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Quantum Mechanics in a Nutshell

0. A state of a physical system
corresponds to a unit vector |S> in a
complex vector space.

|. (measurement free) Physical processes
are modeled by unitary transformations
applied to the state vector: |S> ----- > U|S>

2. 1f |S> = zl|el> + z2|e2> + ... + zn|en>

in a measurement basis {el,e2,...,en}, then

measurement of |S> yields |ei> with
probability |zi|*2.




Preparation, Transformation,
Measurement.

Psi = <T|U|S>
Psi*Psi = <S| U*|T> <T|U|S>
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Quantum Gates
are unitary transformations
enlisted for the purpose of computation.

110(0(0
CNOT|00> = [00>
O(l1[0[0| cNoOTI0I> = 101>
CNOT = CNOT|10> = |l >
O(0IO0! || CNOT|II>=]l0>
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Universal Gates

A two-qubit gate GG is a unitary linear mapping

GV@V—>V®V where V is

a two complex dimensional vector space. We say that the gate GG 1s universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V' to V') generates all unitary
transformations of the complex vector space of dimension 2" to itself. It is
well-known [44] that CNOT is a universal gate.




A gate G is universal
iff
G is entangling.

A gate G, as above, is said to be entangling if there is a vector
af) =la)@|B) e VOV

such that G|af) is not decomposable as a tensor product of two qubits.
Under these circumstances, one says that G|af3) is entangled.

In [6], the Brylinskis give a general criterion of G to be universal. They prove
that a two-qubit gate G is universal if and only if it 1s entangling.




An Entangled State

The EPR 5tate

|%F> = (101> + 110=)/Sqrt(2)




An Entanglement Criterion

Remark. A two-qubit pure state
|¢) = a|00) + b|01) 4 ¢|10) + d|11)

is entangled exactly when (ad — bc) # 0. It is easy to use this fact to check
when a specific matrix is, or is not, entangling.

The Bell States

R|00) = (1/v/2)[00) — (1/v/2)[11),
R|01) = (1/v/2)[01) + (1/v/2)]10),
R|10) = —(1/v/2)[01) + (1/v/2)]10),
R|11) = (1/3/2)]00) + (1/v/2)[11).




Braiding and the Yang-Baxter Equation
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Braiding Operators are Universal
Quantum Gates

LetV be a
two complex dimensional vector space.

Universal gates can be constructed
from certain solutions to the
Yang-Baxter Equation

RVV-—-VQV
(RoD(I@R(RoI)= (2 R)(R®I)(I®R).




Representative Examples of
Unitary Solutions to the
Yang-Baxter Equation that are Universal Gates.

0 1/vV/2 1/V2 0

1/vV2 0 0 1/v/2
R_
~1/vV2 0 0 1/v/2

0 1/V2 -1/v2 0 ) Bell Basis Change Matrix

a 0 0 0 0 00 a
, oo b o , [ obo0o0
B=109¢0 0 B=1090¢o0
000 d d 000
100 0
Ry — 8(1)(1) 8 Swap Gate
000 -1 with Phase




Issues

|. Giving a Universal Gate that is
topological does NOT create
“topological quantum computing”
because the U(2) local operations
have not been made topological.

2. Nevertheless, Yang-Baxter
gates are interesting to
construct and
help to discuss
Topological Entanglement
versus
Quantum Entanglement.




Quantum Entanglement and
Topological Entanglement

An example of Aravind [ 1] makes the possibility of such a connection even more tantalizing.
Aravind compares the Borromean rings (see figure 2) and the GHZ state

[0) = (181)82)105) — )| az)|as)) / V2.

5a

Is the Aravind analogy only
superficial?!




Consider this state.
[y = (1/2)(]000) + |001) + [101) + |110))

Observation in any coordinate
yields entangled and unentangled
states with equal probability.

e.g.
[¥) = (1/2)(10)(100) + [01)) + [1)(|0T) + [10))

First coordinate measurement
gives
|00> + [0]> and
01>+ |10>
with equal probability.




Do we need Quantum Knots?

alK> + b|K’> @@ - 4%
//

K: probability |a|?2 p
K’:probability |b|*2 \

Observing a Quantum Knot
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SU(2) Representations of the Artin Braid
Group

Theorem. If ¢ = a + bu and h = ¢ + dv are pure unit quaternions,then,
without loss of generality, the braid relation ghg = hgh is true if and only if
h = a+ bv, and ¢4(v) = ¢p-1(u). Furthermore, given that ¢ = a + bu and
h = a+bv, the condition ¢,(v) = ¢p-1(u) is satisfied if and only if u-v = “22;2”2
when v # v. If v = v then then ¢ = h and the braid relation is trivially

satisfied.

BT U ey = (a2 - bA2)/26R2




An Example. Let

0

g=¢e% =a+bi

where a = cos(f) and b = sin(6). Let
h = a4+ b[(c* — s%)i + 2csk]
where ¢ +52 =1 and ¢ — s = ‘122—;21’2 Then we can reexpress ¢ and h in matrix

form as the matrices G and H. Instead of writing the explicit form of H, we
write H = FGF* where F is an element of SU(2) as shown below.

e ()
G — 0 6—@'9

1C 1S
1S —1C




SU(2) Fibonacci Model
4+7=1
g = 6771'2/10

f =11+ kT
h=frf!

{g,h} represents 3-strand braids,
generating a dense subset of SU(2).




We shall see that the representation
labeled “SU(2) Fibonacci Model”
in the last slide
extends beyond SU(2) to
representations of many-stranded
braid groups rich enough
to generate quantum computation.
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Quantum Computation of the Trace
of a Unitary Matrix

.

|.A good example of a quantum algorithm.

2. Useful for the quantum computation of
knot polynomials such as the Jones polynomial.




Hadamard Test

|0>—— H ? H -
Measure
0>

lphi> U

|0> occurs with probability
|/2 + Re[<phi|U|phi>]/2




Quantum Hall Effect
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Figure 1: A schematics of the experimental setup of the Hall effect. A current
driven through the conductor, drawn as a prism, leads to the emergence of
voltage in the perpendicular direction. This is the Hall voltage, which Mazxwell
erroneously predicted to be zero.




Fractional Quantum Hall Effect
(Cambridge Univ Website)

The fractional quantum Hall effect (FQHE) is a fascinating manifestation of simple collective behaviour
in a two-dimensional system of strongly interacting electrons. At particular magnetic fields, the electron
gas condenses into a remakable state with liquid-like properties. This state is very delicate, requiring
high quality material with a low carrier concentration, and extremely low temperatures. As in the integer
Quantum Hall Effect, a series of plateaux forms in the Hall resistance. Each particular values of magnetic
field corresponds to a filling factor (the ratio of electrons to magnetic flux quanta) nu=p/g, where p and g
are integers with no common factors). ¢ always turns out to be an odd number. The principal series of
such fractions are 1/3, 2/5, 3/7 etc, and 2/3, 3/5, 4/7, etc.

Integer and Fractional Quantum Hall Effects
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There are two main theories of the FQHE:

« Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions
by constructing a set of quasiparticles with charge e'=elq, where the fraction is p/q as above.

« Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to
hide the interactions, it attaches two (or, in general, an even number) flux quanta h/e to each
electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states
are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in
the same way as atfiling factor 1. A remarkable result is that filling factor 1/2 corresponds to zero
magnetic field. Experiments support this.




There are two main theories of the FQHE:

« Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions
by constructing a set of quasiparticles with charge e'=efq, where the fraction is p/g as above.

= Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to
hide the interactions, it attaches two (or, in general, an even number) flux quanta h/e to each
electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states
are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in
the same way as at filing factor 1. A remarkable result is that filling factor 1/2 corresponds to zero
magnetic field. Experiments support this.

The quasi-particle theory is connected
with Chern-Simons Theory and it
explains the FQHE on the basis of

“anyons’’: particles that have non-trivial

(not +1 or -1) phase change when they

exchange places in the plane.




Braiding Anyons
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Non-Local Braiding is Induced
via Recoupling

VNJ &

B=F RF




Process Spaces Can be Abitrarily Large.
With a coherent recoupling theory, all
transformations are in the
representation of one braid group.




Mathematical Models for Recoupling
Theory with Braiding come from a
Combination of
Penrose Spin Networks and
Knot Theory.

See “Temperley Lieb Recoupling Theory
and Invariants of Three-Manifolds” by
L. Kauffman and S. Lins, PUP, 1994.
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Bracket Polynomial Model for
Jones Polynomial
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Trefoil Calculation

AV < K> -A<U>=(A2- A% < U >

<U>=-A°
<U >=(-A3)*=A4"
<K>=-A—-A3+A".




g-Deformed Spin Networks
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Knots and Links
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Temperley Lieb Category

<— |dentity D G | G
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The Key to Teleportation




Any two one-dimensional
projectors generate a
Temperley-Lieb algebra.

P=><, Q=]
PP=><><=<>><=<>P
QQ=[1Q
PQP=><][><=<::> >< =<][> P
QPQ = [><] Q

This trick can be used to manufacture
unitary representations of the three-strand
braid group.




Untying Knots by NMR: first experimental implementation
of a quantum algorithm for approximating the Jones polynomial

Lﬁcg{gﬁ.;% Raimund Marx', Andreas Sp('irl], Amr F. F ahmyz, John M. Myerss, Louis H. Kauffman,
MUNCHEN Samuel J. Lomonaco, Jr.s, Thomas-Schulte-Herbn'jggen], and Steffen J. Glaser'

'Departmenl of Chemistry, Technical University Munich,
Lichtenbergstr. 4, 85747 Garching, Germany

*Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, U.S.A.

*Gordon McKay Laboratory, Harvard University, 29 Oxford Street, Cambridge, MA 02138, U.S.A.
‘University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607-7045, U.S.A.

“University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, U.S.A.

w
roadmap of the
quantum algorithm
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example #2
Figure-Eight

example #3
Borromean rings

A knot is defined as a closed, non-self-intersecting curve
that is embedded in three dimensions.

example: “construction” of the Trefoil knot:

Vel é

make a
“knot"

make it
“look nice”

fuse the
free ends

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented

o, \/ o [ R o ( ) as a closed braid (polynomial time algorithm)
S
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Jones Polynomial

Jones Polynomial

Jones Polynomial

3 RN LY It is well known in knot theory, how to abtain the unitary matrix representation

Ungon = (Un) Urgure-sight = (U, ~U,) [ (Uz -U,) of all generators of a given braid goup (see “Temperley-Licb algebra” and “path

. model ion”). The unitary matrices U, and Uy, corresponding to the

o 0 oS0 o J5in(60)sin(20) generators o, and o, of the 3 strand braid group are shown on the left, where the

v ¢ v sin(40) Sin(40) variable “0” is related to the variable “A” of the Jones polynomial by: A = ¢ "

/= )= . The unitary matrix representations of o;' and o;' are given by U;' and U;'
0 st o SnE@)sin@0) o sin@0) | o i " e

sin(20) - Sin(40) Sin(40) ‘The knot or link that was expressed as a product of braid group generators can

therefore also be expressed as a product of the corresponding unitary matrices.

Step #1: Step #2: Step #3: Instead of applying the unitary matrix U, we apply it’s controlled variant cU.

Trom the 2x2 matrix application of cU'on the measurement This matrix is especially suited for NMR quantum computers [4] and other

to the 4x4 matrix cU: NMR product operator 71, of I and 1, thermal state expectation value quantum computers: you only have to apply

U to the NMR product operator /,, and measure /,, and 7,,in order to obtain
the trace of the original matrix U,

Independent of the dimension of matrix U you only need ONE extra qubit for the
implementation of ¢U as compared to the implementation of U itself.

‘The measurement of /, and /,,can be accomplished in one single-scan experiment.

Al knots and links can be expressed as a product of braid group generators (see
above). Hence the corresponding NMR pulse sequence can also be expressed as
asequence of NMR pulse sequence blocks, where each block corresponds to the
controlled unitary matrix cU of one braid group generator.

‘This modular approach allows for an easy optimization of the NMR pulse
sequences: only a small and limited number of pulse sequence blocks have to
be optimized.

Comparison of experimental results, theoretical predictions, and simulated ex-
periments, where realisitic inperfections like relaxation, B, field inhomogeneity,
and finite length of the pulses are included.

For each data point, four single-scan NMR experiments have been performed:
‘measurement of 1, measurement of /,,, reference for /,,, and reference for /,,.
If necessary cach data point can also be obtained in one single-scan experiment
by measuring amplitude and phase in a referenced setting.

The Jones Polynomials can be reconstructed out of the NMR experiments by

Trefoil": Figure-Eight": Borromean rings": \Q(A)=(_AJ )-w(L) (tr(U}+A'“) [(_Az AT )z 2))
(A% +A12- A1) +AP- A% - A+ 3A% - 2A X
2 -2 8 4 3 2 4 where: (L) is the writhe of the knot or link L

(-A2-72) +AT-A - A7+ 3A°-2A 1{U} is determined by the NMR experiments

K(L) is the sum of exponents in the braid word

+A +48° dnespondng o hesneror ik
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Diagrammatic Matrices, Knots and
Teleportation
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State and Matrix Duality
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The Topology of Teleportation
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g-Deformed Spin Networks
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Projectors are Sums over
Permuations, Lifted to
Braids and Expanded via
the Bracket into the
Temperley Lieb Algebra
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Topological Quantum Field
Theory
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Process Spaces on Surfaces
Lead to Three-Manifold
Invariants.




Process Vector Spaces and
Recoupling
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Braiding, Naturality, Recoupling,
Pentagon and Hexagon --
Automatic Consequences of the
Constuction
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Non-Local Braiding is Induced
via Recoupling
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ICONICS

In the Fibonacci Model we have
one “particle” P that interacts

itself to produce either P or * (nothing).
This is analogous to the logical particle

representing an act of distinction
(or registration, measurement, ...)

, of G. Spencer-Brown
that interacts with itself in two ways:

=




Digression:

The Re-entering Mark as
lconic for Recursive Trace
and Lambda Calculus
Fixed Point.

A =AA
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Hence | Wl = 1 |




Fibonacci Model
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The Simple, yet Quantum Universal,
Structure of the Fibonacci Model
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Spin Network Gymnastics
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Closure, Bubble and
Recoupling

QO

a
= [ ]




The 6-j Coefficients
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Local Braiding
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Redefining the Vertex is the key to obtaining
Unitary Recoupling Transformations.




New Recoupling Formula




The Recoupling Matrix is
Real Unitary at Roots of
Unity.

o 9
o T

M[a,b,c,d]ij =




Theorem. Unitary Representations of the
Braid Group come from Temperley Lieb
Recoupling Theory at roots of unity.

A — 67377/27“

Sufficient to Produce Enough Unitary
Transformations for Quantum
Computing.




Quantum Computation of

Colored Jones Polynomials and
WRT invariants.
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Need to compute a diagonal
element of a unitary transformation.

Use the Hadamard Test.




Colored Jones Polynomial for n =2 is
Specialization of the
Dubrovnik version of
Kauffman polynomial.
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Will these models actually be used
for quantum computation?
Will guantum computation actually happen!?
Will topology play a key role!?
Time will tell.




