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In the past s Li.e-ai years types have become an important component of program- 
ming iat;guagc dcsigg. TZi<y pmvde a logical framework to ensure that programs 

meet given specifications, support a partial correctness or verification mechanism, 
enhance software maintenance, and encourage the systematic building of complex 

modules from si nphzr ones. These features are crucial in large-scale programming 

projects requiring coordination among many teams of programmers. 

Man) recently developed programming languages have more sophisticated typing 

mechanisms than the familiar Algal/Pascal family. For example L-like languages 

[2?, 40,62,15], as well as such languages as Ada [3] and CPU [35], feature aspects 

of polymorphic or generic data types which allow the programmer great flexibility 
and abstraction. 
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Various notions of polymorphism were first introduced into computer science by 

Strachey [60] (cf. also [41,48, lo]). Among the most influential was the notion of 

parametric polymorphism. Intuitively, a parametric polymorphic function is one 

that has a uniformly given algorithm in all types. An important example is Strachey’s 

map-list. 

Example, Consider a function f whose argument is of type a and whose result of 

type p, so the type off is a! +. Let L be a list of elements of type cy. We say that 

L is of type a-list. Now consider the following function map: applyf to the individual 

entries of L, then make a list of the results. Thus map(f)(L) is a list of elements of 

type p, so map is of type (a+?)+(@-list+/?-list). Note that no specific properties 

of the types cy and /3 are used; in fact, we might as well suppose they are 

variables. 

Studies of typed functional languages often employ various extensions of typed 

lambda calculi (see, e.g. [34,4.C, 47,42,26]). Studying such formal calculi provides 

many mathematicai insights into the structure of programming languages. In the 

case of polymorphism, a formal calculus of variable types (higher-order lambda 

calculus) was developed by Girard [20,21] as a higher-order extension of the 

Curry- Howard propositions-as-types paradigm in mathematical logic (types corre- 

spond to formulae, terms to deductions or proofs: cf. [24,38]). Reynolds [46] 

independently discovered the second order fragment of this calculus and proposed 

it as a syntax for Strachey’s parametric polymorphism. Several powerful extensions 

of the Girard-Reynolds calculus have been studied and implemented, most notably 

the Coquand-Huet Calculus of Constructions [ 12,251. Recent mathematical 

advances in type theory and lambda calculi have already influenced program- 

language design (in addition to the calculus of constructions, cf. Nuprl [ 111, Quest 

[9], Forsythe [SO]). 
Girard [21] analyzed the syntax and metatheory of higher-order lambda calculi. 

Many papers have explored the difficult semantical problems intrinsic to such 

theories (for a recent survey, see [53]). For example, Reynolds [48] suggested that 

second order lambda calculus might have a set theoi.etic interpretation. Reynolds 

[49] (cf. also [51 jj then showed that in fact this calculus cannot have a non-trivial 

set model. More recently, Pitts [44] showed that if we use intuitionistic (or construc- 

tive) set theory, there are many models, enough for a completeness theorem. Qther 
model-theoretic studies of polymorphic lambda calculi are given in [7,56,39]. 

The starting point for this paper was the simple question: what do types and 

terms of polymorphic lambda calculus refer to, @yen that there are no (classical) 

Set-models [49,51]. The polymorphic identity term gives a clue. Consider 

Aa(h-~:cu.x) of type Va(a+c~). Then Aa(hx:ru.x)[A] = Ax:A.x. That is, this term, 

when applied or instantiated at a type A gives the identity function on A. Thus 

Aff (AX: cu.x) is a type-indexed family of (identity) functions. 
Therefore the first attem a(ac=$a() as the collection of all indexed 

families of functions from a to cy, which amounts to taking t&e product, to wit 
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no (A*A) over all types A. As argued in [48], this product is too big. In Strachey’s 

terminology, this product also contains ad hoc elements which are not intended in 

the notion of parametric polymorphism. Reynolds [48] proposes to distinguish 

parametric elements of such products by means of an invariance condition with 

respect to certain relations induced by polymorphic types. In [48] this invariance 

requirement was discussed in the context of an attempted set-theoretic model, which 

was subsequently shown to be impossible [49,51]. 

Our point of departure is to insist on certain naturality (or uniformity) conditions 

on these indexed families. Therefore universal type abstraction will not be interpreted 

simply as a product, but rather as that part of the product consisting only of those 

families that satisfy naturality conditions intended to reflect parametricity. So, our 

next approximation is that types are functors, and terms are natural transformations 

between types, all defined over some Cartesian closed category (ccc) %’ of “ground” 

types. Note that the constant functors really play the role of “ground” types. 

The function space type ch(=$p corresponds to the internal horn functor ( )a( ): 

%” :’ ‘-+% ‘% which is contravariant in its first argument and covariant in its second 

argument. Alas, cy+cy would have to be both contravariant and covariant in cy, i.e. 

(x *a! is just not a functor. 

There are at least two ways of resolving this problem. One approach [54,59,22] 

is to move to a category of retract pairs, which serves to obliterate the difference 

between covariant and contravariant. Naturality conditions so obtained are rather 

weak and thus the interpretation of universal type abstraction given by this approach 

still allows ad hoc elements. 

This problem, in fact, is not a new one. It was encountered several decades ago 

in algebraic topology. Moving to retract pairs would not have been useful in that 

context. Another approach based on a suitably generalized notion of “multivariarrt” 

natural trarl&:mation was developed. A calculus of these generalized natural 
transformations started with Yoneda [63] and later Dubuc and Street [16] (cf. the 

discussion in [37, pp. 214-2281). Indeed, the observation that the calculus of general- 

ized natural transformations closely resembles the second-order /3-r) rules of poly- 
morphic 1ambJa calculus led to our whole project. Moreover, as we are now 

discovering, these notions of naturality capture certain semantic aspects of para- 

metricity; in particular, the-y permit a semantically sound and systematic approach to 
adding new equations to the syntax. 

En this paper we consider two semantic approximations to Strachey’s notion of 

parametricity. The first one, discussed in sections 1-3, is based on the above- 

mentioned calculus of generalized natural transformations. The second one, dis- 

cussed in Section 4, is based on a version of the Reynolds invariance condition 

referred to earlier. 
Basic definitions and examples of the calculus of generalized natural transforma- 

tions are given in Section 1. In particular, a semantic analog of universal tYPe 

abstraction is discussed in Section 1 .l. 
In Section 2 we study the calculus of generalized natural transformations, in the 

context of partial equivalence relations (per.9 semantics (see [Al, Wg emarkably, 
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in this context, there is an extensive class of generalized natural transformations 

(Theorem 2.9). This yields a setting for semantics of polymorphism in which elements 

of universal types are only those families which belong to this class of generalized 

natural transformation5 ( Theorem 2.1 ;Z j. The correspontiing interpretation of the 

syntax of polymorphic lambda calculus is presented in Section 3. 
In Secticn 4 we km lo Grc Rey?k.~.. _ w-.3! 4~ naraqetricity condition (see above). We 

&wehp a consis<ent, i’ra~~~~cr~k for this co- ‘[f?c_ q i;-! the contex of per semantics. 

This yields an interpretation of polymorphism with a built-in requirement of the 

parametricity of elements of universal types (Section 4.2). In this interpretation, for 

any second-order definable covariant functor T, the universal type VQ (( TCU 3 CY ) + CY ) 

must be the initial T-algebra. 

Notation. Composition of arrows in a category will be denoted two ways: iff: A + B, 
g : B + C, their diagrammatic composite (composite in order of execution) is denoted 

f; g : A + C, while the equivalent composite in usual mathematical notation is denoted 

g of: A + C. If %“’ is a product category, we use bold face letters to denote vectors 

of objects or arrows. For example, in %“, f;g : A + C denotes the vector of arrows 

whose ith component is h;g; : Ai + Ci. 92’ denotes the opposite category Ceop. 

In a Cartesian closed category, we shall denote exponentiation either by the 

categorical notation BA or sometimes the logicians’ notation AZ=,@ whichever is 
appropriate. N denotes the natural numbers (0, 1,2, . . .}. 

1. The functorial calcul 

In what follows, %Z is a Cartesian clcsed category. As mentioned in the Introduction, 

the general plan is to interpret types as ranging over some class of multivariant 

n-ary functors F: (92’)” x W’ + (8 and tn interore! terms 2~; r3ngins .3vPr r3me . 
appropriate class of “multivariant” natural transformations. 

efinition. A dinatural transformation between two functors F,G : ( %‘“)t’ x %” + % 
is a family of morphisms u = {uA: 1 A E SC”} satisfying the following 
condition: for any vector of morphisms 

(*ic) 

In many examples u is given by a “uniform algorithm” which is the “‘same” for 
each object A. This examples and models below. We ssrnetimes 
speak of (*) as the otation u : F-+ 43 ‘90 

i4 is a dinat~ral tra 
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We mention three special cases and then consider some examples. 

(a) Suppose F and G are covariant: %‘+ %‘, thought of as functors %‘x %+ Cc, 

dummy in the first argument. Then the definition of dinatural transformation u 

reduces to that of an ordinary natural transformation since the two oblique arrows 

FBA + are identities. 
(b) A less familiar example is when one functor, say F, is covariant and t’ae other 

functer G is contravariant. Then a dinatural tr mation from F IO G is a family 
u satisfying the following diagram for any f: 

“A 
-G 

(c; Suppose one of F or G is constant: say F is KD, the constant functor whose 

value (on objects) is always D. Then the notion of dinatural transformation reduces 

to the case of a family u = { ~~ : D + GAA} satisfying the following wedge condition 

(cf. [37,63]): for any f: A + 

1.1. 

any 

GAA 

D GA 

Exampie;. ?‘he following 

Cartesian closed bategory 

(i) Polymorp~~ic identity: let K, be the constant funcror with value the terminal 

examples make sense in SE S or more generally in 

?L 

object I and ( b’ ) the internal function space (horn) functor. Consider the uniform 

family II : K, + , )’ I, where u A : I-, AA is given by hx : A.x (known in category theory 

as the “name” of the identity on A). The dinaturality condition reduces to: for every 

arro-ti .[: A + B, 

which is equivalent to saying that f 0 id,4 = id; 

that u is given unifor ly at ally type slot ( ) 

is certainly true. Note a 
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(ii) Uniform Church numeral nr for each object A in W9 consider the family of 

A-indexed arrows n = { nA : AA + AA 1 A E %‘}, where nA maps h to the r?-fo!d composi- 

tion of 12 with Itself, h”. Then n determL:j (., 3 &natural transformation ( )’ ’ -+ ( )’ ). 

Indeed, the reader can compute that the dinaturality condition says that Fo! any 
f: By, g : AB, f 0 (g 0 f )” = (f 0 g)" OJ which is an instance of associativity. Again 

note the “uniformity” in the definition of the algorithm for (each component of) n. 

(iii) Application : Consider the family with components AA’: (A’)A X .A + A’ 

given by application (or evaluation) in the ccc %‘, for each pair of objects A, A’. 
Then for all f: A+ B and f’: A’ + B’, the following hexagonal diagram commutes: 

/yAx~-At 
f’ 

A’\ x A 

/ \ 

AIB x A 
B’ 

This says if g : A”, f’( (g 0 j )(a)) = (f’ 0 g)( f (a)). is a dinatural transformation 

(between functors constructed using the operations in Section 1 S; see Appendix A.6). 

As a special case of the above example, let D be a fixed object in %‘. Consider 

the dinatural transformation ckgp ; D’ ) x ( ) * KD, v-h-e t~pp,_~ : D” x A + D is applica- 
tion in the ccc %‘. So at any type slot ( ), app, , has a uniform algorithm (e.g. an 

appropriate A-term). It is easily checked that the hexagon condition reduces to the 

following: for any f: A + B, 

DAxA 

I’, “;/” k 
D”xA D 

whose commutativity reduces to (g 0 f)(a) = g( f (a)), for any a : A, which is true in 

any ccc. 

(iv) Fixed poinr combinators: Suppose there were to exist a dinatural transforma- 
tion Y: ( )’ )+ id, where the functor id denotes the identity functor. So Y = 

{ YA : AA -+ A 1 A E %] is a family satisfying the following hexagon condition: for any 
fL4-+ B, 
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This means (using set-theoretic notation): if g: AH, f( YA(g of)) - u,(~o 9). In 

particular, setting A G B and g = Ax : A.x (tt-?e identity on A), we see YA must be Q 

fixed point combinabor ab each type A (cf. &SC Apper?dix A.2). 

The most perverse aspect of the calculus of dinatural transformations is the failure 

of composition. ne attempts to compose two dinatural transformations u : F + G 

and v:G+ by horizontally “merging” the two hexag fine their corn-- 

posite u, v the formula (er; v), = UA; 2)A. Then for an consider 

While both hexagons individually commute, the outer hexagon need not commute. 

We now give two examples. 

Example. In the category S T, consider the dinatural transformation v : ( )’ ‘--, 

K BOOLE 9 where E = (0, 1) and the map VA: AA + LE, where VA is 0 or 1 
depending upon whether the number of fixed points of ument is even or odd, 

understanding a as even. Consider the polymorphic identity u : K, + ( )’ ) (see 

Example 1.1(i)). The map (24; &: LE depends on A (it is not constant in 

A); so u; v cannot be a dinatural transformation between constant functors. 

Example. Let Ce be a ccc. Take any dinatural transformation Y: ( )’ ) + ( ) (cf. 

Example I .l (iv)). If we were able to compose Y with the polymorphic identity 

K, + ( )’ j9 thee &e category % would be degenerate (i.e. given any ordered pair of 

ob_iects, there is a uniqw map from the first to the second). See Appendix A.4. 

1.2. Fact. If the middle diamond in (**) is a pullback, then we can in fact compose 

the dinatural tra:r $ormabions u : F 3 G and v : G + H above. For in this case, there 

exists a horizontaf arrow FBA + GBA making everything in sight commute. 

The p.,oblem of composing dinatural and other classes of generalized natural 

transformations has been examined by various authors (e.g. [ 17,311). At a general 

level these problems are quite intricate dnd oniy partial solutions are known. In 

Sections 2 and 3, these obstacles to compositionality will be resolved for certain 

large classes of multivariant functors and dinatural transformations intrinsic to PER 

and I-IEO-like models (cf. [4l, 5,361). We show that this includes at least those 

functors and dinatural transformations definable in secon IhiC 

lambda calculus. 

For the remainder of this section we stay at a general level: some class Qf 

multivariant func$ors wit some (not necessari inatural transfor- 

mations between them. ut the reader shoul always 
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specialize the entire frame\vorl-. to some nice model where, among other things, 

compositionality holds. 

We can say a bit more about compositionality at the general level. Until further 

notice, let us fix functors F, 6, W : ( %“)n x Vi”’ + %. Let U, v denote fa 

A : FAA -+ GAA, VA : GAA + HAA, A E %, not necess ily dinatural. Let 

be the set off for which the family u is dinatural; that is f c ,, iff the hexagon 

(*) in Definition 1.0 commutes. [, and II; I,’ are defined similarly. 

o&ion (Vertical merging). is a subcategory. 

trivially contains identity arrows. Given f: and g: 

stare at the following diagram, using functoriality of F and G on the obliyvle outer 

edges: 

FCC uc - GCC 

osition (Horizontal merging with respect to isomorphisms). Any isomorph- 

is necessarily in u;L” 

Suppose f is an isomorphism (iso) in both U and L,. Observe that the 

le diamond in (**) has each side the G-image of an iso. Since functors preserve 

isos, we obtain a diamond whose sides are all isos, and such a diagram is of course 

a pullback; now use Fact 1.2. 0 

e can build new ctors from old by various Jperations. For the rxord, given 
two functcrs F and ct is constructed pointwise; that is, on objects, 

, while their exponential or function space GF is 

It is a remarkable fact that GF is the categori- 

ecial situations, an exd 

.6, an e recent war _ 
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One of the most ubiquitous constructions in applied category theory given first 

by Yoneda [63] (cf. [37, pp. 218-2243 j plays a critical role in our semantics for 

polymorphism. Given a functor G, we seek a universal wedge into G, that is, an 

object E and a dinatural tr;>nsformation KE + G, universal for all such dinatural 

transformations. That is, for any dinatural transformation KD + G, there is a unique 

triangle 

n 

E, when it exists, is called the end of G, and is denoted by In GAA. (This notation 

happily displays A as a bound variable; indeed, A could even be a vector of 

“variables”.) We note that there may be other variables in the expression G then 

those specifically noted, and the universal property guarantees that j,, GAA will be 

a functorial in these other variables. 

One may think of I,, GAA as a subset of the product fl,4 GAA; name!y, 

GAA = {g E n GAA 1 G(A,f)(g,J = G(J; B)(g,) for all f: A+ BE 0). 

Note however 

case that G is 

[37, p. 68-J. 

that the product is taken over the class of all objects of Se. In the 

covariant, the end is the usual notion of the limit of the functor G 

1.6. osition. I\ laps A+G are in bijective correspondence with 

dinatural transformatiou,s from F to G (and this correspondence is tlatural in any other 

variables ). 

The proof is a n.iatter of identity checking. 0 

ealizable enbofunctors on 

A partial equivalence relation (per) on a set A is a symmetric, transitive relation 

R on A. Hence R is an equivalence relation on domR = {a E A 1 a R a} C_ A. One may 

think of R as partitioning domR into disjoint classes. 

Let peg denote the set of pers on A. We first examine the case 

natural numbers. &neralizations are considered belaw. 

is the following category: its objects 
), a morphism from E to E’ is 

3 

domE*/ E’: that is, f names a morphism if, hen .fW, .fH are 
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Two morphisms J g : E + E’ are equal if the induced maps of quotients are equal, 

that is Vm,n E jorn E9 fi E nr implies .f( n!&, g( rn)j, and f(n) E’ g(m). So f and g 

name the same morphism if f(n) E’ g(n) for all n E dam;;. 

We use the notation nrrz to denote that the nth partial recursive function (in some 

standard enumeration) is applied to m. 

2.3. Proposition. PIE’ t N) is 3 Cartesian closed category. 

roof. (N) is easily verified to be a category. 1 is any per with a unique 

equivalence class. A x B may be constructed as (m, n) (A x B) (p, q) if m A p and 

n Bq, where (,): x N + N is a chosen recursive bijection. BA is the relation on N 

such that m ( BA) n iff m and n are codes of equal morphisms A + 6. (in other 

words, m( BA) n iff for all iY j i A j implies mi B nj). The fact that this is a ccc 
. 

uses some elementary recursron theory (cf. Remark 2.3). For example, the fun&- 

mental biiection between A x B + C and A + C” uxs t!x S.-m-n theorem. 

emaak. Definition 2.1 and Proposition 2.2 make sense if we replace N by any 

partial combinatory algebra A = (A, 0 S, K ) (e.g. [2,33,5]). 

From now on, we restrict ourselves to the category (N), denoted PE 
However, all subsequent discussions apply equally to the more general (A), 
for A a combinatory algebra, as in Remark 2.3. 

A fundamental subcategory of PER is I, the category whose objects ane all pers 

(on N) but whose only maps are named by the identity function on the natural 

numbers Iv). Note that there is at most one map in I between two pers E and E’. 
Any category with this property can be identified with a partially ordered set (poset), 

in this case the poset of pers ordered by inclusion. It is misleading, however, to call 

the maps of I inclusion maps. They need not be monomorphisms (Note that every 

per is included in the maximal per; the corresponding map in I is the map that 

collapses an object into 1. See also ple 2.5). 
Even though I is a small part of it is a representative part. 

2. ositio Every morphism in may be decomposed into an isorllr!rphism 
JoIowed by an map .followed by ti_iiry I.\omorpJlism. 

roof. Let f: E + E’ be a morphism of pers. Consider the following factorization 

E -+ E’ 

I T 
Y I 

D- D’ 

where 

ti En’, k E’S(n), and k’ E’f(n’), 
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Note that W is the “graph” of J: One easily checks that E is isomorphic to W, 

WE W’ and W’ is isomorphic to E’. 

2.5. Example. TO illustrate Proposition 2.4, consider the pet-s E = ((0, 0), (1, l)}, 

E’= ((2,2)}, and let J‘: E + E’ be the constant recursive function h-x.2. Notice 

domE = (0, l}, dom.?= (2). Factor f as above. We obtain W = {((0,2), (0,2)), 

(0,2), 0,2))1. So doml, = {(0,2), (1,2)} = {(n,f( n))l n E dam.}, the “graph” of 6 
Hence E = W, via the map n-(n,f(n)). W’= {((n, 2), (m, 2))1 YZT, n E N). Obviously 

W E W’. Finally, W’s E by the projection (n,2)-2. Note that dom,,/W has two 

elements, dam,,./ W’ has one element, so the I-map morphism W --) W’ is not mono 

(in 1. 

2.6, Definition. A realizable functor F : PER + PER is one which takes I to J and 

for which there exists a mapping CD from the set of partial recursive functions to 

itself such that for any morphism of pers from E to E’ named by J F(f) is named 

by P(f). 

Almost any functor which arises in practice is realizable. Realizable functors are 

closed under products, twisted exponentials (see 1 S), and of course under substitu- 

tion. Indeed, any functor definable in poiymorphic lambda calculus is realizable 

(see below). 

emark. Among the realizable functors are those functors on PER that are given 

internally in a critically important model for intuitionistic set theory and higher 

order logic, the Realizability Universe (or Effective Topos). As first pointed out by 

Moggi, this Universe contains a non-trivial, complete small Cartesian closed category, 

the Modest SC:: i 34,8,28,29,57]. (For a discussion of various notions of internal 

fied by Modest Sets, cf. [52].) Viewed externally, Modest Sets are 

. This point of view was instrumental to our initial understanding 

of the approach described in this paper. 

2.7. Definition. Let F,G : ( “)” x PER” + be realizable functors. A family 

u=(u,:FAA+GA }, not necessarily dinatural, is called a realiznhle 

family if there is a single partial recursive function cy such i;iaf each component .on 

is named by <p. 

So a realizable family u = { uA : A + GAA} has the property that there is a single 

numerical code n such that all components aA are named by the nth partial recursive 

function. 

In the following proposition, we refer to the notation introduced before Pr:?posi- 

tion 1.3. 

For any realizaMe family u, 
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roof. Immediate. Cl 

mr r iv <: 
.* .rr+ :>*; :._* L. . . . 

I- lfl\X~ if l ?K,&!, families are necessarily dinatural. 

We now state the first fundamental thetiiem of this approach to semantics of’ 

polymorphism. 

Realizable dinatural transformations compose. 

roof. Using the notation introduced before Proposition 1.3, slappose u and &I are 

realizable dinatural. The composition u;u is of course realizable and therefore by 

Proposition 2.8, D,,; L3 contains Z. Proposition 1.4 says that D,,;, contains all isomorph- 

isms. Propositions 2.4 and 1.3 yield the theorem. 

2.10. Corollary. For each n, the realizable functors ( 

realizable dinatural transformations between them are a ccc. 

and 

roof. That we have a category is immediate from the theorem. The ccc structure 

is given by products and twisted exponentials described in Section 1.5. Cl 

We nova relativize the notion of end discussed in Section 1.5 by restricting functors 

to realizable fttnctors , a;15 dinatural transformations to realizable transformations. 

Henceforth, IA GAA will denote these realizable ends. 

The second fundamental theorem of this approach is as follows. 

2.11. Theorem. Realizable ends exist. 

roof. The per jA GA is obtained by first taking the intersection of all pers GAA, 

then taking the subper corresponding to the dinaturality condition. Formally, take 

the per E that relates m to n iff for any f: A + A’, GAA’ relates G( A,f)(m) to 

G(f; A’)(n). By specializing f to t identity map, one can easily obtain that the 

map E + G(A, A) is in Z for every and hence that the induced wedge into C is 
realizable, named by the identity function on N. A routine calculation shows that 

E is a realizable end IA GAA. In fact, the realizable dinatural transformation from 

&, + ME required in Corollary 2.10 is named by the same partial recursive function 

as the given realizable dinatural transformation Ku + G. This property implies that, 

if there are other variables, then jA G takes Z to Z. In that case, furthermore, 

SA GA is a realizable functor in these other variables, the mapping on partial 

recursive functions required for realizability being given by G’(g) = @( idA, .iJrf, g), 

where @ is assumed by the realizability of G. 0 

t is a remarkable fact that e realizable end Ji\ (A+A)+(A+A) 

is the per given by ordinar natural numbers 

if we substitute the i 
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be contrasted with the situation in T: the end jA (A+A)+(A+A) is non- 
existently large, i.e. there are actually a proper class of dinatural transformations 

from ( )’ ) to itself (See Appendix AS). 

Are realizable families automatically dinatural? 

Following the viewpoint of Sections I and 2, we interpret types a; whose free 

type variables are among q, a?, . . . , ak, as realizable functors 1~1: ( 

argument. 

= Biy the projection functor onto the ith covariant 

(2) If u = C, a ground constant interpreted as an object in 

Kc., the constant functor with value C. 

(3) If 0= 71 x 72, IUl< 

(4) If 0 = 7,*72, Ial ), (twisted 

exponential). 

(5) If (T = VOJi.7, lOl( ) =IQ lr](A[i:= Q], [i := Q]) (realizable end), where 

[i:= Q] means change component i to Q in vector A. 

Example. IVa( 1x x (a=~+))l: ( is given by 

-:‘,I( ( a x a~~))I(A,A7[l := Q], B&J1 := Q]) 

We now show how to interpret terms in the dinatural calculus over 

a derivable typing judgement in second order polymorphic lambda calculus (e.g. 

[41; 53;) 

x,:u,,x2:ffz,..., x, : (T,, I- t : 7, 

in which all the free type variables are among cy = a,, . . . , IY,,, we define a numerical 

code e, of an n-ary partial recursive function e, by erasing types from t and then 

in terpretiflg the obtained untyped lambda term as a numerical code oj’a partial recursiw 

function in the usual way (see Appendix AI). 

Note that e, depen only on II and the unty a term obtaine 

erasure, not on any t e information. 
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Soundness Theorem (Realizable 

typing judgement 
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dinatural transformations). Consider a derivable 

x,:u1,xgq ,..., x, : o;, I- t : T 

in which all free type variables are among a! = a+, . . . , ay,. Then e, names a realizable 
dina tural transformation I( c1 X l l l X e. a realiz- 

able dinatural family I(q x l l l x a,)1 ke Further- 
more, if tl and t2 are second-order p-r]-co.... nllertible, then e,, and erz name the same family. 

Proof. By routine induction on the derivation of typing judgements, one verifies 

that the number e, names the dinatural structure referred to in Corollary 2.10 and 

Theorem 2.11. Cl 

emark. Dinaturality imposes certain equations, which, by Soundness, are 

valid in this interpretation. For example, Var (a + a 1, in the realizable end interpreta- 

tion, must be 1. This imposes the equation z = Aa( h,:,,.x), for Amy z of type 

Va(a*a). 

emark. The above interpretation can b 2 ccnsidered as part of a general 

‘al/dinatural interpretation of types and terms, as in Section 1, specialized 
See also the recent work of Freyd [ 181. 

arametricity in pers 

4.1. Saturated relations on gers 

The category is rich enough to allow itself a calculus of relations (see [S]). 

A relation from one per to another is a subobject of their product. For present 

purposes we will not be interested in all such, but only in those that satisfy the 

technical condition of being regular. (For the specialists in category theory, happily 

the two common senses of regular subobject coincide here: .a subobject of a per 

ears as an equalizer of two maps between pers iff it is closed in the double 

negation topology on the Realizability Universe, i.e. the Effective Topos). For our 
purposes a regular subobject of a per A will be de!%, red as one that can be obtained 

by restricting A to a “saturated” subset o,i darn/\ (where “saturated” means that it 

is a union oi A-equivalence classes). A regular relation from A tq A’, therefore, is 

one that is obtained from a saturated subset of aom,,,,#. Such a subset may be 

viewed as an ordinary relation S from damn to domA subject to the saturation 

condition which may now be rewritten as: 

(9 
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or equivalently, 
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jAn, nSn’, n’ 'j' imply jSj'. 

4.2. Example. Consider a morphism of pers f : A + A’. The graph off is a subobject 

of A x A’ which appears as the image of the map (1,f): A + A x A’. This is a regular 

s&object, but for no particular name off need the set of ordered pairs (a,~( a )), 

u E domy, be saturated. The saturation of this set is independent of the choice of 
name of J The corresponding saturated relation R., from damn to domA, is equal 

to the composition of Jf with A”. In other words, a R, a’ iff f(a) A’ a’. 

4.3. Exampie. As a sptcial case of Example 4.2, the identity relation on A is the 

graph of the identity map. The corresponding saturated relation is A itself (condition 

(5) may be reread as saying that S is a relation that makes what we have just 

constructed as the identity morphism behave like the identity morphism). 

We shall be working with th c Reynolds parametricity condition [48] in the context 

or saturated relations on pers. One could, of course, simply interpret the Reynolds 

parametricity condition in the intuitionistic logic of the Reahzability Universe, where 

types are interpreted as modests sets. Under such an interpretation, parametric 

elements must be invariant under all binary relations on modest sets in the Realizabil- 

ity Universe. However, we shall consider an a priori weaker invariance requirement, 

an invariance under saturated (i.e. double negation closed) relations on modest sets. 

This approach still suffices for proving the theorem in Section 4.9 and will perhaps 

be more accessible to the reader. Furthermore, considering on!\? double negation 

closed relations is in the spirit of the definition of modest sets themselves as 

subquotients 01 rb e set of natural numbers by double negation closed equivalence 

relations. 

Throughout this section, we shall use the notation R : A++ A' for a saturated 

relation from domA to domA,. 
In order to staLe the Reynolds parametricity conditions in , we must extend 

the type-forming operations to saturated relations as follows. 

Let A, A’, B, B’ be pers and let R : A + A’, S : Be B’. Product and exponentiation 

of pers A x B and A=i B are defined as usual (see the proof of Proposition 2.2). 

Let a E domA, 6 E JomII, ak domAr, 6% dom,3.. Define the following relations. 

R x S: (A x B)+-+(A’x B’), where (a, b)( R x S)(a’, 6’) ifi a R a’ and h SK 

R=$d:(AaB)t,(A’aB’), where e(R+S) e’iff (a Ra’) implies (ease’s’) for 

any a, u’ as above. 

Suppose, given a ty expression T( (Y, d pers A, B,, . . . , B,,, we kmw 

the meaning of T(A, ). Then let Ya he intersection 

over all pers A. Given a vector of saturated 

suppose we know the meaning of T(R, 
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h.T( cy, S) : Va!.T( a, ‘) as the intersection & r( R, S), over all pers’ 

A, A’ and all satura from A to A’. We will want 

(i) whenever R is a saturated relation from A to A’, then for any polymorphic 

type T T( R j is a saturated relation from r(A) to T( A’), and the 

(ii) Identity Extension Lemma: if R is the identity on A, then T(R) is the identity 

on T(A). 
The second requirement forces us to redefine the per interpretation of ‘Va.7, i.e. 

to trim down the intersection nA T(A) to only those elements invariant with respect 

to all saturated relations. 

Officially, T(A) and I( ) are defined, and (i) proved, simultaneously by induction 

on the complexity of 7. The basic clauses for product and ftinction t:rpe are the 

same as before. The formula for universal type abstraction is; n VCYT( (Y, ) k iff for 

all pers A, A’ and all saturated relations R from A to A’, 

n T( R, idB) n, k T(R, ids) k, n r(A, Rj k, 

That is, given n, k in the intersection of the domains of the T(A, B)s, all A, if‘ n is 
to be related to k by Vcur(a, B), it must at least be the case that n T(A_, 

) k for all A and A’. But we want more; namely, consider any 

saturated relation R - ++A’ and the nduced regular relation between pers, 

?( R, idB) from r( ), corresponding to the saturated 

relation T( R, ids) : T j ++ T( A’, I?) by Section 4.1. We have at least 

(n, n> ( T(A, B) x T(A’ k, k), but we stipulate that (n, n) 7( R, ids) (k, k). Now 

recall that according to Section 4.1, since n is in the domain of every T( A, B), all 

A, this means n T( R, id*) n, n T(A, ) k, and n T( A’, B) k, and hence k T( R, idB) k 

as well, assuming (i) as the in ction hypothesis. For the record, the relation 

V’cu.7(Ly.S) :VLY.~(CLB)-HVLY.T((;Y. ) is defined as before by intersection. 

The reason for this definition is as follows. 

roposition. Let T be a second-order polvmorphic type whose free type variables 

are cq , a-, , . . . , cy,,. Let .R be a vector qf saturated relations, where R’ : Ai-- Ai) 
i=l,2,..., ) is a saturated relation from T(A) to T(A’). 

roof. Immediate for products and function types. By construction for universal 

type abstraction (see above). q 

4.5. Example. It is built into our construction that Church numerals are the only 

elements of domv,, t ( ,urscr 1-x crr;j,, j 1. Indeed, any element k must have the property that 
for any pers A, A’, and any saturated relation R : A * A’, k ( ( R + R)+( R 3 R j j k. 

Therefore, k is a code of a partial recursive funct’on cp such that if e CR* R) e’ 

then cp(e) and p(e’) are defined and cp(e) (Ra R) q(e). Recall that the saturated 
relation R+R:(A=~,~j++(A’-x -+A’j is defined by:if eEA*A, and &A’=+A’, 

e(R ) e’ iff whenever a e case that ea R &a’. Therefore, 

if (for all a,~‘, w 
(-9 
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Now let R be the saturated relation RI corresponding to the graph of a mapf: A + A’, 

i.e. a &a’ iff f(a) A’ a’ (cf. Example 4.2). Thus condition (?) now says: 

if (for all a,a’, whenever f(a) A’ a’, then f( ea) A’ e’a’, 

i.e. f (ea) A’ e’ua), for ali a) 

then (for all a, a’, whenever .f( a) A’ a’, then .f( rp( e)( a)) A’ cp( e’)( a’), i.e. 

f(cp(e)(a)) A’cp(e’Kf(a~), for alI a). 

That is, in diagrammatic notation: 

C’ 

A-A 
C(C) 

A-A 

A’- A’ A’- A’ 
4” Cp( (3’) 

It now chasily follows that cp is the Church numeral n, where n may be computed 

by appiying: <p to a code e of the successor function on the natural numbers, and 

then compukg n = q(e)(O). Indeed, we show that for any per A’, and any map 

A’+ A’ named by a code z’, and any a’E domAp, A’ relates <p(e’)(a’) to the n-fold 

application e’( e’( e’ . . . (e’a’) . . .)). In the condition (tf), let the per A be the ordinary 

equality considered as an equivalence relation on the natural numbers I’d and let e 

be a code of the successor function. Let a’ E domA, and let f: A + A’ be constructed 
by primitive recursion: f(0) = a’ andf( i+ 1) = e’(f( i)), so thatfsatisfies the assump- 

tion in the condition (t?). Therefore by it?), 4’ f relates q(e’)(ff ‘) to f‘(.q( e(0))). i.e. 

to f(n). But the definition of f(b) is exactly the requir 26 ‘i-fold application 

e’( e’( e’ . . . (e’a’). . J). 

Recalling Exam;)le 4.3, we now prove the following. 

roposition (Identity Extension Lemma). Let T( a,, (x2,. . . ,a,,) he a second- 
order polymorphic type with free type variables CY, 9 a2, . . . , a, and let A,, - . . , A,, 

be pers. 7hen r(idA,, idA?, . . . , idA,,) = id7(A,,Al ,,,.. 11 ,,,, as saturated relatiw 

T(AI 9 ’ * l 9 IQ&-+ M,, . . . , A,,). 

roof. Let US do the abstraction case fir+ Let =B,,..., B,, be a list of 

pers. We wish to show the relation Vcyr(cv, ider) dVCYT( tr.lp, 7 as rekmons 

). Let n, k E domvCIT,LI,B,. n &~(a ) k ifi for every pair of 

pers A, A’ and saturated R : A-A’, n T(R, idB) n, k T( R, ids) k, II T( 

) k, whereas n V’a(rr, id,) k ifT by definition, for every pair of pe 

and saturated relation R : A-A’, n r( R, idB) k. VJCYT(CY, ids) is included in idv<,,( cr,Bj, 

by 4.3, since if nVcw(cu, i&j k t&c-: For any saturated 

and the inductio 

saturation,, k T For the converse 

ctive hy 
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Function-type: for XV ariety, we i!Eustrate this case with an example (which, however, 

contains all the essential difficulties). Consider id,+id, : (A3 B) * (A+ B). Then 

if e, ek A+B, e (idn **id,) e’ iff for all a, a’ in domA, if a idA a’ then eaJ,, ea’./,, 

and ea ids e’a’. That is, by 4.2 if a A a’ then ea B e’a’ (ai; tc definedness of ea. e’a’). 

In particular, setting a = a’, we SW fo>r all a such that eaJ, e’a’i, ea = e’a (that is, 

e and e’ are extensionally equal). Now suppose Q A a*. ‘X~e~ e, being a morphism, 

satisfies ea A ea’ (ignoring definedness). Since ea = e’a’, we have ea A e’a’. But t 

is precisely the meaning of equality of morphisms e, e’: A + B. So id.,=$ids equals 

id A=aB l 

Product types: easy. Cl 

mark. We denote t dentity relation on a per A by A itself. So by the lemma 

ve, we may write 7 ) for r(i&:, id+. . . . T idA,,). 

7. Every golymosp is invariant under saturated relations in 

Given a derivable typing judgement in second-order polymorphic lambda calculus 

(e.g. [4I, 531) 

X,:a,,X2:u~, . . . , x,:cr,&- t:7 

in which all the free type variables are among cy = a+, . . . , ayk, we define a numerical 
code e, of an n-ary partial recursive function e, by erasing types from t and then 

interpreting Phe obtained untyped lambda term as a numerical code of u partiai recursive 

function in the usual way (see Appendix A.1). 

Again note that e, depends only on II and the untyped lambda term obtained by 

type erasure, not on any type information. 

In Section 3 we showed that e, is a realizable dinatural transformation from 
cr,x** l x a;, to r (see Soundness Theorem). Here we wish to show that e, satisfies 
our version of the Reynolds parametricity condition in 

ness eorem. Consider a derivable typing judgement 

X,:a,,X$crz,. . . , x,:cr,,t- t:7 

in which all free type variables are among a = a,, . . . , a,. Let A,, Ai, . . . , Ak, A;I be 
arbitrarypers and let R’:Ai++A:, i=l,..., k be arbitrary saturated relations. Then 
e, names per maps 

) and (a,~-•XU,,)( 

such that m (a, x l - . ) m’ implies e, ( m ) 
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No&. In diagrammatic language in 

Note. the factorizing map of pers (q x l 

by el. 
) is not necessarily named 

Before proving the theorem, we recall Example 4.5 and the notation from Example 

4.2. Therefore a typing jud gement x : a +-a I- t : cx 3 cy is necessarily interpreted as 

a ChbPch numeral. 

ness Theorem. By induction on the derivation of typing judgements. 

We give some representative cases. The reader is assumed to have looked at Appendix 

A.i. 
a -introduction : Suppose the statement holds for 

x~:u~,x~:u:!, . . . $ x,,:u,,, x:al- t:7 

We want to prove the statement for 

xI:uI, x7: fT2,. . l ) x,:uJ-Ax:u.t:o*7. 

Suppose ij Oi( )I{, where je{l,..., n}. Suppose lrz( ) 1’. By the induction 

hypothesis, e,( i, ~ . . . , i,,, 1) r(R) e,( ii, . . . , i:, , l’). We want to show that 

we,, 4 9 - . . , i,,) (e=e)( ) Sy(e,, ii, + . . , i:,). 

First notice that §l,‘(e,, i, , _ . . , i,,) is in the domain of (a*~)( b. Indeed, suppose - - 
) 12. Then by the induction hypothesis,T,(i, i . . D , i,,, I,) and e,( i, , . . . , i,,, i2j 

are both defined and are related in T ords, Sy(e,, i, , . . . , i,J( I,) and 

i,,)(EJ are defined and r Similar considerations apply 

). We have to show that Sy(c,, i, , . . . , i,,)(I) T( Ille,, i’l,. . . y i3U’). 

This follows by the induction hypothesis because, b S-m-n theorem9 

,, i,, . . . 9 i,,)(l) r( i,, . . . , a’,,, 1) and Sy(e,, i{, . . . ., i:,)( (ii $ * - - 9 i:, 3 0 

-introduction : S ose the statement s for 

X,:QT,,x-J:0-_1,. . * ) x,,:u,,t- t:7 



54 

where type variable 

statement holds for 
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(Y is k3t free in q, u?,. . . , u,. We want to show that the 

X,:ul$ xz:uz, . . . , x,,:uJ-Aa.t:va.T. 

We write 7s T(CY;, a). First note that e,,., = e, because Aa.t and t have the same 

type erasures. By the induction hypothesis, for all saturated relations between pers, 

S:B*B’ 

e, 
(0,x* 

/I 
(qx l ‘- x0-J 

\ 
‘sr 

(a,x l ** 

In particular, specialize to id,,+ By the Identity Extension Lemma (used 

on the left-hand side), we have 

ence 

and similarly for I. The rest is left to the reader. 

V--elimination: Suppose the statement holds for 

x1:O-‘l, xz:(Tz, . . . , x,,:o;, I- PdcY.7. 

We want to show that it also holds for 

x1:(71, x2:(72,. . . , x,,:cr, I- t[/3]:r[a := p]. 

As above, note that erIPl = e, because t[P] and t have the same type erasures. Argue 
revious case. cl 

escri 
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We do not know the precise relationship between Reynolds’ para- 
metricity and realizable dinaturality. The reader will have observed that the Eatter 

is defined by purely semantic means. We do not know a purely semantic definition 

of the Reynolds parametricity condition, i.e. without recourse to induction on second 

order polymorphic types. 

Now recall the notion of realizable functor from Definition 2.6. Also recall the 
notion 01‘ positive (or covariant) occurrence of a variabie in a type (see [61, Section 

1.10.5, p” 861 j. 

o&ion. Let T( cv, /!3) be a second-order polymorphic type whose -free type 

are CM, p. Suppose ck! occurs onl_v positively in T. Then: 

) is a realizable functor, whose action on maps, 

(2) P;rrrthermore, for any map of pers f: A+ A’ and . . for anv vector of saturated . 
relations i+jj) 

n 6% ) n’ implies T( .f; )(n) T(A’, S) 7(-f; 

In diagrammatic language in 

j --z r(A), 

T(A, 59 --_3--_+7( A’, S) 

roof. Similar to the Soundness Theorem, by induction on the complexity 

of 7. We sketch (1) r the basic case of function types. Given 

1, we want to find the 

by the following square 
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assumption. The V case follows similarly, along the lines of the Soundric;ss Theorem 

above. Cl 

It has been known r some years [4,48] that for any multisorted finitary algebraic 

signature, the elements of the initial algebra can be represented as closed normal 

terms for an appropriate polymorphic type. More generally, let T(a) be a polymor- 

phic type in which CIY occurs only positively. Without imposing further parametricity 

conditions on universal type abstraction, in general it can only be shown that 

!/a( ( TCU +N)~CY ) is a weakly initial T-algebra (see below) in pny categorical 

interpretation [51]. Recently, Hyland et al. [30] verified th;, the standard per 

interpretation of “algebraic” types (like poly-boole and poly-nat) yields initial 

ave already seen in Example 4.5 that a systematic parametric per 

interpretation of universal type abstraction (Sections 4.1-4.5, 3.7) automatically 
ensures the canonicity of certain universal types. We now wish to e is further 

for T-algebras (see below), where T is the covariant functor PE induced 

by a second-order type T, in the sense of Proposition 4.8. Note that tlaese types 

include more than just the algebraic ones. 

We recall some terminology. If T: % + %’ is a covariant endofunctor, then a 

T-algebra is an object A together with an arrow a : TA + A. Given two such structures 

a : TA + A and b : TB + B, a T-algebra morphism is an arrow h : A + B SW% that the 

following square commutes: 

T(h) 
TA- TB 

R 
A-B II 

T-algebras form a category, and if this category has an initial object it is called the 

initial T-algebra. So, by definition, an initial T-algebra (if it exists) has a unique 

,norphism to any other T-algebra. Similarly, weakly initial objects have a morphism 

(not necessarily unique) to any other object. 

In the parametric interpretation, V’cw(( Tcu+a)=$cx) is the initial 
T-algebra. 

The interpretation of V’a(( Tol=+itY)*a) is nR (( TR+R:=+d?) over all pers 

A, .A”and all saturated relations R : A* A’. We claim this is the initial T-algebra. 

We argue similarly to xample 4.5. An element k E domV,,,( Tru_&u ,j,y, must have 

e property: for any rs A, A’, any sa rated R:A*A’, and any aE T(A)*A, 
a% T(A’)=+A’: 

) m’ S ies 62 FPZ a’m’) 



Letting R = R,, fix any per map f: + A', we obtain 

T(A)= 7-(K) 

If " 1 "' 1 then _f(ka) A’ ka’. 

A- A’ 

the analog of (I‘?) 

(J-U-) 

Therefore, given a Ir.orphism of T-algebras .f: A + A’, f( ka) A’ ka’. Thus k is the 

index of a partial recursive function such that for each A, we have k E ( TA+=A)aA. 

Hence for each T-algebra a~ TA-*A, kaEA. Let G=Va((Ta,=+cu)~a). Denote 

the interpretation of G by the same letter. Pick the k that arises, by the Soundness 

Theorem, from e,,,, where t,, is the second-order evaluation G + (( 7-a =+ cw ) + 0). 

The choices are made to guarantee that (the interpretation of) G itself is a T-algebra, 

whose canonical action TG + G is given by a polymorphic lambda term [51, 
Proposition 31, such that for any T-algebra a : TA-, A, ka induces a morphism of 

T-algebras G + A. 

We find ourselves in the following situation: the category or’ T-algebras over 
has an object G with an assigned map to each object. Moreover, it has the property 

that an assigned map followed by a T-algebra morphism is (equal to) an assig,ned 

map. Now argue as follows: the assigned morphism of G to itself is necessarily an 

(using the properties of the category of T-algebras just mentioned.). 

has equalizers, it easi?y f;;ll:o*.~s t hat idempotents split in the category 

of T-algebras oveh* it. SplitAng this idempotent of G yields An initia! object. Well- 

pointedness is used to verify the idempotent in question is necessarily a mono (by 
verifying it is monomorphic as far as points are concerned). A monomorphic 

idempotent is trik ially the identity. 

For a general framework for this kind of argument, see [ 181. Cl 

The above theorem has a string of corollaries about the parametric interpre- 

tation. 
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Va((A=a)+m)=A. 

Note that Corollaries 4.10-4.13 are special cases of Corollary 4.14, which is itself 

a special case of the theorem, with T = K n, the cor-rstani Factor A. See Appendix 
A.3 for a description of this phenomenon by means of ends. 

5. Corollary. Church and tawvere here agree on the natural numbers. The Church 

definition is ‘da (( Q + a) 3( (Y + a)). TIze Lawvere deJinition is the initial T-algebra 

for TX = 1-k X, the categorical coproduct of’ 1 and X. In exponential notation: 

(x<Y ).Y’ c= XXXS’ z XX’XC ~ XX”‘. 

So by the theorem, the initial T-algebra-for the functor 1-k X is isomorphic to dX.X “ ’ ’ . 

orollary. Associating nested +‘.s to the right: 

~dcu(cu~((cu=$a=jcu)~a))~~~(r,(l +(ar xcr))+%!)*a). 

Proof 

=Va((a x((clu xa)*a))*ff) 

=vcY(((l+((Yxa))ax)*a). cl 

In the above corollary, TX = 1 + (X x X). The initial T-algebra consists of binary 
trees. 

lary. For any *finite algebraic signature. met-2 exists a junct./rr T so that 

T-algebras are the same as algebras oj’ that signature. As in the special cases of 

Corollaries 4.1 O-4.16, the expression ( TX + X )=+X may br rewritten as a polymorphic 

type. 
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=Vcu((a x((Ax a)=w))*a) 

=Va(((l+(Ax(w))+ar)~cu). 0 

Here TX = I+ fA x X), for a fixed A. T e initial T-algebra is A-list, the algebra 
of lists with entries from A, i.e. A-labelled unary trees. 

Similarly, for the functor TX = 1 + (A x X x X), we obtain the A-labelle 

trees; for the functor TX = B + (A x X x X), we obtain binary trees whose binary 

nodes are labelled by A and whose leaves are labelled by B. The polymorphic 

description of the latter is: 

Furthermore, X-list is a functor in X. Given any A, consider the functor ;TX = 

A x (X-list). Its initial algebra consists of arbitrary (rooted) trees with nodes and 

leaves labelled by A. 

ppendix 

A. 1. On interprethg terms as partial recursive functions 

Given a derrva jle typing judgement in second-order polymorphic lambda calculus, 

x1:0,, xz:a:,, . . . , x, : a,, I- t : 7 

we obtain a numerical code e, of an n-ary partial recursive function, by first erasing 

all the types frc,m t, so obtaining a term a ( = erase(t)) of untyped A-calculus, and 

then interpreting this untyped lambda term to give a number ccl ( = e,) by induction 

as follows: 

If a is xi, then e, is (a chosen code of) the ith projection of n arguments. 

If e, is code of a partial recursive function of n + 1 arguments, then eh.,.t, is defined 

by using the S-m-n theorem from recursion theory, as fallows. Let Sy be a primitive 

recursive function of n + 1 arguments such that for i, , . . . , i,,, Sy( ea, i, , . . . , i,,) is 
code of a unary partiall recursive function such that for al% b: Sy(ecr, il, . . . , i,,“P(fi) =Z 

eaUl ). . . , k, b). Now define eh.u.a e (given canonically in a chosen enu 

ation) of the n-ary function given as Sy rst argument held constant 

e a code (given canonically in a c 

function that assi 

Y tY . 
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A.2. On 

Let CG 

we have 

ES. Eainbridge et al. 

least fixed points aGd diwturality 

be a ccc in which, for each A, the homset (1, A) is a poset and for which 

a factorization 

% ~- ) PQSETS 

SETS 

Furthermore, assume that + A, for each 4, takes any argument h : A+ A 
into the least fixed-point of h. We wish to show is dinatural. Let f: A + B and 

g:B+A. Let x=f(Y&~J)). Ciaim: x is a fixed point offog. For (fog)(x)= 

f(g 97 Y&C ?O)) =f( YA(g of)) = x. Thus, YB(fo g) sf( Y,.,(g of)), so applying g, 

g( YB(fo g)) s g(f( Y,Jg of))) = Y,(g of). Interchanging the roles of .f and g, we 
i‘k - *air. t.k i~cquality in the ther direction, viz. f ( Y,(g 0 f)) s Ys( f 0 g). Hence 
J‘: “‘& *., ; .? P;,(fC g), so is dinatural (cf. Example I.1 (iv)). 

/U, On the end I, (Xx”) 

Note that in regard to Corollary 4.14, in any well-pointed ccc, A =jx (Xx“). (A 

note on standard categorical terminology: a category is concrete if it has an embed- 
ding ( = faithful functor) into SETS. A category is we!! pointed if it is generated by 

1, i.e. the embedding into SETS may be taken to be the external horn-functor (1, _). 

FE.8 is of course well pointed. 

A counter-example to the isomorphism above for non-well pointed cccs is given 

by: let G be any non-trivial group. In the category SET” (G-sets) take A = 1. We 

obtain that Is ( Xs ) is G with the conjugacy action. The forgetful functor SET” + 

SET is often cited as an example of a functor that preserves everything. It does not, 

however, preserve jx (X” ). It would therefore appear not to preserve higher-order 
types. 

A.4. Polymorphic identity foilowed by Y yields trivialit)? 

Suppose we could form the composite of the dinatural transformations 
u:K,+( )“and Y:( )‘I + ( ). Then the outer hexagon in the following figure must 
commute, for all objects A, B and arrows AL B: 
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The commutativity of this outer hexagon is expressed, using informal notation, by 

f( Y,(hx:A.x)) - k’,(hx:B.x). Now setting A= , we see ahat every object B has a 

unique global element Y&x: B.x) : I. + B. Thus, given any two objects C, 0, there 

is a unique global element of D’ ; hence by Cartesian-closedness of the underlying 
category, there is a unique map between any two objects, so the category is trivial. 

AS. 01 dinats from ( )’ ’ to ( )’ ‘. 

In SETS, there are a proper class of dinats from ( )’ ) to itself. For let K be any 

cardinal number and define the family 0, = {&(A) : AA + AA 1 A E SET) as follows: 

let h : A + A and let 

b 
~KW(W = 

if Card(fix( h)) = K 
id  

A otherwise 

wherejx(h)=(aEAlh(a)= a} is the set of fixed points of h. 

Dinaturality of the family 8, : ( )’ ) + ( )’ ) in SETS amounts to the following: for 

anyg~BAandfEAR,fo(0,(A)(gof))=((B,(B)(fog))oJ:Toverifythisequation, 

first observe that $x(g 0 f) is in bijective correspcndence with J;x(f 0 g). Now 

suppose Card($x(g 0 f )) = Card($x( f 0 g)) = K. Then the equation becomes 

fo(g”f)=(f”g)“.t an instance of associativity of composition. On the other hand, 

if Card(fix(f 0 g)) # K, the equation becomes the truism f 0 idA = idB of: Since there 
is a proper class of cardinals, we are done. 

Note that by Poposition 1.6, there is a proper class of points 

(A=+A)*(A+A) 
A 

in SET. 

A.6 On the functorial calculus 

The operations of product and twisted exponential of functors may be described 

as follows: 

Products: Given functors F, G : (%‘O)” x V’ + Ce, define F x G : ( go)” x 5%“’ + %, to 

be the functor 

(E.if! X 
( ,“)” x W’ - ;t” Y. % - %I 

Tkste. exponentials: Given functors F, G : (%O)” x ‘S?” + Cc, define 

where we write P : (YO)” x %“’ + %” for the CO 



62 E.S. Bainhridge et al. 

Example. Covariant projections Pi Z (%“)2)(: W2+ %y i= 1,2, given by 

Pi(AIA2; BIB2) = Bi* 

The dinatural traklsformation: aPPP,.Pz: P$ X P, + Pz is given by 

(@PPPI,P2J&.G (P2 ‘1 x P,)(AA’, AA’) + P,(AA’, AA’), where (~pp~,,~~),+,~: NA x A + 

A’ is application, as in Example 1.1 (iii). Muc’h of the ccc structure of Corollary 

2.10 exists for general reasons (see [ 181). Additional functorial structure is mentioned 

in Cl]. 
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