).

Proposition 3.11 (Tan). GC validates theMix rule if andonly if C(1, 1) = {id1}. We also
note thatGC(1G,A) ∼= Ap and GC(A,⊥) ∼= Acp, where⊥ = (1G)

⊥ is the dualizing
object. Finally, the evident forgetful functor| |: GC → C is ∗-autonomous, and has left
and right adjoints.

Observe from this thatGCohn does not satisfyMix, for 2 ≤ n ≤ ω ; in particular this
includesRel,Coh, andHCoh (usingn = 2,3, ω, respectively).

Definition 3.12 (Products inGCohn with 2 ≤ n ≤ ω). GCohn becomes a∗-autonomous
category with products and coproducts, given by the following:
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(product:)

A&B = (|A|& |B|, (A&B)p, (A&B)cp)

where

|A|& |B| is the product inCohn
(A&B)p = {α + β | α ∈ Ap andβ ∈ Bp} := Ap�Bp

(A&B)cp = Acp + Bcp

(coproduct:)

A ⊕ B = (|A| ⊕ |B|, (A⊕ B)p, (A ⊕ B)cp)

where

|A| ⊕ |B| is the coproduct inCohn
(A ⊕ B)p = Ap + Bp

(A ⊕ B)cp = {α + β | α ∈ Acp andβ ∈ Bcp} := Acp�Bcp.

Note that whenn = 2 we have the products and coproducts ofGRel which is Coh2 (cf.
Definition 2.12).

3.3. MLL full completeness ofGCohn with 2< n ≤ ω

We apply Hyland–Tan’s double gluing construction toCohn to obtain GCohn with
2< n ≤ ω. In this section we shall observe that the categoryGCohn is fully complete for
MLL (withoutMix).

Lemma 3.13. For an arbitrary ∗-autonomous categoryC, the forgetful functor| |: GC →
C induces a canonical faithful functor

I: Dinat-GC −→ Dinat-C.
This functor preserves the∗-autonomous structure with (co)products.

Proof. Given a dinatural transformationρ := {ρE : A(E; E) → B(E; E)} in GC, let us
apply the functor| |. Then we have a family|ρ |:= {|ρE |: A(|E |; |E |) → B(|E |; |E |)}
of C-morphisms. Recall that| E |=|F | impliesρE = ρF in GC (cf. Theorem 1.3.2 [33]),
and thus the family determines a family| ρ |:= {| ρ |E:= ρE : A(| E |; | E |) → B(| E |;
| E |) whereE =| E |} of morphisms indexed by theC-objects. The dinaturality of the
family is checked by using the fullness of| |. Hence we have a mapping from dinats of
GC to those ofC. Faithfulness of the functor is automatic, as is the fact that all structure is
preserved. �
Lemma 3.14. There is a canonical faithful functor

Dinat-GCohn −→ Dinat-GCoh.

Proof. This mapping is determined as the unique mapping making the following diagram
commute. The vertical arrows are the faithful mappings ofLemma 3.13and the lower
horizontal arrow is the faithful mapping ofProposition 3.6:
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Dinat-GCohn � Dinat-GCoh

Dinat-Cohn

�
� Dinat-Coh

�
�

The following is the main lemma necessary for this subsection.

Lemma 3.15. The forgetful functor| |: Coh → Rel induces a canonical faithful functor

Dinat-GCoh −→ Dinat-GRel.

Proof. First thefunctor | | induces a functor� : GCoh → GRel as follows: For each
GCoh-objectE = (E, Ep, Ecp) with E ∈ Coh, Ep ⊆ Coh(1, E) andEcp ⊆ Coh(E, 1),
we define theGRel-objectE� := (| E |, Ep, Ecp). This is well defined sinceCoh(E, F) ⊆
Rel(| E |, | F |). Second, given a dinatural transformationρ := {ρE : A(E; E) → B(E; E)}
in GCoh, let usapply the functor�. Then we have the familyρ� := {ρE : A(E�; E�)
→ B(E�; E�)} of GCoh-morphisms. It can be checked thatE� = F� impliesρE = ρF by
usingLemmas 3.5and3.13. Henceρ� determines a family of morphisms indexed byGRel-
objects. Dinaturality of the family is a consequence of the fullness of the functor�. Hence
we have the mapping in the assertion. Faithfulness is automatic.�

Tan [33] proved the following full completenessresult which indeed preceded the full
completeness forCoh we have referred to inFact 3.2:

Fact 3.16 (Tan [33]). Dinat-GRel is fully complete forMLL.

As a direct consequence ofFact 3.16together withLemmas 3.14and3.15, we have

Proposition 3.17 (MLL Full Completeness).For 2 < n ≤ ω, Dinat-GCohn is fully
complete forMLL.

3.4. Lifting softness fromHCoh to Dinat-HCoh

In this final subsection, we shall observe thatthe property of softness is preserved in the
construction ofDinat-HCoh from HCoh.

Note first that softness ofC does not necessarily imply softness ofDinat-C. Given a
dinat ρX : 1 −→ (E1,1(X; X) ⊕ E1,2(X; X))

................................................
............
................................... · · · ................................................

............
................................... (Em,1(X; X) ⊕ Em,2(X; X)),

softness ofC implies that for each vector of objectsA ∈ Cn, an instantiation ρA factors
through some coproduct injection; the particular component however may depend onA.

The categoriesCohn are∗-autonomous categories with products such that the⊗ unit 1
coincides with

................................................
............
................................... unit ⊥, hence in particularCohn satisfiesMix. In this case,Dinat-Cohn

satisfies aslightly stronger property thanm-ary softness: every dinatρ of the following
form factors through one of the⊕;

ρ : 1 −→ X#
i1

................................................
............
................................... · · · ................................................

............
................................... X#

ik
................................................

............
...................................

(E1,1(X; X)⊕ E1,2(X; X))
................................................

............
................................... · · · ................................................

............
................................... (Em,1(X; X)⊕ Em,2(X; X))

whereXi j (1 ≤ j ≤ k with 0 ≤ k) is a variable from the listX andX#
i j

is Xi j or X⊥
i j

, hence
is a literal.
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Let us call this notion m-ary extended softness. Extended softness is necessary for the
proof of Full Completeness for

................................................
............
................................... ALL +Mix in Section 4.1.

Proposition 3.18. Dinat-Cohn is m-ary extended soft for all m< n, including n= ω.

In particular (for then = ω case above) we have:

Corollary 3.19. Dinat-HCoh is m-ary extended soft for all natural numbers m.

Proof (Proposition 3.18). Given a dinat of the form

ρ : 1 −→ X#
i1

................................................
............
................................... · · · ................................................

............
................................... X#

ik
................................................

............
...................................

(E1,1(X; X)⊕ E1,2(X; X))
................................................

............
................................... · · · ................................................

............
................................... (Em,1(X; X)⊕ Em,2(X; X))

and objectsA, consider an instantiationρA as well as the instantiationρ1. Consider
the morphism f : A → 1 induced from the morphismsfi : Ai → 1 given by
fi = {(a, �) | a ∈ |Ai |}. We observe that inCohn, the following diagram is a weak
pullback, for all multivariate functorsEi , and for allA:

Ei (A; A)
(A; f )

� Ei (A; 1)

E1(A; A)⊕ E2(A; A)

inj

� (A; f )
� E1(A; 1)⊕ E2(A; 1)

inj

�

Moreover, this is still a weak pullback if anyMALL-definable functor is applied to this
diagram. Softness, together with this weak pullback property, guarantees thatρ1 factors
through some coproduct injection; we shall show that this determines a coproduct injection
for the entire dinaturalρ. Observe that, up to isomorphism,ρ1 : 1 −→ (E1,1(1; 1) ⊕
E1,2(1; 1))

................................................
...........
.................................... · · · ................................................

...........
.................................... (Em,1(1; 1)⊕ Em,2(1; 1)), since1# is either1 or ⊥, and inthis model

1 =⊥, whichis theunit for
................................................

............
................................... .

1 .................................................................................................
ρ ′

A � · · · Ei (A; A) · · ·
�

�
�

ρ ′
1

�

�
�

�

(A; f )

�
‖ · · · Ei (1; 1) · · ·

( f ; 1)
� · · · Ei (A; 1) · · ·

1
ρA � · · · E1(A; A)⊕ E2(A; A) · · ·

inji

�

�
�

�

ρ1

�

�
�

�

(A; f )

�
· · · E1(1; 1)⊕ E2(1; 1) · · ·

inji

�

( f ; 1)
� · · · E1(A; 1)⊕ E2(A; 1) · · ·

inji

�
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First by dinaturality ofρ with respect tof , the bottom square of the diagram above
commutes (we only indicate the specified components on objects; the remaining functorial
type of ρ is denoted by · · ·.) Second softness ofCohn implies that the instantiation
ρ1 factors through some coproduct injection, hence we haveρ1 = inji ◦ ρ′

1. By the
previous remark, the right vertical square is a weak pullback. Moreover, the front square
and the left vertical square commute. Hence, by the weak pullback property,ρA factors
through some arrowρ′

A as shown in the diagram. ThusρA factors through the same
coproduct component asρ1 does. Hence we have derived that the dinatρ factors through a
certain⊕. �

Fromnow on,softnesswill always meanextended softness, sincethat is what is required
in full completeness proofs.

4. Softness implies that dinats yield MALL-proof-structures

4.1. Full completeness for
................................................

............
................................... ALL +Mix

Our purpose in this section is to prove thatevery dinatural transformation inHCoh
(hence in particularGHCoh) corresponds to a GirardMALL proof-structure. For this we
shall first prove thatDinat-HCoh is fully complete for the subsystem

................................................
............
................................... ALL +Mix. The

subsystem
................................................

............
................................... ALL is obtained fromMALL by restricting formulas and inference rules to

the fragment not using the multiplicative connective⊗ (in this formulation, we take
................................................

............
...................................

as primitive). Although the subsystem
................................................

............
................................... ALL +Mix is very elementary(in that only the

one multiplicative connective
................................................

............
................................... exists) full completeness for this subsystem is crucial to

obtaining the main result in this subsection (Proposition 4.16).

Theorem 4.1 (Softness Implies
................................................

............
................................... ALL +Mix Full Completeness).Suppose Dinat-C is soft

and isfully complete forMLL+Mix. Then Dinat-C is fully complete for
................................................

............
................................... ALL +Mix; i.e.,

if ∆ is a
................................................

............
................................... ALL sequent then every dinatρ : 1 → ∆ in C is a denotation of a

................................................
............
................................... ALL +Mix

proof.

In particular, by softness and multiplicative full completeness ofDinat-HCoh (see
Corollary 3.19andProposition 3.7) we obtain:

Corollary 4.2. Dinat-HCoh is fully complete for
................................................

............
................................... ALL +Mix.

Proof (Theorem 4.1). By induction on the number of additive connectives in∆. Since
everyoutermost occurrence of

................................................
...........
.................................... in a formula occurring in∆ is replaced by a comma, we

may assume by convention that every
................................................

...........
.................................... ALL sequent� ∆ is of the form� A1, . . . , An,

where for eachi theoutermost logical connective ofAi (if it exists) is additive orAi is a
literal.

(Base Case—no additive connectives)
∆ is of the form
1, . . . , 
n, where each
i is a literal. Note that this is anMLL sequent. Now
theMLL+Mix full completeness inDinat-C implies that∆ must bep1, p⊥

1 , . . . , pm, p⊥
m
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and theρ is the interpretation of a proof consisting of successively applying theMix rule
(m − 1)-times tom axiom instances� p1, p⊥

1 , . . . ,� pm, p⊥
m:

� p1, p⊥
1 � p2, p⊥

2

� p1, p⊥
1 , p2, p⊥

2
Mix

. . .
...

� p1, p⊥
1 , . . . , pm−1, p⊥

m−1 � pm, p⊥
m

� p1, p⊥
1 , . . . , pm−1, p⊥

m−1, pm, p⊥
m

Mix
.

(The case where∆ contains at least one additive connective.)

• (Case 1): If there exists a formula in∆ whose outer-most connective is &: namely
∆ is ∆1, A1& A2,∆2: then by composing the projections with respect to this &, two
dinatsρi are obtained withi = 1,2 (note: projections are natural, so they compose with
dinaturals):

ρi : 1 → ∆1, Ai ,∆2.

By the induction hypothesis,ρi is a denotation of a proof for i = 1,2. Hence so isρ
because to obtainρ from ρ1 andρ2 corresponds to the followingMALL inference

� ∆1, A1,∆2 � ∆1, A2,∆2

� ∆1, A1& A2,∆2
&
.

• (Case 2): Negation of Case 1: all the outer-most connectives of the formulas (except
literals) in ∆ are⊕. Then∆ is of the form A11 ⊕ A12, . . . , An1 ⊕ An2, 
, where

denotes a sequence
1, . . . , 
k of literal-types. Softness means thatρ factors through
one of the⊕s; hence we obtain a factorizationρ′ as follows:

A11 ⊕ A12, . . . , Ai j , . . . , An1 ⊕ An2, 


�
�

�
�

ρ′ �

1
ρ� A11 ⊕ A12, . . . , Ai1 ⊕ Ai2, . . . , An1 ⊕ An2, 


inj

�

By the induction hypothesis,ρ′ is a denotation of aproof, hence so isρ because to
obtainρ from ρ′ corresponds to the followingMALL inference

� A11 ⊕ A12, . . . , Ai j , . . . , An1 ⊕ An2, 


� A11 ⊕ A12, . . . , Ai1 ⊕ Ai2, . . . , An1 ⊕ An2, 

⊕
.

In other words, the above⊕-rule induces a natural transformationinj which composes
with the dinaturalρ′ to give the dinaturalρ. �



R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1–63 21

4.2. Girard’sMALL proof-structures

Now we recall the definition of multiplicative–additive proof-structure invented by
Girard [17]:

Definition 4.3 (MALL Proof-Structure (cf. [2,17,31])). A proof-structureΘ consists of
the following:

• Occurrences of formulas and links. Each occurrence of a link takes its premise(s) and
conclusion(s) from among the formula occurrences and satisfies column (i) in the table
below.

• A set of eigenweights{pL1, . . . , pLn} where L1, . . . , Ln is the list of all &-links
occurring inΘ and eachpLi is a boolean variable associated with &-linkLi .

• For each occurrenceA of a formula and occurrenceL of a link, aweightw(A) and a
weightw(L), each of which is a nonzero element in the boolean algebra generated by
the eigenweights and satisfies column (ii) in the table below, as well as (iii) and (iv):

link L (i) L
premise(s)

conclusion(s)
: (ii) weights ofL and its premise(s):

axiom-link A A⊥

⊗-link
A B
A ⊗ B w(L) = w(A) = w(B)

................................................
............
................................... -link

A B
A

................................................
............
................................... B w(L) = w(A) = w(B)

&- link
A B
A& B w(A) = pL .w(L) andw(B) = ¬pL .w(L)

⊕1-link
A

A ⊕ B w(L) = w(A)

⊕2-link
B

A ⊕ B w(L) = w(B)

(iii) w(A) = Σw(L) with L ranging over the links whose conclusion isA. Moreover the
sum satisfies thedisjointness property; i.e., if L1 andL2 are distinct links sharing the same
conclusionA thenw(L1).w(L2) = 0.
(iv)w(A) = 1 for a formulaA which isnot a premise of any link, i.e. which is aconclusion
of Θ .

Moreover a proof-structureΘ satisfies the following two conditions:

dependency condition: Every weight of a formula and a link inΘ is a product of
eigenweights and negations of eigenweights (up to boolean equivalence), i.e. is
a monomial.

technical condition: For everyweightv occurring inΘ and a &-linkL, v.¬w(L) belongs
to theboolean algebra generated by the eigenweights distinct frompL .
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Throughout the paper we take as convention that all monomial weights considered
are reduced, i.e. that occurrences ofεp.εp (with ε ∈ {1,¬}) are replaced byεp and
occurrences ofp.¬p are replaced by 0. Under this convention we define

Definition 4.4 (Dependency). A (reduced) monomial weightw depends on an
eigenweight pwhenεp appears inw with ε ∈ {1,¬}.

The following is a basic property of nonzero monomial weights:

Lemma 4.5. For nonzero monomial weightsv andw suchthat 0 �= v ⊆ w, if w depends
on an eigenweight p thenv also depends on p.

Note thatLemma 4.5cannot be extended to polynomial weights.

Girard’s technical condition has also been examined by other authors. Let us summarize
theknown facts:

Remark 4.6 (Girard’s Technical Condition). The following are equivalent to the techni-
cal condition:

(i) Abramsky–Melliès [2]: For every weightv occurring inΘ , if v depends onpL then
v ⊂ w(L).

(ii) O. Laurent [31]: w(L) does not depend onpL and for every weightv occurring inΘ ,
if v depends onpL thenv ⊆ w(L).

Remark 4.7 (Replacing⊗ by
................................................

............
................................... in Structures). If in a proof-structure, we choose a

particular⊗-link and we replace it by a
................................................

...........
.................................... -link, and we replace all occurrences of⊗

appearing hereditarilybelow itby
................................................

............
................................... , then theresulting structure is still a proof-structure.

Finally, we would like to make an important remark on weight assignments for cut-free
MALL structures.

Remark 4.8 (Weights and Additive Links: Softness ofMALL Proof-Structures). Each
link in a cut-freeMALL proof-structureΘ corresponds to a unique connective occuring
among the conclusions ofΘ . However there may exist several links corresponding to any
given connective in the conclusion, because ofadditive contractions. If a connective in a
conclusion ofΘ has several corresponding links hereditarily above it, their weights must
all be strictly less than 1, since moving upwards in the structure, weights strictly decrease
in additive contractions. Hence, if the weight of a link inΘ is 1, it is theonly link corre-
sponding to its namesake in the conclusion.

In fact, in Hamano [24] (cf. Proposition 1 of [24]), the following proposition is proved,
as a consequence of Girard’s technical condition:An arbitrary cut-free proof-structure has
a link whose weight is 1. The proposition is calledsoftness ofMALL proof-structuressince
it is shown to be a proof-structure counterpart of Joyal’s categorical softness (see also
Remark4.15below).

In Hamano [24] softness ofMALL proof-structures is shown to imply the following
sequentialization without⊗.

Proposition 4.9 (
................................................

............
................................... ALL +Mix Sequentialization (cf. Hamano [24])). EveryMALL proof-

structure without⊗-links is
................................................

...........
.................................... ALL +Mix sequentializable.
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This proposition is later used in provingLemma 4.14.
The proof-structures arising from dinaturals will be shown to enjoy two distinguished

properties introduced below (the unique link property and the no duplicate axiom-
link property). These will be proved later in another subsection (cf.Corollary 4.44 and
Corollary 4.55). These properties will be crucial to our full completeness theorem (in
Section 6) which isbased onRel-like models.

Definition 4.10 (Unique Link and no Duplicate Axiom-Link Properties). AMALL proof-
structureΘ is said to satisfy theunique link propertyand theno duplicate axiom-link prop-
erty if the following hold respectively:

– unique link property (UL): If L in Θ is either a⊗-link,
................................................

...........
.................................... -link or &-link with

conclusionD then it is the only link whose conclusion is that occurrence ofD: i.e.,
there exist inΘ no distinct binary links whose conclusions are the same occurrence.

– no duplicate axiom-link property (NDAL): There occur inΘ no distinctaxiom-links
ax1, ax2, . . . , axn (with n ≥ 2) whose (two) conclusions coincide and the sum of
whose weights is 1, i.e.Θ has no occurrences of axiom-links of the following form

α α⊥ax1

...

...

axn

with
i=n∑
i=1

w(axi) = 1.

A UL (respectivelyNDAL) proof-structure is a proof-structure which satisfies the unique
link (respectively no duplicate axiom-link property) property.

In [17], Girard definessequentializableMALL proof-structures. His adequacy theorem
states that with everyMALL proof, we may associate a sequentializable proof-structure (see
Remark 3 after Definition 5 of [17]). A delicate point is that the proof-structure associated
with a MALL proof is not necessarily unique.

We refer to Hamano [24] for an explicit algorithm for the adequacy theorem
(Lemma 4.11below) which yields the unique link property. This lemma will be crucial
when we later show that every dinat inHCoh is associated with a proof-structure (see
Corollary 4.55):

Lemma 4.11 (Adequacy Theorem and UL (cf. Hamano [24])). Every MALL+Mix proof
π is interpreted by aMALL+Mix sequentializable proof-structureΘπ which satisfies the
unique link property.

Proof. If we take the largestboundaryas defined in the proof of [24] to interpret
&-inferences, the interpretation satisfies the property.�
This property will be mentioned again later inLemma 4.34.

Remark 4.12. NeitherMALL norMALL+Mix sequentializable proof-structures necessar-
ily satisfy the unique link property. We emphasize again that this arises because the assign-
ment ofMALL proofs toMALL proof-structures is not necessarily unique. This is quite
different from what happens in the purely multiplicative case.



24 R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1–63

4.3. From dinats toMALL proof-structures

In this subsection we shall show how to constructMALL proof-structures from dinatural
transformations on a soft categoryC which isMLL+Mix fully complete and whoseMix is
monic (Proposition 4.16). This guarantees that every dinat inHCoh, hence in particular
GHCoh, is associated with aMALL proof-structure (Corollary 4.55).

First, we recall the following Soundness Theorem [5,21]:

Lemma 4.13 (MALL+Mix Soundness of the Dinat Interpretation).Let C be an arbitrary
∗-autonomous category with products and coproducts, which satisfiesMix. Every
MALL+Mix sequentializable proof-structure Θ uniquely determines a dinatural
transformation[Θ ] of C suchthat [Θ ] is a denotation of aMALL+Mix proof. This induces
a mapping

[−] : MALL+Mix Sequentializable Proof-Structures−→ Dinat-C
Proof. Weshall prove this by induction on the number of &-connectives in the conclusions
of Θ .

(Base Case) This case is where the conclusions ofΘ are anM⊕LL sequent. In this caseΘ
is identified with a unique cut-freeMLL proof-structure, determined by the set of axiom-
links, and these axiom-links uniquely determine a dinat ofC.

(Inductive Step) The case where some conclusions ofΘ contain a &-connective. An
important observation in this case is that, fromthe softness ofMALL proof-structures
(cf. Remark 4.8), Θ has a &-link whose weight is 1. Hence byRemark 4.8, this &-link
must be the unique &-link corresponding to the & in the conclusion. Thus we shall
denote by{&1, . . . ,&n} the nonemptyset of all &-links whose weights are 1: these
each correspond to a unique and distinct namesake in the conclusion. Ifpi denotes an
eigenweight associated with the &i , the 2n proof-structuresΘ [p1 = k1, . . . , pn = kn]
with eachki ∈ {0,1}, are well defined, indeed areMALL+Mix sequentializable. From the
induction hypothesis, dinats[Θ [p1 = k1, . . . , pn = kn]] are defined. We can uniquely
define a dinat[Θ ] from these dinats by the functoriality of the connectives binding the
& i s. The fact that[Θ ] is actually a denotation of aMALL+Mix proof will be deferred to
Example 4.29. �

The key point of this subsection is the following lifting lemma (Lemma 4.14) which
follows from MALL+Mix Soundness for the dinatural interpretation forC whereMix is
monic. We also require the observation that applications ofMix are commutative; i.e., the
result of two applications ofMix to two distinct⊗s is unique and independent of the order
of application. Categorically, this is a consequence of the naturality of theMix morphism.

We first define a seriesof mappings[ ]k by induction on natural numbersk ≥ 0 so
that each[ ]k+1 becomes an extension of[ ]k. For the basecase, define[ ]0 to be [ ]
from Lemma 4.13. Assume inductively that[ ]k is well defined, thatΘ is aMALL proof
structure andρ is a dinat. GivenΘ /∈ Dom[ ]k, we will say thatΘ ∈ Dom[ ]k+1 if (i)
Mix ◦ Θ ∈ Dom[ ]k for some choice of a⊗-link in Θ to whichMix is applied, and (ii)
there exists a dinatρ such that the type ofρ is that ofΘ andMix ◦ ρ = [Mix ◦ Θ ]k. Since
Mix is monic,ρ is unique if it exists. Hence for such aΘ ∈ Dom[ ]k+1\Dom[ ]k satisfying
(i) and (ii), we define[Θ ]k+1 := ρ. That is, the definition is described by the following
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commutative figure, whereΘ ′ = Mix◦Θ andρ′ = Mix◦ρ. Note that by construction, the
types ofΘ andρ coincide:

Θ ...................
[ ]k+1

� ∃ρ

Θ ′

Mix

�

[ ]k
� ρ′

Mix

�

Since applications of the monicMix are commutative,[Θ ]k+1 is well defined
independently of the choice of⊗-link to whichMix is applied.

Hence the above yields an extension[ ]k+1 of the mapping[ ]k if we additionally
demand that forΘ ∈ Dom[ ]k, [Θ ]k+1 is defined to be[Θ ]k. In particular the domain of
[ ]k+1 contains that of[ ]k and is a certain subset ofMALL proof-structures.

Second, we define the mapping[ ]∗ as the union of the series[ ]k of extensions: i.e.,
[Θ ]∗ := ρ whenever[Θ ]k = ρ for somek ≥ 0. Thus we have defined the mapping[ ]∗

[ ]∗ : A Certain Subset ofMALL Proof-Structures−→ Dinat-C.

Lemma 4.14 (Lifting of the Dinat Interpretation).Let C be an arbitrary∗-autonomous
category with products and coproducts, which satisfiesMix, which weassume is monic.
Then the mapping[ ]∗ is a lifting (extension) of the interpretation[−] of Lemma4.13such
that the type of[Θ ]∗ is thatof the proof-structureΘ and [ ]∗ has the following property
(†):

(†) lifting property of [ ]∗ with respect to Mix:
Letρ andρ′ be a pair of dinats inC suchthatρ′ = Mix ◦ ρ and letΘ andΘ ′ be
a pair of proof-structures such thatΘ ′ = Mix◦Θ (this means thatΘ ′ is obtained
fromΘ by a hereditary replacement of some⊗-link (i.e. together with hereditary
occurrences of the⊗s) by

................................................
............
...................................-links, in the sense ofRemark4.7). Then itfollows

that if [Θ ′]∗ = ρ′ and the type ofΘ coincides with that ofρ, then[Θ ]∗ = ρ.
Wedescribe this property by the following commutative “figure”:

Θ ....................
[ ]∗

� ρ

Θ ′

Mix

�

[ ]∗
� ρ′

Mix

�

where the right and left vertical arrows mean respectivelyρ′ = Mix ◦ ρ and
Θ ′ = Mix ◦ Θ .

In particular the property(†) implies the commutativity of[ ]∗ andMix; i.e., it follows
that [Mix ◦ Θ ]∗ = Mix ◦ [Θ ]∗ for everyΘ in the domain of [ ]∗.
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Proof. This follows directly from the construction of[ ]k+1 from [ ]k and the definition
of [ ]∗. �
Remark 4.15 ([ ]∗ is Not Necessarily Surjective). IfDinat-C is fully complete for
MALL+Mix , then the lifting [ ]∗ coincides with[ ] itself. But the converse is not
true in general since the imageof the mapping[ ]∗ does not necessarily cover all the
dinatural transformations ofC. For example, letC = Cohn, for n �= ω. Then-ary Gustave
dinaturalsR mentioned inProposition 3.8show thatCohn is not soft. On the other hand,
Hamano [24] shows thatall Girard’s MALL proof-structures are soft, in the sense that a
certain factorization/splitting property ofMALL proof structures corresponds (under the
mapping[ ]∗) to softness of dinaturals. Hence, ingeneral, the image of[ ]∗ is soft, so the
Gustave dinaturals cannot be in this image.

Continuing the above remark, if we impose additional conditions onC, the interpretation
[ ]∗ above does indeed become surjective:

Proposition 4.16 (Every Dinat has a Weakly Associated Proof-Structure).Let C be a
∗-autonomous category with products and coproducts, which satisfiesMix. SupposeC
satisfies the following three conditions:

(i) Dinat-C is soft.
(ii) Dinat-C is fully complete forMLL+Mix.
(iii) Mix is monic in Dinat-C.

Then for every dinatural transformation ρ of C, there exists aMALL proof-structureΘ
suchthatρ = [Θ ]∗; that is,[ ]∗ is surjective.

In the above,Θ is referred to as aweaklyassociated proof-structureto the dinatρ.

Proof. By induction on the number of⊗-connectives in the type of an arbitrarily givenρ.

(Base Case) The case where the type ofρ contains no⊗: In thiscase the type ofρ is
................................................

............
................................... ALL

and the assertion follows fromTheorem 4.1; that is,ρ is in the image of[ ].
(Inductive Step) Choose one of the tensors in the type ofρ. Eliminate that tensor (replace
it with a

................................................
............
................................... by composing withMix) to obtainρ′ := Mix ◦ ρ. Then by the inductive

hypothesis applied toρ′, there exists a proof-structureΘ ′ suchthatρ′ = [Θ ′]∗. Theproof-
structureΘ , obtained byRemark 4.7, has type coinciding with that ofρ; moreover, it
satisfiesΘ ′ = Mix ◦ Θ . Then by property(†) of the map[ ]∗, Θ is interpreted as the dinat
[Θ ]∗ and we have

Mix ◦ [Θ ]∗ = [Mix ◦ Θ ]∗
= [Θ ′]∗ (sinceΘ ′ = Mix ◦ Θ )

= ρ′ (sinceρ′ = [Θ ′]∗)

= Mix ◦ ρ (sinceρ′ = Mix ◦ ρ).

Thus[Θ ]∗ = ρ, sinceMix is monic in Dinat-C. �

Let us examine the inductive step inProposition 4.16in more detail.
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Remark 4.17 (RecoveringΞρ from a SequentializableΞ|ρ|............................................................................................... ). Let Ξρ denote a proof-

structure as described inProposition 4.16such that [Ξρ]∗ = ρ. The following is an
explicit algorithm for constructing such aΞρ . From the given dinatρ : 1 → Γ , by
composing withMix maps, we obtain the dinat|ρ|....................................................

........................................... whose type is a
................................................

............
................................... ALL sequentΓ ′,

whereΓ ′ is obtained fromΓ by replacing all of the occurrences of⊗ by
................................................

............
................................... . That is,

if Γ = Γ [A11 ⊗ A12, . . . , An1 ⊗ An2] thenΓ ′ = Γ [A11
................................................

............
................................... A12, . . . , An1

................................................
............
................................... An2]. Define

|ρ |....................................................
........................................... , as the following

................................................
............
................................... ALL dinat.

Γ
Mixes� Γ ′

�
�

�
�

|ρ |....................................................
...........................................

�

1

ρ

�

Thus by
................................................

...........
.................................... ALL +Mix Full Completeness (Theorem 4.1), |ρ|....................................................

........................................... is a denotation of a proof.
Thus byLemma 4.13, a proof-structureΞ|ρ|............................................................................................... for |ρ|....................................................

........................................... is obtained. A proof-structureΞρ
weakly associated withρ is obtained fromΞ|ρ|............................................................................................... by replacing all occurrences of

................................................
............
................................... -links

and of the associated
................................................

............
................................... s, which are in the image of Mixes, by⊗-links and⊗, respectively.

Note thatRemark 4.7ensures that the resulting structureΞρ is still a proof-structure. This
proof-structureΞρ is often denoted byMix−1 ◦ Ξ|ρ|............................................................................................... .

We define the setWPS(ρ) of proof-structures weakly associated with a dinatρ as
follows:

WPS(ρ) := {Θ | ρ = [Θ ]∗}.
We shall later refine this to a nonempty subsetPS(ρ) ⊆ WPS(ρ) of associated proof
structures(Definition 4.45). The latter will be shown to satisfy a fundamental property: a
dinatρ will denote aMALL proof iff all structures inPS(ρ) areMALL proof nets (cf. the
next subsection, andCorollary 4.53).

4.4. MALL proof-nets

Next we recall Girard’s sequentialization theorem [17] for proof-structures. A crucial
step in the theorem was his introduction of the notion ofjumpsin a switchingS, as defined
below:

Definition 4.18 (Switching and Graphs of Additive PSs (cf. [2,17])).

• A switching Sof a proof-structureΘ consists of the following three choices:

(i) The choice of avaluationϕS, which is a function from the set{pL1, . . . , pLn} of
eigenweights to{0,1}. ϕS induces a function from the weights ofΘ to {0,1}. The
slice sl(ϕS(Θ)) is obtained by restricting theproof-structureΘ to the formula and
link occurrencesO suchthatϕS(w(O)) = 1, i.e. we remove all formula and link
occurrences inΘ whose weight under the valuationϕS is 0.

(ii) For each
................................................

...........
.................................... -link L of sl(ϕS(Θ)), a choiceS(L) ∈ {l , r }.
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(iii) For each &-link L of sl(ϕS(Θ)), a choice of a formulaS(L), called ajump of L, so
thatS(L) is a conclusion of a link whose weight depends onpL . A jump isnormal
if S(L) is the premiseA of L suchthatϕS(w(A)) = 1. A proper jumpis a jump
which isnot normal.

• A normal switchingis a switching with noproper jump.
• For a switching S of a proof-structureΘ , thegraphΘS is drawn as follows:

– The vertices ofΘS are the occurrences of the formulas ofsl(ϕS(Θ)).
– For all axiom-links ofsl(ϕS(Θ)), we draw an edge between its conclusions.
– For all ⊕i -links of sl(ϕS(Θ)), we drawn anedge between the conclusion and the

premise.
– For all⊗-links of sl(ϕS(Θ)), we drawn anedge between the conclusion and the left

premise, and between the conclusion and the right premise.
– For all

................................................
............
................................... -links of sl(ϕS(Θ)), we drawn anedge between the conclusion and the

premise (left or right) selected byS(L).
– For all &-links of sl(ϕS(Θ)), we drawn anedge between the conclusion and the jump

S(L) selected byS.

We will write sl(ϕ(Θ)) for sl(ϕS(Θ)) if S is clear from the context.

Remark 4.19. Let us make some remarks on slices.

(1) A slice is a structure in which all additive links have now become unary. Thus, a slice
can be identified with anMLL proof-structure by erasing every (unary) additive link.

(2) Following up onRemark4.15, the interpretation[ ]∗ inherits from[ ] the following
property of commuting with valuations: for every valuationϕ for Θ , [sl(ϕ(Θ))]∗ =
ϕ([Θ ]∗), whereϕ([Θ ]∗) denotes the dinat resulting from[Θ ]∗ by composing with
projections which are natural transformations (determined byϕ).

(3) If Dinat-C is fully complete forMLL+Mix and aMALL proof-structureΘ is in the
domain of the interpretation[ ]∗, then every slice sl(ϕ(Θ)) of Θ is aMLL+Mix proof-
net by property 2 above.

Definition 4.20 (Proof-Nets). Aproof-netfor MALL is a proof-structureΘ suchthatΘS

is acyclic and connected for every switchingS. A proof-netfor MALL+Mix is a proof-
structureΘ suchthatΘS is acyclic for every switchingS.

Proposition 4.21 (Sequentialization Theorem forMALL (Girard [17])). A MALL proof-
structure isMALL sequentializable if and only if it is aMALL proof-net.

In [24] Hamano proved the following sequentialization theorem forMALL+Mix.

Proposition 4.22 (Sequentialization Theorem forMALL+Mix ([24])). A proof-structure
is MALL+Mix sequentializable if and only if it is aMALL+Mix net.

Indeed, as a corollary of this MALL+Mix sequentialization theorem, a slightly stronger
form of MALL sequentialization can be obtained:

Corollary 4.23 (cf. [24]). A proof-structureΘ is a MALL proof-net if and only if (i) for
every switching S the graphΘS is acyclic and (ii) for every normal switching S0, thegraph
ΘS0 is connected.
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Definition 4.24 (Associated Normal Switching). LetS be a switching for a proof-
structure. Associated withS there is aunique normal switchingS0 which agrees withS
except all jumps inS0 are normal (these are determined byϕS). S0 is calledthe associated
normal switching of S.

Fromnow on,S0 will denote the associated normal switching ofS.
Finally in this subsection, wehave a lemma on weakly associated proof-structures for a
dinat. This lemma gives the fundamental connection between proof-structures arising from
dinats and proof-nets.

Lemma 4.25. A dinat ρ denotes aMALL proof iff the set of weakly associated proof-
structures WPS(ρ) contains some proof-netΘ .

Proof. The only if part is direct: for a dinatρ which is a denotation of aMALL proof, there
exists a proof-netΘ suchthat[Θ ] = ρ.

As for the if part, suppose there existsΘ ∈ WPS(ρ) such that Θ is a proof-net,
hence is sequentializable forMALL. Recall thatρ = [Θ ]∗ and [ ]∗ is a lifting of [ ],
as in Lemma 4.14. Note that in this caseΘ is in the domain of[ ], thus we have
[Θ ]∗ = [Θ ]. This means thatρ is a denotation of aMALL proof by the soundness theorem,
Lemma 4.13. �

4.5. Associated proof-structures

Let ρ be a dinat. The purpose of this subsection is to obtain a nonempty subset
PS(ρ) ⊆ WPS(ρ) of (strongly) associated proof-structures by adding a certain constraint
onWPS(ρ). The constrained classPS(ρ) satisfies astrong soundness theorem:ρ denotes a
MALL proof iff all elements ofPS(ρ) are proof-nets (Corollary 4.53). The classPS(ρ) of
associated proof-structures will be important in the remainder of this paper.

The constraint we shall impose in formingPS(ρ) from WPS(ρ) is the notion oflegal
total splittingsfor a dinat| ρ |....................................................

........................................... .
4 Total splittings are identified with a proof which the

dinat denotes. There may be several syntactically different total splittings arising from one
dinatural denotation; however legal total splittings yield our Fundamental Proposition and
its Corollary 4.50, which states that our association of structures to dinats preserves cycles
under semantical splittings. The FundamentalProposition directly implies the soundness
of the association (Corollary 4.53).

4.5.1. Semantical splittings of dinats
Definition 4.26 (Semantical Splittings of a Dinat). For a dinatσ of MALL type, we define
{⊗,mix,

................................................
............
................................... ,⊕,& }-splittings ofσ as follows:

• (Binary splittings):σ is split into two dinatsσ1 andσ2 according to the following:

⊗-splitting: If σ is written asσ1 ⊗ σ2, thenσ of type∆1,∆2, A1 ⊗ A2 is split into
dinatsσi of type∆i , Ai with i = 1,2.

4 Recall that a proof-structureΞρ weakly associated withρ is Mix−1 ◦ Ξ|ρ|...............................................................................................
(Remark 4.17) and that|ρ |...............................................................................................

is a denotation of a proof, by
................................................

...........
.................................... ALL +Mix full completeness (Theorem 4.1).
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mix-splitting: σ is written asσ1 mix σ2 (more simply asσ1, σ2), thenσ of type∆1,∆2
is split into dinatsσi of type∆i with i = 1,2.

& -splitting: If σ is written asσ1&σ2, thenσ of typeΓ , A1& A2 is split into dinatsσi

of typeΓ , Ai with i = 1,2.
• (Unary splittings):σ is split into a single dinatσi for somei ∈ {1,2} according to the

following:
................................................

...........
.................................... -splitting: If σ is written as

................................................
...........
.................................... (σ1), thenσ of typeΓ , A

................................................
...........
.................................... B is split into a dinatσ1

of typeΓ , A, B.
⊕1-splitting: If σ is written as⊕(σ1), thenσ of typeΓ , A1 ⊕ A2 is split into a dinat
σ1 of typeΓ , A1.

⊕2-splitting: If σ is written as⊕(σ2), thenσ of typeΓ , A1 ⊕ A2 is split into a dinat
σ2 of typeΓ , A2.

That is to say, each splitting corresponds to the associatedMALL+Mix rule.
A totalsplitting of a dinatσ is a series of successive splittings so that no possible splitting is
left to be done. A total splittingterminatesif all the terminal dinats are identities on atoms.

Remark 4.27 (Remarks on Splittings).

(1) Let C be an arbitrary∗-autonomous category with products and coproducts, which
satisfiesMix. For everyC-dinatρ which denotes aMALL+Mix proof, all total splittings
of ρ terminate; i.e. any successive iterations of{⊗,mix,

................................................
...........
.................................... ,⊕1,⊕2,& }-splittings of ρ

yield a set of identity dinats.
(2) A total splittingα is represented as a tree, where each node correspondsto a splitting

and where each edge attached to a node corresponds to the resulting dinat(s) after a
splitting. The root of the tree represents the first splitting and the leaves of the tree
represent the terminal dinats.

Example 4.28 (Tree Representation of Splittings). The following are tree representations
of two total splittingsα andα′ for a dinatσ

................................................
............
................................... (ρ1&ρ2):

Splittingα

σ
................................................

............
................................... (ρ1&ρ2)

................................................
...........
....................................

σ, ρ1&ρ2

mix
�

��
	

		
σ

β

ρ1&ρ2

&
�

��
	

		
ρ1 ρ2

γ1 γ2

Splittingα′

σ
................................................

............
................................... (ρ1&ρ2)

................................................
...........
....................................

σ, ρ1&ρ2

&







�����
σ, ρ1

mix
�

��
	

		
σ ρ1

β γ1

σ, ρ2

mix
�

��
	

		
σ ρ2

β ′ γ2

In the aboveβ (andβ ′), γ1 andγ2 are total splittings forσ , ρ1 andρ2, respectively.

Example 4.29 ([Θ ] is a Proof). In Lemma 4.13(the soundness of the dinat interpre-
tation), our construction of[ ] ensures that[Θ ] semantically splits, in a manner
corresponding toa splitting of a terminal link of Θ . Moreover, the image of[ ] is closed
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under semantical splitting. Hence we have that the dinat[Θ ] corresponds to aMALL+Mix
proof.

As a special case of (1) ofRemark4.27, we have

Lemma 4.30 (Total Splittings Terminate forHCoh-Dinats of
................................................

...........
.................................... ALL Type) . For every

HCoh-dinatσ of
................................................

............
................................... ALL type, total splittings ofσ terminate; i.e. any successive iterations

of {mix,
................................................

............
................................... ,⊕1,⊕2,& }-splittings ofσ yield a set of identity dinats.

Proof. From the
................................................

............
................................... ALL +Mix full completeness ofDinat-HCoh of Corollary 4.2. �

We define a legal total splitting by imposing constraints on &-splittings as follows:

Definition 4.31 (Legal Total Splitting). Letσ be a dinat ofMALL type with a total
splittingα. α is legal if the splittings in it satisfy the following constraints:

– Every &-splitting for a dinat occurring inα is executed under the proviso that it is
impossible to subsequently execute any{⊗,mix,

................................................
...........
.................................... ,⊕1,⊕2}-splittings to the dinat.

In terms of the tree representingα, the above constraints say that for every &-splitting
node, the unique dinat attached to the node before the splittingcannot then be split by any
further{⊗,mix,

................................................
............
................................... ,⊕1,⊕2}-splittings.

Example 4.32. The total splittingα in Example 4.28is legal (ifβ, γ1 andγ2 are). On the
other hand, the total splittingα′ is not legal: although the dinatσ, ρ1&ρ2 can be split via
mix, instead a &-splitting of the dinat is executed first.

FromRemark4.27, we have thefollowing:

Corollary 4.33 (Existence of Legal Total Splittings).LetC be the same as inRemark4.27.
For everyC-dinatρ which denotes aMALL+Mix proof, there exists at least one legal total
splitting.

4.5.2. Strongly associating proof-structures with dinats
Ourgoal in this subsection is to improveProposition 4.16which says that under appro-

priate conditions on a categoryC, aC-dinat has a weakly associated proof-structure. Indeed
we completely characterize thoseC-dinats that denoteMALL proofs (Proposition 4.53).
This involves, as we show inCorollary 4.55, thatMALL proof-structures associated with
dinats onHCoh andGHCoh satisfy the UL and NDAL properties.

Letα denote aterminating total splitting for a dinatσ . Then every suchα can be seen as
aMALL+Mix proof whichσ denotes. Of course, for a given dinat a total splittingα—even
if one exists—is not uniquely determined. This corresponds to the fact that a dinatσ can
denote severalsyntacticallydifferentproofs. We shall first show that with every suchα, we
can associate a canonical proof-structureΘ(α) satisfying theunique link property and the
no duplicate axiom-link property. For this we begin with several lemmas and definitions.

First, we demonstrate the canonical interpretation of logical rules. This will ensure the
unique link property (cf.Corollary 4.44).

Lemma 4.34 (Canonical Proof-Structure Interpretation of Logical Rules).Suppose a
MALL+Mix proof π is obtained from proof(s)πi by means of a logical rule@ ∈
{⊗,mix,

................................................
...........
.................................... ,⊕1,⊕2,& }; i.e., the last inference ofπ is @. From any UL proof-structures
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Θi whose sequentializations areπi , acanonical UL proof-structure is uniquely constructed
such that its sequentialization isπ and its splitting corresponding to@ yields the proof-
structure(s)Θi (here, a splitting of such a proof-structure is obtained by removing a
terminal@-link).

The proof-structure which we construct above is denoted byΘ1 ⊗ Θ2, Θ1 mix Θ2
(more simplyΘ1,Θ2),

................................................
............
................................... (Θ1), ⊕(Θ1), ⊕(Θ2), or Θ1&Θ2 , depending upon the choice of

logical rule @.

Proof. We shall prove the case where@ is & (theother cases are trivial). The algorithm
given in [24] to interpret &-inferences tells us how to merge two proof-structuresΘ1 and
Θ2 with the same context in the conclusions. Let us take the largestboundaryamong other
boundaries, as defined in the proof. Note that the largest boundary is uniquely determined.
Thus we canonically obtain a proof-structureΘ1&Θ2 for the assertion. �

Remark 4.35. The above lemma states that the canonical interpretation of logical rules
preserves the unique link property. Note however that the canonical interpretation does not
necessarily preserve the no duplicate axiom-link property defined inDefinition 4.10. This
is why we introduceDefinition 4.36below.

Next we define a rewriting relation� and demonstrate some of its properties; in
particular, it will ensure the no duplicate axiom-link property inCorollary 4.44.

Definition 4.36 (Rewriting to Shrink Duplicate Axiom-Links). Let us define a rewriting
relation � from duplicate axiom-linksax1, ax2, . . . , axn with

∑i=n
i=1 w(axi) = 1 into the

single axiom-linkax suchthatw(ax) = 1:

α α⊥ax1

...

...

axn

�

α α⊥

ax

This is extended to a reduction relation� on all proof-structures.

Let us call a tupleax1, ax2, . . . , axn of axiom-links aredexfor �.

Lemma 4.37 (Uniqueness of Normal Form wrt�). The normal form for a proof-
structure under the reduction relation� is unique.

Proof. First, observe that occurrences of redexes areuniquely determined in every proof-
structure by virtue of the constraint that

∑i=n
i=1 w(axi) = 1. Moreover, rewriting� does

not give rise to any new redexes.�

Lemma 4.38 (Invariance of the Interpretation[ ]∗ under�). Suppose[Θ ]∗ = ρ. If Θ �

Θ̃ , then[Θ̃ ]∗ = ρ. That isto say the interpretation[ ]∗ is invariant under reduction by�.

Remark 4.39. Lemma 4.38ensures that one can apply� in a proof-structure associated
with a dinat since an application preserves the interpretation[ ].
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The previous lemmas allow us to obtain canonical UL and NDAL proof-structures
corresponding to terminating total splittings:

Proposition 4.40 (Canonical Proof-Structurefor Terminating Splittings).Let ρ be a
dinat. Every terminating total splittingα for ρ is canonically interpreted by a unique
MALL+Mix sequentializable UL and NDAL proof-structureΘ(α) suchthat [ Θ(α) ] = ρ.

The proof-structureΘ(α) above, whose sequentialization isα, is called the canonical
proof-structure for terminating total splittingα.

Proof. By induction on the size ofα, for a dinatρ. We shallprove the case where the first
splitting ofα is a &-splitting. This yields total splittingsαi for dinatρi with i ∈ {1,2} (the
other cases are trivial). By induction hypothesisαi is interpreted by a structureΘ(αi ) such
that[Θ(αi )] = ρi with i ∈ {1,2} andΘ(αi ) satisfies UL and NDAL.

First, from Lemma 4.34, we have acanonical UL proof-structureΘ(α1)&Θ(α2) such
that[Θ(α1)&Θ(α2)] = ρ. Note thatΘ(α1)&Θ(α2) may have duplicate axiom-links even
if the individualΘ(αi ) are NDAL proof-structures (cf.Remark4.35).

Second, byLemma 4.37, Θ(α1)&Θ(α2) is uniquely reducible to a proof-structure, say
Θ(α); i.e.,Θ(α1)&Θ(α2) �∗ Θ(α), where�∗ is the reflexive transitive closure of�. By
virtue ofLemma 4.38, weobtain that[Θ(α)] = ρ. �

By using the notion of canonical proof-structures ofProposition 4.40, we are now ready
to define the following:

Definition 4.41 (Restricting [ ] to [ ]−). We restrict the mapping[ ] of Lemma 4.13to
the mapping[ ]− by restrictingΘ to only structures given by legal total splittings, i.e.

Θ ∈ Dom[ ]− iff

Θ = Θ(α) for some legal total splittingα of the dinat [Θ ].
Since for anyΞ in the domain of[ ], [Ξ ] denotes aMALL+Mix proof, there exists at least
onelegal total splittingα for the dinat[Ξ ] (cf. Remark4.33), hence[Θ(α)]− = [Ξ ]. This
implies that the image of[ ]− coincides with that of the original[ ].
Lemma 4.42 (Lif ting [ ]∗− of [ ]−). The interpretation [ ]− has lifting [ ]∗− as in
Lemma4.14. Then[ ]∗− becomes a restriction of [ ]∗.

Remark 4.43. If a proof-structureΘ is in the domain of[ ]∗−, then it satisfies the unique
link property and the noduplicate axiom-link property byProposition 4.40.

With this remark,Proposition 4.16of the previous subsection directly implies the
following:

Corollary 4.44 (Every Associated PS for a Dinat Satisfies UL & NDAL).Let C be a
∗-autonomous category with products and coproducts, which satisfiesMix. SupposeC
satisfies the following three conditions:

(i) Dinat-C is soft.
(ii) Dinat-C is fully complete forMLL+Mix.
(iii) Mix is monic in Dinat-C.
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Then for every dinatural transformation ρ of C, there exists aMALL proof-structureΘ
suchthatρ = [Θ ]∗−. Every suchΘ satisfies the unique link property and the no duplicate
axiom-link property.Θ is said to be anassociated proof-structurefor a dinatρ.

Proof. The proof is similar toProposition 4.16by noting the following for each case:
(Base Case) The image of[ ]− coincides with that of[ ]; then we apply Remark4.43.
(Inductive Step) The properties UL and NDAL are preserved under replacement of a
................................................

............
................................... -link by a⊗-link. �
Until the end of this subsection, letC denote any category satisfying (i), (ii) and (iii)

of Corollary 4.44, hence in particularHCoh. UsingCorollary 4.44, wecan now define the
nonempty setPS(ρ) of proof-structures (strongly) associated with a dinatρ.

Definition 4.45 (Strongly Associated Proof-Structures). Letρ be a dinat ofC. We define

PS(ρ) := {Θ | ρ = [Θ ]∗−}.
By Remark4.17, which gave a direct algorithm to define[ ]∗−, it may beequivalently
defined by

PS(ρ) = Mix−1 ◦ PS(|ρ |....................................................
........................................... ).

Since| ρ |....................................................
........................................... is a denotation of a

................................................
...........
.................................... ALL +Mix proof by Theorem 4.1, PS(| ρ |....................................................

........................................... ) in the
above may be explicitly described by

PS(|ρ |....................................................
........................................... ) = { Θ(α) | α is a legal total splitting for|ρ |....................................................

........................................... }.
First wenote thatPS(ρ) is anonempty subset ofWPS(ρ) since[ ]∗− is a restriction of[ ]∗
and the images of[ ]∗− and[ ]∗ coincide. Second, note that all proof-structuresΘ ∈ PS(ρ)
satisfy the unique link property and the no duplicate axiom-link property byRemark4.43.

We shall refer to elements ofPS(ρ) asassociated proof-structureswhen the meaning
is clear. We automatically have the following lemma, corresponding toLemma 4.25of the
previous subsection:

Lemma 4.46. A dinatρ denotes aMALL proof iff ∃Θ ∈ PS(ρ) Θ is a proof-net.

In the next subsection, we shall considerably strengthen this lemma.

4.5.3. Soundness of associated proof-structures
Our motivation for imposing legality in defining[ ]− (hence toits lifting [ ]∗−) is to

obtain a much stronger proposition (Corollary 4.53below) thanLemma 4.46above: this
will guarantee thatρ denotes aMALL proof iff all elements ofPS(ρ) are proof-nets.

We begin by a more detailed analysis of splittings of dinats, which we call the
Fundamental Proposition.

Proposition 4.47 (Fundamental Proposition).Suppose that aC-dinatρ can be split via a
@-splitting with @ ∈ {⊗,mix,

................................................
............
................................... ,⊕1,⊕2,& }. Then everyΘ ∈ PS(ρ) has the correspond-

ing @-splitting.

Proof. We shall prove the assertion by induction on the number of &-connectives in the
type of dinatρ.
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(Base Case—no &-connectives)
The assertion is obvious since in this caseρ is identified with a multiplicative dinat.

(Induction Case)
The assertion is obvious for a splitting @∈ {................................................

............
................................... ,⊕1,⊕2,& } since by virtue of the

unique link property ofΘ , the corresponding @-link inΘ is terminal and every terminal
{................................................

...........
.................................... ,⊕1,⊕2,& }-link can be split. Thus we shall prove the assertion forρ that are split into

two dinatsρ1 andρ2 via @∈ {mix,⊗}.
First we recall, fromDefinition 4.45, thatΘ is of the formMix−1 ◦ Θ(α) with |Θ |....................................................

........................................... =
Θ(α) ∈ PS(|ρ |....................................................

........................................... ) for a certain legal total splittingα for |ρ |....................................................
........................................... .

In the following Cases 1 and 2, legality ofα plays a crucial role. For these cases we
introduce some terminology as follows. Recall fromRemark4.27(2), that weidentify α
with a tree. We say that adinat appears inα if it appears in some edge of the treeα.
We say that appearances of dinats inα areindependentif the subtrees determined by the
corresponding edges ofα are disjoint.

(Case 1) The case whereρ splits via mix; in this caseρ can be written asρ1, ρ2 by making
the splitting explicit. Note first that the dinat| ρ |....................................................

........................................... is | ρ1 |....................................................
........................................... , | ρ2 |....................................................

........................................... , hence can also be
split into |ρ1 |............................................................................................... and|ρ2 |............................................................................................... via mix. Since the total splittingα for |ρ |....................................................

........................................... is legal, we have
the following:

Observation: There exist sets{σ1i }i∈I and{σ2 j } j ∈J of dinats satisfying (i) and (ii):

(i) Each ofσ1i andσ2 j appears in the total splittingα and all appearances{σ1i , σ2 j }i∈I , j ∈J

are independent.
(ii) Eachσ1i (respectivelyσ2 j ) is obtained from| ρ1 |....................................................

........................................... (respectively| ρ2 |....................................................
........................................... ) by a series

of splittings without any use of &-splittings.

From theobservation, it holds that the proof-structure| Θ |....................................................
........................................... is aunion of two proof-

structuresΞ1 ∈ PS(| ρ1 | .....................................................
.......................................... ) andΞ2 ∈ PS(| ρ2 | .....................................................

.......................................... ). Thus we conclude that the proof-
structureΘ is a union of two proof-structuresΘ1 ∈ PS(ρ1) andΘ2 ∈ PS(ρ2), where
Θi := Mix−1 ◦ Ξi with i ∈ {1,2}. ThusΘ has the corresponding mix splitting.

(Case 2) The case whereρ splits via⊗; in thiscaseρ can be written asρ1 ⊗ ρ2 by making
the splitting explicit: Note first that| ρ |....................................................

........................................... is | ρ1 | ....................................................
...........................................

................................................
............
................................... | ρ2 | ....................................................

........................................... , hence can be split into
|ρ1 |............................................................................................... and|ρ2 |............................................................................................... via mix (following a

................................................
............
................................... -splitting). Since the total splittingα for |ρ |....................................................

........................................... is
legal, we have the same observation as in theabove Case 1. From the observation, it holds
that the proof-structure| Θ |....................................................

........................................... is a union of two proof-structuresΞ1 ∈ PS(| ρ1 | ....................................................
........................................... ) and

Ξ2 ∈ PS(| ρ2 | ....................................................
........................................... ) by drawing the terminal

................................................
............
................................... -link corresponding to the

................................................
............
................................... -splitting. Thus

we conclude that the proof-structureΘ is a union of two proof-structuresΘ1 ∈ PS(ρ1)

andΘ2 ∈ PS(ρ2) by drawing the terminal⊗-link corresponding to the⊗-splitting, where
Θi := Mix−1 ◦ Ξi with i ∈ {1,2}. ThusΘ has the corresponding⊗-splitting. �

The reason why we have imposed the constraint of “legality” is to obtain this
Proposition 4.47. The proposition need not be valid whenPS(ρ) is replaced by the bigger
set of weakly associated proof-structuresWPS(ρ), as follows:

Example 4.48 (Why Legality is Necessary). From the aboveExample 4.28, we define
total splittingsᾱ andᾱ′ for a dinatσ, ρ1&ρ2 to beα andα′ respectively without the first
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................................................
............
................................... -splitting. Thenᾱ is legal butᾱ′ is not legal, as explained in the example. Suppose that

dinatsσ andρi (i = 1,2) are denotations for aMALL+Mix proof. By observing that a
dinatσ, ρ1&ρ2 can be split via mix into two dinatsσ andρ1&ρ2, we have thefollowing:

(i) A proof-structureΘ(ᾱ) ∈ PS(σ, ρ1&ρ2) has the corresponding mix splitting.
(ii) On the contrary, a proof-structureΘ(ᾱ′)∈ WPS(σ, ρ1&ρ2) may not be correspond-

ingly split via mix.

Since (i) is an example ofProposition 4.47, we shall explain (ii). First, a disjoint
unionΘ(β),Θ(γ1) (respectivelyΘ(β ′),Θ(γ2)) of Θ(β) (respectivelyΘ(β ′)) andΘ(γ1)

(respectivelyΘ(γ2)) is an element ofWPS(σ, ρ1) (respectively ofWPS(σ, ρ2)). Second,
Θ(ᾱ′) is obtained from these two unions via the canonical interpretation of the &-inference
of Lemma 4.34; i.e., Θ(ᾱ′) is (Θ(β),Θ(γ1))& (Θ(β ′),Θ(γ2)). Then from thedefinition
of &-in terpretation,Θ(ᾱ′) becomes a union of two (not necessarily proof-) structures:
One is a proof-structureΘ(γ1)&Θ(γ2). The other is a superposition (arising in the
&-in terpretation) of two proof-structuresΘ(β) and Θ(β ′) which share the same
conclusions. It is important to observe that the latter structure isnot necessarily a proof-
structurewithout the guarantee ofΘ(β) = Θ(β ′), sincethere may occur, in superposing
Θ(β) andΘ(β ′), a link whose weight depends on the eigenweightp associated with the
&. Thus we conclude thatΘ(ᾱ′) need not have the corresponding mix splitting.

As a direct corollary ofProposition 4.47, we have the following Corollary on
preservation of cycles:

Notation 4.49. We say that a proof-structureΘ has a cycleC if C appears inΘS under
some switchingS. We say that a dinatρ yields a cycleC if there exists aproof-structure
Θ ∈ PS(ρ) suchthatΘ has a cycleC.

Corollary 4.50 (Preservation of Cycles).Suppose that aC-dinatρ can be split into dinats
ρi by means of a unary or binary rule. Ifρ yields a cycleC, then there exists i ∈ {1,2} such
thatρi yields the cycleC.

Proof. Suppose that a dinatρ can be split via a @-splitting. Suppose moreover, a cycleC
appears in a proof-structureΘ ∈ PS(ρ). FromProposition 4.47, Θ can be correspondingly
split via @ intoΘi . Hence the cycleC is retained in someΘi with i ∈ {1,2}. Since
Θi ∈ PS(ρi ), we have derived the assertion. �
Example 4.51. As an example ofCorollary 4.50, let usconsider the case whereρ can be
split intoρ1 andρ2 by means of a⊗-splitting. In this caseProposition 4.47(Fundamental
Proposition) means that the proof-structureΘ is a union of two proof-structuresΘ1 ∈
PS(ρ1) andΘ2 ∈ PS(ρ2) by drawing the terminal⊗-link corresponding to the⊗-splitting.
This in particular means that for any &-link, say &p, occurring inΘ1 (respectively, inΘ2),
no weight occurring inΘ2 (respectively,Θ1) depends onp. Hence no jump can be drawn
betweenΘ1 andΘ2. Thus every path between a formula occurrence inΘ1 and one inΘ2
must go through the⊗-link. Hence we conclude that ifΘ has a cycleC, thenC must exist
either inΘ1 or Θ2.

Remark 4.52 (Structural Preservation of Cycles).Corollary 4.50 of the fundamental
proposition states that our interpretation of dinatσ into the setPS(σ ) of proof-structures
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preserves cycles with respect to semantical splittings.Corollary 4.50will be crucial later
in obtainingLemma 5.17, which will be used in the Main Theorem inSection 6.1.

FromCorollary 4.50, weobtain the main result of this subsection:

Corollary 4.53 (Soundness of Associated Proof-Structures).A dinat ρ denotes aMALL
proof iff ∀Θ ∈ PS(ρ), Θ is a proof-net.

Proof. The “if” part isLemma 4.46. Thus we shall prove the “only if” part. Note first that
for a dinatρ of MLL type, the assertion is obvious sincePS(ρ) is a singleton. Suppose
we are given a dinatρ denoting aMALL proof. From what we have just said, it holds that
∀Θ ∈ PS(ρ) ΘS0 is connected for allnormal switchingsS0, since anormal switching
yields anMLL dinat. Suppose for contradiction that∃Θ ∈ PS(ρ) Θ is not a proof-net.
FromCorollary 4.23and the connectedness of a proof-structure under normal switchings,
Θ must have a cycle. On the other hand, sinceρ denotes a proof, there is a series of
splittings for ρ which terminate. This implies fromCorollary 4.50 that there arises an
identity dinat which yields a cycle. This is a contradiction.�

Remark 4.54. Strictly speaking,Corollary 4.53 together withLemma 4.46is what is
referred to as the soundness of associated proof-structures.

Now we arrive at an important consequence of this section:

Corollary 4.55 (MALL pss Associated withHCoh andGHCoh Dinats). Every dinatural
transformationρ of HCoh is associated with a set PS(ρ) of UL and NDALMALL proof-
structures satisfyingLemma4.46, Corollaries4.50 and 4.53. In particular, so is every
dinat ρ of GHCoh using the canonical embeddingI : Dinat-GHCoh ↪→ Dinat-HCoh
of Lemma3.13.

Proof. Note first that HCoh satisfies the three properties ofCorollary 4.44:
(i) Dinat-HCoh is soft (cf. Corollary 3.19) (ii) Dinat-HCoh is fully complete
for MLL+Mix (cf. Proposition 3.7) (iii) Mix is monic in Dinat-HCoh (cf. under
Proposition 2.5). Thus byCorollary 4.44the result follows. �

Remark 4.56.

(1) In general, the class of proof-structures we obtain from dinaturals is a proper subset
of all additive proof-structures. The key point here is that those arising from legal
total splittings automaticallysatisfy the no duplicate axiom-link property as well as
theunique link property.

(2) We also note that we have an algorithm (cf.Remark4.17) for associating a proof-
structure (eventually seen to be a net) with aGHCoh dinat. However, not all proof-nets
are in the image of this construction. This arises for the same reason asRemark4.12,
namely the assignment of sequentializable MALL proof-structures to proofs is not
unique.

In what follows, for a dinatρ, an arbitrarily fixed proof-structureΘ in PS(ρ) is often
denoted byΘρ .
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5. Simple oriented cycles in MALL proof-structures

We are interested in certain types of cycles which can arise in additive proof-
structures. These cycles are calledsimple oriented cycles. Orientednessof cycles was first
introduced in the work of Abramsky and Melli`es [2,3], which inspired our treatment here.
However we introduce the notion ofsimplicity to further cut down the class of oriented
cycles.

5.1. Simple oriented cycles

Our main results in this subsection areLemma 5.2andLemma 5.8, whichguarantee the
existence of oriented cycles andof simple oriented cycles, respectively.

Definition 5.1 (Oriented Cycle). Anoriented cycleis one in which the cycle has an
orientation such that the induced direction on each proper jump goes from the conclusion
of a &-link L to jumpS(L). SeeFig. 1for the general shape of an oriented cycle, where an
edge between a proper jumpS(L) and a conclusion of a &-linkL is drawn with a dotted
line.

Li

S(Li )

L j S(L j )

Lk
S(Lk)

� 


Fig. 1. Oriented cycle.

Terminology:
Throughout this section, we say that a proof-structureΘ has a cycleif, for someswitching
S, thegraphΘS has a cycle. A cycleC in ΘS is often denoted by(C, S) so that a switchS
yieldingC is explicitly mentioned.

Lemma 5.2 (Transformation to Oriented Cycles).SupposeΘ is a proof-structure such
thatΘS0 is connected for allnormal switchings S0. Every cycleC ofΘS can be transformed
into an oriented cyclěC in ΘŠ such that the valuationϕŠ = ϕS. Hence, in particular, ifΘ
has a cycle, then it has an oriented cycle.

Proof. It suffices to show that if a given cycle(C, S) is not oriented, then it can be
transformed into a cycle(Č, Š) satisfying the conditions in the lemma. Iterating this
procedure yields the result. We shall prove this by induction on the number of proper
jumps in a givenC.

Suppose an unoriented cycle(C, S) is given. Since every cycle which contains at most
one proper jump can be oriented, we may assume that the number of proper jumps in
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C is n + 1 with n ≥ 1. We denote the list of all proper jumps byS(L1), . . . , S(Ln+1)

in the order visited in the orientation ofC. We denote the conclusion ofLi by
Ai

1& Ai
2.

From the assumption of nonorientability ofC, we may assume without loss of generality
that the induced directions on the proper jumpsS(L1) and S(Ln+1) are different: i.e.,C
is of the following form, with B denoting a formula occurrence betweenS(Ln+1) and
S(L1):

C = B · · · S(L1) A1
1& A1

2 · · · An+1
1 & An+1

2 S(Ln+1) · · · B

S(L1)

A1
1& A1

2 An+1
1 & An+1

2

S(Ln+1)

B

C

From the supposition,ΘS0 is connected for the associated normal switchingS0 for S. Hence
there is a path, sayp, betweenB andAn+1

1 & An+1
2 in the graphΘS0.

Let Ak
1& Ak

2, k ∈ {1, . . . ,n + 1}, denote the designated &-formula onC which the path
p (starting fromB) first encounters. Then we may writep as

p = p′ Ak1&Ak2 p
′′

wherep′′ may be empty (whenk = n + 1).

On the other hand according to the twopossible orientations for the jumpS(Lk), we may
write C as one of the two following possibilities:

C =
C′ Ak

1& Ak
2 S(Lk) C′′ (Case 1)
or

C′ S(Lk) Ak
1& Ak

2 C
′′ (Case 2).

In each case, we have a new cycleČ (starting fromB along with the pathp′ to Ak
1& Ak

2 and
ending atB) as follows:

(Case 1) Č = p′ Ak
1& Ak

2 C
′

(Case 2) Č = p′ Ak
1& Ak

2 C
′′.
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C′

Ak
1& Ak

2 S(Lk)

B

p′

Case 1

Č

S(Lk)

C′′

Ak
1& Ak

2

B

p′

Case 2

Č

In each casěC has skipped the proper jumpS(Lk) (moreover every proper jump ofČ is one
from C). Hence the number of proper jumps ofČ is n, which is strictly less than that ofC,
sothe induction hypothesis applies.�

In addition to orientedness, we now introduce acanonical shapefor cycles arising from
proof-structures. Similar ideas are also developed in Abramsky and Melli`es [2,3].

Definition 5.3 (Canonical Cycles). A cycle in a graphΘS is called canonical if the
following two conditions are satisfied:

(i) Every proper jump on the cycle is to a conclusion of an axiom-link.

(ii) SupposeA andB are formulas on the cycle. IfA andB are nested in the subformula
tree, then the orientation of thecycle induces a directed path fromA to B or vice-versa.
Suppose the path goes fromA to B. Then that is the only directed path fromA to B in
the cycle.

Lemma 5.4 (Canonical Cycles Suffice). For an arbitrary proof-structureΘ and a
switching S, every cycle inΘS can be transformed into a canonical cycle inΘS′, for some
switching S′ obtained from S.

Proof. We prove (i) since(ii) is rather straightforward.
Given an arbitrary linkKi in sl(ϕS(Θ)) whose conclusion is a proper jumpS(Li ), we

havew(Ki ) ⊂ w(Li ) by the technical condition ofRemark 4.6. Hereditarily aboveKi in
the slicesl(ϕS(Θ)), there exists a link Li+1 (hence,w(Li+1) ⊆ w(Ki )) which satisfies
either of the following (a)i and (b)i . In either case the graphΘS has subformula edges
betweenS(Li ) and a conclusion ofLi+1:

(a)i : Li+1 is an axiom-link.
(b)i : Li+1 is a &-link such thatS(Li+1) is a proper jump.

If Li+1 satisfies (a)i , then we stop. If Li+1 does not satisfy (a)i , hence satisfies (b)i ,
then in sl(ϕS(Θ)) we denote by Ki+1 the conclusion of the proper jumpS(Li+1)

guaranteed in (b)i . Then by the same argument applied toKi+1, there exists a link Li+2
hereditarily aboveKi+1, which satisfies either of (a)i+1 and (b)i+1 and the graphΘS has
subformula edges betweenS(Li+1) and a conclusion ofLi+2. Thus in general, starting
with i = 1, we have a series of links whose weights yield the following decreasing chain
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(strict inequalities come from the technicalcondition; nonstrict inequalities from subfor-
mula relations):

· · ·w(Li+1) ⊆ w(Ki ) ⊂ w(Li ) ⊆ · · · ⊂ w(L2) ⊆ w(K1) ⊂ w(L1).

Note that the chain stops ifLi+1 satisfies (a)i . If pi denotes an eigenweight for the &-link
Li , thenw(Ki ) depends onpi (i = 1, . . . ). For example, it will turn out that inFig. 2
below, if L1 = &1 thenLi+1 = ax2.

Now we claim that there existsi suchthatLi+1 satisfies (a)i : Intuitively, this means that
jumps to axiom-links suffice.For the proof, suppose otherwise. Then by virtue of the fact
that thenumber of &-links inΘ is finite,Li+1 becomes identical to a previousL j ( j < i +
1), hence from the above chain, we havew(L j ) = w(Li+1) ⊆ w(Ki ) ⊂ · · · ⊂ w(L j +1) ⊆
w(K j ) ⊂ w(L j ) = w(Li+1). This is a contradiction since it impliesw(Li+1) ⊂ w(Li+1).

Now we show that cycles remain when one jumps to axiom-links. Given an arbitrary
proper jumpS(L1) lying on a cycle, we may change the switchingS into S′ by defining
S′(L1) to be a conclusion of the axiom-linkLi+1 guaranteed in the above paragraph. This
choice of jump is possible becausew(Li+1) depends onp1: this arisesfrom Lemma 4.5
together with the fact thatw(Li+1) ⊆ w(K1). It is straightforward that a cycle still occurs
in ΘS′. �

Thus from now on we always consider canonical cycles. In particular the general shape of
an oriented canonical cycle is shown inFig. 2. We draw the proper jumps to axiom-links
to make the picture more readable. Note that the shape of this oriented cycle implies that
w(axi+1) depends onpi , for eachi = 1, . . . ,n.

where eachWi is a graph of the form

or empty (in the latter case the two axiom-links attached toWi are identified).

Fig. 2. Oriented canonical cycle.

Remark 5.5. In a canonical oriented cycle of the form inFig. 2, we mayassume that the
left-conclusion ofaxi+1 cannot be a subformula of the &i -formula, because if it were,
there would be a series of subformula connections between the &i -formula and the left-
conclusion ofaxi+1, so there would be no need for a proper jump.

The main contribution of this subsection is to further cut down the class of cycles arising
in a connected proof-structure. The cycles we consider are calledsimplecycles:
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Definition 5.6 (Simple Cycle). A cycleC in a graphΘS is calledsimpleif the following
holds for every linkK in sl(ϕS(Θ)) whose conclusion is a proper jumpS(L) lying on the
cycleC:

w(K ) = εpL .v
where ε ∈ {1,¬}, pL is the associated eigenweight for the
&- link L andv does not depend on any eigenweights associated
with &-links whose conclusions lie onC.

In particular when a given cycle is oriented and canonical as inFig. 2, it is simpleif for all
i = 1, . . . ,n the following holds:

w(axi+1) = εi pi .vi (modn)
whereεi ∈ {1,¬} andvi does not depend on any
eigenweightpj with 1 ≤ j ≤ n.

The following is an important property of simple cycles:

Lemma 5.7 (Weight Lemma for Simple Cycles).For a simple cycle C in ΘS, let
L1, . . . , Ln denote the list of all& -links in sl(ϕS(Θ)) whose conclusions lie onC. Then
for every i ,w(Li ) does not depend on any pj with 1 ≤ j ≤ n.

In particular when a given simple cycle is an oriented canonical cycle as inFig. 2, the
following holds: For i ≤ n,w(Li ) does not depend on any pj (1 ≤ j ≤ n) where Li is the
& -link whose conclusion is−& i −, the i th distinguished& -formula in sl(ϕS(Θ)).

Proof. First of all, we recall the technical condition for proof-structures (cf.Definition 4.3
andRemark 4.6). If a weightv in Θ depends onpi thenv ⊆ w(Li ). Now suppose that
w(Li ) depends onpj . If i = j , this contradicts the condition thatw(Li ) does not depend
on pi . If i �= j , then the technical condition forLi together withLemma 4.5says the
following: (v depends onpi ) implies (v depends on bothpi and pj ). When applied to
v = w(axi+1), this contradicts the simplicity ofC (which implies thatw(axi+1) does not
depend onpj ). Hence we have the conclusion of the lemma.�

The following is an important lemma for obtaining simple cycles from oriented ones.

Lemma 5.8 (Transformation to Simple Oriented Cycles).Every oriented cycleD of ΘS

can be transformed into a simple oriented cycleD′ of ΘS′ suchthat ϕS′ = ϕS. Hence,
in particular, if an arbitrary proof-structureΘ has an oriented cycle then it has a simple
oriented cycle.

Proof. We show that if a given oriented cycle(D, S) is not simple, then it can be
transformed into an oriented cycle(D′, S′) satisfying the conditionsof the Lemma.

In ourproof of this lemma, Girard’s technical condition for proof-structures is critical.
We may assume that the givenD is of the form inFig. 2. We know thatw(axi+1)

depends onpi for all i , since a conclusion of axi+1 is a jump for & i . SupposeD is not
simple; i.e., there existsi suchthatw(axi+1) depends onpj with j �= i . Then anew jump
edge can be drawn between &j andaxi+1, which results in another oriented canonical
cycle whose number of jump edges is strictly smaller thann. See the figures below for a
new jump edge together with the resulting oriented canonical cycle for each case depending
on whetherj < i or j > i .
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(The casej < i ):

⊗��
&1 ⊗��

& j

axi+1
Wi+1

⊗��
& i+1

new jump

(The casej > i ):

Wi+1

axi+1

⊗��
& i+1 ⊗��

& j

new jump

As is clear from the figures, in either case the resulting oriented canonical cycle has
a smaller number of jumps and every jump of the new cycle is one from the original
cycle. �

5.2. Global simple oriented cycle

We say that a cycleC passes through a link Lif the conclusions ofL lie onC.

Definition 5.9 (Global Cycle). A cycleC in a proof-structureΘ is global if C passes
through all &-links whose weights are 1 inΘ .

In the following, for an eigenweightr , &r denotes the associated &-link.

Lemma 5.10 (Weight Lemma for a Global Simple Oriented Cycle).For a simpleoriented
cycleC, if C is global, then the following hold:

(i) w(L) = 1 for the L ofDefinition5.6, hencew(Li ) = 1 for the Li in Lemma5.7. That
is, all & -links which cause proper jumps have weight1.

(ii) For the weight w(axi+1) = εpi .vi of Definition5.6, if the vi depends on an
eigenweight r , thenw(& r ) depends on the eigenweight pi .

(iii) For the weightsw(axi+1) = εpi .vi andw(ax j +1) = εpi .v j of Definition5.6, if
i �= j then the eigenweights on whichvi depends are disjoint from those on whichv j

depends.

Proof. (i) Suppose for contradiction thatw(L) �= 1; i.e., thatw(L) depends on some
eigenweight, sayr1. We obtain the contradiction using an inductively defined series of
steps. As step 1, wehave the following:

w(L) ⊂ w(& r1) · · · (1.1)
w(& r1) �= 1; i.e.,w(& r1) depends on some eigenweight, sayr2. · · · (1.2)

Condition 1.1 is Girard’s technical condition (cf.Remark 4.6). Condition 1.2 is obtained
as follows. First,Lemma 5.7implies that the conclusion of the &-link &r1 does not lie on
C. Second, sinceC is global, we conclude 1.2.
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Step 1 induces step 2:

w(L) ⊂ w(& r1) ⊂ w(& r2) · · · (2.1)
w(& r2) �= 1; i.e.,w(& r2) depends on some eigenweight, sayr3. · · · (2.2)

2.1 is from 1.1 and Girard’s technical condition. 2.2 is obtained as follows. First,
Lemma 4.5together 1.2 and 2.1 says thatw(L) depends onr2. Second,Lemma 5.7says
that the conclusion of the &-link &r2 does not lie onC. Third, sinceC is global, we
conclude 2.2.

Step 2 induces step 3, and in general we have stepn, whichgives rise to the following
strictly increasinginfinitesequence of weights:

w(L) ⊂ w(& r1) ⊂ w(& r2) ⊂ · · · ⊂ w(& rn) ⊂ · · · .
Since the number of &-links inΘ is finite, this is impossible, hence we have a
contradiction.
(ii) On the one hand from Girard’s technical condition, we havew(axi+1) := εpi .vi ⊂
w(& r ). On the other handLemma 5.7says that the conclusion of the &-link &r1 does not
lie on the cycleC. SinceC is global, we havew(& r ) �= 1; i.e.,w(& r ) depends on some
eigenweight, sayr1. Thenfrom Girard’s technical condition, we havew(& r ) ⊂ w(& r1).
If w(& r1) = 1, we stop. Otherwisew(& r1) depends on some eigenweight, say &2. Then
w(& r1) ⊂ w(& r2) from Girard’s technical condition. By repeating this, we have a sequence

w(axi+1) := εpi .vi ⊂ w(& r ) ⊂ w(& r1) ⊂ · · · ⊂ w(& rn+1) ⊂ · · ·
suchthatw(& rm) depends on eigenweightrm+1 for eachm.

It is important to observe that the sequence terminates; i.e.,w(& rn+1) = 1 for some
n ≥ 0. This is because the boolean algebra of weights is finitely generated. SinceC is
global,rn+1 must bepk for somek. Sincew(& rn) depends onrn+1, which is pk, theabove
sequence together withLemma 4.5implies that bothw(& r ) andw(axi+1) depend onpk.
From the definition of simple cycle, the only possiblepk on whichw(axi+1) depends is
pi ; i.e., i = k. Thus we have derived the assertion.
(iii) This is a direct corollary of (ii): Suppose forcontradiction that there exists a common
eigenweightr1 on which bothvi andv j depend. On the one hand, by applying (ii) tovi ,
we know thatw(& r ) depends onpi . On theother hand by applying Girard’s technical
condition tow(ax j +1), we havew(ax j +1) := εpj .v j ⊂ w(& r ). These imply with
Lemma 4.5thatw(ax j +1) := εpj .v j depends onpi . From thedefinition of simple cycleC
(cf. Definition 5.6), the only weight amongp1, . . . , pn on whichw(ax j +1) depends ispj .
Thus we have a contradiction, sincei �= j . �

We now introduce a fundamental property in this subsection. We shall be interested in
proof-structures with the no duplicate axiom-link (NDAL) property (cf.Definition 4.10).

Definition 5.11 (A Valuation Yields Two Distinct Axiom-Links). LetΘ be an NDAL
proof-structure andα a literal in Θ . We saya valuation ϕ yields two distinct axiom-links
w.r.t an eigenweightp and a literalα if the following holds:

The axiom-linksL in sl(ϕ(Θ)) and L ′ in sl(ϕ′(Θ)) with conclusionα have different
conclusions, whereϕ′ is the same asϕ butϕ′(p) = ¬ϕ(p). We note that in a slice, there
is a unique link whose conclusion is a fixed literal. That is,L is the unique link with
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conclusionα in sl(ϕ(Θ)) andL ′ is that insl(ϕ′(Θ)). Thus inΘ the two axiom-links have
the following form:

α⊥ αα⊥
L ′

L

Remark 5.12. Note that the weights of the two axiom-links L and L ′ in the above
Definition 5.11depend onp.

Next, we prove the following lemma, for which the aboveLemma 5.10(ii) is crucial.

Lemma 5.13 (Existence of Two Distinct Axiom-Links). SupposeΘ is an NDALproof-
structure andC is a global simple oriented cycle inΘ . For the weightw(axi+1) := εpi .vi

in Definition5.6, let {r1, . . . , rm} denote the set of eigenweights on whichvi depends, and
let αi+1 denoteaxi+1’s conclusion lying on the cycleC. If w(αi+1) = 1, then there exists
a valuationψi for {r1, . . . , rm} such that every one of its extensions̄ψi to a valuation for
Θ yields two distinct axiom-links with respect to pi andαi+1.

Proof. We may suppose without loss of generality thatε = 1; i.e.,w(axi+1) = pi .vi . We
shall define a valuationψi by induction onm.

(Base Case) The case wherem = 0:
In this casew(axi+1) = pi . Using the no duplicate axiom-link property ofΘ , observe:
sincew(αi+1) = 1, there must exist an axiom-linkax one of whose conclusions isαi+1,
but whose other conclusion is a different occurrence from that ofaxi+1. Thus the assertion
is straightforward.

(Induction Case) The case wherem ≥ 1:
Consider a setA of axiom-linksax one of whose conclusions isαi+1 and whose other
conclusion is different from that ofaxi+1. Theno duplicate axiom-link property guarantees
that the setA is nonempty. If no weight ofax in A depends on anyrk, then the assertion is
straightforward as in the Base Case, because in this casew(ax) = ¬pi since the cycle is
simple. Thus in the following we may assume thatthere exists anax in A suchthatw(ax)
depends on some rk, which inthe following will besimply denoted by r.

(Case 1) The case where the occurrenceaxi+1 remains after settingr = 1:
In this case, the valuationr = 1 preserves the no duplicate axiom-link property of
conclusionαi+1. Thus the assertion is reduced to the induction hypothesis by defining
ψi (r ) = 1.

(Case 2) The case whereaxi+1 disappears after settingr = 1:
In this case,w(axi+1) has an occurrence of¬r along withvi . Thus from Girard’s technical
condition,pi .vi := w(axi+1) ⊂ w(& r ). Thus, fromLemma 5.10(ii), w(& r ) depends on
pi , sow(& r )must have an occurrence ofpi . Hence we note the following important fact:

Every weightw depending onr has an occurrence ofpi (2)

(2) is obtained as follows: First, from Girard’s technical conditionw ⊂ w(& r ). Second,
sincepi occurs inw(& r ), it occurs inw as well, byLemma 4.5.
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(Case 2.1) The case where the valuationr = 1 gives rise tothe duplicate axiom-links of
the form inDefinition 4.10one of whose conclusions isαi+1.
Sincew(αi+1), which is1, has no occurrence ofpi and is a disjoint sum of weights of
axiom-links with conclusionαi+1, (2) implies that there exists an axiom-linkax with
conclusionαi+1 such that w(ax) does not depend onr ; i.e., ax remains under both
valuationsr = 1 andr = 0.

(Case 2.1.1) The case where the two conclusions ofax coincide with those ofaxi+1:
This case guarantees that the duplicate axiom-links after the valuationr = 1 share two
conclusions ofax. Thusax disappears after the valuationr = 1, hencew(ax)must have an
occurrence of¬r . Now let us setr = 0, which retains both occurrences ofax andax; thus
in this case, after the valuation, the no duplicate axiom-link property of conclusionαi+1
still holds. Thus the assertion is reducedto the induction hypothesis by definingψi (r ) = 0.

(Case 2.1.2) The negation of Case 2.1.1:
In this case a conclusion other thanαi+1 of ax differs from that ofaxi+1. Now let us set
r = 0, a valuation which retains both occurrencesaxi+1 andax. Hence under the valuation,
the no duplicate axiom-link property of conclusionαi+1 is preserved. Thus the assertion is
reduced to the induction hypothesis by definingψi (r ) = 0.

(Case 2.2) The negation of Case 2.1:
This case guarantees that the no duplicate axiom-link property of conclusionαi+1 holds
under the valuationr = 1. Thus the assertion directly reduces to the induction hypothesis
by definingψi (r ) = 1. �

Now we are ready to state thegoal of this subsection.

Corollary 5.14 (Existence of Two Distinct Axiom-Links in Global Cycles).Suppose a
proof-structureΘ has a global simple oriented cycleC suchthat w(αi+1) = 1 for all
i ∈ {1, . . . ,n}. Then there exists a switching S such thatC appears inΘS and its valuation
ϕS yields two distinct axiom-links with respect to pi andαi+1 for all i ∈ {1, . . . ,n}.
Proof. Sincew(αi+1) = 1,Lemma 5.13guarantees, for eachi , the existence of a valuation
ψi any of whose extensions to a whole valuation forΘ yields two distinct axiom-links with
respect topi andαi+1. On theother hand, by virtue ofLemma 5.10(iii), the valuationψi

for eachi is simultaneouslyextendable to a valuationψ for Θ , thusψ yields two distinct
axiom-links with respect topi andαi+1 for all i . Sincew(Li ) = 1 from Lemma 5.10(i)
andw(αi+1) = 1 from theassumption above, all edges constitutingC except proper jumps
are retained under an arbitrary valuation, hence underψ. Moreover byRemark5.12, we
can draw a jump fromLi to αi+1 for all i in sl(ψ(Θ)). A switching S is definedfrom the
valuationψ together with these choicesof jumps so that the cycleC is retained inΘS. �

5.3. On cycles and connectedness ofMALL proof-structures

In this last subsection we present various geometrical properties ofMALL proof-
structures. In the mainProposition 5.15we characterizeMALL proof-nets among certain
connectedMALL proof-structures. Thisis a direct corollary ofLemmas 5.2, 5.4 and5.8.
Second, we derive two lemmas (on connectedness and oriented cycles) specifically for
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proof-structures arising from dinats. These lemmas are used in proving our main Full
Completeness Theorem (Theorem 6.2in Section 6below).

Proposition 5.15 (Main Proposition on Simple Oriented Cycles).Let Θ be an arbitrary
MALL proof-structure. IfΘS is connected for all normal switchings S, either(i ) or (i i )
holds:

(i) Θ is a proof-net.
(ii) Θ has a simple oriented cycle.

Proof. SupposeΘ is not a proof-net. We showΘ has a simple oriented cycle. From the
connectedness ofΘS, weknow there must be a cycle inΘ , for someswitch setting. From
Lemma 5.2that cycle can be transformed into an oriented cycle. FromLemma 5.8, the
oriented cycle can be transformed into a simple oriented cycle.�

The following lemma is the crucial place where we make use of the double gluing
construction, applied to the categoryHCoh. As in the work of Tan [33], application of
double gluing yields a model which does not validate theMix rule, andin this case is fully
complete forMLL. This lemma also illustrates the key point: working inGHCoh forces
the associated proof-structures to be connected.

Lemma 5.16 (Connectedness ofΘρ under Normal Switchings).For an arbitrary ρ in
Dinat-GHCoh, (Θρ)S is connected for everynormal switching S.

Proof. First observe that by definition every switchingS uniquely determines a valuation
ϕS on eigenweights. Hence this valuation yields a slicesl(ϕS(Θ)) which we identify with
anMLL proof-structure (cf.Remark4.19). Moreover ifΘρ is a proof-structure associated
with a dinatρ, then for an arbitrary switchingS, there isa dinatϕS(ρ) of MLL type such
that

sl(ϕS(Θρ)) = ΘϕS(ρ). (3)

Second, for everyMLL proof-structure of the formsl(ϕS(Θ)) the graph(sl(ϕS(Θ)))S is
drawn as usual by the choice of

................................................
............
................................... -switchings determined byS; and wehave the following

for an arbitrary normal switchingS:

The graphΘS is connected iff the graph(sl(ϕS(Θ)))S is connected. (4)

TheMLL full completeness ofDinat-GHCoh (Proposition 3.17) implies thatΘϕS(ρ) is an
MLL proof-net, hence in particular(sl(ϕS(Θρ)))S is connected. Thus the assertion follows
from the above observations (3) and (4). �

For the final result in this subsection, we prove the following lemma, which is the main
consequence of the Fundamental Proposition (Proposition 4.47) in Section 4.5. Thelemma
will be used in the proofof the Main Theorem (Theorem 6.2) in thenextSection 6. Before
reading this lemma, the reader should examine the appendix to this section (Section 5.4),
which gives the background on &-semi-simple types.

Lemma 5.17 (Existence of Global Cycles in Associated Proof-Structures).Consider the
setS of HCoh-dinatsρ of & -semi-simple type (in the sense ofSection 5.4) such that there
is aΘ in PS(ρ) andΘ has a cycle. If the setS is nonempty, then there exists a pair(ρ,Θ)



48 R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1–63

consisting of a dinatρ ∈ S and a proof-structureΘ ∈ PS(ρ) such that every cycle inΘ is
global.

Proof. Take a minimal dinatρ ∈ S w.r.t the lexicographic ordering on the following pairs:

(number of⊗s inρ’s type, number of{................................................
...........
.................................... ,& ,⊕}s inρ’s type).

FromCorollary 4.50of the Fundamental Proposition, together with the minimality of the
size,ρ cannot be further semantically split; i.e., the type ofρ has no outermost{& , ................................................

............
................................... }

and has no outermost{⊗,⊕} which can be semantically split. Moreoverρ is not theunion
of two dinats via the Mix-rule. By the FundamentalProposition 4.47, theproof-structure
counterpart to this is the following:

∀Θ ∈ PS(ρ), Θ has no terminal⊗-link which can be split and no terminal
{& , ................................................

............
................................... ,⊕1,⊕2}-links. MoreoverΘ is not theunion of two proof-structures. (5)

We begin by proving the following:

(Claim) For aρ as above, for everyΘ ∈ PS(ρ) and for every &-linkL of weight 1 inΘ ,
there exists a⊗-link L ′ immediatelybelowL.

First, we shall show that there exists a⊗-link hereditarily belowL. Suppose for contra-
diction that this is false. Sincew(L) = 1, there cannot exist any other &-link hereditarily
belowL. Thus eitherL is terminal or all links hereditarily belowL are{................................................

............
................................... ,⊕1,⊕2}-links,

whose weights are 1. This means thatΘ must have a terminal{& , ................................................
............
................................... ,⊕1,⊕2}-link, which

contradicts (5). Thus there exists a⊗-link hereditarily belowL.
Now consider the uppermost⊗-link, sayL ′, hereditarily below the &-linkL. We shall

show that this is theL ′ of the claim, i.e.,L ′ is immediatelybelow L. We first observe that
there can be no{⊕1,⊕2}-link hereditarily belowL. For suppose otherwise. Then such a
{⊕1,⊕2}-link would have weight 1, which corresponds to a semantically redundant⊕-
connective ofρ. This would contradict the minimality of the size ofρ. So thelink immedi-
ately belowL must be a{................................................

............
................................... ,⊗}-link. When it is

................................................
............
................................... , there exists a

................................................
............
................................... -link immediately above

the⊗-link L ′. But this contradicts the semi-simplicity ofρ, since alinear distributivitivity
of Section 5.4can be applied. Thus we conclude that the link immediately belowL must
be a⊗-link, which proves the claim.

Note that sinceρ ∈ S, thereexistsΘ ∈ PS(ρ) suchthatΘ has a cycle. We shall show
this pair(ρ,Θ) is the one asserted in the lemma. Suppose for contradiction thatΘ has a
nonglobal cycle; i.e., there exists a cycleC in Θ and there exists a &-linkL of weight 1
suchthatC does not pass throughL. From the above claim, there exists a⊗-link L ′ imme-
diately belowL. Fromρ we apply aMix to the⊗ corresponding toL ′, to obtain aHCoh
-dinatρ′; i.e.,

ρ′ := ρ[A
................................................

...........
.................................... (B&C)] whereρ = ρ[A ⊗ (B&C)].

In the above, B&C is the conclusion of L, hence A ⊗ (B&C) is the conclusion of L ′.
Now a proof-structureΘ ′ is defined tobe one obtained fromΘ by replacing the⊗-link L
(together with hereditary occurrences of⊗) by a

................................................
............
................................... -link (together with occurrences of

................................................
............
................................... ).

Then we haveΘ ′ ∈ PS(ρ′). It is important to observe that, sincethe simple oriented cycle
C does not pass throughL, the cycleC is retained inΘ ′. Thus it holds thatρ′ ∈ S. Note
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that the size ofρ′ is strictly smaller than that ofρ; i.e., in the above lexicographic ordering,
the level ofρ′ is strictly lower than that ofρ.

By means of reductions to &-semi-simple sequents,(ρ′,Θ ′) can be reduced to a certain
pair (ρ′′,Θ ′′) suchthatρ′′ is a dinat of &-semi-simple type and the simple oriented cycle
C is retained inΘ ′′ ∈ PS(ρ′′). Thus we have thatρ′′ ∈ S. Sincethe size ofρ′′ is strictly
smaller than that ofρ, this contradicts the minimality of the size ofρ. �

5.4. Appendix: reduction to& -semi-simple sequents

In this subsection we introduce some syntactical notions. These are used inLemma 5.17
of Section 5.3above and inSection 6below. We considerMALL formulas as being
generated from literals using the connectives⊗, ................................................

............
................................... ,& ,⊕, butno units.

Definition 5.18. A covariant context(context, for short) is a sequent generated from
distinguished constant symbols calledholes together with literals using theMALL
connectives and in which any holes occur exactly once. We denote a contextΓ with
distinguished holes∗1, . . . , ∗n by Γ [∗1, . . . , ∗n]. We may substitute arbitrary formulas for
holes in a context: wewrite Γ [A1, . . . , An] for the contextΓ [∗1, . . . , ∗n] with ∗i replaced
by Ai . A hole∗ has amultiplicative occurrencein contextΓ if in the parsing tree of the
context, all connectives on the unique path from∗ to the root are multiplicatives.

Example 5.19. In the contextΓ [∗] = (∗ ⊗ (X ⊕ Y))
................................................

............
................................... (Z& W), ∗ occurs

multiplicatively, whereas in the contextsΓ1[∗] = (∗ ⊗ (X ⊕ Y))& (Z ⊕ W) andΓ2[∗] =
(∗ ⊕ (X ⊕ Y))

................................................
............
................................... (Z ⊕ W), ∗ doesnotoccur multiplicatively.

We defineM⊕LL analogously to
................................................

............
................................... ALL: it is the fragment ofMALL generated using

just theMLL and⊕ connectives. We now extend the notion ofsemi-simple sequentas in
Hyland–Ong [28] to M⊕LL:

Definition 5.20 (M⊕LL Semi-Simple Sequent). AnM⊕LL sequentΓ is semi-simpleif
it has the formΓ [
1,1 ⊗ 
1,2 ⊗ · · · ⊗ 
1,m1, . . . , 
n,1 ⊗ 
n,2 ⊗ · · · ⊗ 
n,mn ], where
Γ [∗1, . . . , ∗n] is a context constructed usingonly the connectives

................................................
............
................................... ,⊕ and the
i j are

literals.

We now introduce the analog of the theorem in [28] which shows it suffices to consider
semi-simple sequents in proofs of Full Completeness:

Proposition 5.21 (Reduction to Semi-Simple Sequents).Suppose� Γ is an M⊕LL
sequent. Then there exists a list ofM⊕LL semi-simple sequents� Γ1,� Γ2, . . . ,� Γn

suchthat� Γ is provable iff for all i ,� Γi is provable (inM⊕LL).

The proof is similar to Hyland–Ong [28]. First we need three preliminary syntactic lemmas.
In each case, it suffices to state them for contexts with one hole.

Lemma 5.22. LetΓ = Γ [A⊗ (B
................................................

............
................................... C)] be aMALL-sequent. LetΓ1 = Γ [(A⊗ B)

................................................
............
................................... C]

andΓ2 = Γ [(A ⊗ C)
................................................

...........
.................................... B]. Then we have:

(i) For all i = 1,2 � Γ −◦ Γi is provable.
(ii) � Γ is provable if and only if � Γi is provable for i = 1,2.
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Lemma 5.23. LetΓ = Γ [A ⊗ (B ⊗ C)] be aMALL-sequent. LetΓ1 = Γ [A ⊗ (B
................................................

............
................................... C)]

andΓ2 = Γ [A
................................................

............
................................... (B ⊗ C)]. Then we have:

(i) For all i = 1,2 � Γ −◦ Γi is provable.
(ii) � Γ is provable if and only if � Γi is provable for i = 1,2.

Proof of Lemmas 5.22 and 5.23. The proofs are the same as in Hyland–Ong [28],
observing that the “if” direction of part (ii) of each lemma is still valid usingMALL proof-
nets, not just ones forMLL. �

Finally, letΓ be anM⊕LL sequent, as above.

Lemma 5.24. Γ [A ⊗ (B ⊕ C)] is provable iff Γ [(A ⊗ B)⊕ (A ⊗ C)] is provable.

Proof. We can proveA ⊗ (B ⊕ C) � (A ⊗ B)⊕ (A ⊗ C) and (A ⊗ B) ⊕ (A ⊗ C) �
A ⊗ (B ⊕ C) �
Proof of Proposition 5.21. SupposeΓ is anM⊕LL sequent. Since⊗ distributesover

................................................
............
...................................

and⊕ by the lemmas, we use this fact to push occurrences of⊗ inward. Weobtain sequents
of the formΓ [
1,1 ⊗ 
1,2 ⊗ · · · ⊗ 
1,m1, . . . , 
n,1 ⊗ 
n,2 ⊗ · · · ⊗ 
n,mn]. �

On a semantic level, every∗-autonomous category with products and coproducts has
the following natural morphisms (which are monic in the case ofCoh andHCoh, hence in
particularGHCoh). These correspond to the sequents in the above syntactic lemmas.

(1) Linear distributivities:
(a) A ⊗ (B

................................................
............
................................... C) → (A ⊗ B)

................................................
............
................................... C

(b) A ⊗ (B
................................................

............
................................... C) → (A ⊗ C)

................................................
............
................................... B.

(2) Distribution of⊗ over⊕ : A ⊗ (B ⊕ C)
�−→ (A ⊗ B)⊕ (A ⊗ C).

The above morphisms are actuallynatural transformations, thus compose with dinats [9].
Hence, as inProposition 5.21anyM⊕LL dinatρ : 1 → Γ yields (by composition) a list
of dinats{ρi : 1 → Γi | 1 ≤ i ≤ n} where theΓi are semi-simple sequents.

Definition 5.25 (&-Semi-SimpleMALL Sequent). AMALL sequentΓ is called &-semi-
simple if it is of the form Γ [A1,1& A1,2, . . . , An,1& An,2] where Γ [∗1, . . . , ∗n] is an
M⊕LL semi-simple context, i.e. a context in which, if we replace the holes by literals,
weobtain a semi-simpleM⊕LL sequent. Here theAi j may be arbitrary MALL formulas.

In other words,Γ is &-semi-simple if, whenever we replace the outermost occurrences
of &—together with the scoping formulas—by holes, then the resulting context isM⊕LL
semi-simple.

Example 5.26.

(1) � ((A& B)⊗ 
 ⊗ r ) ⊕ C is &-semi-simple, whereA, B areMALL formulas,l andr
are literals, andC is a{................................................

............
................................... ,⊕}-formula.

(2) � p⊥ ⊕q, (p&q⊥)⊗r ⊥ ⊗((s ................................................
............
................................... s⊥)& (t ................................................

............
................................... t⊥)), r is &-semi-simple,MALL-provable

sequent wherep, q, r , s andt are atoms.

The proof ofProposition 5.21in fact applies to &-semi-simple sequents verbatim, i.e.
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Proposition 5.27 (Reduction to &-Semi-Simple Sequents).Suppose� Γ is a MALL
sequent. Then there exists a list ofMALL & -semi-simple sequents� Γ1,� Γ2, . . . ,� Γn

suchthat� Γ is provable iff for all i ,� Γi is provable (inMALL).

6. MALL full completeness in GHCoh

Our purpose in this section is to proveMALL full completeness in GHCoh
(Theorem 6.4). Namely, we shall show that the proof-structureΘρ associated with a
dinaturalρ in Corollary 4.55is a proof-net.

According toCorollary 4.55, we are interested in proof-structuresΘ = Θρ arising from
dinatsρ : 1G → ∆ of GHCoh. GivenProposition 5.27of Section 5.4, from now on we
only consider dinatsρ : 1G → ∆ whose type is a &-semi-simple sequent. We shall prove
below that given such a dinatρ whose associatedproof-structure has a simple oriented cy-
cle, theCoh dinatJω ◦I(ρ) would fail to be a morphism for some instantiation fromCoh.

6.1. Main theorem

The main theoremTheorem 6.2below states that the proof-structure associated with a
GHCoh-dinatis aMALL proof-net. Before beginning the proof, let us outline the approach
we shall follow.

By the methods of functorial polymorphism [5], we may interpret formulas as
multivariant functors, and proofs as dinatural transformations. The set of dinats interpreting
the proofs of a sequent� ∆ is called theproof space of� ∆ and denoted byPRF(� ∆).
We have the following inclusion

PRF(� ∆) ⊆ Dinat-C(1,∆). (6)

This holds for provable sequents� ∆ by the Soundness Theorem, and for unprovable
sequents� ∆, theproof space is empty; hence the result holds trivially.

If we strengthen (6) to equality, we obtainfull completeness(for a given class of dinats),
i.e.

PRF(� ∆) = Dinat-C(1,∆). (7)

In the main theorem we are interested in proving equalities of the form (7). The proof
method of the main theorem (Theorem 6.2) works independently of whether the type of
the dinat is provable or not. In outline, our method for proving (7) is the following:

(i) Suppose there is aGHCoh dinatρ0 outside the proof space.
(ii) Recall from Lemma 3.13that there is a faithful functorI: Dinat-GHCoh ↪→

Dinat-HCoh. Weknow fromCorollary 4.55that allHCoh-dinatsρ have an associated
MALL proof-structureΘρ (more generally, this is true forC-dinats, for anyC
of Proposition 4.16). Thus via the embeddingI, the dinat ρ0 has an associated
MALL proof-structureΘρ0. Moreover we know fromLemma 5.16that (Θρ0)S is
connected for all normal switchingsS. From (i), Θρ0 is not aMALL net, hence by
Proposition 5.15, Θρ0 has a simple oriented canonical cycle with no critical jump.

(iii) Recall from Proposition 3.6andLemma 3.13that there is a composition of faithful
functorsJω ◦ I: Dinat-GHCoh ↪→ Dinat-Coh. Jω ◦ I(ρ0) is aCoh-dinat. We will
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construct a list of objectsA ∈ Coh suchthat(Jω ◦ I(ρ0))A is not a Coh morphism.
This immediately leads to a contradiction.

Before beginning the main proof, we first illustrate this outline with an example.

Example 6.1 (Proof Technique of the Main Theorem). Consider the example where the
type∆ (of dinatρ) is given by:

� A ⊗ ((C⊥ ................................................
...........
.................................... C)& (D⊥ ................................................

...........
.................................... D)), B⊥ ⊕ B⊥, B ⊗ A⊥.

We shall show Eq. (7) for this choice of� ∆, whichhappens to be a provable sequent.
Now suppose for contradiction that there exists a dinatρ : 1G → ∆ in GHCoh which

does not belong to the proof space of� ∆ (here we consider∆ as a multivariant functor).
FromCorollary 4.55we can associate withρ a MALL proof-structureΘρ . Sinceρ is not
the denotation of a proof, Θρ cannot be a proof-net, hence must have a cycle for some
switching S, by Lemma 5.16. For example consider the case of the cycle inFig. 3, where
p denotes the eigenweight for the unique &-link.

p ¬p

C⊥ C D⊥ D

C⊥ ................................................
............
................................... C D⊥ ................................................

............
................................... D

(C⊥ ................................................
............
................................... C)& (D⊥ ................................................

............
................................... D)A

1

B

p
¬p

A⊥B⊥ B⊥

A ⊗ ((C⊥ ................................................
............
................................... C)& (D⊥ ................................................

............
................................... D)) B⊥ ⊕ B⊥ B ⊗ A⊥

Fig. 3. Proof-structureΘρ .

The dinatJω ◦ I(ρ) determining the structureΘρ is given by

(Jω ◦ I(ρ))ABCD ={
(a, (1, (c, c)), (1,b), (b,a))
(a, (2, (d,d)), (2,b), (b,a))

∣∣∣∣a ∈|A | c ∈|C |
b ∈|B | d ∈|D |

}
∈ (∆ABCD)p. (8)

In the above,(Jω ◦ I(ρ))ABCD and∆ABCD denote the associated values at the objects
ABCD of Coh as a subcategory ofGRel (cf. Proposition 2.13). We shall show that
(Jω ◦ I(ρ))ABCD is not aCoh morphism under the instantiation

A = B := ({a1,a2}, {∅, {a1}, {a2}}, {∅, {a1}, {a2}, {a1,a2}}) ∈ Coh

whereC andD are instantiated by arbitrary objects.

On theone hand, by takingτ :=
{
(a1, (1, (c, c))),
(a2, (2, (d,d)))

∣∣∣∣ c ∈|C |
d ∈|D |

}
, we have

τ ∈ Hom(A, (C⊥ ................................................
...........
.................................... C)⊥ ⊕ (D⊥ ................................................

...........
.................................... D)⊥)

= (A ⊗ ((C⊥ ................................................
............
................................... C)& (D⊥ ................................................

............
................................... D)))cp. (9)

On the other hand, by choosing{a1} (respectively{a2}) belonging to the left (respectively
the right)Bp in the equation below, we have

{(1,a1), (2,a2)} := {{a1}}�{{a2}} ∈ Bp�Bp = (B⊥ ⊕ B⊥)cp.
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Given thatB = A, we have

id|A| ∈ Hom(B,A) = (B ⊗ A⊥)cp,

and thus, we can define an elementδ as follows:

δ :=
{
((1,a1), (a,a))
((2,a2), (a,a))

a ∈|A |
}

= {(1,a1), (2,a2)} × id|A|

∈ ((B⊥ ⊕ B⊥) ................................................
...........
.................................... (B ⊗ A⊥))cp. (10)

Now, from (9) and (10), we can construct a copointη = τ × δ ∈ (∆ABCD)cp by

η :=




(a1, (1, (c, c)), (1,a1), (a,a))
(a1, (1, (c, c)), (2,a2), (a,a))
(a2, (2, (d,d)), (1,a1), (a,a))
(a2, (2, (d,d)), (2,a2), (a,a))

a ∈|A |, c ∈|C |,d ∈|D |



.

Now observe that #((Jω ◦ I(ρ))ABCD ∩ η) ≥ 2 whichcontradictsProposition 2.13. �

Now we are ready to prove the Main Theorem.

Theorem 6.2 (Main Theorem).Let σ be a dinat inGHCoh and Θσ ∈ PS(σ ) be an
associated proof-structure forσ as defined inCorollary 4.55. Then(Θσ )S is acyclic for
every switching and connected for every normal switching. ThusΘσ is a proof-net for
MALL.

Proof. Suppose, for contradiction, thatΘ is not a MALL proof-net. We may assume
by Proposition 5.27that the type of Θ is &-semi-simple. ThenLemma 5.16assures the
connectedness of(Θσ )S for all normal switchingsS. Hence byProposition 5.15, Θ must
have a simple oriented canonical cycle. Note that aGHCoh-dinatis aHCoh-dinat via the
embeddingI: Dinat-GHCoh ↪→ Dinat-HCoh of Lemma 3.13. ThusI(σ ) is an element
of the setS of Lemma 5.17. HenceLemma 5.17implies that there exists a pair(ρ,Θ) of
a dinatρ ∈ S and a proof-structureΘ ∈ PS(ρ) satisfying the following:

Every simple oriented cycle inΘ ∈ PS(ρ) is global. (11)

Our goal is to show that thisρ fails to be a dinatural transformation forHCoh .
But this is equivalent via the canonical embeddingJω: Dinat-HCoh ↪→ Dinat-Coh (cf.
Proposition 3.6) to showing thatJω(ρ) fails to be a dinatural transformation ofCoh. For
this we shall prove that for some instantiationA in Coh, (Jω(ρ))A is not aCoh morphism.
(Θρ)S has a simple oriented canonical cycle of the form inFig. 2 together with

Definition 5.6. We may assume without loss of generality thatC appears under the valuation
ϕS suchthatϕS(pi ) = 1 for all i = 1, . . . ,n. Hence under the assumption, simplicity ofC
means that for alli = 1, . . . ,n, w(axi+1) = pi .vi (modn) wherevi does not depend on
any pj (1 ≤ j ≤ n). Indeed, we have thisvi = 1 by virtue of (11) andLemma 5.10. Then
the local shape ofC around the(i − 1)-th jump is given inFig. 4.

Note that inFig. 4, αlk denotes a literal. By semi-simplicity, the lower-left⊗-formula
in (Θρ)S is a hereditary conclusion (using only ⊗ links) of αi−1,1 and the immediate
conclusion of the &i−1 formula. Again by semi-simplicity, there mustbe a path which
we denote byW betweenαi m andα⊥

i 1 which usesonly ⊗-links and axiom-links.



54 R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1–63

α⊥
i−1,1W

αi 1

⊗i
��

& i

axi

pi−1

⊗i−1
��

& i−1

αi−1,1 α⊥
i 1α⊥

i m αi m
W· · ·

· · ·

Fig. 4. The shape of the graph(Θρ)S.

Our first task is to determine the form of the morphismρ, given the above (simple
oriented) cycle. We claim the proof-structureΘρ must be of the following form (seeFig. 5):
Note first that inΘρ all links betweenαi−1,1 and⊗i−1 are⊗-links by the assumption of

α⊥
im−1...

· · ·
⊗m−1

...

αi2...
...

axi
ax′

i
αi−1,1α⊥

i−1,1 α⊥
i1...

αi1α⊥
im

pi−1

α⊥
im

¬pi−1

αim...
...

...

...

& i−1⊗i−1

...
...

· · ·
· · ·

Fig. 5. The shape of the proof-structureΘρ .

semi-simplicity of the type ofΘ . Hencew(αi−1,1) = w(Li−1) holds from the unique link
property ofCorollary 4.55, whereLi−1 is the(& i−1)-link of Fig. 5. On theother hand from
Lemma 5.10and (11), we havew(Li−1) = 1. (Of course the same situation holds around
thei -th jump; i.e.,w(αi1) = w(Li ) = 1 (1 ≤ j ≤ n).)

In Fig. 5, the (m − 1) ⊗-links ⊗1, . . . ,⊗m−1 are the outermost connectives of the path
W. Thus thelink ⊗k is hereditarily below bothαik andα⊥

ik+1, and all links betweenαik

(respectivelyα⊥
ik+1) and⊗k are⊗-links by the assumption of semi-simplicity. Thus from

the unique link property, we havew(αim) = · · · = w(αi2) = w(αi1) = w(Li ) = 1
(1 ≤ j ≤ n) from the above.

If we change the switching fromS to S′ so that the valuationϕS(pi−1) = 1 changes to
ϕS′(pi−1) = 0, the(axi )-link in Fig. 4disappears. But the formula occurrenceαim remains
in the graph (w(αim) does not depend onpi−1 becausew(αim) = 1) and, being a literal, is
the conclusion of some axiom-link. Hence in the proof-structureΘρ , there must exist two
axiom-links whose conclusion is the occurrenceαim: one istheaxi appearing in the graph
(Θρ)S, whose weight ispi−1, and the other, sayax′

i , which does not appear in the graph
(Θρ)S (instead it appears in(Θρ)S′). The weight of this axiom-linkax′

i has an occurrence
¬pi−1. In fact we shall show thatw(ax′

i ) is exactly equal to¬pi−1. First, in (Θρ)S′ we
can draw a jump from &i−1 to ax′

i . Second, for allj ∈ {1, . . . ,n} \ {i − 1}, all the jumps
in C from & j to ax j +1 are retained in(Θρ)S′ sinceboth & j andax j +1 occur underS′ by
noting thatw(L j ) = 1 andw(ax j +1) = pj . This yields a simple oriented cycle in(Θρ)S′ .
Thus fromLemma 5.10and the above (11), we havew(ax′

i ) = ¬pi−1.
Fromw(axi ) = pi−1 andw(ax′

i ) = ¬pi−1, we have that the twoα⊥
ims which are

conclusions ofaxi andax′
i are different occurrences, by virtue of the no duplicate axiom-

link property inΘρ .
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SinceCoh validatesMix, we apply Mix : X⊗Y → X
................................................

............
................................... Y to all ⊗ occurrences in the

type ofJω(ρ) exceptthose lying on the cycleC of Fig. 4. Note that this process does not
affect the cycle. As for the cycleC itself, by commutativity and associativity of tensor, we

may assume⊗i−1 is immediately belowαi−1,1. Thus we obtain aCoh dinatJ̃ω(ρ): 1 → ∆̃
whose type� ∆̃ is the following sequent:

� · · ·αi−1,1 ⊗ (B1& B2), N[ α⊥
im, α

⊥
im ], (12)

αim ⊗ α⊥
im−1, . . . , αi3 ⊗ α⊥

i2, αi2 ⊗ α⊥
i1, Ξ · · ·

where

– N[ ∗1, ∗2 ] is either∗1
................................................

...........
.................................... ∗2, N1[ ∗1 ] ⊕ N2[ ∗2 ] or (N1[ ∗1 ] ⊕ N′

1)
................................................

...........
.................................... (N′

2 ⊕ N2[ ∗2 ])
with all connectives inNi being

................................................
............
................................... (i = 1,2). Note that inN[ α⊥

im, α
⊥
im ] we instantiate

twice with the same literalα⊥
im, because of its two distinct occurrences in the above

Fig. 5.

– Ξ is E11 ⊕ E12, . . . , Em1 ⊕ Em2, 
1, . . . , 
r

with all connectives inEl j being
................................................

............
................................... and
r being literals.

In what follows weinstantiate all atoms occurring iñ∆ by a single objectA ∈ Coh:
i.e., we consider a morphism

(J̃ω(ρ))A: 1 → ∆̃A, equivalently(J̃ω(ρ))A ∈ (∆̃A)p. (13)

Now every element of(J̃ω(ρ))A is of the following form:

· · ·
· · · ((xi−1,1, y1, (k, )), ( , xim), (xim, ym, xim−1), . . .

. . . , (xi3, y3, xi2), (xi2, y2, xi1), , ) · · · (14)

wherek ∈ {1,2} denotes the first/second component ofB1& B2 and∀i ∈ {1, . . . ,n} xi and
yi are arbitrary elements ofA andA respectively.

Our next task is to construct anη ∈ (∆̃A)cp for the morphism(J̃ω(ρ))A ∈ (∆̃A)p so
that we can derive a contradiction. For this purpose we prove the following instantiation
lemma, which is crucial in our proof of acyclicity:

Lemma 6.3 (Instantiation Lemma).We instantiate (13) above as the followingA ∈ Coh.

A :=

{

a11, a12
a21, a22

}
, P<2(|A |) ∪




{a11,a12}
{a21,a22}
{a11,a22}


 , P<2(|A |) ∪




{a11,a21}
{a12,a22}
{a12,a21}





 .

Note thatA ∼= A⊥ via the cyclic permutation g:= (a11,a21,a22,a12) on |A |. Then the
following properties hold, whereAlk andBk denote theobjects resulting respectively from
αlk and Bk of (12) by the instantiation (thus eachAlk isA or A⊥):
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(i) For fixedβ1 ∈ (B1)cp andβ2 ∈ (B2)cp, defineτβ1β2 as follows:

τβ1β2 :=
{
(a11, (1,b1)),

(a21, (2,b2))

∣∣∣∣ b1 ∈ β1
b2 ∈ β2

}
.

Then wehave

τβ1β2 ∈ Hom(A,B⊥
1 ⊕ B⊥

2 ) := (A ⊗ (B1&B2))cp.

(i′) For fixedβ1 ∈ (B1)cp andβ2 ∈ (B2)cp, defineτβ1β2 as follows:

τβ1β2 :=
{
(a11, (1,b1)),

(a12, (2,b2))

∣∣∣∣ b1 ∈ β1
b2 ∈ β2

}
.

Then wehave

τβ1β2 ∈ Hom(A⊥,B⊥
1 ⊕ B⊥

2 ) := (A⊥ ⊗ (B1&B2))cp.

(ii) Let us defineι by

ι := {(gl−1(a),a) | a ∈|A |} where gl−1 =
{

id|A| if Ail = Ail −1

g if Ail = A⊥
il −1.

Then wehave

ι ∈ Hom(Ail ,Ail −1) = (Ail ⊗ A⊥
il −1)cp.

Proof of Lemma 6.3. We shall prove only (i) ((i′) and (ii) are similar). In the following,
τβ1β2 is abbreviated simply toτ . At this point, the reader should recall the definitions of
the image and coimage conditions on morphisms inGRel (cf. Definition 2.12). We verify:

(image condition onτ ) For anarbitrary∅ �= s ∈ Ap, we have{a11,a21} �⊆ s. Hence either
[s]τ = β1, [s]τ = β2 or [s]τ = ∅, which implies [s]τ ∈ (B1)cp + (B2)cp = (B⊥

1 ⊕ B⊥
2 )p.

(co-image condition onτ ) Take an arbitrary r ∈ (B⊥
1 ⊕ B⊥

2 )cp = (B⊥
1 )cp�(B⊥

2 )cp

= (B1)p�(B2)p. Then we have the following:

τ [r ] =




∅ if r1 ∩ β1 = ∅ and r1 ∩ β1 = ∅
{a11} if r1 ∩ β1 �= ∅ and r1 ∩ β1 = ∅
{a21} if r1 ∩ β1 = ∅ and r1 ∩ β1 �= ∅

{a11,a21} if r1 ∩ β1 �= ∅ and r1 ∩ β1 �= ∅.
In all cases we haveτ [r ] ∈ Acp. �

Now we are ready to construct the setη:

First by (12) and (14) we can take two distinct elementsc1 andc2 from (J̃ω(ρ))A;

· · ·

c1 = · · · ((a11, y1, (1,b
1)), (m1,am−1

11 ), (am−1
11 , ym,a

m−2
11 ), . . . , (a2

11, y3,a
1
11), (a

1
11, y2, a11),u

1, v) · · ·
c2 = · · · ((ãi−1, y1, (2, b

2)), (m2, ãm−1
i ), (ãm−1

i , ym, ã
m−2
i ), . . . , (ã2

i , y3, ã
1
i ), (ã

1
i , y2, ãi ),u

2, v) · · ·
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where

– ã j =
{

a21 if α j 1 is an atom
a12 if α j 1 is a negation of an atom

j ∈ {1, . . . , i − 1, i , . . . ,n}
– ar = gr ◦ · · · ◦ g1(a) for a ∈|A | (cf. Lemma 6.3(ii) for definitions ofgr ).
– b1 is chosen such that there existsβ1 ∈ (B1)cp with b1 ∈ β1 and similarly forb2.
– The two pairs (m1,a11), (m2,ai ) are chosen such that there existsδ ∈
(N [A⊥

im, A⊥
im ])cp with {(m1,a11), (m2,ai )} ∈ δ. We let (mj , x) denotex when

N [ ∗1, ∗2 ] is of the form∗1
................................................

............
................................... ∗2.

– u1 andu2 are vectors respectively ofu1
j andu2

j suchthat∃ ε j 1 ∈ (E j 1)cp u1
j ∈ ε j 1 and

∃ ε j 2 ∈ (E j 2)cp u2
j ∈ ε j 2, whereE j i is the instantiation ofEj i .

– We choosev such that there existsξ ∈ (L1
................................................

............
................................... · · · ................................................

............
................................... Lr )cp = (L1)cp × · · · × (Lr )cp

suchthatv ∈ ξ , whereLk is the instantiation of
k (i.e.,Lk will be A orA⊥).

Second from (12) and the fact that(X ................................................
...........
.................................... Y)cp = Xcp × Ycp, we have

(∆̃A)cp = · · · (Ai−1,1 ⊗ (B1&B2))cp × (N [A⊥
im, A⊥

im ])cp

× (Aim ⊗ A⊥
i,m−1)cp × · · · × (Ai2 ⊗ A⊥

i1)cp × (ΞA)cp · · · .
Thus by takingδ, ε j i and ξ as above andτβ1β2 and ι as in Lemma 6.3, we define
η ∈ (∆̃A)cp by

η = · · · τβ1β2 × δ × ι× · · · ι× (ε11 + ε12)× · · · × (εm1 + εm2)× ξ · · · .
Hereτβ1β2 is taken from (i) or (i′) of Lemma 6.3according to whetherαi−1,1 is an atom or
the negation of an atom, respectively.

From the construction, we havec1, c2 ∈ η. Thus

#((J̃ω(ρ))A ∩ η) ≥ 2.

This contradictsProposition 2.13, sinceall atoms are instantiated at the coherence space
A. �

We thus immediately conclude the main result of our paper:

Theorem 6.4. Dinat-GHCoh is fully complete forMALL.

7. Remarks on the Mix rule

Previously in the paper, we have made substantial use of the theory
................................................

............
................................... ALL +Mix,

in particular the
................................................

............
................................... ALL +Mix full completeness of Dinat-HCoh (Corollary 4.2). In this

section, we consider the full theoryMALL+Mix. One might expect thatDinat-HCoh is
fully complete for this theory. Despite the fact that the categoryDinat-HCoh has the strong
properties ofsoftnessandMLL+Mix full completeness, this is not the case. Indeed, we
show thatDinat-HCoh is not MALL+Mix fully complete. This suggests thatMALL+Mix
is a more complex theory thanMALL, in sharp contrast to the purely multiplicative case.

A counterexample is given by the following:
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Define a familyρ = {ρABC DE F | A, B,C, D, E, F ∈ HCoh} by

ρABC DE F =
{
((1, (a,b)),a, (1,b))
((2, (a, c)),a, (2, c))

}
a∈|A|,b∈|B|,c∈|C|

×
{
((1,e),d, (1, (e,d)))
((2, f ),d, (2, ( f,d)))

}
d∈|D|,e∈|E|, f ∈|F|

.

Then we have

Proposition 7.1. ρ becomes a dinat ofHCoh, whose type� ∆ is given by the following
MALL+Mix sequent:

� (A⊥ ................................................
...........
.................................... B⊥)⊕ (A⊥ ................................................

...........
.................................... C⊥), A ⊗ D, (B&C)⊗ (E& F),

(E⊥ ................................................
............
................................... D⊥)⊕ (F⊥ ................................................

............
................................... D⊥).

Moreoverρ is not the denotation of anyMALL+Mix proof.

Proof. First we shall check that every member of the family is a morphism ofHCoh. For
this, given an arbitraryu ⊆∗

f in
ρABC DE F, we shallprove that

u ∈ Γ (∆) whereΓ (X1, . . . , Xn) = Γ (X1
................................................

............
................................... · · · ................................................

............
................................... Xn). (15)

Sinceπ3(u) ∈ Γ ((B&C)⊗ (E& F)) directly implies (15), we assume

π3(u) �∈ Γ ((B&C)⊗ (E& F)) or equivalently
π1(π3(u)) �∈ Γ (B&C) or π2(π3(u)) �∈ Γ (E& F).

By the symmetry ofB andC with respect toE andF , without loss of generality, we may
assume that

w := π1(π3(u)) �∈ Γ (B&C) or equivalently

(w2 = ∅ andw1 �∈ Γ (B)) or (w1 = ∅ andw2 �∈ Γ (C)).

Again,by the symmetry ofB with respect toC, we mayassume that

w2 = ∅ ∧ w1 �∈ Γ (B) or equivalentlyw2 = ∅ ∧ w1 ∈ Γ (B⊥). (16)

On the other hand, the definition ofρABC DE F implies the following:

If (π1(π3(u)))2 = w2 = ∅ then(π1(u))2 = ∅.
Also we havew1 = π2((π1(u))1).

The above facts, together with (16), imply

(π1(u))2 = ∅ and (π1(u))1 ∈ Γ (A⊥ ................................................
............
................................... B⊥).

But theseimply π1(u) ∈ Γ ((A⊥ ................................................
............
................................... B⊥)⊕ (A⊥ ................................................

............
................................... C⊥)), thus we have (15).

Second we check that the family isa dinatural transformation.ρ happens to be a
denotation of aMALL+Mix proof of the following type, which is obtained from∆ by
erasing the two outermost tensors:

� (A⊥ ................................................
............
................................... B⊥)⊕ (A⊥ ................................................

............
................................... C⊥), A, D, B&C, E& F, (E⊥ ................................................

............
................................... D⊥)⊕ (F⊥ ................................................

............
................................... D⊥).

Hence, by soundness of the dinatural interpretation,ρ is a dinat of the latter type, thus it is
a dinat ofthe original type∆ as well.
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Finally theMALL proof-structureΘρ associated with the dinatρ (cf. Corollary 4.55)
is given by the following, which has a cycleC (with two jumps). HenceΘρ is not a
MALL+Mix proof-net.

wherep andq are respective eigenweights for the left and right &-links.�

In contrast to theMALL case (without MIX), the cycle above is unoriented.

8. Conclusion

This paper establishes a non-game-theoreticdinatural full completeness theorem for
MALL in the double gluing categoryGHCoh. Even usinggame semantics, which
sometimes more directly captures syntax, there are still few known full completeness
theorems for the additives for either nonintuitionistic or nonpolarized versions of linear
logic. This is because, although additives occur naturally in categorical semantics, it is
difficult to treat them by graph-theoretical (proof-net) methods. A key ingredient in this
paper is ouruse of Joyal’s notion of softness, which relates dinaturality to Girard’sMALL
proof-structures. Along the way, our treatment involves a technical analysis of several
interesting subtheories, and certain restrictions on allowable proof-structures. In particular,
weanalyze in detail the possible shapes of cycles in non-nets.

Typically in proving a full completeness theorem, one would also wish to verify
faithfulness of the interpretation. However we havenot proved that and leave it as an open
problem. This is related to the fact that there is no known precise correspondence between
MALL proof-nets and the free∗-autonomous category with products, unlike in the purely
multiplicative case [8]. Such a correspondence was exploited by the authors in their various
MLL full completeness theorems [9,10,22,23].

Hughes and van Glabbeek [26] consider a larger class ofMALL proof-structures by
eliminating the restriction of Girard’s dependency condition. For this class, Girard’s
original correctness condition is insufficient. They thus introduce a stronger correctness
criterion for distinguishingMALL proof nets.

The Hughes–van Glabbeek system of proof-structures associates a unique proof-
structure to each dinat, owing to the elimination of the dependency condition. Hence a
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promising direction for future work would be to investigate the possibility of a faithful full
completeness theorem using this larger class of structures.

However this extension of our results to this larger class of structures might be difficult
given that their criterion is not a canonical extension of Girard’s. When their criterion is
restricted to Girard’s class of proof-structures (with dependency condition), one obtains a
differentcorrectness criterion from Girard’s.

Another problem we leave open is the question of finding other soft categories, besides
HCoh and categories of games, which are models ofMALL.

Finally, as far as the exponentials in linear logic are concerned, there is still no purely
graph-theoretical characterization of proofs (i.e., a correctness criterion)for this fragment.
Our full completeness methods rely on such a graph-theoretical analysis to make the bridge
between syntax and semantics (i.e. dinaturality). Thus the methods in this paper would
seem not to be directly extendable to full linear logic. However hypercoherences do in fact
model exponentials. Hence it may be interesting to investigate a semantical counterpart to
exponential boxes, even if it were less graph theoretical in nature, which would correspond
to known manipulations of exponentials in proof-structures.
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significantly inspired ours and whose detailed comments have greatly clarified our
presentation. Further, we had numerous extremely helpful conversations with Paul-Andr´e,
whose many examples profoundly helped our thinking on these results. We sincerely thank
him for his generosity and help.

We would like to thank Thomas Ehrhard for lengthy discussions on hypercoherences.
Also many thanks to Olivier Laurent, Laurent Regnier, Dominic Hughes and Lorenzo
Tortora de Falco for helpful discussions on additive proof-structures. We would also like
to thank Martin Hyland for discussions on the double gluing construction and on softness.

Finally, we would particularly like to thank théEquipe de Logique at Luminy, and
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