Theoretical Computer Science 70 (1990) 35-64
North-Holland

(%]
wn

FUNCTORIAL POLYMORPHISM
E.S. BAINBRIDGE

saz e s +

| 5 TP P |/ Py SNNSPL SR § WIS SRR o S
EOpAnimeril vy iVIdInemancs, unwer.sny U] vnawa

KIN 6NS5

P.J. FREYD* and A. SCEDROV**
Department of Mathemutics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA

P.J. SCOTT***

Department of Mathematics, University of Ottawa, 585 King Edward, Otiawa, Ontario, Canada

DL 1.
J

585 King Edward, Ctiawa, Ontario, Canada

-

KIN 6N5
Contents
L0 § 115 o s 115 () o 35
1. The functorial calculus . ... ... e 38
2. Realizable endofunctors on PER . ... ... .. .. .. e 43
3. Interpreting the Syntax ... ... ..ottt e e 47
4. Reynolds paramietriCily Il PErS ottt et ittt ittt it ie ettt e 48
APDENAIX .« . e e e e 59
Acknowledgment . . ... .. 62
References .. ... . e e e e 62

0. Introduction

In the past suve-al years types have become an important component of program-
ming ianguage design. Thaey provide a logical framework to ensure that programs
meet given specifications, support a partial correctness or verification mechanism,
enhance software maintenance, and encourage the systematic building of complex
modules from si npier ones. These features are crucial in large-scale programming
projects requiring coordination among many teams of programmers.

Many recently developed programming languages have more sophisticated typing
mechanisms than the familiar Algol/Pascal family. For example ML-like languages
[23, 40, 62, 15], as well as such languages as Ada [3] and Clu [35], feature aspects
of polymorphic or generic data types which allow the programmer great flexibility
and abstraction.

* Partially supported by grants from the U.S. Office of Naval Research and the U.S. National
Science Foundation.

** Partially supported by the U.S. Office of Naval Research Grant N00014-88-K-0635, by the U.S.
Naticnal Science Foundation Grant CCR-8705596. and by the 1987 Young Facuity Award from the
Natural Sciences Association of the University of Pennsylvania.

*#* Supported by an operating grant from the Natural Sciences and Engineering Research Council
of Canada and member of a team grant from FCAR (Quebec).

0304-3975/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)



36 E.S. Bainbridge et al.

Various notions of polymorphism were first introduced into computer science by
Strachey [60] (cf. also [41, 48, 10]). Among the most influential was the notion of
parametric polymorphism. Intuitively, a parametric polymorphic function is one
that has a uniformly given algorithm in all types. An important example is Strachey’s
map-list.

Example. Consider a function f whose argument is of type a and whose result of
type B, so the type of f is a=>p. Let L be a list of elements of type a. We say that
L is of type a-list. Now consider the following function map: apply f to the individual
entries of L, then make a list of the results. Thus map(f)(L) is a list of elements of
type B, so map is of type (a = B)=>(a-list=> £-list). Note that no specific properties
of the types @ and B are used; in fact, we might as well suppose they are
variables.

Studies of typed functional languages often employ various extensions of typed
lambda calculi (see, e.g. [34, 45,47, 42, 26]). Studying such formal calculi provides
many mathematical insights into the structure of programming languages. In the
case of polymorphism, a formal calculus of variable types (higher-order lambda
calculus) was developed by Girard [20,21] as a higher-order extension of the
Curry-Howard propositions-as-types paradigm in mathematical logic (types corre-
spond to formulae, terms to deductions or proofs: cf. [24, 38]). Reynolds [46]
independently discovered the second order fragment of this calculus and proposed
it as a syntax for Strachey’s parametric polymorphism. Several powerful extensions
of the Girard-Reynolds calculus have been studied and implemented, most notably
the Coquand-Huet Calculus of Constructions [12,25]. Recent mathematical
advances in type theory and lambda calculi have already influenced program-
language design (in addition to the calculus of constructions, cf. Nuprl [11], Quest
[9], Forsythe [50]).

Girard [21] analyzed the syntax and metatheory of higher-order lambda calculi.
Many papers have explored the difficult semantical problems intrinsic to such
theories (for a recent survey, see [53]). For example, Reynolds [48] suggested that
second order lambda calculus might have a set theoietic interpretation. Reynolds
[49] (cf. also [51]) then showed that in fact this calculus cannot have a non-trivial
set model. More recently, Pitts [44] showed that if we use intuitionistic (or construc-
tive) set theory, there are many models, enough for a completeness theorem. Other
model-theoretic studies of polymorphic lambda calculi are given in [7, 58, 39].

The starting point for this paper was the simple question: what do types and
terms of polymorphic lambda calculus refer to, g'ven that there are no (classical)
Set-models [49,51]. The poiymorphic identity term gives a clue. Consider
Aa(Ax:a.x) of type Va(a=>a). Then Aa(Ax:a.x)[A] = Ax:A.x. That is, this term,
when applied or instantiated at a type A gives the identity function on A. Thus
Aa(ax:a.x) is a type-indexed family of (identity) functions.

Therefore the first attempt is to take Ya(a=>a) as the collection of all indexed
families of functions from a to @, which amounts to taking the product, to wit



Functorial polymorphism 37

[14 (A= A) over all types A. As argued in [48], this product is too big. In Strachey’s
terminology, this product also contains ad hoc elements which are not intended in
the notion of parametric polymorphism. Reynolds [48] proposes to distinguish
parametric elements of such products by means of an invariance condition with
respect to certain relations induced by polymorphic types. In [48] this invariance
requirement was discussed in the context of an attempted set-theoretic model, which
was subsequently shown to be impossible [49, 51].

Our point of departure is to insist on certain naturality (or uniformity) conditions
on these indexed families. Therefore universal type abstraction will not be interpreted
simply as a product, but rather as that part of the product consisting only of those
farnilies that satisfy naturality conditions intended to reflect parametricity. So, our
next approximation is that types are functors, and terms are natural transformations
between types, all defined over some cartesian closed category (ccc) € of “ground™
types. Note that the constant functors really play the role of “ground™ types.
The function space type a=>8 corresponds to the internal hom functor ( )=():
€°:* 4 - € which is contravariant in its first argument and covariant in its second
argument. Alas, « = a would have to be both contravariant and covariant in a, i.e.
a=>a is just not a functor.

There are at least two ways of resolving this problem. One approach [54, 59, 22]
is to move to a category of retract pairs, which serves to obliterate the difference
between covariant and contravariant. Naturality conditions so obtained are rather
weak and thus the interpretation of universal type abstraction given by this approach
still allows ad hoc elements.

This problem, in fact, is not a new one. It was encountered several decades ago
in algebraic topology. Moving to retract pairs would not have been useful in that
context. Another approach based on a suitably generalized notion of “multivariant™
natural trans’ocrmation was developed. A calculus of these generalized natural
transformations startcd with Yoneda [63] and later Dubuc and Street [16] (cf. the
discussion in [37, pp. 214-228]). Indeed, the observation that the calculus of general-
ized natural transformations closely resembles the second-order 8-7 rules of poly-
morphic lamb.1a calculus led to our whole project. Moreover, as we are now
discovering, these notions of naturality capture certain semantic aspects of para-
metricity; in particular, they permit a semantically sound and systematic approach to
adding new equations to the syntax.

In this paper we consider two semantic approximations to Strachey’s notion of
parametricity. The first one, discussed in sections 1-3, is based on the above-
mentioned calculus of generalized natural transformations. The second one, dis-
cussed in Section 4, is based on a version of the Reynolds invariance condition
referred to earlier.

Basic definitions and examples of the calculus of generalized natural transforma-
tions are given in Section 1. In particular, a semantic analog of universal type
abstraction is discussed in Section 1.1.

In Section 2 we study the calculus of generalized natural transformations, in the
context of partial equivalence relations (pers) semantics (see {41, 5]}. Remarkably,



38 E.S. Bainbridge et al.

in this context, there is an extensive class of generalized natural transformations
(Theorem 2.9). This yields a setting for semantics of polymorphism in which elements
of universal types are only those families which belong to this class of generalized
natural transformations ( Theorem 2.11). The corresponding interpretation of the
syntax of polymorphic lambda calculus is presented in Section 3.

In Secticn 4 we turn (o ilic Reyrolde parametricity condition (see above). We
deveiop a consisient fraimework for this ¢ “ificn in the contex of per semantics.
This yields an interpretation of polymorphism with a built-in requirement of the
parametricity of elements of universal types (Section 4.2). In this interpretation, for
any second-order definable covariant functor T, the universaltype Va((Ta = a)=a)
must be the initial T-algebra.

Notation. Composition of arrows in a category will be denoted two ways: if f: A—> B,
g : B~ C, their diagrammatic composite (composite in order of execution) is denoted
£ g: A- C, while the equivalent composite in usual mathematical notation is denoted
gof:A- C. If €" is a product category, we use bold face letters to denote vectors
of objects or arrows. For example, in €”, f;g: A~ C denotes the vector of arrows
whose ith component is f;;g;: A; - C;. €° denotes the opposite category €°°.

In a cartesian closed category, we shall denote exponentiation either by the
categorical notation B* or sometimes the logicians’ notation A= B, whichever is
appropriate. N denotes the natural numbers {0, 1, 2,...}.

1. The functorial calculus

In what follows, € is a cartesian ctcsed category. As mentioned in the Introduction,
the general plan is to interpret types as ranging over some class of multivariant
n-ary functors F:(%°)"x €" > € and to interpret terms 25 ranging aver some
appropriate class of “multivariant” natural transformations.

1.0. Definition. A dinaturaltransformationbetweentwo functors F,G:(€°)"x €" > €
is a family of morphisms u ={uA: FAA—> GAA|Ac €"} satisfying the following
condition: for any vector of morphisms f: A~ B,

FAA—2 GAA

FBA GAB (%)

i\

N\ " /fv"
FBB —"— GBB

In many examples u is given by a “uniform algorithm” which is the *‘same” for
each object A. This is illustrated in the examples and models below. We soinetimes
speak of (*) as the hexagon property. We use the notation u: F—> G io denote that
u is a dinatural transformation from F to G.



Funcstorial po’, morphism 39

We mention three special cases and then consider some examples.

(a) Suppose F and G are covariant: € - €, thought of as functors €°x € €,
dummy in the first argument. Then the definition of dinatural transformation u
reduces to that of an ordinary natural transformation since the two oblique arrows
FBA > FAA and GEB - GAB are identities.

(b) A less familiar example is when one functor, say F, is covariant and the other
functor G is contravariant. Then a dinatural transformation from F to G is a family
u satisfying the following diagram for any f: A- B,

Ua

FA GA

Ffl Icf

FB—" . GB

(v; Suppose one of F or G is constant: say F is K, the constani functor whose
value (on objects) is always D. Then the notion of dinatural transformation reduces
to the case of a family u = {u,: D> GAA} satisfying the following wedge condition
(cf. [37,63]): for any f: A- B,

GAA
V Y‘Af
D GAB

GBB

1.1. Exampies. The following examples make sense in SETS or more generally in
any cartesian closed category 4.

(i) PolymorpFic identity: let K, be the constant funcior with value the terminal
object 1 and (¥’ the internal function space (hom) functor. Consider the uniform
family u: K, )", where u,:1- A% is given by Ax: A.x (known in category theory
as the ’name” of the identity on A). The dinaturality condition reduces to: for every
arrow j: A— B,

A4
V “1\,4
N\
1 B”
N
BB

which is equivalent to saying that fcid, =idy o f, which is certainly true. Note also
that u is given uniformly at aay type slot () by Ax:( ).x.



40 E.S. Bainbridge et al.

(i) Uniform Church numeral n: for each object A in €, consider the family of
A-indexed arrows n ={n,: A* > A*| Ae €}, where n, maps h to the n-fold composi-
tion of h witl: itscif, h". Then n deterniui..cs a dinatural transformation ()" - ()"
Indeed. the reader can compute that the dinaturality condition says that {or any
f:B*, g:A®B fo(gof)"=(f°g)"°f, which is an instance of associativity. Again
note the “uniformity” in the definition of the algorithm for (each component of) n.

(iii) Application: Considerthe family App, with components Appaa-: (A)*x A-> A’
given by application (or evaluation) in the ccc €, for each pair of objects A, A'.
Then for all f:A-> B and f': A’> B’, the following hexagonal diagram commuies:

AA % A 220, g

Ai/'xy' \
APxA

N /

B®x B2, g

This says if g: A%, f((g°1)(a))=(f"° g)(f(a)). App is a dinatural transformation
(between functors constructed using the operations in Section 1.5; see Appendix A.6).

As a special case of the above example, let D be a fixed object in €. Consider
the dinatural transformation app : D'’ x ( ) » K5, where app,, : D*xA-Dis applica-
tion in the ccc 6. So at any type slot ( ), app., has a uniform algorithm (e.g. ati
appropriate A-term). It is easily checked that the hexagon condition reduces to the
following: for any f: A— B,

D*x A

D, "/’ Y’P,\

D%xA D

D x\ /p; .,
D% xB

whose commutativity reduces to (g o f)(a) = g(f(a)), for any a. A, which is true in
any ccc.

(iv) Fixed poini combinators: Suppose there were to exist a dinatural transforma-
tion Y:()">id, where the functor id denoctes ihe identity functor. So Y=
{Ya:A%> A|Ac €} is a family satisfying the following hexagon condition: for any
f:A-> B,




Functorial polymorphism 41

This means (using set-theoretic notation): if g:A® f(y
particular, setting A= B and g = Ax: A.x (the identit ty on A

,,,,,, L} LRy W

Jfixed point combinator at each type A (cf. aiso Appendix A.2).

The most perverse aspect of the calculus of dinatural transformations is the failure
of composition One attempts to compose two dinatural transformations u: F-» G

"

el e Y ¥ Ly lhnszr el €Camn .-...... R PR

ana v. U u_y uuuLuruau_y TICTEiig the two ucxagu‘nb i.e. define their com-
posite u, v by the formula (u; v) 4 = us; va. Then for any f: A~ B, consider

FAA —2 GAA—"— HAA

e/ Gra /' \_car \\ Has
/ /N N\
FBA GBA GAB HAB (**)

NI

FBB GBB—"— HBB

While hoth hexagons individually commute, the outer hexagon need not commute.
We now give two exampies.

Example. In the category SET, consider the dinatural transformation v:( )’ '-
Kgoove, where BOOLE = {0, 1} and the map v,: A* > BOOLE, where v, is 0 or 1
depending upon whether the number of fixed points of its argument is even or odd,
understanding o as even. Consider the polymorphic identity u: K, ()"’ (see
Example 1.1(i)). The map (u; v),: 1> BOOLE depends on A (it is not constant in
A); so u; v cannot be a dinatural transfermation between constant functors.

Example. Let € be a ccc. Take any dinatural transformation Y :( )= () (cf.
Example 1.1(iv)). If we were able to compose Y with the polymorphic identity
K,- ()", then ike category € would be degenerate (i.e. given any ordered pair of
objects, there is a uniqu. map fioin the first to the second). See Appendix A.4.

1.2. Fact. If the middle diamond in (*+) is a pullback, then we can in fact compose
the dinatural tra:sformations u:F - G and v: G- H above. For in this case, there
exists a horizonta! arrow FBA > GBA making everything in sight commute.

The p.oblem of composing dinatural and other classes of generalized natural
transformations has been examined by various authors (e.g. [17,31]). At a general
level these problems are quite intricate and only partial solutions are known. In
Sections 2 and 3, these obstacles to compositionality will be resolved for certain
large classes of multivariant functors and dinatural transformations intrinsic to PER
and HEO-like models (cf. [41, 5,36]). We show that this includes at least those
functors and dinatural transformations definable in second-order polymorphic
lambda calculus.

For the remainder of this section we stay at a general level: some class of
multivariant functors with some (not necessarily compositional) dinatural transfor-
mations between them. But the reader should bear in mind that we can always



42 E.S. Bainbridge et al.

specialize the entire framework to some nice model where, among other things,
compositionality holds.

We can say a bit more about compositionality at the general level. Until further
notice, let us fix functors F, G, H:{(%°)"x €" > 6. Let u, v denote families of
morphisms u,: FAA- GAA, va: GAA-> HAA, A € €6, not necessarily dinatural. Let
D, be the set of f for which the family u is dinatural; that is fe D, iff the hexagon
(*) in Definition 1.0 commutes. D, and D, ., are defined similarly.

1.3. Proposition (Vertical merging). D, is a subcategory.

Proof. D, trivially contains identity arrows. Given f:A-> B and g:B- C in D,
stare at the following diagram, using functoriality of F and G on the oblin"e outer
edges:

2 29
FCA FBB GBB U
m\ / N /
\ GgC
FCC GcC

1.4. Proposition (Horizontal merging with respect to isomorphisms). Any isomorph-
ism in D, and D, is necessarily in D,

Proof. Suppose f is an isomorphism (iso) in both D, and D,. Observe that the
middle diamond in (**) has each side the G-image of an iso. Since functors preserve
isos, we obtain a diamond whose sides are all isos, and such a diagram is of course
a pullback: now use Fact 1.2. [

1.5. Some functors

We can build new functors from old by various >perations. For the rccord, given
two functers F and G, their product is constructed pointwise; that is, on objects,
(FxG)(A, B)=F(A, B) x G(A, B), while their exponential or functwn space G© is
the functor G" (A, B) = G(A, B)"®* . It is a remarkable fact that G* is the categori-
cally defined exponentiation in certain very special situations, an example of which
is described in Section 2 (see also Appendix A.6, and the recent work in [18]).



Functorial polymorphism 43

One of the most ubiquitous constructions in applied category theory given first
by Yoneda [63] (cf. [37, pp. 218-224]) plays a critical role in our semantics for
polymorphism. Given a funcior G, we seek a universal wedge into G, that is, an
object E and a dinatural trensformation K — G, universal for all such dinatural
transformations. That is, for any dinatural transformation K, > G, there is a unique
triangle

D

N\

KE——-—>G.

- X

E, when it exists, is called the end of G, and is denoted by I 1 GAA. (This notation
happily displays A as a bound variable; indeed, A could even be a vector of
“variables”.) We note that there may be other variables in the expression G then
those specifically noted, and the universal property guarantees that | , GAA will be
a functorial in these other variables.

One may think of [, GAA as a subset of the product [1, GAA; namely,

J GAA={ge|l GAA|G(A, f)(ga)=G(f, B)(gp) for all f:A-> Be €}.

Note however that the product is taken over the class of all objects of 6. In the
case that « is covariant, the end is the usual notion of the limit of the functor G
[37, p. 68].

1.6. Proposition. Maps 1- | A FAA=GAA are in bijective correspondence with
dinatural transformatior.s from F to G (and this correspondence is natural in any other
variables).

Preof. The proof is a iaatter of identity checking. [J

2. Realizable enc.ofunctors on PER

A partial equivalence relation (per) on a set A is a symmetric, transitive relation
R on A. Hence R is an equivalence relation on domg ={a € A|a R a} < A. One may
think of R as partitioning domy into disjoint classes.

Let per(A) denote the set of pers on A. We first examine the case A=N, the
natural numbers. Generalizations are considered below.

2.1. Definition (the category of pers). PER(N) is the following category: its objects
are per(N), the pers on N. Given E, E'e PER(N), a morphism from E to E' is
named by a partial recursive function f if f induces a map of quotients dom./E -
domg/ E': that is, f names a morphism if, whenever n E m, then f(n), f(m) are
defined and f(n) E’ f(m). We write f(n)| for ““f(n) is defined”.



44 E.S. Bainbridge et al.

Two morphisms f, g: E - E’ are equal if the induced maps of quotients are equal,
that is Vm,ne domg, n Em implies f(n)l, g(m)| and f(n) E' g(m). So f and g
name the same morphism if f(n) E’' g(n) for all ne dom;..

We use the notation nm to denote that the nth partial recursive function (in some
standard enumeration) is applied to m.

2.2. Proposition. PER(N) is a cartesian closed category.

Proof. PER(N) is easily verified to be a category. 1 is any per with a unique
equivalence class. A> B may be constructed as (m, n) (Ax B) {p, q) if m A p and
n B q, where (,):NxN- N is a chosen recursive bijection. B” is the relation on N
such that m (B*) n iff m and n are codes of equal morphisms A- B. {(in other
words, m(B”*) n iff for all i,j i Aj implies mi B nj). The fact that this is a ccc
uses some elementary recursion theory (cf. Remark 2.3). For example, the funda-
mental bijection between AX B- C and A- C" uses the S-in-n theorem.

2.3. Remark. Definition 2.1 and Proposition 2.2 make sense if we replace N by any
partial combinatory algebra A=(A,* S, K) (e.g. [2, 33, 5]).

From now on, we restrict ourselves to the category PER(N), denoted FER.
However, all subsequent discussions apply equally to the more general PER(A),
for A a combinatory algebra, as in Remark 2.3.

A fundamental subcategory of PER is I, the category whose objects are all pers
(on N) but whose only maps are named by the identity function on the natural
numbers N). Note that there is at most one map in I between two pers E and E’'.
Any category with this property can be identified with a partially ordered set (poset),
in this case the poset of pers ordered by inclusion. It is misleading, however, to call
the maps of [ inclusion maps. They need not be monomorphisms (Note that every
per is included in the maximal per; the corresponding map in I is the map that
collapses an object into 1. See also Example 2.5).

Even though I is a small part of PER, it is a representative part.

2.4. Proposition. Every morphism in PER may be decomposed into an isomorphism
Jollowed by an I-map followed by sn ixomorphism.

Proof. Let f:E > E’ be a morphism of pers. Consider the following factorization

E > L'
|
D—— D

where

(i) (n, k) D(n', k'Y iffn En', KE' f(n), and k' E' f(n’),
(ii) (n, k) D' (n’', K'Y it K E' k'



Functorial polymorphism 45

Note that D is the “graph” of f One easily checks that E is isomorphic to D,
D < D’ and D’ is isomorphic to E’.

2.5. Example. To illustrate Proposition 2.4, consider the pers E ={(0,0), (1, 1)},
E'={(2,2)}, and let f: E—> E' be the constant recursive function Ax.2. Notice
domg ={0,1}, dom; ={2}. Factor f as above. We obtain D ={((0, 2), (0, 2)),
((1,2),(1,2)}. So dom ={(0,2),(1,2)} ={(n, f(n))|nedom}, the “‘graph” of f.
Hence E = D, via the map n—(n, f(n)). D'={((n, 2),(m, 2))| m, n € N}. Obviously
D < D'. Finally, D'= E by the projection {(n, 2)~—2. Note that dom,,/ 2 has two
elements, dom,,/ D' has one element, so the I-map morphism D - D’ is not mono
(in PER).

2.6. Definition. A realizable functor F: PER - PER is one which takes I to I and
for which there exists a mapping @ from the set of partial recursive functions to
itself such that for any morphism of pers from E to E' named by f, F(f) is named

by ¢f).

Almost any functor which arises in practice is realizable. Realizable functors are
closed under products, twisted exponentials (see 1.5), and of course under substitu-
tion. Indeed, any functor definable in poiymorphic lambda calculus is realizable
(see below).

Remark. Among the realizable functors are those functors on PER that are given
internally in a critically important model for intuitionistic set theory and higher
order logic, the Realizability Universe (or Effective Topos). As first pointed out by
Moggi, this Universe contains a non-trivial, complete small cartesian closed category,
the Modest Sc:s +36, 8,28, 29, 57]. (For a discussion of various notions of internal
completeness satisfied by Modest Sets, cf. [52].) Viewed externally, Modest Sets are
equivalent to PER, This point of view was instrumental to our initial understanding
of the approach described in this paper.

2.7. Definition. Let F,G:(PER°)" x PER" > PER be realizable functors. A family
u={u,: FAA-> GAA|Ac PER"}, not necessarily dinatural, is calied a realizable
family if there is a single partial recursive function ¢ such tiat each comporent -4
is named by ¢.

So a realizable family u = {u,: FAA > GAA} has the property that there is a single
numerical code n such that all components u, are named by the nth partial recursive

function.
In the following proposition, we refer to the notation introduced before Proposi-

tion 1.3.

2.8. Proposition. For any realizable family u, D, contains .



46 E.S. Bainbridge et al.
Proof. Immediate. [J

Ve g ot kow if realizabk! families are necessarily dinatural.
We now state the first fundamental theusiem ot this approach to semantics of
polymorphism.

2.9. Theorem. Realizable dinatural transformations compose.

Proof. Using the notation introduced before Proposition 1.3, s.ppcse u and v are
realizable dinatural. The composition u;v is of course realizable and therefore by
Proposition 2.8, D,,.,. contains I. Proposition 1.4 says that D, ., contains all isomorph-
isms. Propositions 2.4 and 1.3 yield the theorem.

2.10. Corollary. For each n, the realizable functors (PER°)" x PER" - PER and
realizable dinatural transformations between them are a ccc.

Proof. That we have a category is immediate from the theorem. The ccc structure
is given by products and twisted exponentials described in Section 1.5. O

We now relativize the notion of end discussed in Section 1.5 by restricting functors
to realizable functors, and dinatural transformations to realizable transformations.
Henceforth, §, GAA will denote these realizable ends.

The second fundamental theorem of this approach is as follows.

2.11. Theorem. Realizable ends exist.

Proof. The per |, GAA is obtained by first taking the intersection of all pers GAA,
then taking the subper corresponding to the dinaturality condition. Formally, take
the per E that relates m to n iff for any f: A—> A, GAA’ relates G(A, f)(m) to
G(f A')(n). By specializing f to the identity map, one can easily obtain that the
map E - G(A, A) is in I for every A, and hence that the induced wedge into G is
rcalizable, named by the identity function on N. A routine calculation shows that
E is a realizable end [, GAA. In fact, the realizable dinatural transformation from
K, - K¢ required in Corollary 2.10 is named by the same partial recursive function
as the given realizable dinatural transformation K,,~ G. This property implies that,
if there are other variables, then IA GAA takes I to I In that case, furthermore,
fa GAA is a realizable functor in these other variables, the mapping on partial
recursive functions required for realizability being given by @'(g) = ®(id,, id,, g),
where @ is assumed by the realizability of G. [

2.12. Remark. It is a remarkable fact that the realizable end j,, (A= A= (A= A)
is the per given by ordinary equality on the natural numbers N. This is trve even
if we substitute the intersection (1), instead of the realizable end §,. This should



Functorial polymorphisin 47

be contrasted with the situation in SET: the end |, (A= A)=>(A=>A) is non-
existently large, i.e. there are actually a proper class of dinatural transformations
from ()"’ to itself (See Appendix A.5).

Open problem. Are realizable families automatically dinatural?

3. Interpreting the syntax

Following the viewpoint of Sections 1 and 2, we interpret types o, whose free
type variables are among «a,, a.,...,a,, as realizable functors |o|:(PER°)" x
PER* - PER by induction.

(1) If o=a,, |o|(A, B)=B;, the projection functor onto the ith covariant
argument.

(2) If o= C, a ground constant interpreted as an object in PER, then |o|(A, B) =
K., tte constent functor with value C.

(3) If o=1,X1., |0|(A, B)=(|7| X|7a|)(A, B) =|7)|(A, B) X|72|(A, B).

(4) If o0 =7,=>1,, |o|(A, B)=(|7|=]|7|)(A, B)=I7,|(B, A)=|1-|(A, B), (twisted
exponential).

(5) If o=Vea,r, |o|(A, B) =IO |7|(A[i:= Q], B[i:= Q]) (realizable end), where
A[i= Q] means change component i to Q in vector A.

Example. |Va(a x(a=>8))|: (PER®)’x PER’ - PER is given by

Va(a x(a=>B))|(AA,, B,B;)

="' |(ax(a=B))|(A,A:[1:=Q], B,B.[1:=Q])

< Q
n

=J [(a x(a=>B))|(QA,, QBZ)=I Qx(Q=B,).
Q Q

We now show how to interpret terms in the dinatural calculus over PER. Given
a derivable typing judgement in second order polymorphic lambda calculus (e.g.
[41.533)

x,:a,,x::o*:,...,x,,:a',,l-l‘:’;',

in which all the free type variables are among a = a, . . ., o, we define a numerical
code e, of an n-ary partial recursive function e, by erasing iypes from t and then
interpreting the obtained untyped lambda term as a numerical code of a partial recursive
function in the usual way (see Appendix A.1).

Note that e, depends only on n and the untyped lambda term obtained by type
erasure, not on any type information.



48 E.S. Bainbridge et al.

Soundness Theorem (Realizable dinatural transformations). Consider a derivable
typing judgement

X)107, X209, ..., X 10,117

in which all free type variables are among o = a,, ..., .. Then e, names a realizable
dinatural transformation |(a, % - - - X @,)| > |7|: (PER°)* x PER* > PER, i.e. a realiz-
able dinatural family {(a, % - - - X 0,,)|(A, A)~>|7|(A, A), for every Ae PER". Further-
more, if t, and t, are second-order B-n-convertible, then e, and e, name the same family.

Proof. By routine induction on the derivation of typing judgements, one verifies
that the number e, names the dinatural structure referred to in Corollary 2.10 and
Theorem 2.11. [J

3.1. Remark. Dinaturality imposes certain equaticns, which, by Soundness, are
valid in this interpretation. For example, Va(a => a ), in the realizable end interpreta-
tion, must be 1. This imposes the equation z= Aa(A....x), for any z eof type
Va(a=a).

3.2. Remark. The above interpretation can te cecnsidered as part of a general
functorial/dinatural interpretation of types and terms, as in Section 1, specialized
to PER. See also the recent work of Freyd [18].

4. Reynolds parametricity in pers

4.1. Saturated relations on pers

The category PER is rich enough to allow itself a calculus of relations (see [8]).
A relation frem one per to another is a subobject of their product. For present
purposes we will not be interested in all such, but only in those that satisfy the
technical condition of being regular. (For the specialists in category theory, happily
the two common senses of regular subobject coincide here: a subobject of a per
appears as an equalizer of two maps between pers iff it is closed in the double
negation topology on the Realizability Universe, i.e. the Effective Topos). For our
purposes a regular subobject of a per A will be defiried as one that can be obtained
by restricting A to a “‘saturated” subset of dom, (where *“‘saturated” means that it
is a union or A-equivalence ciasses). A regular relation from A to A’, therefore, is
one that is obtained from a saturated subset of dom,, 4. Such a subset may be
viewed as an ordinary relation S from dom, to dom, subject to the saturation
condition which may now be rewritten as:

S=A;5A (%)



Functorial polymorphism 49

or equivalently,

JAn, nSn’, n"A'j' imply jSj"

1 ;L‘ o Fﬂnlllnﬁ
4 LRIV MIAYS \Lg J /. ll TR L. IO 10 a Tvgulal

4.2. Example. Consider a morphism of pers f: A= A'. The graph of f is a subobject

of Ax A’ which anpears as the imase of the man (1. f)\: A-> Ax A'. Thi

..... VYilIVii QP S Lll\( LG s

subobject, but for no particular name of f need the set of ordered pairs (a, f(a)),
a e dorni,, be saturated. The saturation of this set is independent of the choice of

name of f. The corresponding saturated relation R, from dom, to dom,. is equal
to the composition of f with A'. In other words, a R;a' iff f(a) A’ a'.

..................... aR;a' iff
4.3. Example. As a special case of Example 4.2, the identity relation on A is the
graph of the identity map. The corresponding saturated relation is A itself (condition
(§) may be reread as saying that S is a relation that makes what we have just
constructed as the identity morphism behave like the identity morphism).

We shall be working with tiic Reynolds parametricity condition [48] in the context
of saturated relations on pers. One could, of course, simply interpret the Reynolds
parametricity condition in the intuitionistic logic of the Realizability Universe, where
types are interpreted as modests sets. Under such an interpretation, parametric
elements must be invariant under all binary relations on modest sets in the Realizabil-
ity Universe. However, we shall consider an a priori weaker invariance requirement,
an invariance under saturated (i.e. double negation closed) relations on modest sets.
This approach still suffices for proving the theorem in Section 4.9 and will perhaps
be more accessible to the reader. Furthermore, considering only double negation
closed relations is in the spirit of the definition of modest sets themselves as
subquotients ot th2 set of natural numbers by double negation closed equivalence
relations.

Throughout this section, we shall use the notation R: A+ A’ for a saturated
relation from dom, to dom,..

In order to staie the Reynolds parametricity conditions in PER, we must extend
the type-forming operations to saturated relations as follows.

Let A, A’, B, B'be pers and let R: A+ A’, S: B~ B'. Product and exponentiation
of pers Ax B and A= B are defined as usual (see the proof of Proposition 2.2).
Let aedom,, bedomy, a’'edom,., b'e domy.. Define the following relations.

RxS:(Ax B)-+(A'x B’), where {a, b)(Rx S)(a',b") iff aRa" and bSH'".

S:(A=B)+~(A'=B’), where e (R=>S) ¢' iff (a R a’) implies (ea S e'a’) for
any a, a’ as above.

Suppose, given a type expression 7(a, 8) and pers A, B,,..., B,, we know
the meaning of 7(A, B). Then let Yar(a, B)=( )4 7(A, B), the intersection
over all pers A. Given a vector of saturated relations S, where §,:B;+ B,
suppose we know the meaning of 7(R,S):7(A, B)++(A, B'). Define



50 E.S. Bainbridge et al.

Va.7(w, S):Va.7(a, B)~Va.7(e, B') as the intersection () 7(R, S), over all pers’
A, A’ and all saturated relations R from A to A’. We will want

(i) whenever R is a saturated relation from A to A', then for any polymorphic
type 7 7(R) is a saturated relation from 7(A) to 7(A’), and the

(ii) Identity Extension Lemma: if R is the identity on A, then 7(R) is the identity
on 7(A).

The second requirement forces us to redefine the per interpretation of Va.7, i.e.
to trim down the intersection [ ), 7(A) to only those elements invariant with respect
to all saturated relations.

Officially, 7(A) and 7(R) are defined, and (i) proved, simultaneously by induction
on the complexity of 7. The basic clauses for product and function type are the
same as before. The formula for universal type abstraction is. n Var(a, B) k iff for
all pers A, A’ and all saturated relations R from A to A,

n7(R,idg) n, k7(R,idg) k, nt(A, B) k, nt(A', B) k.

That is, given n, k in the intersection of the domains of the 7(A, B)s, all A, if n is
to be related to k by Var(a, B), it must at least be the case that nr(A. B) k
and n7{(A’,B) k for all A and A’. But we want more; namely, consider any
saturated relation R:A-> A’ and the induced regular relation between pers,
7(R,idg) from 7(A,B) to 7(A’,B), corresponding to the satuvrated
relation 7(R,idg):7(A, B)+~ (A, B) by Section 4.1. We have at least
(n,n) (1(A, B)x1(A’, B)) (k, k), but we stipulate that (n, n) 7(R, idg) (k, k). Now
recall that according to Section 4.1, since # is in the domain of every 7(A, B), all
A, this means n7(R,idg) n, n7(A, B) k, and nt(A’, B) k, and hence k 7(R, idg) k
as well, assuming (i) as the induction hypothesis. For the record, the relation
Va.7(a.S):Va.7(a.B)+~Va.7(a.B) is defined as before by intersection.
The reason for this definition is as follows.

4.4. Proposition. Let 7 be a second-order polymorphic type whose free type variables
are a,,a,,...,a,. Let R be a vector of saturated relations, where R;: A;-~ A,
i=1,2,...,n. Then 7(R) is a saturated relation from 7(A) io T(A’').

Proof. Immediate for products and function types. By construction for universal
type abstraction (see above). [J

4.5. Example. It is built into our construction that Church numerals are the only
elements of domy., (.=su)-5a-2a - Indeed, any element k must have the property that
for any pers A, A’, and any saturated relation R: A+~ A', k (R=>R)=(R=R)) k.
Therefore, k is a code of a partial recursive funct’on ¢ such that if e /R=R) ¢’
then ¢(e) and ¢(e’) are defined and ¢(¢) (R=>R) ¢(e). Recall that the saturated
relation R=>R:(A=>A)+—{A'=A") is defined by:if ee A=A, and ¢'c A'= A,
e (R=>R) ¢’ iff whenever a R a’, it must be the case that ea R ¢'a’. Therefcre,

if (for all a,a’, whenever a R a’ then ea Re'a’)

then (for all a,a’ if a Ra’ then ¢(¢e)(a) R ¢(e')(a’)). )



Functorial polymorplism 51

Now let R be the saturated relation R, corresponding to the graphofamap f: A— A/,
i.e. aRya’ iff f(a) A" a’ (cf. Example 4.2). Thus condition (+) now says:

if (for all a,a’, whenever f(a) A" a’, then f(ea) A’ e'a’,

i.e. f(ea) A’ e'(fa), for all a)

then (for all a, a’, whenever f(a) A’ a’, then f(¢(e)(a)) A’ p(e')(a’), i.e.
Sfle(e)(a)) A’ o(e')(f(a)), for all a).

That is, in diagrammatic notation:

A— A AN 4
if «'1 l-” then -’l l” (1)
Al— A A — A
e’ ¢ele’)

It now ¢asily follows that ¢ is the Church numeral n, where n may be computed
by applying ¢ to a code e of the successor function on the natural numbers, and
then compuiing n = ¢(e)(0). Indeed, we show that for any per A’, and any map
A'> A’ named by a code ', and any a’'edom,.,, A’ relates ¢(e’)(a’) to the n-fold
application e’(e’'(e’...(e'a’) ...)). In the condition (7T), let the per A be the ordinary
equality considered as an equivalence relation on the natural numbers N and let e
be a code of the successor functioi. Let a’e dom, and let f: A-> A’ be constructed
by primitive recursion: f(0) = a’and f(i+1) = e'( f(i)), so that f satisfies the assump-
tion in the condition (T1). Therefore by (i1}, A’ relates o(e') a’) to f(p(e(0))), 1e.
to f(n). But the definition of f(b) is exactly the required ‘i-fold application
e'(e'(e'...(e'a’)...)).

Recalling Example 4.3, we now prove the following.

4.6. Proposition (Identity Extension Lemma). Let 7(a,, as,...,,) be a second-
order polymorphic type with free type variables a,, a,...,a, and let A,,..., A,
be pers. Then 7(ida,,ida,,...,ids)=id;(a, A...a,, as saturated relatio:.
(A,,...,A)~1(A,,..., A,).

Proof. Let us do the abstraction case first. Let B=B,,...,B, be a list of
pers. We wish to show the relation Var(a,idg)=idy,...m, as relations
Var(a, B)+~Var(a, B). Let n, ke domy,,. ). n Var(a, B) k iff for every pair of
pers A, A’ and saturated R:A-+—A’, n7(R,idg)n, k7(R,idg)k, n (A, B) K,
n7(A’, B) k, whereas n ¥7(a, idg) k iff by definition, for every pair of pers A, A’
and saturated relation R: A~A’, n 7(R, idg) k. Var(a, idg) is included in idy.-(a.8)>
by 4.3, since if nVar(a,idg) k theti for any saturated R: A+ A', n7(R,idg) k.
Letting R=id, and the induction hypothesis, gives n 7(A, B) k. Similarly, using
id ., n7(A’, B) k. By saturation, k 7(R, idg) k and ditto for n. For the converse
inclusion use the inductive hypothesis, setting R=id,, R=id,.



52 E.S. Bainbridge et al.

Function-type: for - aricty, we i'lustrate this case with an example (which, however,
contains all the essential difficulties). Consider id ,=idz: (A= B)+~ (A= B). Then
if e,e’'c A= B, e (id,=idg) €' iff for all a, a’ in dom,, if aid, a’ then eal, ea’|,
and ea idp e’a’. That is, by 4.2 if a A a’ then ea B e'a’ (up tc definedness of ea, e'a’).
In particuiar, setting a = a’, we see: for all a such that eal, e'a’|, ea = e'a (that is,
e and ¢’ are extensionaily equal). Now suppose a A a’. Then e, being a morphism,
satisfies ea A ea’ (ignoring definedness). Since ea = e'a’, we have ea A e'a’. But this
is precisely the meaning of equality of morphisms e, e’: A— B. So id ,=id equals
ida=p-

Product types: easy. [J

Remark. We denote the identity relation on a per A by A itself. So by the lemma
above, we may write 7(A) for 7(id, ,id4,....,id4 ).

4.7. Every polymorphic term is invariant under saturated relations in PER

Given a derivable typing judgement in second-order polymorphic lambda calculus
(e.g. [41,53])

X1:01,X2:05, ..., X0, —L:T

in which all the free type variables are among « = «, ..., a;, we define a numerical
code e, of an n-ary partial recursive function e, by erasing types from t and then
interpreting the obtained untyped lambda term as a numerical code of a partial recuisive
function in the usual way (see Appendix A.1).

Again note that ¢, depends only on n and the untyped lambda term obtained by
type erasure, not on any type information.

In Section 3 we showed that ¢, is a realizable dinatural transformation from
o X" - X0o, to 7 (see Soundness Theorem). Here we wish to show that e, satisfies
our version of the Reynolds parametricity condition in PER.

Soundness Theorcm. Consider a derivable typing judgement
xl:o'l,xz:a'_’, ey XpiOy Ht:T

in which all free type variables are among a = «,, ..., a,. Let A, A}, ..., A, A} be

arbitrary pers and let R;: A;+ A}, i=1,..., k be arbitrary saturated relations. Then
e, names per maps

(% - xa,)(A)>7(A) and (0% x0,)(A)~>7(A)

such that m (o, % - - x a,)(R) m' implies e,(m) (R) e,(m’).
Furthermore, if t, and 1, are B-n-convertible, then e, and e, namc the same map
of pers (o, %X+ xa,)(A)- T(A) for every A.



Functorial polyinorphism 53
Note. In diagrammatic language in PER

(G1% -+ X 0,)(A) ——> 7(A)

/ /

(1 -+ X, )(R) > 7(R)

N N

(0, -+ X0,)(A") ——> 7(A")

Note. the factorizing map of pers (o, X - - X 6,,)(R) » 7(R) is not necessarily named
by e,.

Before proving the theorem, we recall Example 4.5 and the notation from Example
4.2. Therefore a typing judgement x:a=>akt:a=>a is necessarily interpreted as
a Chuich numeral.

Proof of Soundness Theorem. By induction on the derivation of typing judgements.
We give some representative cases. The reader is assumed to have looked at Appendix
A.l.

=>-introduction: Suppose the statement holds for

X1 01, X2000, 00, X, 10, XiOH 1T
We want to prove the statement for
X1i01, X2. T2, e ey X Oy AX IO 0T,

Suppose i;0;(R) 1, where je{l,...,n}. Suppose lo(R)I'. By the induction
hypothesis, ¢,(i;. ..., i, 1) 7(R) e (i},...,i,,1l'). We want to show that

Sie, iy, ..., 0,) (e=>7)(R) Si(e, iy,..., 0}).

First notice that Sy(e,, i,,...,1,) is in the domain of (o=>1)(A). Indeed, suppose
I, 0(A) I,. Then by the induction hypothesis, e,(i\, ..., i, ;) and e(i, ..., I, [2)
are both defined and are related in 7(A). In other words, Sy(e, i,,...,i,)(l,) and
S"(e, iy,...,i,)(I,) are defined and related in 7(A). Similar considerations apply
to (=>7)(A’). We have to show that S} (e,, i\,...,i,) () 7(R) SY(e, i},..., i) (I).
This follows by the induction hypothesis because, by the S-m-n theorem,
Sie, iy,..., i) D=eli,...,i,, 1) and Si(e,iy,....i)I")=e(i},..., 0, 1)
Y -introduction: Suppose the statement holds for

X 01, X0, . o0, X0, T



54 E.S. Bainbridge et al.

where type variable « is rot free in oy, 0,,...,0,. We want to show that the
statement holds for

X0, X210, oy X0, - A t:V .7,

We write 7= 7(e;, @). First note that e,,, = e, because Aa.t and ¢ have the same

type erasures. By the induction hypothesis, for all saturated relations between pers,
S:B+ B’

(0, % - - X G }(A) ——> 7(A, B)

/ /

(0,% - -+ x3,)(R) ~~>> (R, )

N\ \

(g X -+ xa,,)(A')—e'——> 7(A', B')

In particular, specialize to A'= A, R =id 4. By the Identity Extension Lemma (used
on the left-hand side), we have

(oyX X O )(A) == mrmm - ->71(A,S)

Hence

e (0% x0,)(A)>Var(A, a)

and similarly for A'. The rest is left to the reader.
V-elimination: Suppose the statement holds for

X110, X210, ..., X0, -V a.T.
We want to show that it also holds for
X110y, Xoi0s, .., Ko — U BLiT[a = B].

As above, note that e, 3= ¢, because t[B] and ¢ have the same type erasures. Argue
as in the previous case. [J

We refer to the interpretation just described as the parametric per interpretation.



Functorial polymorphism 5§

Open Problem. We do not know the precise relationship between Reynolds™ para-
metricity and realizable dinaturality. The reader will have observed that the iatter
is defined by purely semantic means. We do not know a purely semantic definition
of the Reynolds parametricity condition, i.e. without recourse to induction on second
order polymorphic types.

Now recall the notion of realizable functor from Definition 2.6. Also recall the
notion or positive (or covariant) occurrence of a variabie in a type (see [61, Section
1.10.5, p. 86]).

4.8. Proposition. Let 7(x, @) be a second-order polymorphic tvpe whose free tvpe
variables are a, B. Suppose a occurs only positively in 1. Then:

(1) For every vector of pers B, 7(_, B) is a realizable functor, whose action on maps,
7(f, B) = 7(R;, B), is independent of B.

(2) rurthermore, for any map of pers f:A-> A’ and for any vector of saturated
relations S: B+ B’

n7(A,S) n' implies 7(f, B)(n) 7(A', S) 7(f, B)(n’).

Remark. In diagrammatic language in PER

7(f.B)

(A, B)——— 7(A", B)

i

(A, §)---2-->7(A’, §)

\, \

N

(A, B) L2 (A, B)
Proof. Similar to the Soundness Theorem, by induction on the complexity
of 7. We sketch (1) for the basic case of function types. Given
o(R,, B):0(A, B)+~a(A’, B) and 7(R,, B): 7(A, B)+ 7(A’, B), we want to find the
action of (o=7)(f,B), ie. (0=7)R,B):0(A, B)=>1(A,B)~d(A, B)=
7(A’, B). The idea is illustrated by the following square

(A, B) =——> (A, B)

v
7(A', B) == 7(A’, B)

:r(R/.Bl]\ (R, B)

So define e (o(R,, B)=7(R,, B)) €' iff (R, B); e; 7(R,,B)=¢". This formula
(=re.oc(R,, B); e; 7(R,, B)) yields the desired action on maps, by the inductive



56 E.S. Bainbridge et al.

assumption. The V case foliows similarly, along the lines of the Soundncss Tireorem
above. [

4.9. Va((Ta= a)=>a) :s the initial T-algebra

It has been known for some years [4, 48] that for any multisorted finitary algebraic
signature, the elements of the initial algebra can be represented as closed normal
terms for an appropriate polymorphic type. More generally, let T(«) be a poiymor-
phic type in which & occurs only positively. Without imposing further parametricity
conditions on universal type abstraction, in general it can only be shown that
Va((Te=a)=>c) is a weakly initial T-algebra (see below) in ~ny categorical
interpretation [51]. Recently, Hyland et al. [30] verified thu. the standard per
interpretation of “algebraic” types (like poly-boole and poly-nat) yields initial
algebras in PER.

However, we have already seen in Example 4.5 that a systematic parametric per
interpretation of uriversal type abstraction (Sections 4.1-4.5, 4.7) automatically
ensures the canonicity of certain universal types. We now wish to explore this further
ior T-algebras see below), where T is the covariant functor PER -» PER induced
by a second-order type T, in the sense of Proposition 4.8. Note that these types
include more than just the algebraic ones.

We recall some terminology. If T:%—> € is a covariant endofunctor, then a
T-algebra is an object A together with an arrow a : TA— A. Given two such structures
a:TA-> A and b: TB— B, a T-algebra morphism is an arrow h: A— B such that the
following square commutes:

T
TA ——

At s

T-algebras form a category, and if this category has an initial object it is calied the
initial T-algebra. So, by definition, an initial T-algebra (if it exists) has a unique
morphism to any other T-algebra. Similarly, weakly initial objects have a morphism
(not necessarily unique) to any other object.

Thecrem. In the parametric PER interpretation, Vo ((Ta=>a)=>a) is the initial
T-algebra.

Proof. The interpretation of Va((Ta=a)=a) is( g ((TR=>R)=>R) over all pers
A, A’ and all saturated relations R: A-> A". We claim this is the initial T-algebra.
We argue similarly tc Example 4.5. Any element k € domy,,( 7a:se)=sa) Must have
the property: for any pers A, A’, any saturated R: A+ A’, and any aec T(A)=>A,
aeT(AY= A"

if for all me T(A), m'e T(A') (m T(R) m' implies am R a'm')

then ke R ke'.



Functorial poelymorphism 57
Letting R= Ry, for any per map f: A-> A’, we obtain the analog of ()

T

T(A) T(A")
If 1 l then f(ka) A’ ka'. (++4)
A A’

Therefore, given a morphism of T-algebras f: A-> A, f(ka) A" ka'. Thus k is the
index of a partial recursive function such that for each A, we have ke (TA=A)=> A.
Hence for each T-algebra ae TA-> A, kac A. Let G=Va((Ta=a)=>a). Denote
the interpretation of ( by the same letter. Pick the k that arises, by the Soundness
Theorem, from e, , where ¢, is the second-order evaluation G- ((Ta=>a)=a).
The choices are made to guarantee that (the interpretation of) G itselfis a T-algebra,
whose canonical action TG - G is given by a polymorphic lambda term [51,
Proposition 3], such that for any T-algebra a: TA- A, ka induces a morphism of
T-algebras G - A.

We find ourselves in the following situation: the category oi’ T-algebras over PER
has an object G with an assigned map to each object. Moreover, it has the property
that an assigned map followed by a T-algebra morphism is (equal to) an assigned
map. Now argue as follows: the assigned morphism of G to itself is necessarily an
idempotent (using the properties of the category of T-algebras just mentioned.).
Since PER has equalizers, it easi'y folivws thay idempotents split in the category
of T-algebras uver it. Splitiing this idempotent of G yields an initial object. Well-
pointedness is used to verify the idempotent in question is necessarily a mono (by
verifying it is monomorphic as far as points are concernedj. A monomorphic
idempotent is trivially the identity.

For a general framework for this kind of argument, see [18]. [J

The above theorem has a string of corollaries about the parametric PER interpre-
tation.

4.10. Corollary. Va(a)=0.

Proof. Va(a)=Va(l=>a)=Va((0=Da)=>a)=0. O

4.11. Corollary. Va(a=>a)=1.

Proof. Va(a=a)=Va((1=>a)=a)=1. O

4.12. Coroflary. Va(a=>(a=>a))z=1+1, where + denotes categorical coproduct.

Proof. Va(o=>(a=a))=Va((axa)=Da)=Va(((1+1)=a)=>a)=1+1. O



58 E.S. Bainbridge et al.

4.13. Corollary. Va((A=c)=>((B=>a)=a))=A+B.

Proof
Va((A=a)=>((B=a)=a))=Va(((A=a) X (B=>a))=>a)

=Va(((A+B)=a)=a)=A+B. [

4.14. Corollary. Va((A=>a)=>a)=A.

Note that Corollaries 4.10-4.13 are special cases of Corollary 4.14, which is itseif
a special case of the theorem, with T = K,, the constani functor A. See Appendix
A.3 for a description of this phenomenon by means of ends.

4.15. Corollary. Church and Lawvere here agree on the natural nuinbers. The Church
definition is Va((a =>a)=(a=a)). The Lawvere definition is the initial T-algebra
for TX =1+ X, the categorical coproduct of 1 and X. In exponential notation:

XA\XY _ o XxXY __ o XIxXY _ Xty
(XY =X =X""Y =X .

So by the theorem, the initial T-algebra for the functor 1+ X is isomorphic to ¥ X. X * ' \.

4.16. Corollary. Associating nested ='s to the right:

Va(a=>((a=a=a)=a))=Va({((1+(axa))=a)=a).

Proof

Va(a=>(aDa=a)=a))=Va((aX(a=Da=a))=>a)
=Va((aXx((axa)=>a))=>a)

=Va((1+(axa))=Da)>a). O

In the above corollary, TX =1+ (X x X). The initial T-algebra consists of binary
trees.

4.17. Corollary. For any finite aigebraic signature, there exists a functor T so that
T-algebras are the same as algebras of that signature. As in the special cases of
Corollaries 4.10-4.16, the expression (TX = X )=> X may be rewritten as a polymorphic
type.

4.18. Corollary. Voo =2 ( Ao a)=a)=Va({l+{AXxa))=Dal=>a)



Functorial pelymorphism 59

Proof

Va(a= (A= a=a)=a)=Va((la X (ADa=a))=>a)
=Va((a X ((Axa)=>a))=a)
=Va(((1t(Axa))=a)=>a). O

Here TX =1+{A X X), for a fixed A. The initial T-algebra is A-list, the algebra
of lists with entries from A, i.e. A-labelled unary trees.

Similarly, for the functor TX =1+ (A x X x X), we obiain the A-labelled binary
trees; for the functor TX = B+ (A X X x X), we obtain binary trees whose binary
nodes are labelled by A and whose leaves are labelled by B. The polymorphic
description of the laiter is:

Va((B=a)=(A=a=Da=a)=a)=Va(((B>a) X (ADa=a=a))>a)
%V(y(((_B::)a)X((AXO{ Xa)@a))éa)
=Va(((B+(AXxaXxa))=a)=a).

Furthermore, X-list is a functor in X. Given any A, consider the functor TX =
A x (X-list). Its initial algebra consists of arbitrary (rooted) trees with nodes and
leaves labelled by A.

Appendix

A.l. On interpreiing terms as partial recursive functions
Given a derivasle typing judgement in second-order polymorphic lambda calculus,
X100, X3:05, ..., X0, 1T

we obtain a nurerical code e, of an n-ary partial recursive function, by first erasing
all the types from 1, so obtaining a term a (= erase(#)) of untyped A-calculus, and
then interpreting this untyped lambda term to give a number e, (= ¢,) by induction
as follows:

If a is x;, then e, is (a chosen code of) the ith projection of n arguments.

If ¢, is code of a partial recursive function of n+ 1 arguments, then e, , is defined
by using the S-m-n theorem from recursion theory, as follows. Let S{ be a primitive
recursive function of n+1 arguments such that for iy,..., 1, ST(eq, iyyenyiy) is
code of a unary partial recursive function such that for all b, Si{(e, iy, ..., i b} =
e,(iy,...,i,, b). Now define e,,, as a code (given canonically in a chosen enumer-
ation) of the n-ary function given as S} with its first argument held constant at e,.

Finally, let e, be a code (given canonically in a chosen enumeration) of the
function that assigns a(j)(h(j)) to j.

Note that e, depends only on n and erase(t), not on any type information.



60 E.S. Bainbridge et al.

A.2. On least fixed points ard diraturality

Let € be a ccc in which, for each A, the homset (1, A) is a poset and for which
we have a factorization

€-——POSETS

(1, ) ¥
SETS

Furthermore, assume that Y = Y,: A* > A, for each A, takes any argument h: A-> A
into the least fixed-point of h. We wish to show Y is dinatural. Let f:A~> B and
g:B-> A. Let x=f(Ys(gt)). Ciaim: x is a fixed point of fo g For (feog)(x)=
f(gof(Ya(geof)))=F(Yalgeof))=x Thus, Yg(fog)<f(Ya(g°f)),soapplying g,

g(Ye(fog))<g(f(Yalgof)))=Ya(geof). Interchanging the roles of f and g, we
chiairn the inequality in the other direction, viz. f(Ya(gof))< Ygz(f°g). Hence

A

FiViie T Yl feg), so Y is dinatural (cf. Example 1.1 (iv)).

A.3. On the end |, (X*")

Note that in regard to Corollary 4.14, in any well-pointed ccc, A zfx (XX (A
note on standard categorical terminology: a category is concrete if it has an embed-
ding ( = faithful functor) into SETS. A category is we!l pointed if it is generated by
1, i.e. the embedding into SETS may be taken to be the external hom-functor (1, _).
PER is of course well pointed.

A counter-example to the isomorphism above for non-well pointed cccs is given
by: let G be any non-trivial group. In the category SET® (G-sets) take A=1. We
obtain that |, (XV) is G with the conjugacy action. The forgetful functor SET® -
SET is often cited as an example of a functor that preserves everything. It does not,

however, preserve |, (X ). It would therefore appear not to preserve higher-order
tvpes.

A.4. Polymorphic identity foilowed by Y yields triviality

Suppose we could form the composite of the dinatural transformations
u:K,=()"and Y:( )'’>( ). Then the outer hexagon in the following figure must
commute, for all objects A, B and arrows A-5 B:

NN

1 AB BA B

y

3 3 #
B —— B



Functorial polymorphism 61

The commutativity of this outer hexagon is expressed, using informal notation, by
f(Ya(Ax:A.x})) = Yg(Ax:B.x). Now setting A= 1, we see that every object B has a
unique global element Yi(Ax:B.x):1- B. Thus, given any two objects C, D, there
is a unique global element of D ; hence by cartesian-closedness of the underlying
category, there is a unique map between any two objects, so the category is trivial.

A.5. O dinats from { )" to ().

In SETS, there are a proper class of dinats from ( )'’ to itself. For let k be any
cardinal number and define the family 6, ={6.(A): A* > A*| Ac SET} as follows:
let h:A-> A and let

h if Card(fix(h)) =«

id, otherwise

OK(A)(h)={

where fix(h) ={a€ A|h(a)=a} is the set of fixed points of h.

Dinaturality of the family 6,:( )'’> ()" in SETS amounts to the following: for
anyge B*and fe A® fo(0.(A)(g°f))=((0.(B)(f°g))e°f To verify this equation,
first observe that fix(geof) is in bijective correspcndence with fix(f°g). Now
suppose Card(fix(geof))=Card(fix(fog))=«. Then the equation becomes
fo(geof)=(feg)ef aninstance of associativity of composition. On the other hand,
if Card(fix(f > g)) # k, the equation becomes the truism foid, =idp ° f. Since there
is a proper class of cardinals, we are done.

Note that by Proposition 1.6, there is a proper class of points

l-éJ' (A= A)=(A=>A)
A
in SET.

A.6. On the functorial calculus

The operatiozs of product and twisted exponential of functors may be described
as follows:

Products: Given functors F, G:(%€°)"x €" - €, define FXG:(€°)"x€"~> %€, to
be the functor

(k.G x
(€)' X €" — EXE—— &.

Twiste. exponentials: Given functors F, G:{€°)" X €" - €, define

F.ogeyr w ¢n _ oy on Dol O
Ghi(€)'X€"—— € = (€°)'XEC"—— €°xE— 6,

where we write F*:(€°)" x €" - 6° for the composite

28
((6>o n X (gn = (gn X ((go)n E((g(}o)n x(%}o)n = (((go)ll X ((7)")0 ((;o.



62 E.S. Bainbridge et al.

Deonmenla MNAavariant mraiantiaANg D .{ @o\2y @2, ¥4 i=19 aiven hy
LAdmpIC. \Uvailalit prijjeiuviinn Lj.\0 jJ AU 7 G, . Ly &y Biveii Ty
DIA A D D\— R
ri\m\1 1, v 1Dy) Dj.

The dinatural traasformation: appp, p>: PY'xP,-> P, is given by
(appprp2)an:(PYx P)(AA', AA') > P,(AA’, AA"), where (appp, ps)an: A XA
A’ is application, as in Example 1.1 (iii). Much of the ccc structure of Corollary

2.10 exists for general reasons (see [ 18]). Additional functorial structure is mentioned

fe 17
i pij.

Acknowledgment

This paper has benefitted from numerous comments by colleagues at our various
conference presentations. We would like to especially thank John Reynolds for his
continued interest and insightful comments. Also, thanks to Albert Meyer, John
Mitchell, Edmund Robinson, Dana Scott, and the referee for conversations on
parametricity and comments on inis work. Scott wisites to thank the Department
of Mathematics of the University of Pennsylvania for its kind hospitality while this
research was being pursued.

References

[1] E.S. Bainbridge, P.J. Freyd, A. Scedrov, and P.J. Scott, Functorial polymorphism (Preliminary
Report), in: G. Huet, ed., Logical Foundations of Functional Programming, Proceedings, University
of Texas Programming Institute, Austin, TX (1987).

[2] H.P. Barendregt, The Lambda Calculus, Studies in Logic and the Foundations of Mathematics
(North-Holland, Amsterdam, revised ed., 1984).

[3] J.G.P. Barnes, Programming in Ada (Addison-Wesley, Reading, MA, 1981).

[4] C. Bohm and A. Berarducci, Automaiic synthesis of typed A-programs on term algebras. Theoret.
Comput. Sci, 39 (1985) 135-154.

{5] V. Breazu-Tannen and T. Coquand, Extensional models for polymorphism, in: Proc. TAPSOFT
'87-CFLP, Pisa Lecture Notes in Computer Science 250 (Springer, Berlin, 1987); expanded version
in: Theoret. Comput. Sci. 89 (1,2) (1988) 85-114.

16] K.B. Bruce and G. Longo, A modest model of records, inheritance, and bounded quantification,
in: Proc. 3rd IEEE Symp. on Logic in Computer Science, Edinburgh, Scotland (1988) 38-50.

[7] K.B. Bruce, A.R. Meyer and J.C. Mitchell, The semantics of second-order lambda calculus, Inform.
and Comput. to appear.

[8] A. Carboni, P. Freyd and A. Scedrev, A categorical approach to realizability and polymorphic
types, in: M. Main et al., eds., Proc. 3rd ACM Workshop on the Mathematical Foundations of the
Programming Semantics, New Orleans, April, 1987, Lectures Notes in Compwer Science 298
(Springer, Berlin, 1988) 23-42.

[9] L. Cardelli, Time for a new language, Preprint, April 1988.

[10] L. Cardelli and P. Wegner, On understanding types, data abstraction, and polymorphism, Compu.
Surveys 17 (1985) 471-522.

{11] R. Constable et al., Implementing Mathematics with the Nuprl Proof Development Sysiem (Prentice
Hall, Englewood Cliffs, NJ, 1986).

[12] T. Coquand and G. Huet, Consiructions: a higher-order proof system for mechanizing mathematics,
in: Proc. EUROCAL °85, Lecture Notes in Computer Science 203 (Springer, Berlin, 19585) 151-184.



Functorial polymorphism 63

[13] T. Coquand, C.A. Gunter and G. Winskel, Di-domains as a model of polymorphism, in: M. Main
etal,, eds., Proc. 3rd ACM Workshop on the Mathematical Foundations of the Programming Language
Semantics, New Orleans, April 1987, Lecture Notes in Computer Science 298 (Springer, Berlin,
1988) 344-363.

(4] T. Coquand, C.A. Gunter and G. Winskel, Domain the~reticai models for polymorphism, Inform.
and Comput. to appear.

{15] G. Cousineau, CAML, Lectures at the University of Texas Programming Institute on the Logical
Foundations of Functional Programming, Austin, TX, June 1987.

[16] E J. Dubuc and R. Street, Dinatural transtoriasi’. .1s, 'a: Reports of the Midwest Category Seminar
IV, Lecture Notes in Mathematics 137 (Spuinger, Berlin, 1970) 126-123.

[17] S. Eilenberg and G.M. Kelly, A generalization of the functorial calculus, J. Algebra 3 (1966) 366-375.

[18] P.J. Freyd, Structural polymorphism I, 11, III (Preliminary Report), University of Pennsylvania,
January 1989.

[19] P.J. Freyd, J.Y. Girard, A. Scedrov and P.J. Scott, Semantic parametricity in polymorphic lambda
calculus, in: Proc. 3rd IEEE Symp. on Logic in Computer Science, Edinburgh, Scotland (1988).

[20] J.Y. Girard, Une extension de I'interprétation de Godel, in: J.E. Fenstad, ed., Second Scandinavian
Logic Symposium, 1970 (North-Holland, Amsterdam, 1971) 63-92.

[21] J.Y. Girard, Interprétation fonctionnelle et élimination des coupures de I'arithmétique d’ordre
supérieur, Thése de Doctorat d'Etat, Université de Paris VII, 1972,

[22] LY. Girard, The system F of varizbles types, fifteen years later. Theorei. Comput. Sci. 45 (1986)
159-192.

[23] MJ.C. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF, Lecture Notes in Computer Science
78 (Springer, Berlin, 1979).

{24] G. Huet, Deduction and computation, in: W. Bibel and P. Jorrand, eds., Fundamentals of Artificial
Intelligence, Lecture Notes in Computer Science (Springer, Berlin, 1986).

[25] G. Huet, ed., A uniform approach to type theory, in: Logical Foundations of Functional Programming,
Proceedings University of Texas Programming Institute, Austin, TX (1987).

[26] G. Huet, ed., Logical Foundations of Functional Programming, Proceedings University of Texas
Programming ¥nstitute, Austin, TX (1987).

[27] J.M.E. Hyland, The etfective topos, in: A.S. Troelstra and D. van Dalen, eds., The L.E.J. Brouwer
Centenary {Nxr.n-Holland, Amsterdam, 1982).

(28] J.M.E. Hyland, A small complete category, Ann. Pure Appl. Logic 40 (1988) 135-165.

[29] J.M.E. Hyland, E.P. Robinson and G. Rosolini, The discrete objects in the effective topos, Preprint,
1987.

[30] J.M.E. Hyland E.P. Robinson and G. Rosolini, Algebraic types in PER modeis, Technical Report
88-234, Queen's Univorsity Dept. of Computing, Kingston, Ont., 1988.

[31] M. Kelly, Many-variable function calculus 1, in: S. MacLane, ed., Coherence in Categories, Lecture
Notes in Mathematics 281 (Springer, Berlin, 1977) 66-105.

[32] S.C. Kleene. Introduction to Metamathematics (Van Nostrand, New York, 1952).

[33] J. Lambek a::d P.J. Scott, Introduction to Higher-Order Categorical Logic, Studies in Advanced
Mathematics 7 (Cambridge University Press. Cambridge, 1986).

{34] P.J. Landin, The next 700 programming languages, Comm. ACM 9 (1964) 157-166.

{35] B. Liskov et al., Clu Reference Manual, Lecture Notes in Computer Science 114 (Springer, Berlin,
1981).

[36] G. Longo and E. Moggi, Constructive natural deduction and its “‘modest™ interpretation, in: J.
Meseguer et al., eds., Workshop on Semantics of Natural and Computer Languages, Stanford, March
1987 (MIT Press, Cambridge, MA, to appear).

[37] S. MacLane, Categories for the Working Mathematician, Graduaie Texts in Mathematics § (Springer,
Berlinz, 1971).

[38] P. Martin-Lof, Constructive mathematics and computer programming, in: Sixth Internat. Congress
of Logic, Methodology and Philosophy of Science (North-Holland, Amsterdam, 1982) 153-175.

[39] J. Meseguer, Relating models of polymorphism, Preprint, SRI International, Menlo Park, CA,
U.S.A., 1988,

[40] R. Milner, A proposal for standard ML, in: Proc. ACM Symp. on LISP and Functional Programming
(1984) 184-197.

[41] J.C. Mitchell, A type-inference approach to reduction propertics and semantics of polymorphic
expressions, in: Proc, 1986 ACM Symp. on Lisp and Functional Programming (1986) 308-319.



64 E.S. Bainbridge et al.

[421 1.C. Mitchell and R. Harper The essence of ML, in: Proc. 15th ACM Symp. on Principles of
Programming Languages (1988) 28-46.

[43] J.C. Mitchell and A.R. Meyer, Secord-order iogical relations, in: R. Parikh, ed., Lecture Notes in
Computer Science 193 (Springer, Berlin, 1985) 225-236.

[44] A. Pitts, Polvmorphism is set-theoretic, constructively, in: Proc. Symp. on Category Theory und
Computer Science, Lecture Netes in Computer Science 283 (Springer, Berlin, 1987).

[45] G.D. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci. 5 (1977) 223-256.

[46] J.C. Reynolds, Towards a tiseory of type structure, in: Lecture Notes in Computer Science i9
(Springer, Berlin, 1974) 408-425.

[47] J.C. Reynolds, The essence of Algol, in: J. de Bakker and J. C. van Viiet, eds., Algorithmic Languages,
IFIP (North-Holland, Amsterdam, 1981) 345-372.

{48] J.C. Reynolds, Types, abstraction, and parametric polymorphism, in: R.E.A. Mason, ed., Information

2 {INarth_Hallond Amctardam IOQ‘Z\ <|1 (‘7‘1

PIULCJJI"S '83 LNSTin-iCuang, Amsteraam, 19

[49] J.C. Reynolds, Polymorphism is not set-theoretic, in: Kahn et al., Symp. on Semantics of Data Types,
Lecture Notes in Computer Science 173 (Springer, Beriin, 1984).

[50] J.C. Reynolds, Preliminary design of the programming language Forsythe, Research Report, Car-
negie-Mellon University, June, 1988.

[51] J.C. Reynolds and G.D. Plotkin, On functors expressible in the polymorphic typed lambda calculus,
Inform. and Comput., to appear.

[52] E.P.Robinson, How complete is PER? Technical Report 88-229, Dept. of Computing & Information
Science, Queen’s University, Kingston, Ont., Canada, 1988.

[53] A. Scedrov, A guide to polymorphic types, in: P. Odifreddi, ed., Logic and Compuier Science, Proc.
C.ILM.E. Summer School, Montecatini Terme (June 1988), Lecture Notes in Computer Science
(Springer, Berlin, to appear).

[54] D.S. Scott, Continuous lattices, in: F. W. Lawvere, ed., Toposes, Algebraic Geometry and L.gic,
Lecture Notes in Mathematics 274 (Springer, Berlin, 1972) 97-136.

[55] D.S. Scott, Data types as lattices, SIAM J. Comput. 5 (1976) 522-587.

[56] D.S. Scott, Domains for denotational semantics, in: Proc. ICALP "82, Lecture Notes in Computer
Science 140 (Springer, Berlin, 1982).

[57] D.S. Scott, Realizability and domain theory, Lecture at the Amer. Math. Soc. Research Conference
on Categories in Computer Science and Logic, Boulder, Colorado, June 1987.

{58} R.A.G. Seely, Categorical semantics for higher-oider polymorphic lambda calculus. J. Symbolic
Logic 52 (1987) 969-989.

[59] M.B. Smyth and G.D. Plotkin, The category-theoretic solution of recursive domain equations. SIAM
J. Comput. 11 (1982) 761-783.

[60] C. Strachey, Fundamental concepts in programming languages, Lecture Notes, international Sum-
mer School in Computer Programming, Copenhagen, August 1967.

[61] A.S. Troelstra, ed., Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture
Notes in Mathematics 344 (Springer, Berlin, 1973).

[62] D.A. Turner, Miranda: a non-strict functional language with polymorphic types, in: J.P. Jovariaud,
ed., Functional Programming Languages and Computer Architecture, Lecture Notes in Computer
Science 201 (Springer, Berlin, 1985).

{63! N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Tokyo Sec 1, 8 (1960) 507-526.



