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Abstract

We prove a ull completeress theorem for multiplicative—additive linear logic (i.eMALL) using
adouble gluing construction applied to Ehrhardsutonomous category of hypercoherences. This
is the first non-game-theoretic full completeness theorem for this fragment. Our main result is that
ewery dinatural transformation between definable functors arises from the denotation of a cut-free
MALL proof.
Our pioof consists of three steps. We show:
e Dinatural transformations on this category satisfy Joyal’s softness property for products and
coproducts.
e Softness, together with multiplicative full completeness, guarantees that every dinatural
transformation corresponds to a Girdfié\LL proof-structure.
e The proof-structure ssociated with any dinatural transformation i9/&LL proof-net, hence
a denotation of a proof. This last step involves a detailed study of cycles in additive proof-
structures.
The seond step is a completely general result, while the third step relies on the concrete structure of
adouble gluing construction over hypercoherences.
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1. Introduction
1.1. History of full completeness

Linear logic [L6] first arose from Girard’s seamtic investigations of the categoBoh
of coherent spaces with stable maps, a simplification of Scott domains. As QGiGhsays:
“Linear logic first appeared as a kind of linear algebra built on coherent spatekater
Thomas Ehrhardl[f estaliished a sibstantial refinement d€oh, the categoryH Coh of
hypercoherences. Hypercoherences arose fneBticciarelli-Ehrhard investigationk]]
of sequentiality, using strong stability in qualitative domains endowed with coherences.
Sequentiality itself is an important issue irogramming language s&ntics, closely re-
lated to the so-callefilill abstraction problenil2]. The key property of the hypercoherence
model is that it eliminates certain well known nonsequential boolean functions, namely
ary analogs of Berry’s “Gustave” functions, which are extensions of the farpéieallel-
or.

The logical counterpart to full abstraction is full completeness (the terminology comes
from Abramsky—Jagadeesalj). Full comdeteness theorems are completeness theorems
at the level ofproofs rathe than provahility. More precisely, given a logidZ, we say a
(categorical) modelM for £ is fully completeif in the unique M-interpretation] — ] of

L, every maphism [ A] X [B] € M is the interpredtion of a proofr of A - B.

At the level of categories, full completeness is a kindregreentation theoremlf we
identify £ with an appropriately stictured free categotf, then ull completeness says the
unique free functoff — ]: 7 — M is full. Of course it would le prderable if the unique
interpretation functofl — ] were fully faithful. This has been the case in our previous full
completeness results fbLL [9,10,22,23]. For the additive, this involves subtle problems
concerning equality of proofs. This is discussed further in the conclusion.

The first fully complete models for multiplicative fragments of linear logic were
in Abramsky—Jagadeesari][for MLL+Mix and Hyland-Ong 48] for MLL, and
were based on game semantics. More recertlyiations of the categorical notion of
dinatural transformationdiave been seen to provide a useful semantical framework for
discussing full completeness. They were first proposedbjrag a poweful functorial
semantics fompolymorphism, and later extended to intuitionistic log&d][ and linear
logic [7]. Dinaturality provides a framework famposing uniformity conditions on the
interpretation in the model. Blute and Scof [proved that dimtural transformations
ove topological vector spaces provide a fully complete model NttL+Mix. They
also [L(] extended their full comfeteness theorems to cyclic linear logic, by considering
dinaturals invariant under (continuous)tiaa of Hopf algebras on these vector spaces.
Hamano 22] used Pontrjagin duality to extend the dinatural frameworl@ja()] to get full
completeness faviLL. Recently, Abramsky and Me#s 2] announced a full completeness
theorem forMALL, ba®d on a dinatural framework over their notion odncurrent
games

In a different direction, Loader’s thesi8Z] contained a dinatural approach to full
completeness. This work was generalized by Hyland and his studen83jand cetain
x-autonomouslouble gluingcategorie$sC. The @nstruction arose fr a generalzation
of Loader’s linear logical predicate87] in the case where the categatyis the category
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Rel of sets and relations. More genkyathis construction begins with any-autonomous
categoryC (i.e. a model ofMLL) [6] andyields a newsk-autonomous catego@C which

is a better denotainal model of proofs (“better” in that many unwanted morphisms are
eliminated in the construction), se&kection 2 For exanple, in most cases of interest,
double gluing allows us to eliminate tivix rule.

More fundamentally, double gluing is used in building fully compleiiel models B2,

33). In the framework of Girard’s coherent spaces, Taf] [proved afull completeness
theorem for the multiplicative fragmemiLL+Mix, which states that every nontrivial
dinatural transformation betweeviLL-definable multivariant functors ofoh is the
denotation of arMLL+Mix proof. While dinaturality played a crucial role, another key
fact was thatCoh is fully and faithfully embedded intcGRel. A somewhatrelated
full completeness result foMLL using connections betwedoh and Chu spaces was
shown by Devarajan, Hughes, Plotkin, and Pratd]. This employs the stronger notion of
relational parametricityq], rather than dinaturality.

However it is impossild to extend &n’s full completeness theorem f&oh to
Multiplicative Additive Linear Logic MALL) becauseCoh, dthough it has (co)products,
admits a variant of Berry’s Gustave function which does not correspond to any proof. This
was first mentined by Girard 18] and is also a wect consguence of the Abramsky—
Mellies’ version B] of a 3-ary Qustave function irGRel. Thehistory of this is discussed
in [4] and also inProposition 2.11

One of the main advantages of Ehrhard’s hypercoherences over coherence spaces is
that they eliminate such functions. So there arises a natural question as to whether the
dinatural interpretation dfi Coh could provide aMALL fully complete model. The purpose
of this paper is to provide an affirmative answer to this question. We prove that the
dinatural interpretation over the double gluing categ@tiCoh is fully complete for
MALL (withoutMix). We alsashow inSection 7thatHCoh itself (without double gluing)
does not permit MALL+Mix full completeness theorem. Using double gluingtd@oh
also allows us to eliminate thdix rule. In fact, the status of ihrule in the presence of
additive connectives turns out to be a subtle problem $saxtion §.

One inportant notion we shall focus on is Joyaeftness propertj27,29. Softness
refers to a factorization property of morphisms between products and coproducts (see
Section 2. In the case of lattices, it corresponds tanaary version of Whitman'’s property
of free lattices 29,34]. Moreover, by ctrelimination, the syntax ofMALL (considered as
a free category) satisfies softness; so this condition is necessary for any fully complete
model.

1.2. Outline of the proof ofMALL full completeness

Now let us outline the main ideas of our proof. We assume the framework of
functorial polymorphism (se€2[9,10,22,32,33]) which is an appropriate setting for our
full completeness theorems. The theorem has three main steps:

(i) Sdtness oHCoh.
(i) Sdtness implies that Dinats yieMALL proof structures.
(iii) The Dinats in (ii) actually yieldMALL proof-nets.
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For (i), we begn by demonstrating the softness of Ehrhard’s hypercoherdiGath in
Proposition 2.9Df Section 2 This will be shown byobserving that there exists a sequence
of intermediatex-autonomous categori¢g€oh, | 3 < n < w}, whereCoh = Cohs and
HCoh = Coh,. We shaev that Coh,, is m-ary soft for allm < n but is not n-ary soft
(Proposition 2.1Df Section 2; in patticular,HCoh is soft.

In (i), we develop an important consequence of softness Peposition 4.160f
Section 4. Let C be asx-autonomous category with (co)products. Suppose the dinats
on C satisfy a softness condition and av#.L+Mix fully complete and furthermore
suppose that théfix map is monic. Then every dinatural transformatjpicorresponds
to a Girard MALL proof-structure®,. The proof of this theorem proceeds via a
preliminary full completenessieorem for certain fragments MALL (seeTheorem 4.}

In particular the theorem applies tdCoh (see Corollay 4.2). Hence we show that
every diratural transformation offi Coh corresponds to MALL proof-structure@, (see
Corollary 4.55.

Recall that Girard introducetMALL proof-structures as a natural extension to the
additives of Danos—RegnierMLL structues (see 13,16]). These are obtained by
enriching links and formulas with elements of certain boolean algebras while imposing
some additnal technical algebraic conditions. We interpret the above results as
establishing one direction of the connection between Girdd&&L structues and Joyal's
softness ondition. More generally, an “equivalence” betwedALL proof-structures and
softness is discussed ing second author’s pape&tq].

In (iii), to show that the proof-structures obtained above are activaliL nets, we use
the Loader—Hyland—Tan double-gluing construction, applied tathatonomous category
HCoh. Weobtain a category we caBHCoh, whichdoes not satisfy th®lix rule. Our goal
is to proveMALL full completeness for dinats oBHCoh (Theorem 6.54f Section §. A
key observation is that there is a canonical inclugdonatGHCoh < DinatHCoh, so we
may use the previous results to guaram@etCoh dinats also yieldMALL proof-structures.

Let PSp) denote the set of proof-structures associated with the girat (ii). This
setPSp) is nonempty. We assume for contradiction thats not a denotation of any
MALL proof. Then our association guarantees that proof-structuieSjp) enjoy certain
important properties:

e theunique link property
e theno duplicate axiom-link propertgnd
e contain certain simple oriented cycles (see below).

We will then show that this will lead us to a contradiction (to the fact thais a
dinatural family). Namely, using the embedding€oh — Coh — GRel, we mnstruct
an object ofCoh, whos diques and co-cliques intersect with cardinality2. Thisis a
contradiction.

We note thatPSp) above is no longer necessarily a singleton, in sharp contrast
to prevous MLL full completeness proofsl[9]. In those papers, given a (di)natural
transformé&ion, one constructs @niqueassociated proof-structure and then demonstrates
that it must be a proof-net. The contrasisas because, in our proof, we crucially use
Girard’s natural extesion of the Danos/Regnier criterion for hMALL proof-structures.

In this case, although Girard’s criterion isrgile enough, the possity arises that from
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a single dinat there may tseveral diferent associated proof-structure€ardul analysis

is required to show that the associated B&p) is sound (cf.Corollary 4.53; i.e., p is

a denotation if and only ifv © € PSp) © is a proof-net. Hence in (iii) we prove every
element ofPSp) is aMALL net, thusp is the denotation of MALL proof (Theorem 6.2

of Section 5. Our proof uses a new characterizatidirycles n such stuctureswhich we

call simple oriented cycle®riented gcles were first introduced by Abramsky—MeHi’

but for thepurposes of our proof, it suffices to cut down to a smaller class of what we call
simple cycleswhich we stidy in ddail.

The paper is organized as follows: iBection 2 we introduce categorie<ohy
intermediate between Girard€oh and Ehrhard’sHCoh and observe thaHCoh is
n-ary soft, for all natural numbers. In Section 3we show thatDinatHCoh is fully
complete forMLL+Mix. In Section 4we prove hat every dinatural transformation of
HCoh corresponds to some GiraMALL proof-structure. InSection 5we investigate
simple oriengéd cycles inMALL proof-structures. IrSection 6we prove thatthe poof-
structure assoated with every dinatad transformation ofGHCoh is a prod-net for
MALL,; i.e., we obtainMALL full completeness irDinat-GHCoh. In Section Ave disaiss
theMix rulein the presence of the additives.

1.3. Related works

The first dinatural full completeness theorem MALL was estalished in he work
of Abramsky—Melles 2,3]. This work extended the gambeoreticfull completeness
theorems for MLL+Mix by Abramsky and Jagadeesélj py introducing the notion of
concurrent gamesn this séting, certain winnng strategies yield dinatural transformations
which denoteMALL proofs. Both the results of Abramsky—Medti and our own work can
be considered as enrichifgl-models vith additional structure.

The preliminary stages of the present papvere influenced by considering what
we here callthe Abramsky—Melis Gustave functiombramsky ad Mdlies also gave
a detiled study of certain oriented cycles MALL proof-structures. As previously
mentioned, these ideas alsdluenced the work here; hower our presentation is self-
contained and uses the more restricted notion of simple cycle.

In a quite different direction, Girard’s recent work brdicsandthe logic of ruleq 19,

2(] estallishes a full completeness theorem fdALL, athough not using the dinatural
framework. Ludics is a drasticirgerpretation of the semantics of proof theory, combining
ideas from proof search and cut-eliminationto a kind of abstract game semantics.

It would be very interesting to obtain explicit connections between ludics and our
hypercoherence-based fully complete models.

It would be important to find a relationship between our complicated association of
proof-structures with dinats and Hughes—van Glabbe@@ksr{iew ndion of MALL proof-
structures and their associated correctness criterion, which is stronger than Girard’s original
notion. We make further comments on their work in the conclusion.

1Recently Hughes and van Glabbeelé][ have mnsiderably extended our understanding of the theory of
additive proof-structures. This is discussed in the conclusion.
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Notation 1.1. Let A denote a set anB(A) the power set oAA. We danote the finite power
setPin(A) == {a € P(A) | « is afinite set. P (A) == Pin(A) \ {#}. PS5(A) = {« €
P(*)(A) | #« < n}, where # denotes the cardinality. We writ® C* Y when X is

fin —fin
a finite and nonempty subset &f and write X C*, Y when X is a nonempty subset
of Y such that #X < n. A x B denotes the cartesian product of sétsand B. For
C C AxB,weuseri(C) :={ae A| 3db € B (a,b) € C} for its first projection
and user2(C) := {b € B | J3a € A (a, b) € C} forits second projectiorA + B denotes
the disjoint union of set®\ andB, i.e., A+ B := {(1,a) | a € AJU{(2,b) | b € B}.
ForC € A+ B,we useC; .= {a € A | (1,a) € D} for its first component and use
C, == {b € B | (2,b) € D} for its second component. F&t,V < P(A), we define
U™V :={u+v|ueUandv eV}

We denote vectors of quantities by underlining or overlining (depending on ease of
reading), so for examplé or A denote vectorgAg, ..., Ay) of lengthn, for somen.
Multivariant functorsF : (C°P)" x C" — C are denoted on objects Hy(X;Y), for
X, Y eCc".

2. Categories Cohy, of n-coherencesand m-ary softnessof Coh,,m<n < w
2.1. Categories of n-coherences

The purpose of this section is to introduce the categ®@w@s, for 2 < n < w, which
are intermediate between Girard®®h [16], which is Cohs, and Ehrlard’s HCoh [15],
which is Coh,, in our termnology. Consequently there arises a hierarchy of coherent
spacesCohy, betweenCoh and HCoh. The exisence of such a hierarchy is part of the
folklore; e.g., Lamarche30] also discussed it under the name of Girard quantale-valued
sets. Howeveone of our contributions in this section is to establish that the categories
of these hierarchical coherent spaces are $ufbgosition 2.1 In particular our result
on softness oHCoh (Corollay 2.10 is exactly a counterpart of Ehrhard’s first order
sequentiality, which is the origin of his discoveryté€Coh. For hypercoherences, we often
follow the text of Amadio—Curiend] in addition to Ehrhard {L5].

Definition 2.1 (n-Coherencee). An n-coherence Eis a pair
E=(EI I'(E)
where| E|isasetand’(E) € P%,(|E|) suchthatva € |E| {a} € I'(E).

We use e notation ™ (E) := {u € I'(E) | #u > 1}. An n-coherence is identified with
a hypergraph, each of whose edges is a set of vertices of cardinality lesa:tharely
| E | determines the set of nodes and each elemehtBf determines a hyperedge ph |.

Definition 2.2 (The SetD(E) of States for am-Coherencée). For an n-coherenceE,
the setD(E) of statesfor E is

D(E) = {X C|E||VuC*. X ue I'(E)}

—<n

whereB c*,, A meansB is anonempty subset ok of cardinality< n.
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Definition 2.3 (Linear Imgication of n-Coherences). Fon-coherencesE and F, the
n-coherencd& —o F, calledlinear implicationof E andF, is
E—oF:=(E|x|F|,I'(E—oF))
wherew € I'(E —o F) iff

() wC|E| x|F|, #w <n
(i) m(w) € I'(E) = (m2(w) € I'(F) A (#m2(w) = 1 = #r1(w) = 1)).

Definition 2.4 (The Intermethte CategoryCohy,). The categoryCoh,, consists of the
following: objects: n-coherence& = (|E|, I'(E))
morphsms: Coh,(E, F) .= D(E —o F).

It can be checked (as in Proposition 5 bf]) that the above data indeed defines a category:
for E, F € Cohy

(1) Idg == {(a,a) | a €|E|} € D(E — E)
(2) If Re D(E — F) andS e D(F —o G) then

SoR:={(a,c)|db((a,b) e RA (b,c) € 9} € D(E — G).

Proposition 2.5. Coh,, becomes a-autonomous category with products and coproducts.

We indicate the structure on objects, followird):[

(linear negation:E~* := (|E|, I'(E1)) where
r*(E') = P*,(|E])\ I'™*(E).

(tensorr)E® F .= (|E| x |F|, I'(E ® F)) where

wC|E| x |F|,#w < nand
(w1 € I'(E) A wa € I'(F)).

(product:)E&F = (JE| + | F|, I'(E&F)) where

wC|E|+|F|,#w < nand
(w2=0=w1e 'E)A (w1=0= wre I'(F)).

we '(E® F)iff

w e ['(E&F) iff
Hence we have by de Morgan duality:
(par)E® F = (|E| x |F|, I'(E ® F)) where

wC|E| x |F|,#w < nand
(w1 € I'(E) v wo € I'(F)).

(coproduct)E® F .= (|E| + |F|, I'(E @ F)) where

wC|E|+ |F|,#w < nand
(wiel'(E)A wa=0)V (w1=0A w2 e I'(F)).

weI'(EZRF)iff

w e I'(E @ F) iff

1 denotes the unique-coherence such thai | is the singletor{x}. Then1l = 1+ and1
becomes the unit both f@ and®.
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Cohp, has additional canonical morphismisx : E ® F — E ® F, whichare given by
Idigx . Note hatMix is monic in Cohp.

Remark 2.6.

(i) 1t appears that the definition of coprodustsomehow more “natural”. So we could
equally take the coproduct as primitive and define the product by de Morgan duality.
(i) Observe thatCoh, is exactly the categorRel, whose objects are sets, whose
morphisms are binary relations, and where composition means relational composition.
(i) The above definition oh-coherence is an intermediate notion to Girard’s coherences
and Ehrhard’s hypercoherences, in that i= 3 we obtain the categorZoh and if
n = w we obtain the categorii Coh.

2.2. n-ary softness and double gluing

Before going toProposition 2.9we remind the reader of the definition nfary softness
due to Joyal29].

Definition 2.7 (n-ary Softness (cf. JoyaRp])). A morphism f is calledn-ary softwhen
the following holds: if f is of the form(A11& A12) ® - - - ® (Am=1,1& Am—1,2) —> (Am1 ®
Am2) B - B (An1 D An2), then here exstsk (1 < k < n) such hat f factors through
either a product projection fro1& Axz (K < m) or a coproduct injection intéy; & Ax2
(k > m); nanely, either of the following two triangle diagrams commutes:

At @A) B BAGE - B (At ® An2)

R

3f/ . inj

(A118& A1) ® - - - ® (Am-1,1& Am-1,2)

(Am1 ® Am2) B - B (An1 @ An2)

R

proj At
(A11&A1) Q- - QA Q- ® (Am—1,1& Am—1,2)

Throughout the rest of thiSection 2and the nextSection 3 we often sinply say
softnesgo meann-ary softness for all natural numbergbe careful: afteSection 3 this
terminology will be used in a stronger sense (cf. the bottorBedtion J).

A x-autonomous category with products and coproducts is catdtif all its
morphisms are soft. In - &autonomous category with products and co-products, the above
f is transposed intd : 1 — (AL ® A B+ B (Ah_1 1 ® AL ) B (Am & Am2)

B ... % (An1 ® An2) and vice versa. Hence it suffices to consider the caserwithl, in
which case the loweriangle in the diagram does not exist.

Observeliat for ax-autonomous categowith products and coproducts, the condition
that all thedinats ofC aren-ary soft can be characterized by means ohastimensional
weak pushout (cf. JoyakP]). E.g., whenn = 3 the condition is equivalent to the fact
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that the following cube is a three-dimensional weak pushout, wbetenotes the functor
C x C x C — Set defined byD(A, B, C) := C(1, AR B ® C) and] | denotes disjoint
union in Set.

]_[iAjAkD(Aj, Bj, Cx) > Uj(ko(@i A, Bj.C)
N AN
UiykD(A;,@j Bj, Cx) ~ [ [, 0@, A;,@j Bj, Cx)
|
]_[Lj D(A. Bj, €D, ) > ]_[j P, A. 8. P, Co
N\ N\
L1, oA ), 8-, o@D, A D, 8-,

We observe that originally Joyal required the above diagram to be a pushout, not just a
weak pushout. The weak notion suffices for our purposes here, and corresponds closer to
the g/ntax, as in the following remark.

Remark 2.8 (Necessity of Softness). Softness is a necessary conditionNbklal full
completeness theorem. First, observe that the syntax is “soft” in the following sense: if we
consider the representation of a cut-free proof of a sequent representing a morphism, say
(A11&A12) ® - @ (Am—1,1& Am-12) - (Am1 @ Am2) B -+ B (An1 @ An2) it must

end with either a &-left, or @-right rule? This guarantees softness for any fully complete
categorical model as follows: by abuse of notation, if in a model we have a morphism
(A11& A1) ® - ® (Am-1,1& Am-1,2) = (Am1® Am2) B - - - B (An1 ® An2), by fullness

this arises from a (ctfree) proof of a sequent as above. Hence by the softness of the
syntax, the proof factors through either a projection on the left or an injection on the right.
By the Soundness Theorem, this factorization is transformed (by the interpretation of the
syntax in the model) into a factorization of the original morphism.

Proposition 2.9. Cohy is m-aty soft brallm < n < o withn > 2.

Proof. We assuman > 2 sincethe assertion whem = 1 aubmatically holds by virtue of
the definition of product. Suppose for deriviagontradiction that there exists a morphism
R : (E11&E12) ® -+ ® (Em-1,1& Em-1,2) — (Em,1 ® Em,2) in Coh, suchthat

R does not factor through any & explicitly appearing in the domain nor througlbthe
explicitly appearing in the codomiai Note for example, to say tha& factors through
E1.1& E1 2 means that there existgas {1, 2} such that for all vectorx = (X1, ..., Xm) €
RC |E11&E1o| x -+ x |[Em—1,1& Em—1,2| X |Em,1 ® Em2/, it follows that{x1}; = ¢,
i.e.x1 ¢ |Egjl.

2 Strictly speaking, proof theorists would replace ¢heon the lefside and®'s on the rjht side of the sequent
by canmas.
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We shall choose a subsetC R, whos cardinality ism,
u:= {xi = (xil, xiz, ceey xﬁn)}lfifm

wherex}, € |Ex1&Ek2l,1 < k < m— 1 andxl, € |Em1 @ Em | by induction oni as
follows:
(For x! and x?) By our suppositionR does not factor through the first or the second
component. Sot == (x},x},...) andx? = (x£,x3,...) can be chosen such that
Vi€ (L2 X} # DA (x5, %3)) # ). |
(For xi*1) Thei + 1-th componenki*} €| Ei;11&Ei 12 | of X1 can be chosen as

i+1 )
follows: by considering the set:= {x},;, x4 ,....,x/,,} of thei + 1-th components for

. i+1 .
xKwith 1 < k < i, wecan takex/ 1 suchthatVj € {1,2} (v U {xf1})j # @ by virtue of
the fact thatR does not factor through thet+ 1-th component.

For such ahoice of subsat of cardinalitym, we have

Viel{l....mVje{l2 (mu)#0. 1)

This condition implies that if we project to the firsh — 1 components, we obtain
71, .m-1(U) € I'((E1,1&E12) ® -+ ® (Em—1,1&Em-1,2)). Thusmm(u) € I'(Em1 @
Em2) sinceu € I'((E11&E12) ® - -+ ® (Em-1,1& Em-1,2) — (Em,1 ® Em,2)). Herce
3j € {1, 2}(Em(w)); = ¥ from the definition of @. This is acontradiction to {) when
i=m. O

Corollary 2.10 (Softness oHCoh). HCoh is n-ary oft for all natural numbers n.
Proof. This follows becauselCoh is Coh,,. [

Proposition 2.11 (Existence of-ary Gustave Functions)f 2 < n < o thenCoh, is
not n-ary soft.

Proof. ForobjectsEy, ..., En—1, let D denote the following object i€ohy:

((E1& ---&En-1) ® En) B ((E2& ---&En)) @ E) B - --
-+ B ((En—1& - - - & En—3) @ En—2) ® ((En& -- - &En_2) ® En_1)
whereEp = Ef @ --- ® E ;.

Observe thathis object denotes a provable formulaMALL. Let S, be the synmetic
grouponn. Foro € §,, R, €| D| is defired by

Ry = [((io(l)v Az (1) - - (om) 8o k),

i am €|Em| ifm#n
(o @m)) |an = @y, o) }

wherei; ) denotes the natural numbersuchthat E; «, occurs as then-th component

of (Ex& ---&En&E1& ---) & Ex—1. In paticular wheno is the cyclic permutation

(n,n—1,...,2,1), R, is exactly the denotation of agof of the formula denoted above,
henceR, € Cohn(1, D).
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Now we defineR € Cohn(1, D) to be theunion of R, wheno runs overS, :=
S\ {(n,n-1,..., 2,1}

R=|JR
oe§,

R does not factor through any explicitly occurriggi.e. Ris notn-ary soft. The morphism
Ris called am-ary Gustavefunction [

For exampe, whenn = 3 in the above prof, we obtain the following Gustave function,
first discussed by Girard B] and alsaby Abramsky and Melks _3]:

R:=={(La), (2 a3), B @) |a1 €|E1| Aaz €|E2| A a3 = (a1, @)}
U
{(B,a3), (1,82), (2, a1)) | a1 €| E1| A @z €| E2| A a3 = (a1, a2)}
U
{((2, a2), (3, a1), (1,a3)) | a1 €| E1| A @z €| E2| A a3 = (a1, @)}
U
{((1,a), (1,82), (L, @) | a1 €| E1| A @z €| E2| A a3 = (a1, a2)}
U

{((2,a2), (2,@3), (2,a1)) | a1 €| E1] A @z €| E2| A ag = (a1, a2)}.

It was shown by Tan33] that Coh (in our terminologyCohg) is fully and faithfully
embedded into Loader’s categd®yRel of linear logical predicate$32]. This congruction
has been generalized by Hyland and Ta§ fo a generaldouble gluingconstructionGC
over certén categorie€’. This is desribed later inSection 3.2

Definition 2.12 (GRel (cf. Loader B2l and Tan B3])). GRel denotesthe double gluing
category over the categoiel defined as follows:

Objects: triplesd = (| A|, Ap, Acp) Where| A| is an object oRel,
Ap CRel(l, | A]) andAcp C Rel (| A, 1).

Morphisms: A morphisnt : A — B of GRel is a mophismR :| A|—|B| of
Rel such that the folleving conditions hold:

(image condition:) Vo € Ap [@]R:={be|B||Jaca(ab)e R} eBp
(co-image condition:)Vg € Bep R[B] :={a €| Al|3b e B(a,b) € R} € Acp.

GRel becomes ax-autonomous category with products and coproducts, given by the
following structure on objects:

(linear negation: )4+ = (|.A|, Acp, Ap).
(tensor:) thetensod ® B is defired by| A ® B|=|A| x |B| and

(A@B)p={()l Xﬂlol EApandﬂ GBp} :=Ap XBp
(A® B)ep = GRel(A, BY) = GRel(B, A1).
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1:=(l,{id;}, Rel(l, I)) becomes the tensor unit.

(product:) the product& B is defired by| A&B|:=| A| + | B| and
(A&B)p={a+Blaec Apandp € Bp} :=Ap~ Bp
(A&B)cp = Acp + Bep.

Hence we have by de Morgan duality:

(par:) A B B = (At ® BH)*: Explicitly
(A B B)p = GRel(A, B) = GRel(B+, A)

(ABB)ep={a xB' | € Acpandp’ € Bep} = Acp x Bep.

(coproduct)4 @ B := (A& B1)*: Explicitly
(A@B)p=Ap+Bp
(A B)ep=1{a+pB|aeAcpandp € Bep} :== Acp ™ Bep.

Recall fromRemark 2.@hatCohs is Girard’s categoryCoh of coherence spaces.
Proposition 2.13 (Tan [33]). 2 Coh is equivalent to the ull subcategory of GRel
consisting of the objectd := (|.A], Ap, Acp) satisfying:

—aecAp iff VBeAp#anp) <1

- BeAyp iff VaeAp#anp) <1

— 1A= Ugea, @ = Upeag, B

3. Multiplicative full completeness of HCoh and GHCoh
3.1. MLL+Mix full completeness dfoh, with2 < n < w

We assume familiarity with dinatural transformations, hereafieats and inctorial
polymorphism (see 5,7,9,21]). This is the most appropriate setting for our full
completeness theorems.

Definition 3.1. DinatC denotes the structure whose objects avBALL-definable
multivariant functors inC and whose morphisms are dinatural transformations between
them.

Fromnow on, dinatural transformations will always be assumed to be between definable
functors in some (perhaps proper) fragment#LL. As is wellknown,Dinat-C is not in
general a category, since dinaturals need not compose. One of the interesting consequences
of a full completeness theorem (for a fragment of linear logic) is that dinaturals do form a
category, but we do not know this fact urgfter we haveproven the theorem! The reasoniis
that syntax is compositional and a fully colege modelling has a precise correspondence

3 A further study is done in a tech repo2f] on a reldionship betweeiCohy, 1 and the iterated double gluing
categoryG"~1Rd.
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to the syntax. Nonetheless, we will use cgtecal terminology when referring to the
structureDinat-C, as if it wele acategory.

In the introduction, we discussed the problenfdf completenes$or a logic £ with
respect to a categorical structukd. In what fllows, the categorical structuret will be
Dinat-C. In this stucture, we interpret (one-sided) sequent$' as multivariant functors,
as usual in functorial polymorphisrg,p]. We interpret proofs of sequerits I" as dinatural
transformatons of the forml — [I'], wherel is the constant functor with value the
tensor unit 1. Full completeness now becomes the statemEmery dinatl — [I'] is
the denotation of a proaf TheMLL full completeness theorems in this section are all fully
faithful representations.

Tan [33] proved thefollowing multiplicative full completeness theorem via the full and
faithful embedding:Cohs < GRel, whereMix is the inference rule:

D OFA
Fr.A Mx

Fact 3.2 (Tan [33]). Dinat-Cohgs is fully complete foMLL-+Mix.

For anobjectE € Coh, andm < n, wecan defined’.m(E) := {X € I'(E) | #X < m}.
Then(| E|, I'«m(E)) is an object ofCohp,.

Definition 3.3 (FunctorUpm). Let3< m < n < w. Then he functor
Unm : Cohn —> Cohm

is definedby mapping(|E|, I'(E)) to (|E|, '<m(E)) andR : E —o F to R : Uym(E)
—o Unm(F). Unm is full and preserves-autonomy, as well as (co)products. Composition
of functors satisfie¥m| o Upm = Up).

Remark 3.4. As in Ehrhard [L5], we can define the functd®N : Coh, — (Coh,™)™,
whereCg, in his definitions of positive/negative hypercoherencesis replacedhy Then
Uns can be identified wittPN becaus&Coh, )T can be considered &oh.

Lemma3.5. Letp € Dinat-Cohn(A(X; X), B(X; X)). If E and_F are vectors of objects
from Cohp, such hat Unz(E) = Unz(F) then Uha(pe) = Unz(pF).

Proof. For each objec& € Cohy, considerE® .= (| E|, I'<3(E)) € Cohy. Thent can
be checked thdtlg € Cohn(E®, E). MoreoverUnz(E) = Unz(F) implies thatE® = F*°.
Thus it suffices to prove thallj3(pe) = Uns(pee). But this is obvibus by chasing the
hexagonal diagram of dinaturality féstg : E®* — E. O

Given a dinatural transformatign:= {pg' : A(E’; E’) — B(E’; E’)} in Cohy, let us
apply the functolJ,3, sayU for short, to every morphismg/. Then we fave theCoh-
morphismU (pg/) = pgr : A(U(E"); U(E")) — B(U(E"); U(E")) sinceU preserves
x-autonomy with (co)products. Byemma 3.5if U (E’) = U (F’) thenU (pg/) = U (pF/).
ThusU (p) deternines the following family, say7n(p), of momphisms indexed byoh
objects:

In(p) = {In(p)E = pe' : A(E; E) — B(E; E) | E = U(E") andE € Coh}.
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The fact thatU is full assures tha{/,(p) becomes a dinatural transformation @oh:
the conditionB(idg; R) o Jn(p)E o A(R;idg) = B(R;idr) o Jn(p)F o A(idg; R)
should be checked for everR € Coh(E, F). SinceU is full, 3E’, F* € Cohy such
thatE = U(E’), F = U(F") andR € Cohn(E’, F’). Thuswe have the condition i€oh,
thatB(idg/; R) o pgr 0 A(R; idg)) = B(R; idg/) o ppr o A(idg/; R), from which we can
derivethe required condition i€oh by applying the functol. Moreover he functor7,
so defined satisfgethe fdlowing:

Proposition 3.6 (The Faithful Functor7,). The full functor U,3 deternines a faithful
functor

Jn : Dinat-Coh, — Dinat-Coh.

Note that7, is not full sinceDinat-Cohy with n > 3 is 3-ay soft butDinat-Coh is not
3-ary soft. Nde also that7, preserves composition, when defined.

Proof. Take dhatural transformationg and o of Coh, suchthat 7n(p) = Jn(o).
Analogously toRemark 3.4above, and by Sections 5 and 6 48], we can define the
inclusion functorl;i : Cohz — Cohn when C# in Ehrard’s definition of positive
hypercoherences is replaced g ,. Now Jn(p) = Jn(0o) is equivalent to saying that
if E is a vectorof objects from the image dff thenpe = og. Thus withthe help of
Lemma 3.5 ando are the same since for &l € Coh,, there existE’ € |7 (Cohg) such

thatU(E) =U(E"). O
Fact 3.2together withProposition 3.6mplies the following:

Proposition 3.7 (MLL+Mix Full Completeness).
For 2 < n < w, Dinat-Cohj, is fully complete foMLL-+Mix.

The above multiplicative full completeness theorenDanat-Coh,, cannot be extended
to the level o MALL+Mix if n ## w (and even fon = » we must introduce double gluing
to getMALL full completeness, as we show below). The reason for the failure is that the
categoriePinat-Cohp, n #£ w fail to be soft:

Proposition 3.8. For all n < w, the catgories DinatCohy, are not n-ary soft and hence
fail to be MALL+Mix fully complete.

Proof. The n-ary Gustave functions irProposition 2.11can be shown to be the
components of a dinatural transformatien O

Hence from now on we shall restrict our attentiorCtoh,, = HCoh.
3.2. The double gluing construction

We now present the Hyland—Tan double gluing construction. We will follow Chapter 1
of Tan [33, observing that tb glung construction applies to generalautonomous
categories, not just compact closed ones.
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Definition 3.9. LetC = (C, ®, 1, (—)1) be ax-autonomous category. Lét denote the
covariantpointsfunctorC(1, —) : C — Set and K denote the contravariagbpoints
functorC(—, 1) = C(1, (—)1) : C°P — Set.

We defire a new categorysC, thedouble gluing categorgf C, whose objects are triples
A= (A, Ap, Acp) WhereA = | A is an object o’, whereA, € H(JA]) =C(1, A)isa
set ofpoints of Aand.Acp € K (JA]) = C(A, 11) = C(1, Ab) is a =t of copoints ofA.

A morphismf : A — Bin GC is a mophism f : |A] —> |B] in C suchthat
Hf : Ap — Bp andKf : Bep — Acp are well definedset-maps, i.e.f (Ap) € Bp
and f+(Bep) < Acp.

Givenf : A — Bandg: B — Cin GC, thecompositiongf : A — C is induced
from the underlying composition i. Similarly, the identity morphism o is given by
the identity morphism ohA] in C.

Fact 3.10. For any=-autonomous categoxy, GC is a x-autonomous category.
Proof. We firstdescribe the tensor produdt® 5:
A®B= (A ®I|B|, (A® B)p, (A® B)cp) Where

(A@B)p = {Ol®,3|a6¢4p,,3 EBp}
(A®B)ep = GC(A, Bh).

Note that this last equality makes sense, because:
GC(A, BY) € C(IAL IBIM) = C(1A| ® 1B, 1Y)

We also define the unit for the tensor producthyy = (1, {id1}, C(1, 1)).
We defindinear negation y the famula:

At = (A, Acp, Ap).

It is straightforward to verify that these definitions give a symmetric monoidal category
and( )+ defines a contravariant,valutive functor with the apppriate properties. Thus
GC is x-autonomous. [

We remak that in a logical setting one can think of an objette GC as a formulaA
in C together with a collection of proofs gk (the setAp) and a ollection of refutations
of A (the setAcp).

Proposition 3.11 (Tan). GC validates theMix rule if andonly if C(1, 1) = {id1}. We also
note thatGC(1g, A) = Ap andGC(A, L) = Acp, where L = (1g)* is the dualizing
object. Finally, the evident forgetful functpr |: GC — C is x-autonomous, and has left
and right adjoints.

Observe from this thabCoh, does not satisfylix, for 2 < n < w ; in patticular this
includesRel, Coh, andHCoh (usingn = 2, 3, w, resgectively).

Definition 3.12 (Products inGCoh, with 2 < n < w). GCoh, becomes a-autonomous
category with products and coproducts, given by the following:
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(product:)
A&B = (JA|&|B], (A& B)p, (A& B)cp)
where

|A|&|B| is the product inCohy,
(A&B)p = {Ol+/3 | o GAp andﬂ GBp} = ApABp
(A&B)cp = Acp+ Bcp

(coproduct:)
A®B= (A &|Bl,(A® B)p, (A® B)cp)

where

|A| & |B| is the coproduct inCohy,
(A @ B) p = Ap + Bp
(A D B)cp = {Ol + ﬁ | € Acp and,B S Bcp} = AcpABcp.

Note that whem = 2 we have the products and coproducts @Rel which is Coh, (cf.
Definition 2.139.

3.3. MLL full completeness @sCoh, with2 < n < w

We apply Hyland—-Tan’s double gluing construction @mh,, to obtain GCoh,, with
2 < n < w. In this setion we shall observe that the categ@¢Zohj, is fully complete for
MLL (withoutMix).

Lemma 3.13. For an arhitrary x-autonomous categoty; the forgeful functor| |: GC —
C induces a canonical faithful functor

Z:Dinat-GC — Dinat<.
This functor preserves theautonomous structure with (co)products.

Proof. Given a dinatural transformation .= {ps : AE; E) — B(E; £)} in GC, let us
apply the functof |. Then we lave a family|p |:= {|pc|: A(EL; 1E]) — BUE; 1€])}

of C-morphisms. Recall that€ |=| F | implies pg = pr in GC (cf. Theorem 1.3.233)),

and thus the family determines a famjly |:= {| p [e:= pg : A E|;1E]) — B(E |;

| £ ) whereE =| £ |} of morphisms indexed by thé-objects. The dinaturality of the
family is checked by using the fullness of |. Herce we have a mapping from dinats of
GC to those ofC. Fathfulness of the functor is automatic, as is the fact that all structure is
preserved. O

Lemma 3.14. There is a canonical faithful functor
Dinat-GCoh, — Dinat-GCoh.

Proof. This mapping is determined as the unique mapping making the following diagram
commute. The vertical arrows are the faithful mappingd.efnma 3.13and the lower
horizontal arrow is the faithful mapping &roposition 3.6
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Dinat-GCoh, — DinatGCoh

Dinat-Coh, —— Dinat-Coh [
The following is the main lemma necessary for this subsection.

Lemma 3.15. The forgetfufunctor| |: Coh — Rel induces a canonical faithful functor
Dinat-GCoh — Dinat-GRdl.

Proof. First thefunctor| | induces a functof: GCoh — GRé as follows: For each
GCoh-objecté = (E, &p, &p) with E € Coh, £y € Coh(1, E) and&p € Coh(E, 1),
we defire theGRel-object| = (| E|, £p, Ecp). This is well cefined sinceCoh(E, F) C
Rel(|E|, | F ). Second, given a dinatural transformatipn= {pog : AE; £) — B(E; &)}
in GCoh, let usapply the functor]. Then we have the familyp|:= {og : AE[; E])
— B(&T; £} of GCoh-morphisms. It can be checked tl&t = F| impliesps = pr by
usingLemmas 3.2nd3.13 Hercep| determines a family of morphisms indexed®Rel-
objects. Dinaturality of the family is a consequence of the fullness of the fuhckberce
we have the mapping in the assertion. Faithfulness is automafic.

Tan [33] proved the following full completenesesult which indeed preceded the full
completeness faCoh we have referred to ifact 3.2

Fact 3.16 (Tan [33]). Dinat-GRd is fully complete foMLL.
As a direct consquence ofact 3.16together withLemmas 3.14nd3.15 we have

Proposition 3.17 (MLL Full Completeness)For 2 < n < o, Dinat-GCohy, is fully
complete foMLL.

3.4. Lifting softness frond Coh to Dinat-HCoh

In this final subsection, we shall observe ttia property of softness is preserved in the
construction oDinat-HCoh from HCoh.

Note first that softness d@f does not necessarily imply softness@hatC. Given a
dinatpx : 1 — (E11(X; X) @ E12(X; X)) B -+ B (Em1(X: X) @ Em2(X; X)),
softness of” implies that for each vector of objects € C", an instatiation pa factors
through some coproduct injection; the particular component however may depehd on

The categorie€ohy, arex-autonomous categories with products such thatghanit 1
coincides with® unit L, herce in particulaiCoh, satisfiesMix. In this case Dinat-Cohy,
sdisfies adightly stronger property tham-ary softness: every dinat of the fdlowing
form factors through one of the;

ol — Xf;QS’o'J?XﬁQS
(E11(X; X) @ E12(X; X)) B -+ B (Em1(X; X) @ Em2(X; X))

whereX;; (1 < j < kwith 0 < k) is a variable from the lisK andxﬁ is Xi; or X,f herce
is a literal.
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Let us call this notion m-ary extended softnesExtended softness is necessary for the
proof of Full Completeness féBALL +Mix in Section 4.1

Proposition 3.18. Dinat-Cohy, is m-ary ex¢nded soft for all m< n, including n= w.
In particular (for then = w case above) we have:
Corollary 3.19. DinatHCoh is m-ary extnded soft for all natural numbers m.
Proof (Proposition 3.18 Given a dinat of the form
p:1 — xﬁ?&ﬂ?xﬁ@
(E11(X; X) @ E12(X; X)) B -+ B (Em1(X; X) @ Em2(X; X))

and objectsA, consider an istantiationpa as well as the instantiatiop;. Consider
the mophism f : A — 1 induced from the morphism§ : A; — 1 given by
fi = {(a,») | a € |Ai|}. We observe that inCoh,, the fdlowing diagram is a weak
pullback, for all multivariate functorg;, and for all A:

A f)
Ei(A A = - Ei(Ai D

inj inj

LY

A D)
Ei(ATA) ® E2(Al A —— Ei(A D @ E2(Al D)

Moreover, this is still a weak pullback if anylALL-definable functor is applied to this
diagram. Softness, together with this weak pullback property, guarantegs; tfattors
through some coproductinjection; we shall shinattthis determines a coproduct injection
for the entire dinaturap. Observe tht, up to isonorphism,p; : 1 — (Ep1(1; D) &
E121:1) % --- B (Em1(1; 1) @ Em2(L; 1)), sincel? is eitherl or L, and inthis model

1 =1, whichis theunit for %.

PA

T e s e e C— Ei (A A

Py \&Ay\i)
I - EB@&D--- 7D » - EAD---

inj; inji

12 CEa(A A 8 Ea(A A injs

pL %:\j)

EREGDeELD- - EBEIADOEAD---

Qi)
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First by dinaturality ofo with respect tof, the bottom square of the diagram above
commutes (we only indicate the specified components on objects; the remaining functorial
type of p is denoted by--..) Second softness dfoh, implies that the instantiation
p1 factors through some coproduct injection, hence we have= inj; o p;. By the
previous remark, the right vertical square is a weak pullback. Moreover, the front square
and the left vertical square commutgerce, by the weak pullback propertya factors
through some aI’I’OV\pA as shown in the diagram. Thys, factors through the same
coproduct component ag does. Hence we have derived that the dméactors through a
certaing. O

Fromnow on,softnessvill always mearextended softnesssincethat is what is required
in full completeness proofs.

4, Softnessimpliesthat dinatsyield MALL-proof-structures
4.1. Full comgeteness fofSALL +Mix

Our purpose in this section is to prove thatery diratural transformation itHCoh
(hence in particulaGHCoh) corresponds to a GiramlIALL proof-structure. For this we
shall first pove thatDinatHCoh is fully complete for the subsysteBALL +Mix. The
subsystemALL is obtained fromMALL by restricting formulas and inference rules to
the fragment not using the multiplicative connect®@e(in this formulation, we také®
as primitive). Although the subsystefeALL +Mix is very elementaryin that only the
one multiplicative connectiv® exigs) full completeness for this subsystem is crucial to
obtaining the main result in this subsectid®r@position 4.1%

Theorem 4.1 (Softnes Impgies BALL +Mix Full Completeness)Suppose Dinag-is soft
and isfully complete foMLL+Mix. Then Dnat-C is fully complete foPSALL +Mix; i.e.,
if AisaZ®ALL sequentthen every dinat: 1 — Ain(C is a denotation of &ALL +Mix
proof.

In paticular, by softness and multiplicative full completenessDohat-HCoh (see
Corollay 3.19andProposition 3.Ywe obtain:

Corollary 4.2. DinatHCoh is fully complete foPSALL +Mix.

Proof (Theorem 4.1 By induction on the number of additive connectivesdn Since
everyoutermost occurrence & in a formula occurring i/ is replaced by a comma, we
may assume by convention that evéfpLL sequent A is of the form- Ay, ..., An,
where for each the outermost logical connective & (if it exists) is additive orA; is a
literal.

(Base Case—no additive connectives)
Aisofthe formés, ..., £y, where eacld; is a literal. Note that this is avLL sequent. Now
the MLL+Mix full compleeness irDinat-C implies thatA must bepy, pf, <y Pms PR
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and thep is the interpretationfoa proof consisting of successively applying thix rule
(m — 1)-times tom axiom instances p1, P, ..., = Pm, Piy:

FpLpr F P2 Py
F p1. P P2, Py

Mix

F plﬂ pfﬂ e pm—la pé_l F pm’ pé

l_ plﬂ pfﬂ ceey pm—lﬂ pé_]_’ pmv p#

Mix

(The case wherg\ contains at least one additive connective.)

e (Case 1): If there exists a formula it whose outer-most connective is &: namely
Alis Ay, A1& A2, Ao: then by omposing the projectionsithh respect to this &, two
dinatsp; are obtained with = 1, 2 (note: projections are natural, so they compose with
dinaturals):

oi 11— Aq, A, Ao,

By the induction hypothesis;; is a denotatio of a poof fori = 1, 2. Hence so i®
because to obtaip from p1 andp, corresponds to the followinglALL inference

Ay A, A Aq, Ag, Ao
FAq, A1& Ag, Ar

&

e (Case 2): Negation of Case 1: all the outer-most connectives of the formulas (except
literals) in A are®. Then A is of the form A1 & A1, ..., An1 & An2, £, Wherel
denotes a sequenég, ..., £k of literal-types. Softness means thafactors through
one of theds; hence we obtain a factorizatign as follows:

A1 ® A1z, .. A, Al @ Anp, L
Iy inj

1 p

A1 ® Az, ..., At ® Aig, ..., An1 ® An, £

By the induction hypothesisy’ is a denotation of aroof, hence so ig because to
obtainp from p’ corresponds to the followinfALL inference

FAL® A, ..., Aij, oo, Al ® Anz, £ ®
FAL® A, ..., A1 ® Ao, ..., An1 ® A2, £

In other words, the abov@-rule induces a natural transformatiomj which composes
with the dinaturap’ to give the dinaturgb. [
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4.2. Girard’'sMALL proof-structures

Now we recall the definition of multiplicative—additive proof-structure invented by
Girard [17]:

Definition 4.3 (MALL Prod-Structure (cf. 2,17,31])). A proof-structure © consists of
the following:

e Occurrences of formulas and links. Eaattorrence of a link takes its premise(s) and
conclusion(s) from among the formula occurrences and satisfies column (i) in the table
below.

e A set of eigenweights{p.,,..., pL,} whereLy,...,Lp is the list of all &-links
occurring in® and eaclpy, is aboolean variable associated with &-lirik.

e For each occurrencé of a formula and occurrende of a link, aweight w(A) and a
weight w(L), each of which is a nonzero element in the boolean algebra generated by
the eigenweights and satisfies column (ii) in the table below, as well as (iii) and (iv):

. . premise(s) . . . . .
link L 0 LWSiOﬂ(S) (ii) weights ofL and its premise(s):
axiom-link A At
A B
®-link A®B w(L) = w(A) = w(B)
A B
RBlink ARB w(L) = w(A) = w(B)
A B
&-link A& B w(A) = pL.w(L) andw(B) = —pL.w(L)
_A_
®1-link AdB w(L) = w(A)
_B
®2-link AdB w(L) = w(B)

(iii) w(A) = Yw(L) with L ranging over the links whose conclusionAs Moreover the
sum satisfies thdisjointness property.e., if L1 andL are distinct links sharing the same
conclusionA thenw(L1). w(L2) = 0.

(iv) w(A) = 1 for a formulaA which isnot a premise of any link, i.e. which iscanclusion
of 6.

Moreover a proof-structur® satisfies the following two conditions:

dependency condition: Every weight of a formula and a link ir® is a product of
eigenweights and negations of eigenweights (up to boolean equivalence), i.e. is
amonomial

technical condition: For everyweightv occurringin® and a &-linkL, v.—w(L) belongs
to the boolean algebra generated by the eigenweights distinct from
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Throughout the paper we take as convention that all monomial weights considered
areredwced i.e. that @currences okp.ep (with € € {1, —}) are replaced byp and
occurrences op.—p are replaced by 0. Under this convention we define

Definition 4.4 (Dependency). A (reduced) monomial weighi depends on an
eigenweight pvhenep appears inw with € € {1, —}.

The following is a basic property of nonzero monomial weights:

Lemma 4.5. For nonzero monomial weightsandw suchthatO # v C w, if w depends
on an eigenweight p thenalso depends on p.

Note that_emma 4.5cannot be extended to polynomial weights.

Girard’s technical condition has also been examined by other authors. Let us summarize
theknown facts:

Remark 4.6 (Girard’s Technical Condition). The following are equivalent to the techni-
cal condition:

(i) Abramsky—Melles P]: For every weightv occurring in@, if v depends orp. then
v C w(L).

(ii) O. Laurent B1]: w(L) does not depend op_ and for every weight occurring in®,
if v depends o thenv C w(lL).

Remark 4.7 (Replacing® by % in Structures). If in a proof-structure, we choose a
particular ®-link and we replace it by &link, and we replace all occurrences @f
appearing hereditarilgelow itby % , then theresulting structure is still a proof-structure.

Finally, we would like to make an important remark on weight assignments for cut-free
MALL strucures.

Remark 4.8 (Weights and Additive Links: Softness MALL Prod-Structures). Each
link in acut-freeMALL proof-structure® corresponds to a unique connective occuring
among the conclusions @. Howewer there may exist several links corresponding to any
given connective in the conclusion, becausadditive contractions. If a connective in a
conclusion of@ has several corresponding links hereditarily above it, their weights must
all be strictly less than 1, since moving upwards in the structure, weights strictly decrease
in additive contractions. Hence, if the weight of a linkéhis 1, it is theonly link corre-
sponding to its namesake in the conclusion.

In fact, in Hamano24] (cf. Proposition 1 of24]), the following proposition is proved,
as a consequence of Girard's technical conditlmarbitrary cut-free proof-structure has
alink whos weght is 1 The proposition is calledoftness oMALL proof-structuresince
it is shown to be a proof-structure counterpart of Joyal's categorical softness (see also
Remark4.15below).

In Hamano 4] softness ofMALL proof-structures is shown to imply the following
sayuentialization withou®.

Proposition 4.9 (BALL +Mix Sequentialization (cf. Hamang&4])). EveryMALL proof-
structure without®-links isBALL +Mix sequentializable.
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This proposition is later used in provihgmma 4.14

The proof-structures arising from dinaturals will be shown to enjoy two distinguished
properties introduced below (the unique link property and the no duplicate axiom-
link propery). These will be proved later in another subsection Qirollary 4.44 and
Corollay 4.55. These propertiewill be crucial to our full completeness theorem (in
Section § which isbased orRel-like models.

Definition 4.10 (Unique Link and no Duplicate Axiom-Link Properties). MALL proof-
structure® is said to satisfy thanique link propertyand theno duplicate axiom-link prop-
ertyif the following hold resgectively:

— unique link property (UL): If L in © is either a®-link, ®link or &-link with
conclusionD then it is the only link whose conclusion is that occurrencdofi.e.,
there exist in® no distinct binary links whose conclusions are the same occurrence.

— no duplicate axiom-link property (NDAL): There occur in®@ no distinctaxiom-links
axi, axa, ..., axy (with n > 2) whose (two) conclusions coincide and the sum of
whose weights is 1, i.é9 has no occurrences of axiom-links of the following form

axy

i=n

| axy | || with > w(ax;) = 1.
o o i=1

A UL (respective\NDAL) prod-structure is a proof-striare which s#isfies hie unique
link (respectively no duplicatextcom-link property) property.

In [17], Girard definesequentializableMALL proof-structures. His adequacy theorem
stakes that with everALL proof, we may associate a sequentializable proof-structure (see
Remark 3 after Definition 5 ofl[7]). A delicate point is that the proof-structure associated
with a MALL proof is not necessarily unique.

We rder to Hamano 24] for an eplicit algorithm for the adequacy theorem
(Lemma 4.11below) which yields the unique link property. This lemma will be crucial
when we later showhiat every dinat irHCoh is associated with a proof-structure (see
Corollary 4.55:

Lemma4.11 (Adequacy Theorem and UL (cf. Hamar@d])). Every MALL+Mix proof
7 is interpreted by aMALL+Mix sequentialiable proof-structure®,, which satisfies the
unique link property.

Proof. If we take the largestooundaryas defined in the proof of2f] to interpret
&-inferences, the interptation satisfies the property[]
This property will be mentioned again laterliemma 4.34

Remark 4.12. NeitherMALL nor MALL+Mix sequentializable proof-structures necessar-
ily satisfy the unique link property. We emphasiagain that this arises because the assign-
ment of MALL proofs toMALL proof-structures is not necessarily unique. This is quite
different from what happens in the purely multiplicative case.
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4.3. From dinats tMALL proof-structures

In this subsection we shall show how to constM&tLL proof-structures from dinatural
transform&ons on a soft categoy which isMLL-+Mix fully complete and whosBix is
monic (Proposition 4.1% This guarantees that every dinatHCoh, herce in particular
GHCoh, is assocated with aMALL proof-structureCorollary 4.55).

First, we recall the following Soundness Theorén2]]:

Lemma 4.13 (MALL+Mix Soundness of the Dinat Interpretatioret C be an arbitrary
x-autonomous category with products and coproducts, which satigfies Every
MALL+Mix sequentialiable proof-structure ©® uniquely determines a dinatural
transformation ©] of C suchthat[ ©] is a denotation of MALL+Mix proof. This induces
a mapping

[—] : MALL+Mix Sequentializable Proof-Structures> Dinat-C

Proof. We shall prove this by induction on the number of &-connectivesin the conclusions
of 6.

(Base Case) This case is where the conclusiorts afe anM@LL sequent. In this casé
is identified with a unique cut-freBILL proof-structure, determined by the set of axiom-
links, and these axiom-links uniquely determine a dinat.of

(Inductive Step) The case where some conclusion® ofontain a &-connective. An
important observation in this case is that, fraime softness oMALL proof-structures
(cf. Remark 4.8, © has a &-link whose weight is 1. Hence BRemark 4.8this &-link
must be the unique &-link corresponding to the & in the conclusion. Thus we shall
denote by{&1, ..., &n} the nonemptyset of all &-links whose weights are 1: these
each correspond to a unique and distinct namesake in the conclusipndénotes an
eigenweight associated with thg &he 2' proof-structures9[p1 = Kq, ..., pn = Knl
with eachk; € {0, 1}, are well defired, indeed ar®ALL+Mix sequentializable. From the
induction hypothesis, dinaf®©[p1 = ki, ..., pn = kn]] are defined. We can uniquely
define a dinaf{ @] from these dinats by the functoliig of the connectives binding the
&;is. The fct that[ @] is actually a denotation of RIALL+Mix proof will be deferred to
Example 4.29 O

The key point of this subsection is the following lifting lemmaefnma 4.1% which
follows from MALL+Mix Soundness for the dinatural interpretation &érhereMix is
monic. We also require the observation that applicationsiefare commutative; i.e., the
result of two applications afix to two distinct®s is ungue and independent of the order
of application. Categorically, this is a consequence of the naturality ofithenorphism.

We first ddine a serieof mappings 1k by induction on natural numbeks > 0 so
that eacH ¥t becomes an extension pf¥. For the basease, defing 1° to be[ ]
from Lemma 4.13 Assume inductively thaf ¥ is well defined, tha® is aMALL proof
structre andp is a dinat. Given® ¢ Dom{ 1%, we will say that©® e Dom %t if (i)
Mix o © € Dom{ ¥ for some choice of @-link in © to whichMix is applied, and (ii)
there exiss a dhatp such that the type of is that of © andMix o p = [Mix o O]X. Since
Mix is monic, p is unique if it exists. Hence for such@ e Don{ 1t1\Dom 1¥ satisfying
(i) and (i), we defind ©]K*1 .= p. Tha is, the definition is described by the following
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commutative figure, wher@’ = Mixo © andp’ = Mix o p. Note hat by construction, the
types of© andp coincide:

[ ]k+l
© pererninniiinaa - 3[0

Mix Mix

(_)/ ]k p/
Since @plications of the monicMix are commutative,[ @] is well defined
independently of the choice g-link to whichMix is applied.

Hence he above yields an extension ¥t of the mapping ¥ if we additionally
demand that fo® € Dom[ 1K, [61%t1is defined to bé¢O@1K. In paticular the domain of
[ 1%t contains that of 1% and is a certain subset MALL proof-structures.

Second, we define the mappifg]* as the union of the serids ¥ of extensions: i.e.,
[OT=p whenevel ©1% = p for somek > 0. Thus we have defined the mapping*

[ 7" : A Certan Subset ofMALL Prod-Structures— Dinat-C.

Lemma4.14 (Lifting of the Dinat Interpretation)Let C be an arbitrary x-autonomous
category with products and coproducts, which satisfies, which weassume is monic.
Then the mapping 1* is a lifting (extension) of the interpretatigr-] of Lemmad.13such
that the ype of[©]* is thatof the proof-structure® and[ ]* has the following property
(M:

(1) lifting property of [ 1* with respect to Mix:
Let p andp’ be a pair of dinats irC suchthat o’ = Mix o p and let® and ©’ be
a pair of proof-structures such tha’ = Mix o © (this means tha®’ is obtained
from O by a hereditary replacement of sorgelink (i.e. together with hereditary
occurrences of thes) by ®links, in the sense dRemarld.7). Then itfollows
thatif [©']* = p’ and the ype of © coincides with that of, then[OT* = p.
Wedescribe this property by the following commutative “figure”:

where the rjht and left vertical arrows mean respectivgly = Mix o p and
O’ =Mixo 6.

In particular the property(t) implies the commutativity of ]* andMix; i.e., it follows
that[Mix o O]* = Mix o [@]* for every® in the donain of [ ]*.



26 R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1-63

Proof. This follows directly from the construction of 1*t1 from [ 1K and the definition
of[ 1*. O

Remark 4.15 ([ 1* is Not Necessarily Surjective). IDinatC is fully complete for
MALL+Mix, then te lifting [ 1* coincides with[ ] itself. But the converse is not
true in general since éhimageof the mapping 1* does not necessarily cover all the
dinatural transformations @f. For exanple, letC = Cohy, for n # . Then-ary Gustave
dinaturalsR mentioned inProposition 3.&how thatCoh,, is not soft. On the other hand,
Hamano 4] shows thatall Girard’s MALL proof-structures are soft, in the sense that a
certain factorization/splitting property #ALL proof structures corresponds (under the
mapping[ 1*) to softness of thaturals. Hence, igeneral, the image ¢f 1* is soft, so the
Gustave dnaturals cannot be in this image.

Continuing the above remark, if we impose additional condition§,dhe irterpretation
[ 1* above does indeed become surjective:

Proposition 4.16 (Every Dinat has a Weakly Associated Proof-Structutedt C be a
x-autonomous category with products and coproducts, which satisfiesSuppose”
satisfies the following three conditions:

(i) Dinat< is soft.
(ii) Dinat< is fully complete foMLL+Mix.
(i) Mix is monic in DinatC.
Then for every dinatal transfamation p of C, there eists aMALL proof-structure®
suchthat p = [©]*; thatis,[ ]* is surjective.

In the dove, O is referred to as aveaklyassociated proof-structute the dinatp.
Proof. By induction on the number @b-connectives in the type of an arbitrarily given

(Base Case) The case where the type obntains na: In thiscase the type of is ZALL
and the assertion follows froifheorem 4.1that is, p is in the image of 1.

(Inductive Step) Choose one of the tensors in the type @&liminate that tensor (replace
it with a B by composing withMix) to obtain o’ := Mix o p. Then by the inductive
hypothesis applied tp’, there exits a proof-structur®’ suchthatp’ = [6']*. Theproof-
structure©, obtained byRemark 4.7 has ype coinciding with that ofo; moreover, it
satisfies®’ = Mix o ©. Then by poperty(t) of the map[ 1*, © is interpreted as the dinat
[©]* and we have

Mixo [O]* = [Mixo O]*

[O01F (since®’ = Mix o O)
o' (sincep’ =[O'T)
= Mixop (sincep’ = Mix o p).

Thus[O]* = p, sinceMix is monic inDinatC. [

Let us examine the inductive stepfmoposition 4.16n more detalil.
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Remark 4.17 (Recoveringz, from a Sequetmalizable=}, ). Let =, denote a proof-
structure as @scribed inProposition 4.16suchthat [5,]* = p. The fdlowing is an

explicit algorithm for constructing such &,. From te given dinatp : 1 — I', by

composing withMix maps, we obtain the din:{a/1>|28 whose type is &ALL sequentl”,

where I is obtained fromI" by replacing all of the occurrences @gf by ®. That is,

if '=T[A11Q A12,..., An1 ® An2lthenI” = I'[A11 B A1o, ..., An1 B An2]. Define
| o |28 , as the fdowing ZALL dinat.

r Mixes I

[0og

1

Thus by®ALL +Mix Full Completenessitheorem 4.}, lplag is a denotatio of a pioof.
Thus byLemma 4.13a ploof-structureEV%? for |p|@ is obtained. A proof-structurg,

weakly associated witlp is obtained fromEl% by replacing all occurrences & links

and of the associaté@ls, which are in the image of Mixes, [®-links and®, resgectively.
Note thatRemark 4.7%nsures that the resulting structug s still a proof-structure. This
proof-structureS, is often cenoted byix~ o EMlg.

We define he setWPSp) of proof-structures weakly associated with a dinags
follows:

WPSp) :={6 | p =[O]"}.

We shall later refine this to a nonempty sub$eEp) € WPSp) of associated proof
structures(Definition 4.45. The latter will be shown to satisfy a fundamental property: a
dinat p will denote aMALL proof iff all structures inrPSp) areMALL proof nets (cf. the
next subsection, andorollary 4.53.

4.4. MALL proof-nets

Next we recall Girard’s sequentialization theoreh][for proof-structures. A crucial
step in the theorem was his introduction of the notiofjupfipsin a switchingS, as defined
below:

Definition 4.18 (Switching and Graphs of Additive PSs (c2,17])).
e A switching Sof a proof-structure consists of the following three choices:

(i) The choice of avaluationgs, which is a tinction from the setp,,, ..., p.,} of
eigenweights tq0, 1}. ¢s induces a function from the weights 6fto {0, 1}. The
slice slgps(©)) is obtained by restrictiptheproof-structured to the formula and
link occurrence®© suchthatys(w(0)) = 1, i.e. we remove &formulaand link
occurrences ir® whose weight under the valuatigr is 0.

(i) For each®link L of sl(ps(©)), a thoiceS(L) € {I,r}.
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(iii) For each &-linkL of sl(¢s(©)), a dhoice of a formuleS(L), called gump of L, so
thatS(L) is a conclusin of a link whose weight depends @n. A jump isnormal
if S(L) is the premiseA of L suchthatps(w(A)) = 1. A proper jumpis a jump
which isnot normal.
e A normal switchings a switching vith no proper jump.
e For a switching S of a proof-structured, thegraph Os is drawn as follows:
— The vetices of ©s are the occurrences of the formulasstifps(©9)).
— For all atiom-links of sl(¢s(©)), we draw & edge between its conclusions.
— For all ®@j-links of sl(¢s(©)), we drawn aredge between the conclusion and the
premise.
— For all®-links of sl(ps(©)), we drawn aredge between the conclusion and the left
premise, and between the conclusion and the right premise.
— For all Zlinks of sl(¢s(0)), we drawn anedge between the conclusion and the
premise (left or right) selected (L ).
— For all &links of sl(¢s(©)), we drawn aredge between the conclusion and the jump
S(L) sekcted bysS.

We will write sl(¢(@)) for sl(ps(©)) if Sis clear from the context.

Remark 4.19. Let us make some remarks on slices.

(1) A slice is a structure in which all additive links have now become unary. Thus, a slice
can be identified with aMLL proof-structure by erasing every (unary) additive link.

(2) Following up onRemark4.15 the interpretation 1* inherits from[ ] the following
property of commuting with valuations: for every valuatiprior 0, [sl(¢(©))]* =
o([O]"), wherep([@]*) denotes the dinat resulting from@1* by composing with
projections which are natural transformations (determineg)by

(3) If DinatC is fully complete forMLL+Mix and aMALL proof-structure® is in the
domain of the iterpretatiori 1*, then evey dice sl(¢(0)) of © is aMLL+Mix proof-
net by property 2 above.

Definition 4.20 (Proof-Nets). Aproof-netfor MALL is a proof-structure suchthat Os
is acyclic and connected for every switchiBgA proof-netfor MALL+Mix is a pioof-
structure® suchthat ©s is acyclic for every switching.

Proposition 4.21 (Sequentibzation Theorem foMALL (Girard [L7])). A MALL proof-
structure isSMALL sequentialiable if and only if it is aMALL proof-net.

In [24] Hamano proved the following sequentialization theoremNXLL+Mix.

Proposition 4.22 (Sequentibization Theorem foMALL+Mix ([24])). A proof-structure
is MALL+Mix sequentialiable if and only if it is aMALL+Mix net.

Indeed, as a qollary of this MALL+Mix sequentialization theorem, a slightly stronger
form of MALL sequentializatin can be obtained:

Corollary 4.23 (cf. [24]). A proof-structure® is a MALL proof-net if and only if (i) for
every switching S the grapBs is acyclic and (ii) for every normal switchingyShegraph
Og, is connected.
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Definition 4.24 (Associated Normal Switching). LeB be a switching for a proof-
structue. Associated witts there is aunique normal switchingp which agrees witts
except all jumps inSg are normal (these are determineddyy). S is calledthe associated
normal switching of S

Fromnow on,$ will denote the associated normal switchingQf
Finally in this subsection, whave a lemma on weakly associated proof-structures for a
dinat. This lemma gives the fundamental connection between proof-structures arising from
dinats and proof-nets.

Lemma4.25. A dinat p denotes aVALL proof iff the set of weakly associated proof-
structures WP&) contains some proof-nél.

Proof. The only if partis direct: for a dingt which is a daotation of aVIALL proof, there
exigs a poof-net® suchthat[ O] = p.

As for the if part, suppose there exis® € WPSp) suchthat & is a prod-net,
hence is sequentializable fMMALL. Recall thatp = [©]* and[ ]* is a lifting of [ 1],
as in Lemma 4.14 Note hat in this case® is in the domain of[ ], thus we have
[@]1* = [©]. This means thap is a denotation of MALL proof by the soundness theorem,
Lemma4.13 O

4.5. Associated proof-structures

Let p be a dinat. The purpose of this subsection is to obtain a nonempty subset
PSp) € WPS)p) of (strongly) associated proof-structures by adding a certain constraint
onWPS)p). The onstrained clasBSp) sdisfies astrong soundness theoremdenotes a
MALL proof iff all elements oPSp) are proof-netsCorollary 4.53. The clasPSp) of
associated proof-structures will be important in the remainder of this paper.

The constraint we shall impose in formif§p) from WPSp) is the notion ofiegal
total splittingsfor a dinat| p |Q§.4 Total splittings are identified with a proof which the
dinat denotes. There may be several syntactically different total splittings arising from one
dinatural denotation; however legal tbsplittings yield our Fundmental Proposition and
its Corollary 4.5Q which sates that our association of structures to dinats preserves cycles
under semantical splittings. The FundameRtadposition directly implies the soundness
of the asociation Corollary 4.53.

45.1. Semantical splittings of dinats
Definition 4.26 (Semantical Splittings of a Dinat). For a dinabf MALL type, we define
{®, mix, B, ®, &}-splittings of o as follows:

e (Binary splittings):o is split into two dinatsr; andoz according to the following:

®-splitting: If o is written aso1 ® o2, theno of type A1, Az, A1 ® Az is split into
dinatso; of type A, A withi =1, 2.

4 Recall that a proof-structurg), weakly associated witp is Mix~ 1o EM@ (Remark 4.1y and that p |@

is a denotation of a proof, BALL +Mix full completeness Theorem 4.1
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mix-splitting: o is written aso1 Mix o2 (More simply ag1, 02), theno oftype A, A2
is split into dinatss; of type 4; withi =1, 2.

&-splitting: If o is written aso1& o2, theno of type I', A1& Az is split into dinatss;
of typel’, Ay withi =1, 2.

e (Unary splittings):o is split into a single dinat; for somei € {1, 2} according to the

following:

R-gplitting: If o is written as®(o1), theno of type I", A B B is split into a dinab
oftyperl’, A, B.

d1-splitting: If o is written as®(o1), theno of type I', A1 @ Az is split into a dinat
o1 of typerI, A;.

Po-splitting: If o is written as®(o2), theno of type I, A1 & Az is split into a dinat
o2 of typerl’, As.

That is to say, each splitting corresponds to the assochtdd_+Mix rule.
A total splitting of a dinab is a series of successive splittings so that no possible splitting is
left to be done. A total splittingerminatesf all the terminal dinats are identities on atoms.

Remark 4.27 (Remarks on Splittings).

(1) LetC be an arbitrary-autonomous category with products and coproducts, which
satisfiestix. For evenC-dinatp which denotes aMALL+Mix proof, al total splittings
of p terminate; i.e. any successive iteration$®f mix, B, &1, ®2, & }-splittings of p
yield a set of identity dinats.

(2) A total splittinge is represented as a tree, wheach node corresponttsa splitting
and where each edge attached to a node sgorels to the resulting dinat(s) after a
splitting. The root of the tree represents the first splitting and the leaves of the tree
represent the terminal dinats.

Example 4.28 (Tree Representation of Splittings). The following are tree representations
of two total splittingse ando’ for a dinato % (01& p2):

B PN Rm{m c\m_x/pz
N %’%&pz o, PT &%/021

11X
o, p1& p2 0, p1& p2
‘ o B (p1&p2) ‘ o B (p1&p2)
Splitting o Splitting o’

In the dove B (andp’), y1 andy» are total splittings foe, p1 andpy, resgectively.

Example4.29 ([O]is a Poof). In Lemma 4.13(the soundness of the dinat interpre-
tation), our construction of[ ] ensures thaf©®] semantically splits, in a manner
corresponding ta 9litting of a termnal link of ©. Moreover, the image df ] is closed
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under semantical splitting. Hence we have that the di@atorresponds to MIALL+Mix
proof.

As a special case of (1) éfemark4.27, we have

Lemma4.30 (Total Splittings Terminate foHCoh-Dinats of ZALL Type). For every
HCoh-dinato of BALL type, total splittings oé terminate; i.e. any successive iterations
of {mix, B, ®1, P2, & }-splittings of o yield a set of identity dinats.

Proof. From theBALL +Mix full completeness ofDinat-HCoh of Corollay 4.2 [
We define a legal total splitting by imposing constraints on &-splittings as follows:

Definition 4.31 (Legal Total Splitting). Leto be a dinat ofMALL type with a total
splitting «. « is legal if the splittings in it satisfy the following constraints:

— Bvery &-splitting for a dinat occurring inx is executed under the proviso that it is
impossble to subsequently execute af®, mix, B, @1, ®2}-splittings to the dinat.

In terms of the tee representing, the above constraints say that for every &-splitting
node, the unique dinat attached to the node teetfoe splittingcannot then be split by any
further{®, mix, %, &1, ®2}-splittings.

Example 4.32. The total splittingx in Example 4.28s legal (if 8, y1 andy» are). On the
other hand, the total splitting’ is not legal: although the dinat, p1& p2 can be split via
mix, instead a &-splitting of the dinat is executed first.

FromRemark4.27, we have thédollowing:

Corollary 4.33 (Existence of Legal Total Splittings).etC be the same as iRemark4.27.
For everyC-dinat p which denotes aMALL+Mix proof, there exists at least one legal total
splitting.

4.5.2. Strongly associating proof-structures with dinats

Ourgoal in this subsection is to improRroposition 4.1&vhich says that under appro-
priate conditions on a categafyacC-dinat has a weakly assocgat proof-structure. Indeed
we completely characterize tho€edinats that denot®ALL proofs Proposition 4.58
This involves, as we show i@orollary 4.55 thatMALL proof-structurs essocated with
dinats ontHCoh andGHCoh satisfy the UL and NDAL properties.

Let o denote aterminating total splitting for a dinat. Then every such can be seen as
aMALL+Mix proof whicho denotes. Of course, for a given dinat a total splittiag-even
if one exists—is not uniquely determined. This corresponds to the fact that ardiaait
denote severayntacticallydifferentproofs. We shall first show that with every sughwe
can associate a canonical proof-struct@@) satisfying theunique link property and the
no duplicate axiom-link property. For this we begin with several lemmas and definitions.

First, we demonstrate the canonical interpretation of logical rules. This will ensure the
unique link property (cfCorollary 4.44).

Lemma4.34 (Canonical Proof-Structure Interpretation of Logical RuleSiippose a
MALL+Mix proof = is obtained from proof(syr; by means of a logical rule@ e
{®, mix, B, ®1, @2, &}; i.e., the last inference of is @. From any UL proof-structures
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6; whose sequentializations ang, acanonical UL proof-structure is uniquely constructed
such that its sequentialization is and its splitting coresponding to@ yields the proof-
structure(s) 6; (here, a splitting of such a proof-structure is obtained by removing a
terminal @-link).

The proof-structure which we construct above is denote®by® 6., O1nix 6,
(more simply©1, ©2), B(61), ®(61), ®(62), or ©1& O3 , depending upon the choice of
logical rule @.

Proof. We shall pove the case wher@ is & (theother cases are trivial). The algorithm
given in [24] to interpret &-inferences tells us how to merge two proof-structudgsand

6 with the same contexhithe onclusions. Let us take the largéstundaryamong other
boundaries, as defined in the proof. Note that the largest boundary is uniquely determined.
Thus we canonically obtain a proof-structue& ©- for the assertion. (O

Remark 4.35. The above lemma states that the canonical interpretation of logical rules
preserves the unique link property. Note however that the canonical interpretation does not
necessarily preserve the no duplicate axiom-link property definBeifimition 4.10 This

is why we introduceDefinition 4.36below.

Next we define a rewriting relation- and demonstrate some of its properties; in
particular, it will ensure the no duplicate axiom-link propertydarollary 4.44

Definition 4.36 (Rewriting to Shrink Duplicate Axiom-Links). Let us define a rewriting

relation > from duplicate axiom-linkax, axs, ..., ax, With Z}j w(axi) = 1into the
single axiom-linkax suchthatw(ax) = 1:
aXnp
ax
: >
o ax1 OlJ‘ o O[J‘

This is extended to a reduction relationon all proof-structures.
Let us calatupleaxy, axs, ..., ax, of axiom-links aredexfor .

Lemma4.37 (Uniqueness of Normal Form wit). The normal form for a proof-
structure under the reduction relation is unique.

Proof. First, observe that occurrences of redeaesuniquely determined in every proof-
structure by virtue bthe wnstraint thatZE’l1 w(axj) = 1. Moreover, rewriting> does
not give rise to any new redexes(]

Lemma 4.38 (Invariance of the Interpretatidn]* under>). SupposgO]* = p. If O >
6, then[©]* = p. Thatisto say the interpretatiof ]* is invariant under reduction by.

Remark 4.39. Lemma 4.3%nsures that one can applyin a proof-structure associated
with a dinat since an application preserves the interpret@tipn
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The previous lemmas allow us to obtain canonical UL and NDAL proof-structures
corresponding to terminating total splittings:

Proposition 4.40 (Canonical Proof-Structurfer Terminating Splittings).Let p be a
dinat Every terminating total splittingx for p is canonically interpreted by a unique
MALL+Mix sequentialiable UL and NDAL proof-structur® («) suchthat[ ©(«x) ] = p.

The proof-structured(«) above, whose sequentializationas is cdled the canonical
proof-structure for terminating total splittingr.

Proof. By induction on the size ai, for a dinatp. We shallprove the case whie the first
splitting of « is a &-splitting. This yields total splittings; for dinatp; withi € {1, 2} (the
other cases are trivial). By induction hypothesigs interpreted by a structur@(«;) such
that[@(aj)] = pj withi € {1, 2} and ©(«;) satisfies UL and NDAL.

First, from Lemma 4.34we have acanonical UL proof-structur® («1)& ©(«2) such
that[©(x1)& O(a2)] = p. Note hat O(x1)& O (a2) may have duplicate axiom-links even
if the individual ©(«j) are NDAL proof-structures (cRemark4.35.

Second, byLemma 4.37 O(«1)& O(a2) is uniguely reducible to a proof-structure, say
O(a);i.e., O(a1)& O(a2) >4 O(a), Wherer>, is the reflexive transitive closure of. By
virtue of Lemma 4.38weobtain thaf ©(a)] = p. O

By using the notion of canonical proof-structure$obposition 4.40we are na ready
to defire the fdlowing:

Definition 4.41 (Resticting[ Jto[ ]-). We restrict the mapping ] of Lemma 4.13t0
the maping[ ]- by restricting® to only structures given by legal total splittings, i.e.

O ¢ Dom[ ]- iff
O = O(a) for some leal total splittinga of the dnat[©].

Since brany = in the domain of ], [Z] denotes MALL-+Mix proof, there exists at least
onelegal total splittingx for the dinatf =] (cf. Remark4.33, hencg ©(«)]- = [Z]. This
implies that the image df ] coincides with that of the origindl ].

Lemma4.42 (Lifting[ 1* of [ ]_). The inkrpretation [ ]_ has lifting [ ]* as in
Lemmad.14 Then[ 1* becomes a resgttion of [ 1*.

Remark 4.43. If a proof-structure® is in the domain of 1*, then it stisfies the unique
link property and the naluplicate axiom-link property biProposition 4.40

With this remark,Proposition 4.16of the previous subsectiodiredly implies the
following:

Corollary 4.44 (Every Associated PS for a Dinat Satisfies UL & NDAL)et C be a
x-autonomous category with products and coproducts, which satisfiesSuppose’
satisfies the following three conditions:

(i) Dinat< is soft.
(i) Dinat< is fully complete foMLL+Mix.
(iif) Mix is monic in Dinat<.
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Then for every dinatal transfamation p of C, there eists aMALL proof-structure®
suchthatp = [©]* . Every such® satisfieste unique link property and the no duplicate
axiomiink property. © is said to be arassociated proof-structufer a dinat p.

Proof. The proof is similar toProposition 4.16by noting the following for each case:
(Base Case) The image pf]_ coincides with that of ]; then we gply Remark4.43
(Inductive Step) The properties UL and NDAL are preserved under replacement of a
Rlink by a®-link. O

Until the end of this subsection, |6t denote any category satisfying (i), (ii) and (iii)
of Corollary 4.44 herce in particulaHCoh. UsingCorollary 4.44, we can now define the
nonempty sePSp) of proof-structures (strongly) associated with a dipat

Definition 4.45 (Strongly Associated Proof-Structures). lgebe a dinat of’. We define
PS(p) =1{0 | p =[O}
By Remark4.17, which gave a direct algorithm to define]*, it may beequivalently
defined by
PS(p) = Mix™" o PSply).

Since| p |29 is a denotation of &ALL +Mix proof by Theorem 4.1PS| p |Qg) in the
above may be explicitly described by

PS(|,o|29) ={ O(x) | aisalegaltotal splitting fOf,olag }.

First wenote thatPSp) is anonempty subset dWPSp) since[ |* is a restriction of 1*
and the images gf 1* and[ ]* coincide. Second, note that all proof-structuées PSp)
satisfy the unique lik property and the no duplicate axiom-link propertyRgmark4.43

We shall efer to elements 0P p) asassociated proof-structurashen the meaning
is clear. We automatically have the following lemma, corresponditigetoma 4.25f the
previous subsection:

Lemma 4.46. A dinatp denotes &MALL proofiff 36 € PSp) O is a proof-net.

In the next subsection, we shall considerably strengthen this lemma.

4.5.3. Soundness of associated proof-structures

Our motivation for imposing legality in defining ]— (hence toits lifting [ 1*) is to
obtain a much stronger propositio8drollary 4.53 below) thanLemma 4.46above: this
will guarantee thaip denotes MALL proof iff all elements 0P p) are proof-nets.

We begin by a more deailed analysis of splittings of dinats, which we call the
Fundamental Proposition.

Proposition 4.47 (Fundamental Propositionsuppose that &-dinat p can be split via a
@-splitting with @ € {®, mix, ¥, ©1, ®2, &}. Then &ery © € P p) has the correspond-
ing @-splitting.

Proof. We shall prove the assertion by induction on the number of &-connectives in the
type of dinatp.
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(Base Case—no &-connectives)
The assertion is obvious since in this casis identified with a multiplicative dinat.

(Induction Case)

The assertion is obvious for a splitting @ {%, ®1, ®2, &} since by virtue of the

unique link property of9, the corresponding @-link i® is terminal and every terminal
{®, ®1, B2, &}-link can be split. Thus we shall prove the assertionddnat are split into

two dinatsp1 andpz via @ € {mix, ®}.

First we ecall, fromDefinition 4.45 that @ is of the formMix—1 o 6 («) with | © |9 =
O(a) € PY]p|, ) for acertain legal total splitting for | o |2g .

In the following Cases 1 and 2, legality afplays a crucial role. For these cases we
introduce some terminology as follows. Recall frétemark4.27 (2), that weidentify «
with a tree. We sathat adinat appears in« if it appears in sora elge of the treex.
We say that ppearances of dinats in areindependenif the subtrees determined by the
corresponding edges afare disjoint.

(Case 1) The case whepesplits via mix; in this case can be written ag1, p2 by making
the splitting explicit. Note first that the dinap |Q iS|p1ls,]p2|s, herce can also be
splitinto| p1 |2 and| pz2|% via mix. Since the total splitting for |p|ag is legal, we have
the following:

Observation: There exist s€&i }ici and{o2j}jcs of dinats satisfing (i) and (ii):

(i) Eachofoyj andoyj appearsin the total splittingand all appearancés:;, o2j Jic, jeJ
are independent.

(i) Eachoy (respectivelyy;) is obtained from p1 | (respectively p2 | ) by a series
of splittings without any use of &-splittings.

From theobservation, it holds that the proof-structyr@ |» is aunion of two proof-
strucures=; € PY| p1 |g) and =2 € PY] p2 | % ). Thus we conclude that the proof-
structure® is aunion of two proof-structure®; € PSp1) and @2 € PYp»), where
Oi :=Mix 1o 5 withi € {1, 2}. Thus© has the correspona mix splitting.

(Case 2) The case whepesplits via®; in thiscasep can be written ag1 ® p2 by making
the splitting explicit: Note first that p |28 is|p1lx B | p2 |, herce can be split into

| p1l2y and| p2 |5 via mix (following a % splitting). Since the total splitting: for 1012 is
legal, we have the same observation as inaiheve Case 1. From the observation, it holds
that the proof-structurg© | is aunion of two proof-structure§1 € P p1 | ) and

=5 € PY( p2 |5 ) by drawing the termina®#link corresponding to th& splitting. Thus
we mnclude that the proof-structu@ is a union of two proof-structure®, € PSp1)
and 0, € PYp2) by drawing the terminaR-link corresponding to th®-splitting, where

Oi :=Mix 1o 5 withi € {1, 2}. Thus© has the correspondirg-splitting. [

The reason why we have imposed the constraint of “legality” is to obtain this
Proposition 4.47The proposition need not be valid whB&p) is replaced by the bigger
set of weakly associated proof-structuM# S p), as fdlows:

Example 4.48 (Why Legality is Necessary). From the abokgample 4.28 we define
total splittingsa anda’ for a dinato, p1& p2 to bea ando’ respectively without the first



36 R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1-63

Bsplitting. Thena is legal buta’ is not legal, as explained in the example. Suppose that
dinatso andp; (i = 1, 2) are denotations for BIALL+Mix proof. By observing that a
dinato, p1& p2 can be split via mix into two dinats andp1& o2, we have thédollowing:

(i) A proof-structure®(a) € PSo, p1& p2) has the corresponatj mix splitting.
(i) On the contrary, a proof-structur@(a’) € WPSo, p1& p2) may not be correspond-
ingly split via mix.

Since (i) is an example oProposition 4.47we shall eplain (ii). First, a disjoint
union ©(B), O(y1) (respectivelyd (8'), O(y2)) of ©(B) (respectivelyd (8)) and O (y1)
(respectively©(y»)) is an elenent of WPSo, p1) (respectively oMWWPSa, p2)). Second,
O (&) is obtained from these two unions via the canonical interpretation of the &-inference
of Lemma 4.34i.e., O(&’) is (O(B), O(y1)&(O(B), O(y2)). Then from the definition
of &-interpretation,©(a’) becomes a union of twanft necessarily proof-strudures:
One is a poof-structure©(y1)& ©(y2). The other is a superposition (arising in the
&-interpretation) of two proof-structure®(8) and ©(8’) which share the same
conclusions. It is important to observe that the latter structun®isiecessarily a proof-
structurewithout the guarantee @b (8) = ©(8’), sincethere may occur, in superposing
O(B) and ©(B), alink whose weght depends on the eigenweighiissociated with the
&. Thus we conclude tha® (&) need not have the cosgonding mix glitting.

As a direct corollary ofProposition 4.47 we hae the fdlowing Corollary on
preservatio of cycles:

Notation 4.49. We say th&a proof-structure® has a cycleC if C appears in@s under
some switchingS. We say tlat a dinatp yields a cycleC if there exists groof-structure
© € PSp) suchthat @ has a cycle.

Corollary 4.50 (Preservation of Cycles)Suppose that &-dinatp can be split into dinats
pi by means of a unary or binary rule. #fyields a cycle, then here eistsi € {1, 2} such
that p; yields the cycle.

Proof. Suppose that a dinat can be split via a @-splitting. Suppose moreover, a cgcle
appears in a proof-structué® € PSp). FromProposition 4.476 can be correspondingly
split via @ into ©;. Herce the cycleC is retained in some; with i € {1, 2}. Since
©; € PYpi), we have deved the asertion. [

Example 4.51. As an example o€orollary 4.5Q let usconsider the case whepecan be
split into p1 and p2 by means of &-splitting. In this caseProposition 4.4{Fundamental
Proposition) means that the proof-struct@eis a union of two proof-structure®); €
PS(p1) and O, € PSp2) by drawing the termina®-link corresponding to th®-splitting.
This in particular means that for any &-link, say,&occurring in©y (respectively, in9y),
no weight occurring in9, (respectively©1) depends onp. Herce no jump can be drawn
between®1 and 6. Thus every path between a formula occurrenc@irand one in®;
must go through the-link. Hence we conclude that # has a cycles, thenC must exist
either in©; or Os.

Remark 4.52 (Structural Preseation of Cycles).Corollay 4.50 of the fundamental
proposition states that our interpretation of dimainto the setPSo) of proof-structures
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preserves cycles with respect to semantical splitti@sollary 4.50will be crucial later
in obtainingLemma 5.17which will be used in the Main Theorem iBection 6.1

FromCorollary 4.50 we obtain the main result of this subsection:

Corollary 4.53 (Soundness of Associated Proof-Structurés)inat o denotes avIALL
proof iff V@ € PSp), @ is a proof-net.

Proof. The “if” partisLemma 4.46Thus we shall prove the “only if” part. Note first that

for a dinatp of MLL type, the assertion is obvious sinB&p) is a dngleton. Suppose

we are given a dingt denoting aMALL proof. From what we have just said, it holds that
VO e PSp) O, is connected for alhormal switchingsS, since anormal switching
yields anMLL dinat. Suppose for contradiction th&® € PSp) O is not a proof-net.
FromCorollary 4.23and the connectedness of a proof-structure under normal switchings,
6 must have a cycle. On the other hand, sipcdenotes a proof, there is a series of
splittings for p which terminate. This implies fronCorollary 4.50 that there arises an
identity dinat which yields a cycle. This is a contradictior.]

Remark 4.54. Strictly speaking,Corollay 4.53 together withLemma 4.46is what is
referred to as the soundness of associated proof-structures.

Now we arrive at an irportant consequence of this section:

Corollary 4.55 (MALL pss Associated withl Coh andGHCoh Dinats). Every dinatural
transformationp of HCoh is associated with a set P& of UL and NDALMALL proof-
structures satisfyind.emmad.46 Corollaries4.50 and 4.53 In patrticular, so is every
dinat p of GHCoh using the canonical embedding: Dinat-GHCoh < Dinat-HCoh
of Lemma3.13

Proof. Note first that HCoh satisfies the three properties oforollay 4.44
(i) DinatHCoh is soft (cf. Corollay 3.19 (ii) DinatHCoh is fully complete
for MLL+Mix (cf. Proposition 3.y (iii) Mix is monic in DinatHCoh (cf. under
Proposition 2.5 Thus byCorollary 4.44the result follows. O

Remark 4.56.

(1) In general, the class of proof-structures we obtain from dinaturals is a proper subset
of all additive proof-structures. The key point here is that those arising from legal
total splittings automaticallgaisfy the no duplicate axiom-link property as well as
theunique link property.

(2) We also note that we have an algorithm [Remark4.17) for associatiig a poof-
structure éventwally seen to be a net) with@H Coh dinat. However, not all proof-nets
are in the image of this construction. This arises for the same reaseenasrk4.12
namely the assignmentf gequentidizable MALL proof-structures to proofs is not
unique.

In what follows for a dinatp, an arlitrarily fixed proof-structure® in PSp) is often
denoted byo,.
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5. Simple oriented cyclesin MALL proof-structures

We are inerested in certain types of cycles which can arise in additive proof-
structues. These cycles are callsithple oriented cycle®©rientednes®f cycles was first
introduced in the work of Abramsky and Mas2,3], which inspired our treatment here.
However we introduce the notion afimplicity to further cut down the class of oriented
cycles.

5.1. Simple oriented cycles

Our main results in this subsection &emma 5.2andLemma 5.8whichguarantee the
exigence of oriented cycteandof simple oriented cycles, respectively.

Definition 5.1 (Oriented Cycle). Anoriented cycleis one in which the cycle has an
orientation such that the induced direction each proper jump goes from the conclusion
of a &-link L to jumpS(L). SeeFig. 1for the general shape of an oriented cycle, where an
edge between a proper jungiL) and a conclusion of a &-link_ is drawn with a dotted

line.
/ KS(LK) Ly
oL
S(Li)
L S(_LJ-)
Fig. 1. Oriented cycle.
Terminology:

Throughout this section, we say that a proof-structdiieas a cyclef, for someswitching
S, thegraph©s has a cycle. A cycl€ in Osis often cenoted by(C, S) so that a switcts
yielding C is explicitly mentioned.

Lemma5.2 (Transformation to Oriented Cyclesguppose® is a proof-structure such
that O, is connected for athormal switchings & Every cycleC of Os can be transformed
into an oriented cycl€ in Og such hat the valuatiorpg = ¢s. Herce, in particular, if©
has a cycle, then it has an oriented cycle.

Proof. It suffices to show that if a given cyclec, S) is not oriented, then it can be
transformed rito a cycle(C, S satisfying the conditions in the lemma. Iterating this
procedure yields the result. We shall prove this by induction on the number of proper
jumps in a givert.

Suppose an unoriented cyale, S) is given. Since every cycle which contains at most
one proper jump can be oriented, we may assume that the number of proper jumps in
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Cisn+ 1 with n > 1. We denote the list of all proper jumps IS(L1), ..., S(Ln+1)
in the order visited in the orientation of. We denote the conclusion of; by
AL&A,.

From the assumption of nonorientability@fwe may assume without loss of generality
that the induced direains on the proper jumpS(L1) and S(L,+1) are different: i.e.C
is of the following form, with B denoting a formula occurrence betwe8fL 1) and
S(L1):
C=B---S(L1) AJ&A}--- ATTI& ADTI S(Lpy)---B

B
. S(Ly) ( L-n_—i.-l)

C 5
Al 1 1o.9 1
At& A AT &ATT

From the suppositiorfs, is connected for the associated normal switclggnbpr S. Herce
there is a path, say, beweenB and AT™& A) in the graph©s,.

Let AK& AX k € {1,...,n + 1}, denote the designated &-formula @which the path
p (starting fromB) first encounters. Then we may wriieas

p=p Af&A3 D"

wherep” may be empty (whek = n + 1).

On the other hand according to the tpossible orientations for the junff(Lx), we may
write C as one of the two following possibilities:

¢’ AK& A S(Ly) ¢” (Case 1)
C= or
¢’ S(Li) Ak& Ak c” (Case 2).

In each case, we have a new cyClgstarting fromB along with the patlp’ to A‘{& A'§ and
ending atB) as fdlows:

(Case 1) C=p A& ALC
(Case 2) C=p A& AsC”.
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IO,

Akg A_g S(Lk) S(Li), A‘?‘_& AY

In each casé has skipped the proper jun§L) (moreover every proper jump dfis one
from C). Hence the number of proper jumps®is n, which is stictly less than that o€,
sothe induction hypothesis applies[]

In addition to orientedness, we now introducesaonical shapéor cycles arising from
proof-structures. Similar ideas are also developed in Abramsky anded@|8].

Definition 5.3 (Canonical Cycles). A cycle in a grapBs is called canonical if the
following two conditions are satisfied:

(i) Every proper jump on the cycle is to a conclusion of an axiom-link.

(i) SupposeA andB are formulas on the cycle. ik and B are nested in the subformula
tree, then the orientation of tlogcle induces a directed path froAito B or vice-versa.
Suppose the path goes frofto B. Then hat is the only directed path frodto B in
the cycle.

Lemma5.4 (Canonical Cycles Suffice). For an arhtrary proof-structure © and a
switching S, every cycle ifs can be transformed into a canonical cycleély, for some
switching S obtained from S.

Proof. We prove (i) sinceii) is rather straightforward.

Given an arbitrary linkK; in sl(¢s(©)) whose conclusion is a proper junggL;), we
havew(Kj) c w(L;) by the technical condition dRemark 4.6 Hereditarily aboveK; in
the slicesl(¢s(0)), there exits a link Lj+1 (hence,w(Li+1) € w(Kj)) which sdisfies
either of the following (g) and (b). In ether case the grap®s has subformula edges
betweenS(L;) and a conclusion of  ;1:

(@): Ljt1is an axiom-link.
(b):  Lijt1is a&-link such thatS(Lj1) is a poper jump.

If Liy1 satisfies (a) then we wp. If Liy+1 does not satisfy (@) herce satisfies ()

then in sl(ps(©)) we deote by Ki;1 the conclusin of the proper jumpS(L;t1)
guaranteed in () Then by the same gument applied td; 1, there exits a link L2
hereditaily aboveK;, 1, which sdisfies either of (a).1 and (b);1 and the grapt®s has
subformula edges betwee®(Li1) and a conclusion oL 2. Thus in general, starting
with i = 1, we have a series of links whose weights yield the following decreasing chain
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(strict inequalities come from the techniaandition; nonstrict ingualities fran subfor-
mula rdations):

--w(Liyy) S w(Kj) Cw(lj) €--- Cw(l2) € w(Ky) C w(ly).

Note that the chain stopslifi 1 satisfies () If p; denotes an eigenweight for the &-link
Li, thenw(Kj) depends ormp; (i = 1,...). For exanple, it will turn out that inFig. 2
below, if L1 = &1 thenLj;1 = ax>.

Now we claim that there existssuchthatL; ;1 satisfies () Intuitively, this means that
jumps to axiom-links sufficEor the proof, suppose otherwise. Then by virtue of the fact
that thenumber of &-links in@ is finite, Lj 1 becomes identical to a previolg ( j < i+
1), hence from the above chain, we have j) = w(Lj;+1) € w(Kj) C--- Cw(Lj41) S
w(Kj) C w(Lj) = w(Lit+1). Thisis a ontradiction sice it impliesw(Li+1) C w(Ljt+1).

Now we shaev that g/cles remain when one jumps to axiom-links. Given an arbitrary
proper jumpS(L1) lying on a cycle, we may change the switchiBgnto S by defining
S(L1) to be a conclusin of the axiom-linkL;1 1 guaranteed in the above paragraph. This
choice of jump is possible becausg€l 1) depends orp;: this arsesfrom Lemma 4.5
together with the fact thab(Li+1) € w(K1). Itis draightforward that a cycle still occurs
in Og. O

Thus from now on we always consider canonical cycles. In particular the general shape of
an oriented canonical cycle is shownhig. 2 We draw he proper jumps to axiom-links

to make the picture more readable. Note that the shape of this oriented cycle implies that
w(axj+1) depends ormp;, foreach =1,...,n.

where eachV; is a grgoh of the form

& & ... &

or empty (in the dtter case the two axiom-links attachedfpare identified).

Fig. 2. Oriented canonical cycle.

Remark 5.5. In a canonical oriented cycle of the form#ig. 2 we mayassume that the
left-conclusion ofax;;1 cannot be a subformula of thej&ormula, because if it were,
there would be a semseof subformula connections between the-farmula and the left-
conclusion ofxj41, so there wuld be no need for a proper jump.

The main contribution of this subsection is to further cut down the class of cycles arising
in a connected proof-structure. The cycles we consider are caitgaecycles:
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Definition 5.6 (Simple Cycle). A cyclec in a graph®©s is calledsimpleif the following
holds for every linkK in sl(¢s(©)) whose conclusion is a proper jungoL ) lying on the
cyclec:

wheree € {1,—}, pL is the associated eigenweight for the
w(K) =epL.v &-link L andv does not depend on any eigenweights associated
with &-links whose conclusions lie ot

In particular when a given cycle is oriented and canonical &gn2, it is simpleif for all
i =1,...,nthe following holds:

whereg; € {1, —} andv; does not depend on any

w(axit1) =€ pivi - (modn) eigenweightp; with 1 < j < n.

The following is an important property of simple cycles:

Lemma5.7 (Weight Lemma for Simple Cyclesfor a simple cycleC in Os, let
L1,..., Ln denote the list of al&-links in skps(©)) whose conclusions lie 0@. Then
for every i,w(L;j) does not depend on any with1 < j <n.

In particular when a given simple cycle is an oriented canonical cycle &gz, the
following holds: Fori < n,w(L;) does not dependon any pl < j < n) where L is the
&-link whose conclusion is & —, the ith distinguishe&-formua in sl(¢s(©)).

Proof. First of all, we recall the technical condition for proof-structuresaffinition 4.3
andRemark 4.%. If a weightv in © depends orp; thenv € w(L;). Now suppose that
w(Li) depends omp;. If i = j, this contradicts the condition thaw (L) does not depend
onpi. If i # j, then the technical condition for; together withLemma 4.5says the
following: (v depends orp;) implies (v depends on botip; and pj). When applied to
v = w(axj+1), this contradicts the simplicity of (which imgies thatw(axjy1) does not
depend orpj). Hence we have the conclusion of the lemmal

The following is an important lemma for obtaining simple cycles from oriented ones.

Lemma 5.8 (Transformation to Simple Oriented Cycle€jvery oriented cycl® of Os
can be transformed into a simple oriented cybleof ©g suchthat o = ¢s. Herce,

in particular, if an arbitrary proof-structure® has an oriented cycle then it has a simple
oriented cycle.

Proof. We show that if a given oriented cyclgD, S) is not simple, hen it can be
transformel into an oriental cycle(D’, S) satisfying the conitions of the Lemma.

In our proof of this lemma, Girard’s technical condition for proof-structures is critical.

We may asume that the given is of the form inFig. 2 We know thatw(axj+1)
depends omp; for all i, sine a conclgionof axjy1 is a junp for &;. SupposeD is not
simple; i.e., there exisissuchthatw(axj,1) depends orp;j with j #i. Then anew jump
edge can be drawn between &ndaxi;1, which results in another oriented canonical
cycle whose number of jump edges is strictly smaller timaisee the fjures below for a
new jump edge together with the resultingamted canonical cycle for each case depending
on whetherj <iorj >1i.
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(Thecasqg <i):

new _]ump
o }1 }(J }|+1

(Thecasqg > i):

i

new J ump W1
®}< i+1 } j

As is clear from the figures, in either case the resulting oriented canonical cycle has
a smdler nunber of jumps and every jump of the new cycle is one from the original
cycle. O

5.2. Global simple oriented cycle

We say that a cyclé passes through a link If the condusions ofL lie onC.

Definition 5.9 (Global Cycle). A cycleC in a proof-structure® is global if C passes
through all &-links whose weights are 1 ifi.

In the fdlowing, for an eigenweight, &, denotes the associated &-link.

Lemma 5.10 (Weight Lemma for a Global Simple Oriented Cycléjpr a simpleoriented
cyclec, if C is global, then the following hold:

(i) w(L) = 1forthe L ofDefinition5.6, hercew(L;) = 1forthe L in Lemmab.7. That
is, all &-links which cause proper jumps have weight
(i) For the weight w(axj+1) = epi.vi of Definition5.6 if the v; depends on an
eigenweight r, them (&) depends on the eigenweight p
(i) For the weghts w(axit1) = epi.vj and w(axj4+1) = epj.vj of Definition5.6, if
i # ] then he eigenweights on whiah depends are disjoint from those on whigh
depends.

Proof. (i) Suppose for contradiction that(L) # 1; i.e., thatw(L) depends on some
eigenweight, say;. We obtain the contradiction using an inductively defined series of
steps. As step 1, weave the following:

w(l) C w(&r,) - (1.1
w(&r,) # 1;i.e.,w(&r,) depends on some eigenweight, say --- (1.2)

Condition 1.1 is Girard'’s technical condition (dRemark 4.%. Condition 1.2 is obtained
as follows. FirstLemma 5.7implies that he conclusion of the &-link & does not lie on
C. Second, sinc€ is global, we conclude 1.2.
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Step 1 induces step 2:

w(l) C w(&ry) C w(&s,) - (2.1)
w(&r,) # 1;i.e.,w(&r,) depends on some eigenweight, say --- (2.2)

2.1 is from 1.1 and Girard’s technical condition. 2.2 is obtained as follows. First,
Lemma 4.5together 1.2 and 2.1 says thatL) depends omy. Second,Lemma 5.7says
that the conclusion of the &-link & does not lie onC. Third, sinceC is global, we
conclude 2.2.

Step 2 induces step 3, and in general we haversteyhich gives rise to the following
strictly increasingnfinite seguence of weights:

w(l) C w(&ry) C w(&r,) C - Cw(&r,) C---.

Since he number of &-links in® is finite, this is impasible, hence we have a
contradiction.

(ii) On the one hand from Girard’s technical condition, we havex;+1) := epj.vi C
w(&y). On the other hantlemma 5.7says that the conclusion of the &-link,&does not

lie on the cycleC. SincecC is global, we havew(&;) # 1;i.e.,w(&) depends on some
eigenweight, say;. Thenfrom Girard’s technical condition, we have(&r) C w(&r,).

If w(&r,) = 1, we stop. Otherwise(&,) depends on some eigenweight, say. &hen
w(&r,) C w(&r,) from Girard’s technical condition. By repeating this, we have a sequence

w(axit+1) = €pi.vi C w(&) C w(&p) C -+ C wW(&pp41) C -+

suchthatw(&r,,) depends on eigenweight;1 for eachm.

It is important to observe that theguence terminates; i.e(&r,+1) = 1 for some
n > 0. This is because the boolean algebra efghts is finitely generated. Sineeis
global,rn+1 must bepg for somek. Sincew(&y,) depends onn1, Which is pk, theabove
sgjuence together withemma 4.5mplies hat bothw (&) andw(ax;+1) depend omp.
From the definition of simple cycle, the only possilge on whichw(axj11) depends is
pi;i.e.,,i = k. Thus we have derived the assertion.
(iii) This is a direct corollary of (ii): Suppose faontradiction that there exists a common
eigenweight, on which bothv; andv; depend. On the one hand, by applying (i)
we know thatw(&;) depends orp;. On theother hand by applying Girard’s technical

condition to w(axj4+1), we havew(axjt1) = €pj.vj C w(&r). These imply with
Lemma 4.8hatw(axjt1) = €pj.vj depends omp;. From thedéfinition of simple cyclec
(cf. Definition 5.9, the only weight amongs, . . ., pn on whichw(axj11) depends ifj.

Thus we have a contradiction, sincet j. O

We now introduce a fundamental property in this subsection. We shall be interested in
proof-structures with the no duplicate axiom-link (NDAL) property (@&finition 4.10.

Definition 5.11 (A Valuation Yields Two Distinct Axiom-Links). Let©® be an NDAL
proof-structure and aliteral in ©. We saya valudion ¢ yieldstwo distinct axiom-links
w.r.t an eigenweightp and a literak if the following holds:

The axiom-linksL in sl(¢(©)) andL’ in sl(¢’(©)) with conclusiona have different
conclusions, where’ is the same ag but¢’(p) = —¢(p). We note that in a slice, there
is a unique link whose conclusion is a fixed literal. Thatlisis the unique link with
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conclusionx in sl(¢(©)) andL’ is that insl(¢’(©)). Thus in © the two axiom-links have
the following form: L

o o o

Remark 5.12. Note that the weights fothe two axiom-links L and L’ in the above
Definition 5.11depend omp.

Next, we prove the following lemma, for which the abdvemma 5.1(ii) is crucial.

Lemma 5.13 (Existence of Two Dignct Axiom-Links). Suppose® is an NDAL proof-
structure andc is a global simple oriented cycle i@. For the weght w(axj+1) = €pj.v;

in Definition5.6, let{r4, ..., rm} denote the set of eigenweights on whicliepends, and
letoj+1 denoteax;t1’s conclusion lying on the cycle If w(eit1) = 1, then here eists
a valuation v for {rq, ..., rm} such hat every one of its extensioig to a valation for

6 yields two distinct axiom-links with respect tpgndo; 1.

Proof. We may suppose without loss of generality that 1;i.e.,w(axjt+1) = pj.vi. We
shall cefine a valuation; by induction orm.

(Base Case) The case whene= 0:

In this casew(axj+1) = p;. Using the o duplicate axiom-link property o, observe:
sincew(wj+1) = 1, there must et an axiom-linkax one of whose conclusions ig 1,
but whose other conclusion is a different occurrence from thakpf;. Thus the asséon
is straightorward.

(Induction Case) The case whare> 1.

Consider a sefA of axiom-linksax one of whose conclusions ig1 and whose other
conclusion s different from that afx; +1. Theno duplicate axiom-link property guarantees
that the sefA is nonempty. If no weight ofix in A depends on arny, then he asertion is
straightforward as in the Base Case, because in thiswésg) = —p; since he cycle is
simple. Thus in the following we may assume ttiadre exists a@x in A suchthat w(ax)
depends on somg,rwhich inthe following will besimply deoted by r.

(Case 1) The case where the occurresxge 1 remans after setting = 1:

In this case, the valuation = 1 preseves the no duplicate axiom-link property of
conclusioneiy1. Thus the assertion is reduced to the induction hypothesis by defining
vi(r) =1

(Case 2) The case whe#g; 1 disappears after settimg= 1:

In this casew(ax;+1) has an occurrence efr along withv;. Thus from Girard’s technical

condition, pj.vj := w(axjt+1) C w(&y). Thus, fromLemma 5.1Qii), w(&;) depends on

pi , sow(&) must have an occurrence pf. Herce we note the following important fact:

Every weightw depending om has an occurrence qu (2)

(2) is obtained as follows: First, from Girard’s technical conditienc w(&,). Second,
sincep; occurs inw(&y), it occurs inw as well, byLemma 4.5
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(Case 2.1) The case where the valuatioa 1 gives rise tadhe duplicate siom-links of
the form inDefinition 4.10one of whose conclusionsdg. 1.

Sincew(wj+1), which is1, has no occurrence g and is a disjoint sum of weights of
axiom-links with conclusionyj 1, (2) implies that there exists an axiom-lindg with
conclusionej 1 suchthat w(ax) does not depend on; i.e., ax remains under both
valugionsr = 1 andr = 0.

(Case 2.1.1) The case where the two conclusiors @bincide with those ofx;1:

This case guarantees that the duplicate axiom-links after the valuatiorl share two
conclusions ofx. Thusax disappears after the valuatior= 1, hencew(ax) must have an
occurrence of-r. Now let us set = 0, which retains both occurrenceszf andax; thus

in this case, after the valuation, the no duplicate axiom-link property of conclugian
till holds. Thus the assertion is redudedhe induction hypothesis by definigg(r) = 0.

(Case 2.1.2) The negation of Case 2.1.1:

In this case a conclusion other than 1 of ax differs from that ofax;j1. Now let us set
r = 0, avaluation which retains both occurrenaes, 1 andax. Hence under the valuation,
the no duplicatexdom-link property of conclusior; ;1 is preservd. Thus the assertion is
reduced to the induction hypothesis by definifgr) = 0.

(Case 2.2) The negation of Case 2.1:

This case guarantees that the no duplicate axiom-link property of conclysigrholds
under the valuation = 1. Thus the assertion directly reduces to the induction hypothesis
by definingy; (r) =1. O

Now we are ready to statedlgoal of this subsection.

Corollary 5.14 (Existence of Two Distinct Axiom-Links in Global Cyclesfuppose a
proof-structure® has a global simple oriented cyctesuchthat w(ejy+1) = 1 for all

i € {1,...,n}. Then here exists a switching S such titeappears in@s and its vduation
@s Yields two distinct axiom-links with respect tpgnde;41 foralli € {1,...,n}.

Proof. Sincew(¢it+1) = 1,Lemma 5.13uarantees, for eachthe exisence of a valuation
Y; any of whose extensions to a whole valuationdoyields two dstinct axiom-links with
respect top; ande;j 1. On theother hand, by virtue dfemma 5.1(iii), the valuationy;
for eachi is simulaneouslyextendable to a valuatiogr for ©, thusyr yields two diginct
axiom-links with respect tg; andw;j+1 for all i. Sincew(L;) = 1 from Lemma 5.1Q()
andw(¢j+1) = 1from theassumption above, all edges constitutingxcept proper jumps
are retained under an arbitrary valuation, hence ugdédvioreover byRemark5.12, we
can draw a jump fronk; to @11 for alli in sl(y(0)). A switching Sis definedfrom the
valuaion v together with these choice$ jumps so that the cycleis retained infs. [

5.3. On cycles and connectednesALL proof-structures

In this last subsection we present various geometrical propertiedAdfL proof-
structues. In the mairProposition 5.15ve characteriz8ALL proof-nets among certain
connectedMALL proof-structures. Thig a direct corollary oLemmas 5.25.4 and5.8.
Second, we derive two lemmas (on connectedness and oriented cycles) specifically for
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proof-structures arising from dinats. These lemmas are used in proving our main Full
Completeness Theorertfeorem 6.2n Section Boelow).

Proposition 5.15 (Main Proposition on Simple Oriented Cycled)et © be an arbitrary
MALL proof-structure. If@s is connected for all normal switchings S, eith@y or (ii)
holds:

(i) © is a proof-net.
(ii) © has a simple oriented cycle.

Proof. Suppose®d is not a proof-net. We show) has a simple oriented cycle. From the
connectedness @s, we know there must be a cycle ifd, for someswitch setting. From
Lemma 5.2that cycle can be transformed into an oriented cycle. Ftemma 5.8 the
oriented cycle can be transformed into a simple oriented cydle.

The following lemma is the crucial place where we make use of the double gluing
construction, applied to the categdryCoh. As in the wak of Tan [33], application of
double gluing yields a model which does not validatehtie rule, andin this case is fully
complete forMLL. This lemma also illustrates the key point: working@HCoh forces
the associated proof-structures to be connected.

Lemma5.16 (Connectedness @, under Normal Switchings)For an arbitrary p in
Dinat-GHCoh, (8,)sis connected for evenyormal switching S.

Proof. First observe that by definition every switchiSginiquely determines a valuation
@s on eigenweights. Hence this valuation yields a stites(©)) which we identify with
anMLL proof-structure (cfRemark4.19. Moreover if @, is a proof-structure associated
with a dinatp, then br an arbitrary switchings, there isa dinatps(p) of MLL type such
that

Sl(QOS((")p)) = (")(ps(p)- (3)

Second, for evenMLL proof-structure of the fornsl(¢s(©)) the graph(sl(¢s(©)))s is
drawn as usual by the choice ®fswitchings determined b$; and wehave the éllowing
for an arbitrary normal switchin§:

The graph@s is connected iff the graptsl(¢s(©)))s is connected (4)

TheMLL full completeness ofDinat-GHCoh (Proposition 3.1yimplies that@,(,) is an
MLL proof-net, hence in particul@sl(¢s(6,)))s is connected. Thus the assertion follows
from the above observation3)@and d). O

For the final reslin this subsection, we prove the following lemma, which is the main
consequence of thailRdamental PropositiofP¢oposition 4.4yYin Section 4.5Thelemma
will be used in the proodf the Main TheoremTheorem 6.2in thenextSection 6 Before
reading this lemma, the reader should examine the appendix to this seaticting 5.4,
which gives the background on &-semi-simple types.

Lemma5.17 (Existence of Global Cycles in Associated Proof-Structur€nsider the
setS of HCoh-dinatsp of &-semi-simfe type (in he sense ddetion 5.4) such hat there
isa @ in PSp) and © has a cycle. If the s&f is nonempty, then there exists a péir, ©)
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consisting of a dinap € S and a proof-structure® € PSp) suchthat every cycle ir@ is
global.

Proof. Take a mirimal dinatp € S w.r.t the leciicographic ordering on the following pairs:
(number of®s in p's type, number of{®, &, ®}s inp’s type).

From Corollay 4.500f the Fundamental Proposition, tager with the miimality of the
size, p cannot be further semantically split; i.e., the typeoofias no outermodi& , %}

and has no outermogp, &} which can be semantically split. Moreoveis not the union
of two dinats via the Mix-rule. By the FundamenBxioposition 4.47the proof-structure
counterpart to this is the following:

Y © € PSp), O has no termina®-link which can be split and no terminal
(&, B, ®1, ®2}-links. Moreovero is not theunion of two proof-structures.  (5)

We bagin by proving the following:

(Claim) For ap as above, for everyp € PSp) and for every &-linkL of weight 1 in©,
there exists ®-link L’ immedatelybelowL.

First, we shall showhat there exists @-link hereditarily belowl.. Suppose for contra-
diction that this is false. Since(L) = 1, there cannot exist any other &-link hereditarily
belowL. Thus eithell is terminal or all links hereditarily below are{%®, &1, ®2}-links,
whose weights are 1. This means tiiamust have a termind®&, B, ®1, ®2}-link, which
contradicts §). Thus there exists @-link hereditarily belowl.

Now consider the uppermosgs-link, sayL’, hereditarily below the &-linkL. We shall
show that this is thé.’ of the daim, i.e.,L’ isimmedatelybelow L. We fird observe that
there can be néd1, ®2}-link hereditarily belowlL . For suppose otherwise. Then such a
{®1, ®2}-link would have weight 1, which corresponds to a semantically redungant
connective ofp. This would contradict the minimality of the size 0. So thdink immedi-
ately belowL must be 4%, ®}-link. When itis%, there exsts aZlink immediately above
the®-link L’. But this contradicts the semi-simplicity @f, since dinear distributivitivity
of Section 5.4can be applied. Thus we conclude that the link immediately bélawust
be a®-link, which proves the claim.

Note that since € S, thereexids © € PSp) suchthat ©® has a cycle. We shall show
this pair(p, ©) is the one asserted in the lemma. Suppose for contradiction@haas a
nonglobal cycle; i.e., there exists a cyClen © and there exists a &-link of weight 1
suchthatC does not pass throudh From the above clm, there exists &-link L’ imme-
diately belowL. Fromp we gply aMix to the® corresponding td.’, to obtain aHCoh
-dinatp’; i.e.,

o = p[AB (B&C)]wherep = p[A® (B&C)].

In the @&ove, B&C is the contusion of L, herce A ® (B&C) is the contusion of L’.
Now a pioof-structure®’ is defined tde one obtained from® by replacing thex-link L
(together with hereditary occurrences®f by a Zlink (together with occurrences &).
Then we have®’ € PSp’). Itis important to observe that, sintiee simple oriented cycle
C does not pass through the cycleC is retained in@’. Thus it holds thap’ € S. Note
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that the size op’ is strictly smaller than that of; i.e., in the above lexicographic ordering,
the level ofp’ is strictly lower than that op.

By means of reductions to &-semi-simple sequets, ©') can be reduced to a certain
pair (0", ©”) suchthatp” is a dinat of &-semi-nple type and the simple oriented cycle
Cis retained in@” € PYp”). Thus we have that” € S. Sincethe size ofp” is strictly
smaller tha that ofp, this cntradicts the minimality of the size g5. O

5.4. Appendix: reduction t&-semi-simple sequents

In this subsection we introduce some syntactical notions. These are usadina 5.17
of Section 5.3above and inSection 6below. We consideMALL formulas as being
generated from literals using the connectiges?, &, ®, butno units.

Definition 5.18. A covariant context(context, for short) is a sequent generated from
distinguished constant symbols callénbles together with literals using théMALL
connectives and in which any holesaur exactly once. We denote a contdxtwith
distinguished holess, ..., %, by I'[*1, ..., *n]. We may substitute arbitrary formulas for
holes in a cordxt: wewrite I'[Aq, ..., An] for the contextl"[x1, ..., *n] With % replaced

by A;i. A holex has amultiplicative occurrencén context!” if in the parsing tree of the
context, all connectives on the unique path fremo the root are multiplicatives.

Example5.19. In the contextI'[x] = (x ® (X & Y)) B (Z&W), % occurs
multiplicatively, whereas in the contexii[x] = (x @ (X ® Y))&(Z & W) andI2[*] =
D XDY)) B (Zd W), x doesnotoccur multiplicatively.

We defineM@LL analogously to®ALL: it is the fragment oMALL generated using
just theMLL and& connectives. We now extend the notionsaimi-simpd sejuentas in
Hyland—Ong p8] to M&@LL:

Definition 5.20 (M@LL Semi-Simple 8quent). AnM@LL sequent” is semi-simpleif
it has he formI'[€11 ® €12 ® - ® €imys---»€n1 ® €n2 @ -+ ® £nm,], Where
I'[x1,...,%n] is a ontext constructed usingnly the connectives®, @ and the(;; are
literals.

We now introduce the analog of the theorem 28[which showvs it suffices to consider
semi-simple squents in proofs of Full Completeness:

Proposition 5.21 (Reduction to Semi-Simple SequentSuppose~ ' is an M@LL
sguent. Then there exists a list Bf®LL semi-simpt seuentsk I, - I, ..., Iy
suchthatt I is provable iff for all i, I is provable (inM@LL).

The proofis similar to Hyland—On@#f]. First we need three plimminary syntactic lemmas.
In each case, it suffices to state them for contexts with one hole.

Lemmab5.22. LetI' = I'A® (B B C)] be aMALL-sequent. Lefy = I'[(A® B) B C]
and/» = I'[(A® C) ® B]. Then ve have:

() Foralli =1,2 + I —o I is provable.
(i) + I'is provable if and only if - I is provable fori =1, 2.
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Lemma5.23. LetI' = I'[A® (B ® C)] be aMALL-sequent. Lef; = I'[A® (B % C)]
and/» = I'[A® (B® C)]. Then ve have:

() Foralli =1,2 + I' —o I} is provable.
(i) + I'is provable if and only if - I is provable fori =1, 2.

Proof of Lemmas’5.22 and 5.23. The proofs are the same as in Hyland—Om&§|[
observing that the “if” direction of part (ii) of each lemma is still valid usiMALL proof-
nets, not just ones faviLL. 0O

Finally, letI" be anMé&LL sequent, as above.
Lemmab.24. I'TA® (B @ C)] is provable iff I'[(A® B) ® (A® C)] is provable.

Proof. We can proveA® (B C)FH (ARB)® (AR C) and (AR B)® (ARQC)
A (BeC) O

Proof of Proposition 5.21. Supposel” is anM@LL sequent. Since® distribuesover %
and® by the lemmas, we use this fact to push occurrencegsinfvard. e obtain sequents
of the formI"€11®€12Q® - @ L1mys - €n1®Ln2® - @ lnm,]. O

On a semantic level, everrautonomous category with products and coproducts has
the following naturbmorphisms (which are monic in the case@dh andHCoh, herce in
particularGHCoh). These correspond to the sequents in the above syntactic lemmas.

(1) Linear distributivities
(@) A® (BB C)—> (A®B)BC
(b) A(B®C)— (A®C) B B.
(2) Distribution of@ over®: A® (B®C) — (A® B)® (A® C).

The above morphisms are actuafigtural transformationsthus compose with dinat8];
Hence, as irProposition 5.2-anyMaLL dinatp : 1 — I yields (by composition) a list
ofdinats{pi : 1 — I} | 1 <i < n} where thel; are semi-simle seuents.

Definition 5.25 (&-Semi-SimpleMALL Sequent). AMALL sequent!” is called &semi-
simpleif it is of the form I'[A11& A1.2, ..., An1& An 2] where I'[*1, ..., #n] IS an
MeLL semi-simpd context i.e. a context in which, if we replace the holes by literals,
we obtain a semi-simpl¥@LL sequent. Here thé\jj may be ariirary MALL formulas.

In other words [ is &-semi-simple if, whenever we repte the outermost occurrences
of &—together with the scoping formulas—by holes, then the resulting cont&AdpisL
semi-simple.

Example 5.26.

1) F(A&B)® ¢ ®r) @ C is &-semi-simple, whereA, B areMALL formulas,| andr
are literals, an@ is a{%, @}-formula.

(2) F pr@q, (p&gHRr+®((s B shH&(t B t1)), r is &-semi-simple, MALL-provable
segquent wherep, q, r, s andt are atoms.

The proof ofProposition 5.21n fact applies to &-semi-simple sequents verbatim, i.e.
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Proposition 5.27 (Reduction to &-Semi-Simple Sequent§uppose- I' is a MALL
sgjuent. Then there exists a list KALL &-semi-simple sequents I'1, - I, ..., Iy
suchthatt I is provable iff for all i, I is provable (inMALL).

6. MALL full completenessin GHCoh

Our purpose in this section is to provBlALL full compleeness in GHCoh
(Theorem 6.% Namely, we shia show that the proof-structur®, associated with a
dinaturalp in Corollary 4.55is a prod-net.

According toCorollary 4.55 we are iterested in proof-structures = 6,, arising from
dinatsp : 1g — A of GHCoh. GivenProposition 5.20f Section 5.4from now on we
only consider dinatp : 1 — A whose type is a &-semi-simple sequent. We shall prove
below that given such a dingtwhose associatguioof-structure has a simple oriented cy-
cle, theCoh dinat.7,, o Z(p) would fail to be a morphism for some instantiation fr@uah.

6.1. Main theorem

The main theorerTheorem 6.2below states that the proofrscture associated with a
GHCoh-dinatis aMALL proof-net. Before beginning the proof, let us outline the approach
we shall follow.

By the methods of functorial polymorphism5], we may interpret formulas as
multivariant functors, and proofs as dinatural transformations. The set of dinats interpreting
the poofs of a sequerit A is called theproof space of A and denoted bPRF (- A).

We have thedllowing inclusion

PRF (- A) C DinatC(1, A). (6)

This holds for provable sequents A by the Soundness Theorem, and for unprovable
sguents- A, theproof space is empty; hence the result holds trivially.

If we strengtheng) to equdity, we obtainfull completenesgor a given class of dinats),
i.e.

PRF(- A) = DinatC(1, A). @)

In the main theorem we are interested in proving equalities of the f@jmrpe proof
method of the main theorenTlijieorem 6.2 works independently of whether the type of
the dinat is provable or not. In outline, our method for provinygig the fdlowing:

(i) Suppose there is@HCoh dinat pg outside the proof space.

(i) Recall from Lemma 3.13that there is a faithful functoZ: DinatGHCoh <
Dinat-HCoh. Weknow fromCorollary 4.55that allH Coh-dinatsp have an associated
MALL proof-structure©, (more generally, this is true fo€-dinats, for anyC
of Proposition 4.1 Thus via the embedding, the dinat po has an associated
MALL proof-structure®,,. Moreover we know fromLemma 5.16that (6,,)s is
connected for all normal switchings From (i), 6,, is not aMALL net, hence by
Proposition 5.158,, has a simple oriented canonical cycle with no critical jump.

(i) Recall from Proposition 3.6and Lemma 3.13hat there is a composition of faithful
functors. 7, o Z: DinatGHCoh < DinatCoh. 7, o Z(po) is aCoh-dinat We will
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construct a list of objectgl € Coh suchthat (7, o Z(p00)) 4 is nota Coh morphism.
This immediately leads to a contradiction.

Before beginning the main proof, we first illustrate this outline with an example.

Example 6.1 (Proof Technique of the Main Theorem). Consider the example where the
type A (of dinatp) is given by:

FA®(Ct®C)&(D+ % D)),BtadBL,Bg AL

We shall $iow Eq. {7) for this choice of A, whichhappens to be a provable sequent.
Now suppose for contradiction that there exists a dipatlg — A in GHCoh which

does not belong to the proof space-ofA (here we consided as a multivariant functor).

From Corollary 4.55we can associate with a MALL proof-structured,. Sincep is not

the denotatio of a poof, ©, cannot be a proof-net, hence must have a cycle for some

switching S, by Lemma 5.16For exanple consider the case of the cycleRiyg. 3, where

p denotes the eigenweight for the unique &-link.

~=p

p

ct®c / Di®D r,—;'J:\\

A (Ct®BC)&((D-BD) BL Bt B AL
A® ((C+ B C)&(D* % D)) Bl @Bl B® AL

Fig. 3. Proof-structured,,.

The dinat7, o Z(p) deternining the structured, is given by

(Jw 0 Z(P)) pgpep =

{(a, 1, (c,c), (1, b), (b,a)) lael Al ce|C]

(a, (2, (d,d)), (2,b), (b,a) |be|B| d e|D|} € (Aasep)p, (8)

In the dove, (J» 0 Z(p)) 45cp and A 4zcp denote the associated values at the objects
ABCD of Coh as a subcategory d&Rel (cf. Proposition 2.18 We shall show that
(Jw» 0 Z(p)) aBcp is not aCoh morphism under the instantiation

A =B = ({a1, a2}, {9, {au}, {a2}}, {0, {a}, {2}, {a1, a2}}) € Coh
whereC andD are instantiated by arbitrary objects.

On theone hand, by taking := {((2; g E((:i (3))))) C?:||YCD|I

7 € HomA, C+ B 01 & (Dt B D)1
= (A® ((Ct B CO)&(D B D)))cp. 9)

Onthe aher hand, by choosinfp;} (respectively{ay}) belonging to the left (respectively
the right) Bp in the equation below, we have

(1, &), (2,8} = {{ar}}~{{az}} € By~ Bp = (BT @ B)cp.

} , we have
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Given thatB = A, we have
idyy € HomB, A) = (B® A)cp,
and thus, we can define an eleménais follows:

5= {((1, a), (a,a))

(2.2, @ a) €|A|} ={(L &), (2 a)} xidy

ce((BteBH R B AJ‘))cp- (10)
Now, from ©) and (L0), we can construct a copoint= 17 x § € (A 4BcD)cp PY

(a1, (L (c. ). (L ap), (a, a))
(a1, (L (c. 0). (2. 32). (a, Q)
(@ (2. (d. d)). (L ap), (a,ay | & AL CEICLAED]
(a2, (2, (d, d)), (2, &), (a, &)

Now observe that @7, o Z(p)) acp N n) > 2 whichcontradictProposition 2.13 O
Now we are ready to prove the Main Theorem.

Theorem 6.2 (Main Theorem).Let o be a dinat inGHCoh and 6, € PSo) be an
associated proof-structure far as defined irCorollary 4.55 Then(6,)s is acyclic for
every switching and connected for every normal switching. TBySs a proof-net for
MALL.

Proof. Suppose, for contradiction, tha® is not a MALL proof-net. We may assume
by Proposition 5.2that the type of © is &-semi-simple. ThenLemma 5.16assures the
connectedness @9, )s for all normal switchingsS. Herce byProposition 5.156 must
have a simple oriented canonical cycle. Note th@HCoh-dinatis aHCoh-dinat via the
embeddindZ: DinattGHCoh < DinatHCoh of Lemma 3.13ThusZ (o) is an element
of the setS of Lemma 5.17HerceLemma 5.17mplies that there exists a paip, ©) of
adinatp € S and a proof-structur® € PSp) satisfying the following:

Every simple oriented cycle i® € PSp) is global. (11)

Our goal is to show that thig fails to be a dinatural transformation fé#Coh.
But this is equivalent via the canonical embeddijfig DinatHCoh <> Dinat-Coh (cf.
Proposition 3.pto showig that.7,(p) fails to be a dinatural transformation Goh. For
this we shall prove that for some instantiatidnn Coh, (7, (p)) 4 is not aCoh morphism.

(©,)s has a simple oriented canonical cycle of the formFig. 2 together with
Definition 5.6 We may assume without loss of generality tiappears under the valuation
@s suchthates(p;) = 1 foralli =1, ..., n. Hence under the assumption, simplicitydof
means thatforall = 1,...,n, w(axj+1) = pi.vi (modn) wherev; does not depend on
any pj (1 < j <n).Indeed, we have thig = 1 by virtue of (11) andLemma 5.10Then
the local shape dof around thei — 1)-th jump is given inFig. 4.

Note that inFig. 4, ok denotes a literal. By semi-simplicity, the lower-lef-formula
in (6,)s is a hereditary corasion (wing only ® links) of j_1.1 and the immediate
conclusion of the & 1 formula. Again by semi-simplity, there mustbe a path which
we denote byW betweeny; i andozﬁ1 which use only ®-links and axiom-links.



54 R.Blute et al. / Annals of Pure and Applied Logic 131 (2005) 1-63

ax;j
1 T Olim\NO‘ill a1
/&i—l \ /&i
®i-1 ®i
Fig. 4. The shape of the gragi®,)s.

IR
iR
L
|
R
iR
R
3

Our first task is to determe the form of the morphisrp, given the abee (simple
oriented) cycle. We clen the proof-structur®, must be of the following form (seféig. 5):
Note first that in6, all links betweerny;_1 1 and®j_1 are®-links by the @sumption of

| | ";;%H‘ mm

‘l 1 axj
| —1,1 %~ 11, %im %im a'm alm 1 a'z a

D &g IR -l

Fig. 5. The shape of the proof-structug, .

semi-simplicity of the type ob. Hercew(«i—1,1) = w(Li_1) holds from the unique link
property ofCorollary 4.55 whereL_1 is the(&—1)-link of Fig. 5. On theother hand from
Lemma5.10and (L1), we havew(Li_1) = 1. (Of course the same situation holds around
thei-th jump;i.e.w(ei1)) = w(Li))=1(1<j<n))

In Fig. 5, the (n — 1) ®-links ®%, ..., ®™* are the outermost connectives of the path
W. Thus thelink ®K is hereditarily below both; andaitﬂ, and all links betweerni
(respectivelyxitﬂ) and®X are®-links by the assmption of semi-simplicity. Thus from
the unique link property, we have (aim) = --- = w(aj2) = w(xj1) = w(lLj) =
(1 < j < n)fromthe above.

If we change the switching frorBto S’ so that the valuatiops(pj_1) = 1 changes to
vg(pi—1) = 0, the(axj)-linkin Fig. 4disappears. But the formula occurreingg remains
in the graph @ («im) does not depend op —1 becausev(aim) = 1) and, being a literal, is
the conclusion of some axiomrk. Hence in the proof-structui@,, there must exist two
axiom-links whose conclusion is the occurrengg: one istheax; appearing in the graph
(6,)s, whose weight isp;_1, and the ther, sayax], which does not appear in the graph
(6,)s (instead it appears i00@,)s). The weight of tiis axiom-linkax; has an occurrence
—pi—1. In fact we shall show thab(ax]) is exactly equal to-pj_1. First, in(6,)g we
can draw a jump from &1 to ax;. Second, forallj € {1,...,n}\ {i — 1}, all the jumps
in ¢ from &j to axj1 are retained i©,)g sinceboth &; andaxj1 occur underS by
noting thatw(L j) = 1 andw(axj+1) = pj. This yidds a simple oriented cycle (0,)s.
Thus fromLemma 5.1Gand the abovel(l), we havew(ax{) = —pi_1

Fromw(axj) = pi-1 andw(ax{) = —pj_1, we have thathe tWOotiJr‘nS whichare
conclusions okx; andax] are different occurrences, by virtue of the no duplicate axiom-
link property in6,.
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SinceCoh validatesMix, we gply Mix : XY — X ® Y to all ® occurrences in the
type of 7, (p) exceptthose lying on the cyclée of Fig. 4. Note hat this process does not
affect the cycle. As for the cycle itself, by commutativity and associativity of tensor, we
may assume;_1 is immediately belowt;_1 1. Thus we obtain &oh dinatm: 1> A
whose type- A is the following sequent:

Foai—11 ® (B1&Bp), N[ajm, aim 1, (12)
Uim @ iy 1, -+, A3 @ &5, iz @, Z---

where

— N[x1, *2]is eithersy B s, Nq[*1] @ Na[*2] or (N1[%1]1@® N;) B (N3 @ N[ *2])
with all connectives irN; being® (i = 1, 2). Note that inN[ ;L , oL ] we instantiate
twice with the same literak: , because of its two distinctazurrences in the above

X m?
Fig. 5
- ZisEnn®Ei2 ..., Em® Emz, €1, ..., &
with all connectives irE); being® and{; beng literals.

In what follows weinstantiate all atoms occurring id by a single object4 € Coh:
i.e., we considr a morphism

(Jo(pN a1l — ANA’ equivalently(m)A € (AA)p. (13)

Now every element OGm)A is of the following form:

| —

tee ((Xi—l,lv ﬂv (kv ))a ( ) le)a (lev y_m, Xim—l), ..

] [
ooy (Xi3, Y3, Xi2), (Xi2, Y2, Xi1), _, ) -+ (14)
wherek € {1, 2} denotes the first/second componenBg& B, andvi € {1, ..., n} xj and

yi are arbitrary elements of and A respectively.

Our next task isd construct am € (AA)CP for the morphisn(m)A € (AA)p SO
that we can derive a camatdiction. For this purpose we prove the following instantiation
lemma, which is crucialn our proof of acyclicity:

Lemma 6.3 (Instartiation Lemma).We insartiate (13) above as the followingl € Coh.

a1y, a1 {a11, a12} {a11, @21}
= {a21’ azz}’ Po(| AU §{a21, @22} ¢, P<2(lA]) U 3 {a12, a2}
’ {a11. azo} {a12, a1}

Note that4 = Al via the cyclic permutation g= (a11, a1, a2, a12) on| .A|. Then the
following properties hold, wherelx and By denote the objects resulting respectively from
ok and B of (12) by the instantition (thus each4x is A or AL):
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(i) For fixedB1 € (B1)cp and Bz € (Bz)cp, define g, g, as fdlows:

T — (al]_, (1, bl)), b]_ (S ﬁl
PPz = (a1, (2,02)) | bz € B2

Then wehave

8,8, € HOMA, B @ B3) = (A® (B1&B2))cp.

(I") For fixedBy € (B1)cp and B2 € (B2)cp, ddineg, g, as fdlows:
R L C EE (1,by)),| b1 e 1
Pif2 =\ (a12, (2,02)) | b2 € B2 *

Then wehave
4.8, € HOMAL, B @ By) i= (A' ® (B1&B2))cp.
(i) Let us efine: by
idyy if A = Ail-
L= {(@-1@,3) | ac| A} where g1= { o' if Ay = AL .

Then wehave
v € Hom(Aji, Aii—1) = (Ail @ Af_)ep-

Proof of Lemma 6.3. We shall pove only (i) ((i) and {i) are similar). In the following,
78,8, IS abbreviated simply t@. At this point, the readeth®uld recall the definitions of
the image ad coimae conditions on morphisms {BRel (cf. Definition 2.13. We verify:

(image condition onr) For anarbitrary? # s € Ap, we have{ay1, a1} ¢ s. Herce either
[Slt = B, [Slt = B2 or [s]t = @, which implies[s]t € (B1)cp + (B2)cp = (B @ B3 )p.

(co-image condition orr) Take an &itrary r € (Bf @ By)ep = (B)ep™(By)cp
= (B1)p™(B2)p. Then we havette following:

] if riNBr=0 andriNBr=9
{faq1} ifrinpr£¥ andrinpr =49
{an1} if rinNnpr=0 andri1Np1 #£0

{arz, a1} if riNpr# 0 andryN By # 0.

In all cases we have[r] € Acp. O

T[r] =

Now we are ready toanstruct the sej:
First by (12) and (14) we can take two distinct elementg andc, from (7, (0)) 4;

o1 = ((@gy, yo, (L bY), b alT Y, @ ym agy P, @Fy ya aly). @y yo @), Ut w) -

0= (Gi-1.y1. @ 69), M2, a1, @™ ym, &M, .. @2 y3. &) @ ye & ) uR )
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where

_aj={""21 if 4 is an atom jell....i—1i,....n}

a2 if aj1 is a negation of an atom

—a" =gro---001(a) fora €| A| (cf. Lemma 6.3i) for definitions ofg;).

— bl is chosen such that there exigtse (B1)cp With bt € 81 and similarly forb?.

— The two pairs (m!, a1), (M?, a) are _chosen such that there exisis €
WAL, A- Dep with {(m?, a11), (m?,a")} € 8. We let (m), x) denotex when
N %1, *2]is of the formsq % *o.

— u® andu? are vectors respectively of andu? suchthat3ej1 € (€j1)cp Ul € €j1 and
Jej2 € (Ej2)ep UF € €j2, whereg; is the instantiation of .

— We dhoosev such that there exist§ € (L1 B -+ B Lr)ep = (L)ep X -+ X (Lr)ep
suchthatv € &, whereLy is the instantiation ofy (i.e., Lx will be A or A1L).

Sewond from (12) and the &ct that(X’ % ))cp = Xep X Vep, We have

(Apep= - (Ai—11 ® (B1&B2))cp x WAk, Ak Dep
x (Aim ® AiJ:m,l)cp X x (A2 ® -Aiji)cp X (Ep)ep-- -

Thus by takingé, €ji and & as above andgs, and: as inLemma 6.3 we define
n € (Agcp by

M= Ty X8 XU X -t x(€11+€12) X -+ X (€m1+€mz) X - --.

Heretg, g, is taken from (i) or (i) of Lemma 6.3according to whether; _1 1 is an atom or
the negation of an atom, respectively.
From the onstruction, we havey, ¢ € n. Thus

H(Tu(p) AN > 2.

This contradictProposition 2.13sinceall atoms are instantiated at the coherence space
A O
We thus immediately conclude the main result of our paper:

Theorem 6.4. Dinat-GHCoh is fully complete foMALL.

7. Remarkson the Mix rule

Previously in the paper, we have made substantial use of the tHg&ky +Mix,
in particular the®ALL +Mix full compleieness of DinatHCoh (Corollary 4.2). In this
section, we consider the full theotMALL+Mix. One mght expect thaDinatHCoh is
fully complete for this theory. Despite the fact that the cated@nat-HCoh has the strong
properties ofsoftnessand MLL+Mix full completeness, this is not the case. Indeed, we
show thatDinat-HCoh is not MALL+Mix fully complete. This suggests thistALL-+Mix
is a moe conplex theay thanMALL, in sharp contrast to the purely multiplicative case.

A counterexample is given by the following:
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Define a familyp = {eascpEF| A, B,C, D, E, F € HCoh} by

IOABC DEF = {((1, (a, b))’ a’ (1’ b))}
((2.@,0).8 2 9 acppep.ceo

« { (1,9,d, (1, (e d)) }
(@ .4.@ (1.0 gepy ecp e

Then we have

Proposition 7.1. p becomes a dinat dfiCoh, whose type- A is given by the following
MALL+Mix sequent:

(A" BBYH @ (At BCH, A®D, (B&C)® (E&F),
(E- B3 DYH o (FL % DY),
Moreoverp is not the @notation of anyMALL+Mix proof.

Proof. First we shall check that every méier of the family is a morphism df Coh. For
this, given an arbitrary C%;, ©acpeF, We shallprove that

ueI'(A) wherel'(X1, ..., Xn) = I'(X1 B - - B Xp). (15)
Sincerrz(u) € I'((B&C) ® (E& F)) diredly implies (15), we assume

m3(u) € I'((B&C) ® (E&F)) or equivalently
m1(w3(u)) ¢ I'(B&C) or ma(w3(W)) & I'(E&F).

By the symmetry oB andC with respect toE andF, without loss of generality, we may
assume that

w = m1(m3(u)) € I'(B&C) or equivalently
(w2 =@ andwy ¢ I'(B)) or (wy=¢@andw, ¢ I'(C)).
Again, by the synmetry of B with respect taC, we mayassume that
w2 = B A wy & I'(B) or equivalentlyws = ¢ A wy € I'(B1). (16)
On the other hand, the definition 8figc p e F implies the following:

If (m1(w3(U)))2 = wz = P then(w(u))2 = 9.
Also we havew1 = m2((r1(U))1).

The above facts, together with), imply
(mW)2 =9 and (ri(u)1 € I'(A" B BY).

But theseémply 71(u) € I'((A* % BL) @ (A+ B C1)), thus we havels).

Second we check that the family & dinatual transformation,o happens to be a
denotation of aMALL+Mix proof of the following type, which is obtained from by
erasing the two outermost tensors:

F (At BhHo At ®Clh), A D, B&C,E&F, (E* DY o (F- 3 D).

Hence, by soundness of the dinatural interpretatiois, a dinat of the latter type, thus itis
a dinat ofthe orighal typeA as well.
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Finally the MALL proof-structure®, associated with the dinat (cf. Corollary 4.59
is given by the followng, which has a cycl€ (with two jumps). Henced, is not a
MALL+Mix proof-net.

-p "._. ::' q
LoTp q

p -q

[

| | :
At Bt At ¢t ‘

]

: ! \
‘ e+t pt Ft D*

At Bt aAlzmct ‘c E F Ets pt Flim pl
(At % BLHoUt»n ct) A B&C E&F D (Et=» DLHeFLt=n DY
®

wherep andq are respective eigenweights for the left and right &-link&l

In contrast to théVIALL case (without MIX), the cycle above is unoriented.

8. Conclusion

This paper establishes a non-game-theomitiatural full completeness theorem for
MALL in the double gluing categoryGHCoh. Even usinggame semdits, which
sometimes more directly captures syntax, there are still few known full completeness
theorems for the additives for either noniitionistic or nonpolarized versions of linear
logic. This is because, although additives acnaturally in categorical semantics, it is
difficult to treat them by graph-theoretical (proof-net) methods. A key ingredient in this
paper isouruse o Joyal’s notion of softness, which relates dinaturality to Giratd’ALL
proof-structures. Along the way, our treatment involves a technical analysis of several
interesting subtheories, and certain restrictions on allowable proof-structures. In particular,
we analyze in detail the possible shapes of cycles in non-nets.

Typically in proving a full completeness theorem, one would also wish to verify
faithfulness of the interpretation. Howeveewavenot proved that and leave it as an open
problem. This is related to the fact that there is no known precise correspondence between
MALL proof-nets and the free-autonomous category with products, unlike in the purely
multiplicative case §]. Such a correspondence was exploited by the authors in their various
MLL full completeness theorem$,[L0,22,23].

Hughes and van GlabbeeR€] consider a larger class MALL proof-structures by
eliminating the restriction of Girard’s dependency condition. For this class, Girard's
original correctness condition is insuffiaie They thus introduce a stronger correctness
criterion for distinguishindMALL proof nets.

The Hughes—van Glabbeek system of proof-structures associates a unique proof-
structure to each dinat, owing to the elimaion of the dependency condition. Hence a
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promising direction for future work would be to investigate the possibility of a faithful full
completeness theorem using this larger class of structures.

However this extesion of our results to this larger class of structures might be difficult
given that their criterion is not a canonical extension of Girard’s. When their criterion is
restricted to Girard's class of proof-structures (with dependency condition), one obtains a
differentcorrectness criterion from Girard’s.

Another problem we leave open is the question of finding other soft categories, besides
HCoh and categories of games, which are modelSI&L_L.

Finally, as far as the exponensan linear logic are concerned, there is still no purely
graph-theoretical charactertian of proofs (i.e., a correctss criterion¥or this fragment.

Our full completeness methods rely on such a graph-theoretical analysis to make the bridge
between syntax and semantics (i.e. dinality). Thus the methods in this paper would
seem not to be directly extendable to full linear logic. However hypercoherences do in fact
model exponentials. Hence it may be interesting to investigate a semantical counterpart to
exponential boxes, even if it were less graph theoretical in nature, which would correspond
to known manipulations of exponentials in proof-structures.
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