

Ören, T.I. and Çetin, S. (1999). “Quality Criteria for User/System Interfaces”. RTO Meeting Proceedings
38 – Modelling and Analysis of Command and Control (Papers presented at the Symposium of the RTO
Studies, Analysis and Simulation (SAS) Panel held at Issy les Moulineaux, France, 12-14 January, 1999).
Published June 1999. pp. 18-1 – 18-8.

Quality Criteria for User/System Interfaces

Tuncer I. Ören, Selim Çetin

Tübitak, Marmara Research Center
Information Technologies Research Institute

Gebze, Kocaeli, Turkey
{tuncer, selim}@ mam.gov.tr

ABSTRACT

User/system interfaces are essential components of any interactive software, including command and
control software. As part of overall quality of any interactive software, quality issues of interfaces are
very important. A set of 27 interface quality criteria for user/system interfaces are presented in four
groups which are convenience (usability), communicativeness, reliability and evolvability. The
convenience criteria are related with: conveniences of the language, terminology, metaphor and the
inputs; and functionality, simplicity, consistency, minimum memory load, navigability and least
training. Communicativeness criteria cover: informativeness, guidance, perceptiveness, explanation
ability, expressiveness, esthetic/cultural acceptance and types of user/system relationship. Reliability
criteria are concerned with: error prevention, error tolerance, caution, predictability and access
reliability. Evolvability criteria cover: adaptability, customizability, learning ability, maintainability
and portability. The criteria can be used for evaluation and comparison of existing interfaces as well
as for the design and implementation of new ones. Four tables with appropriate questions are
provided to systematize the evaluations.

1. USER SYSTEM INTERFACES

1.1 INTRODUCTION

User/system interfaces are important components of all
software systems (Galitz, 1996). One can consider
user/system interfaces from several points of view:
Goodwin (1989) presents interface issues for C
programmers. Marcus (1992) presents detailed
descriptions and comparisons of Macintosh, Nextstep,
Open Look, Motif system, Microsoft Windows, and
OS/2 Presentation Manager. Moreover, he provides a
comparative product-specific terminology used in the
systems listed above. Molich and Nielsen (1990)
concentrate on the essence of the user/system interface
design problem and provide a list of suggestions for
good designs. Horton (1990) considers design and
implementation of on-line documentation and provides
answers to the fundamental questions such as "what
makes a good dialog?" Lee (1993) concentrates on
object-oriented graphical user interfaces. In the late
1990s, functionalities and appearances of Internet
interfaces are of importance. The Internet brought also
new dimensions in interfaces such as Internet ethics
(Cheong 1996). Sullivan and Tyler (1991) explore
intelligent user interfaces. This topic is maturing both
in the applications of agent technology as well as
interactive voice technology to user/system interfaces
(IUI ’93, IUI ’97, IUI ’98, and IUI ’99) and will
necessitate refinement of the quality criteria for
user/system interfaces.

An interactive software can be considered in two parts:
a solution engine and a user/system interface (Figure 1).

The solution engine part is used to process the input and
to produce solutions for given problems.

The user/system interface is used to communicate with
a user in interactive systems. The user/system interface
can be divided into two sections: A front-end interface
and a back-end interface.

The front-end interface is used to enter inputs.

Front-End
Interface

Back-End
Interface

Solution
Engine

Interactive Software
User/System Interface

User

Input

Output

Figure 1. The elements of an interactive software

The back-end interface is used to get, process, and/or
display outputs produced in the solution engine. For
example, the back-end interface can display the data
which is produced by the solution engine in graphic
format for virtual or augmented reality applications.

1.2 THE NECESSITY OF USER SYSTEM
INTERFACES

The term user-friendliness is overloaded in referring to
desirable aspects of user/system interfaces.
Implementers, vendors and users of software tools and

environments need a set of well-defined quality criteria
for user/system interfaces. The criteria can be used to
design and implement good interfaces as well as to
evaluate, compare, and/or provide a basis to improve
existing ones. Furthermore, a set of well-defined
quality criteria allows one to choose explicitly the
characteristics of interfaces that one would like to have.

2. QUALITY CRITERIA FOR USER/SYSTEM
INTERFACES

Twenty seven quality criteria are identified for
user/system interfaces. They are grouped in four areas,
namely, convenience (or usability), communicativeness,
reliability and evolvability.

2.1 CONVENIENCE (USABILITY) CRITERIA

Some advantages of satisfying convenience or usability
criteria are as follows:

• Users can use the computer (or more specifically, the
software) without needing additional documentation.

• Necessary information can be displayed on the screen
when needed. In this way the memory load of the
user can be minimized.

• Definitions of problems and evaluations the results
can be done easily.

• Users can use the terminology of the application area.

The convenience criteria are listed in the sequel:

1. Convenience of the language (1.1)

2. Convenience of the terminology (1.2)

3. Convenience of the metaphor (1.3)

4. Convenience of the inputs (1.4)

5. Functionality (1.5)

6. Simplicity (1.6)

7. Consistency (1.7)

8. Minimum memory load (1.8)

9. Navigability (1.9)

10. Least training (1.10)

2.1.1 Convenience of the language (1.1)

The natural language used in an interface should ideally
be the native language of a user or at least it should not
hinder the proper use of the software.

2.1.2 Convenience of the Terminology (1.2)

An interface should be based on the application
domain’s terminology. The terms should not be
confusing.

2.1.3 Convenience of the Metaphor (1.3)

The interface metaphor should be most appropriate (i.e.,
natural) to the application domain. Examples: desktop,
book, index, card, form, calendar, agenda, instrument
panel, warning or traffic lights, map, office,
supermarket and layout (factory, theater, airplane). A
door is an example of a 3-D metaphor in virtual reality.

2.1.4 Convenience of the Inputs (1.4)

An interface should to able to accept the types of inputs
most appropriate (i.e., natural) for the application.
Examples (conventional): keyboards, pointing devices
(mouse, lightpen, trackball, joystick), touch screens,
touch pens. Examples (relatively new types):
handwriting, dataglove, deictic input (gestures), haptic
inputs (touch, pressure), eye gaze tracking, speech or
voice, and multimodal input.

Deictic inputs provide flexibility in virtual and/or
augmented reality. Eye gaze tracking is important in
civilian as well as defense applications. Interactive
voice technology, once more mature, can be the basis
for applications and/or operating systems based on
speech; thus allowing voice commands.

2.1.5 Functionality (1.5)

An interface should offer complete set of abilities to
specify problems and to process, analyze, and present
results. Therefore, the input functionalities can be as
advanced as the computer-aided problem solving
environments. The output functionalities can be
graphically oriented as it is the case of virtual or
augmented realities; they can also include statistical or
reasoning abilities.

2.1.6 Simplicity (1.6)

An interface should not have unnecessary and
distracting information. The displays should be as
uniform as possible.

2.1.7 Consistency (1.7)

There should be no ambiguity to initiate an action in
different parts of the interface.

2.1.8 Minimum Memory Load (1.8)

Users should not be obliged to remember information
from one part of the interface to another. Users should
not be obliged to memorize the instructions. Instructions
to use the system should be visible (for example,
through icons or pull down or pop up menus). If there is
a sequence of activities to perform a task, they should
be performed for the user or at least the sequence
should be made clear to the user. For complex and/or
routine tasks, software agents can and should be used to
alleviate the workload of the user (Bradshaw, 1997).

2.1.9 Navigability (1.9)

Activities should be initiated as directly as possible.
Navigation should be done with least movements. At

every state of the system, the user should know: how to
cancel the current activity and how to exit the system as
well as how to initiate necessary activities.

2.1.10 Least Training (1.10)

An interface should require least amount of training.
Any needed training should be available as just-in-time
learning facility. It is highly desirable to have a self-
pace demo on the utilization of the system.

2.2 COMMUNICATIVENESS CRITERIA

Some advantages of satisfying communicativeness
criteria are as follows:

• The functions of programs can be visualized.

• Users can obtain information about the software
system directly from the system.

• The software systems can support different types of
users.

The communicativeness criteria are listed in the sequel:

1. Informativeness (2.1)

2. Guidance (2.2)

3. Perceptiveness (2.3)

4. Explanation ability (2.4)

5. Expressiveness (2.5)

6. Esthetic/cultural acceptance (2.6)

7. Types of relationship (2.7)

2.2.1 Informativeness (2.1)

An advanced interface can and should be able to prompt
several types of knowledge which may (or should) exist
in the system:

• Knowledge that the interface is incrementally
receiving from the user and/or other knowledge
which exist in the system, (including a user profile
that the system should, maintain.

• Knowledge that the interface (should be able to),
deduce from the knowledge provided by the user.

• Knowledge about the methodology on which the
system is based on (e.g., simulation methodology).

• Fundamental scientific and engineering knowledge.

This may necessitate agents or mobile agents directly
accessing to the appropriate sources of knowledge (by
on-line payment of a fee, if necessary).

• Knowledge about the application domain (defense,
business, etc.).

Comments similar to the one given for the previous
topic is also applicable here.

• Knowledge about the software system and how to use
it (e.g., annotation of icons upon focus).

2.2.2 Guidance (2.2)

An interface should be able to guide the user in solving
problems by providing:

• Alternatives,

• Examples (demonstrations), and

• Sample data (with the possibility to modify and save
them).

2.2.3 Perceptiveness (2.3)

An interface should be able to observe the user:

• To perceive the intentions of the user

• To decide when to initiate an advice.

This features are implementable by software agents
(Bradshaw, 1997).

2.2.4 Explanation Ability (2.4)

A back-end interface should be able:

• To provide explanations/justifications of the decisions
taken by the system, and

• To explain the results or the solutions recommended
by the system

This features are basically implementable by artificial
intelligence techniques.

2.2.5 Expressiveness (2.5)

An interface should be able to provide necessary output
modes warranted by an application. Examples: direct
feeding of actuator devices, voice annotation, on-line
video help, multimedia outputs where text, picture
(from files or rendered), animations, and video may co-
exist.

2.2.6 Esthetic/Cultural Acceptance (2.6)

Shape, size, location, color, and movement of displayed
objects; sound of audio signals and messages; and their
relations to other objects should be consistent with
universal (as well as local) cultural and esthetic norms.

2.2.7 Types of Relationship (2.7)

Patronizing, informal, and insulting tone should not be
used. Human-like entities (including avatars) should be
used when warranted and not just as technological
curiosities.

2.3 RELIABILITY CRITERIA

Some advantages of satisfying reliability criteria are as
follows:

• Possibility of preventing some types of errors in new
programs and

• The avoidance of some types of errors of legacy
(existing) programs.

The reliability criteria are listed in the sequel:

1. Error prevention (3.1)

2. Error tolerance (3.2)

3. Caution (3.3)

4. Predictability (3.4)

5. Access reliability (3.5)

2.3.1 Error Prevention (3.1)

A front-end interface should screen the inputs to
prevent errors.

A back-end interface should filter the outputs to
intercept unacceptable (and possible dangerous)
outputs. For example, regardless how the software is
implemented in a radiation therapy device (e.g.,
Therac), lethal radiation dosage can easily be avoided
by an appropriate feature of the back-end interface.

2.3.2 Error Tolerance (3.2)

A front-end interface should tolerate errors (with
confirmation):

• In case of erroneous activation of a task, the user
should be able to exit without any side effect.

• An interface should encourage trial-and-error learning
without causing frustration.

2.3.3 Caution (3.3)

An interface should:

• Confirm irreversible actions and

• Include an undo command (preferably several levels)

2.3.4 Predictability (3.4)

An interface should do what its users would expect it to
do.

2.3.5 Access Reliability (3.5)

An interface should be able to monitor access to the
system and report it.

This feature should be in addition to appropriate
detection tools of viruses and trojans and fire walls
(Scientific American, 1998).

2.4 EVOLVABILITY CRITERIA

Some advantages of satisfying evolvability criteria are
as follows:

• A good interface can be changed easily; hence its
maintenance is easy.

• A good interface can be adapted to the needs of a
user.

The evolvability criteria are listed in the sequel:

1. Adaptability (4.1)

2. Customizability (4.2)

3. Learning ability (4.3)

4. Maintainability (4.4)

5. Portability (4.5)

2.4.1 Adaptability (4.1)

An interface should provide information needed by
different categories of users such as: experts, transfer
users, occasional users, and novices.

2.4.2 Customizability (4.2)

One should be able to easily tailor an interface to suit
different:

• Nationalities and/or

• Preferences (for example, tailoring toolbars).

The natural language used in the interface should be
easily and correctly understood by users. This may
require multilingual abilities in an interface.

2.4.3 Learning Ability (4.3)

An interface should be able to remember the usage of
the system by a user and should provide the relevant
knowledge to enhance problem solving abilities of the
user.

2.4.4 Maintainability (4.4)

The maintenance of the interface should be easy.

2.4.5 Portability (4.5)

A good interface should be portable to different
platforms.

3. A SYSTEMATIC APPROACH FOR
EVALUATION AND DESIGN

To ease evaluation of a current interface a systematic
approach is used; for this purpose, one needs a table of
questions (i.e., an assessment table) for each of the four
areas, namely for convenience (usability),
communicativeness, reliability and evolvability. Tables
1-4 are supplied as the assessment tables with
referances to these four groups of criteria.

For each criterion, there is at least one question. For
each question, the answer may be either yes (a desirable
feature) or no. In the case of lack of a desirable feature,
there are three possibilities according to the severity of
the feature: (1) the interface is still acceptable, (2) the
interface should be improved and (3) the interface
should be rejected. Additional comment area can be
used for specific information.

4. CONCLUSION

As important components of any software system,
interfaces require particular care. Therefore, quality of
user/system interfaces is of paramount importance. A
set of criteria and a systematic approach is offered for
user/system interfaces. The same criteria can be used as

a basis for proper design of new interfaces or to
evaluate and hence to improve existing ones.

This study can be enhanced in the following ways:

1. Enhance (add, delete, modify, annotate) the quality
criteria.

2. Suggest better grouping for the quality criteria.

3. Enhance (add, delete, modify, annotate) the
questions in the evaluation tables.

4. Develop a software for the quality assessment of
user/system interfaces.

5. Take into account any feedback that may come
from the readers.

5. ACKNOWLEDMENT

The current version of the study is part of a project
developed for the Turkish Armed Forces. Two
preliminary versions were presented in Turkey, one in
English (Ören, 1997) and one in Turkish (Ören et al.,
1998).

REFERENCES

Bradshaw, J. (ed.) (1997). Software Agents: AAAI
Press, Los Altos, CA.

Cheong, F.C. (1996). Internet Agents: Spiders,
Wanderers, Brokers, and Bots. New Riders,
Indianapolis, Indiana, USA.

Galitz, W.O. (1996). Essential Guide to User Interface
Design. Wiley, New York, NY.

Goodwin, M. (1989). User Interfaces In C -
Programmer's Guide to State-of-the-Art Interfaces.
Management Information Source Press, Portland,
Oregon.

Horton, W.K. (1990). Designing and Writing Online
Documentation - Help Files to Hypertext. Wiley,
New York, NY.

IUI (1993). Proceedings of the International Workshop
on Intelligent User Interfaces. Jan. 4-7, 1993,
Orlando, Florida. ISBN: 0-89791-556-9.

IUI (1997). Proceedings of the International Workshop
on Intelligent User Interfaces. Jan. 6-9, 1997,
Orlando, Florida. ISBN: 0-89791-839-8.

IUI (1998). Proceedings of the International Workshop
on Intelligent User Interfaces. Jan. 6-9, 1998, San
Francisco, California. ISBN: 0-89791-955-6.

IUI (1999 – In Press). Proceedings of the International
Workshop on Intelligent User Interfaces. Jan.
1999.

Lee, G. (1993). Object-Oriented GUI Application
Development, Prentice-Hall, Englewood Cliffs, NJ.

Marcus, A. (1992). Graphic Design for Electronic
Documents and User Interfaces. ACM Press and
Addison-Wesley, Reading, MA.

Molich, R. and J. Nielsen, (1990). Improving a Human
Computer Dialogue. CACM, 33:3 (March), 338-
348.

Ören, T.I. (1997). Criteria for User/System Interface
Design and Evaluation. In: Proc. of AFCEA
Turkey Seminar on Battlefield Visualization, Sept.
25-26, 1997, Ankara, Turkey.

Ören, T.I., S. Çetin and F. Hocaoglu, (1998). Quality
Criteria for User System Interface (In Turkish:
Kullanıcı Makine Arayüzü için Nitelik Ölcütleri).
In: Proceedings of Informatics ‘98, Sept. 2-6, 1998,
Istanbul, Turkey, pp. 76-83.

Scientific American (1998). Special Report on: “How
Hackers Break In.” Volume 279, No. 4, October
1998 issue.

Sullivan, J.W. and S.W. Tyler, (1991). Intelligent User
Interfaces. ACM Press and Addison-Wesley,
Reading, MA.

Table 1. Convenience (usability) criteria for user/system interfaces

Y
es

A
cc

ep
t

Im
pr

ov
e

R
ej

ec
t

1.1
Convenience of
the language 1

Is the natural language used in the interface, easy to
understand for the users of the system? (e.g., is it
the native language of the users?)

1
Does the interface use the terminology of the
application area?

2
Is the terminology used in the interface clear?

1.3
Convenience of
the metaphor 1

Is the metaphor appropriate for the application?

1.4
Convenience of
the inputs 1

Are the inputs appropriate for the application?

1
Does the interface offer necessary abilities to
specify problems?

2
Does the interface have capabilities to process,
analyze and present results in a manner required by
the problem?

1.6 Simplicity 1
Is the interface free from unnecessary or redundant
information?

1
 Is it easy to initiate/terminate an action in different
parts of the interface?

2
Are these initiations/terminations specified in
different places of the interface in a consistent way?

1
Does the interface avoid referral of information
between screens?

2
Can users solve problems without memorizing the
sequence of steps?

1
Can one activate the actions as directly as possible?

2
Can one navigate with minimum movements?

3
Is it clear to the users how to exit from the current
operations?

1
Can one learn how to use the system with a
minimal training?

2
Does the interface offer just-in-time learning
facilities?

3
Does the interface offer a self-paced demo on how
to use the system facilities?

Comments

No

1.7 Consistency

Criteria Questions

1.5 Functionality

1.2
Convenience of
the terminology

1.8
Minimum
memory load

1.10 Least training

1.9 Navigability

Table 2. Communicativeness criteria for user/system interfaces

Y
es

A
cc

ep
t

Im
pr

ov
e

R
ej

ec
t

1
Can the interface display (when needed) knowledge
incrementally provided by a user?

2
Can the interface display knowledge deduced from the
knowledge provided by a user?

3
Can the interface display knowledge about the
methodology used in solving a problem?

4
Can the interface display fundamental scientific and
engineering knowledge?

5
Can the interface give knowledge about application
domain?

6
Can the interface display knowledge about the software
system and how to use it?

1
Is the interface able to guide the user for solving
problems?

2 Can it give examples when solving any problem?

3
Can the interface provide sample data (with the
possibility to modify and save them)?

1 Is the interface perceptive what users want to do?

2
Can the interface determine whether users need help or
not?

1
Can the interface explain the decisions taken by the
system?

2
Can the interface explain the results or the solutions
generated by the system?

2.5 Expressiveness 1
Is the interface able to provide necessary output modes
that are warranted by an application?

2.6
Esthetic/cultural
acceptance 1

Do the elements of the interface consistent with
universal (as well as local) cultural and esthetic norms?

1
Is the type of relationship with users free of patronizing,
informal or insulting tone?

2
If a human-like entity (including avatar(s)) is used, is it
usage warranted (as opposed to technological
curiosity) ?

2.7

Questions

2.4

2.1

2.2

2.3

Comments

Types of relationship

 Explanation ability

Criteria

No

Informativeness

Guidance

Perceptiveness

Table 3. Reliability criteria for user/system interfaces

Table 4. Evolvability criteria for user/system interfaces

No

Y
es

A
cc

ep
t

Im
pr

ov
e

R
ej

ec
t

Comments

1
Does the interface screen user inputs to prevent
errors?

2
Can the interface filter the outputs to intercept
unacceptable (and possibly dangerous) ones?

3.2 Error tolerance 1
In case of user error, does the interface allow return
to the previous state without side effects?

1
Does the interface require confirmation of users for
any irreversible action?

2
Does the interface support "undo" operation at any
desirable level?

3.4 Predictability 1
Does the interface do what its users would expect it
to do?

1
Does the interface allow control of access to the
system?

2
Is the interface capable of monitoring access to the
system and report it (off-line, on-line)?

3.5 Access reliability

QuestionsCriteria

3.1 Error prevention

3.3 Caution

Y
es

A
cc

ep
t

Im
pr

ov
e

 R
ej

ec
t

Comments

4.1 Adaptability 1

Can the interface provide information needed by
different categories of users such as experts,
transfer users, occasional users and novices? (e.g.,
are there shortcuts for expert users?)

1 Does the interface support preferences?

2
Is it possible to change the natural language that is
used in the interface?

4.3 Learning ability 1
Can the interface remember the usage and habits of
users?

4.4 Maintainability 1 Can one easily maintain the interface?

4.5 Portability 1
Can one use the same interface on different
platforms?

QuestionsCriteria

No

4.2 Customizability

