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ABSTRACT
The increasing popularity of resource exchange through peer-
to-peer networks has encouraged the development of ways
to support more complex commercial transactions over these
networks. Unfortunately, the prospect of higher volume and
higher value transactions attracts agents seeking to exploit
or weaken the network by propagating bad information and
services. This paper presents advantages and disadvantages
of resource selection techniques based on peer reputation.
We evaluate the effect of limited reputation information
sharing on the efficiency and load distribution of a peer-
to-peer system. We show that limited reputation sharing
can reduce the number of failed transactions by a factor of
20.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software

General Terms
Algorithms, Performance, Economics, Experimentation, Se-
curity

Keywords
peer-to-peer, trust, reputation

1. INTRODUCTION
The increasing availability of high bandwidth Internet con-

nections and low-cost computers has stimulated the use of
resource sharing and exchange using peer-to-peer (P2P) net-
works. These systems employ a simple scalable mechanism
that allows anyone to offer content and services to other
users, as well as search for and request resources from the
network. Many research groups and organizations (e.g. [3]
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[12] [26]) are working to develop better transactional mech-
anisms for P2P systems, making them viable platforms for
monetary or barter e-commerce.

However, the open accessability of these systems make
them vulnerable to malicious users wishing to poison the
system with corrupted data or harmful services for personal
or commercial gain. Because of this danger, users must be
wary of the quality or validity of the resources or services
they purchase through the network.

Determining the validity of a resource is a costly opera-
tion. Verifying the authenticity of the content of a file or
document requires downloading it from the provider. In the
simplest case, a digest may be available for the file from a
trusted authority who “owns” the file. Checking the file in-
volves calculating a hash and comparing it to the digest. But
often, locating the resource’s authority (if one even exists)
is more difficult than locating the resource itself.

This problem has led to the development of reputation
systems as a means to detect misbehavior and circumvent
(or punish) malicious nodes. Peer-to-peer reputation sys-
tems collect information on the trustworthiness of resource
providers and propagate it to improve peers’ chances of lo-
cating good providers.

Reputation systems have proven effective at promoting
consumer confidence in online shopping. For example, eBay’s
[8] reputation system discourages fraud because buyers will
usually only bid on high-priced items from sellers whose rep-
utation is high from numerous successful transactions. And
Amazon.com’s [1] consumer product reviews allow people to
read the opinions of others who have purchased the item, al-
leviating the trepidation many have of purchasing products
online. These solutions rely on a central trusted organiza-
tion to maintain the reputation system. However, a repu-
tation system for P2P networks must be distributed across
the autonomous peers with no a priori trust relationships.

In studying the use of distributed reputation systems we
will focus on how peer-to-peer networks function and what
threats they face today. There are two classes of misbehav-
ior in P2P networks: selfishness and maliciousness. Selfish
nodes wish to use the resources of the network without of-
fering any themselves. Reputation-based incentive schemes
aim to discourage freeriders and other selfish nodes by only
offering services to nodes that reciprocate ([16] [22]).

Other systems combat malicious nodes who do not care
about access to other peers’ resources, but only want to
propagate their invalid resources. Such systems often em-
ploy a shared history of node interactions to signal possibly
malicious resource providers that users should avoid. Eigen-
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Trust [15], for example, collects statistics on node behav-
iors and computes a global trust rating for each node. Yet
global history schemes are complicated, requiring long peri-
ods of time to collect statistics and compute a global rating.
They also suffer from the transience of nodes and contin-
ual anonymity afforded malicious nodes through zero-cost
identities.

In this paper, we study the performance of a peer-to-peer
resource-sharing network in the presence of malicious nodes,
which, in contrast to global history schemes, uses only lim-
ited or no information sharing between nodes. We develop
various techniques based on collecting reputation informa-
tion. We present several interesting side-effects relating to
load-balancing and message traffic resulting from some of
the techniques. Due to space limitations, this paper presents
a subset of the issues we have studied. More information on
these and other experiments is available in a technical re-
port [20].

In Section 2 we present our system model and its assump-
tions. Then, Section 3 discusses the reputation systems used
in the experiments and their options. Section 4 describes the
metrics used for evaluating our experiments. In Section 5
we specify the details of the simulation environment used
for the experiments, and present the results in Section 6.
Section 8 discusses related work. Finally, we conclude in
Section 9.

2. SYSTEM MODEL
A peer-to-peer system is composed of n peer nodes ar-

ranged in an overlay network. In a resource-sharing net-
work each node offers a set of resources to its peers, such
as multimedia files, documents, or services. When a node
desires a resource, it queries all or a subset of the peers in
the network (depending on the system protocol), collects
responses from available resource providers, and selects a
provider from which to access or retrieve the resource.

Locating a willing resource provider does not guarantee
the user will be satisfied with its service. Selfish peers may
offer resources to maintain the impression of cooperation,
but not put in the necessary effort to provide the service.
Worse, certain nodes may join the network, not to use other
peers’ resources, but to propagate false files or information
for their own benefits.

In our model, each peer verifies the validity of any resource
it uses. Accessing invalid or falsified resources can be expen-
sive in terms of time and money. A system may implement
a micropayment scheme requiring users to pay a provider
before being able to verify the validity of the resource. In
most cases the user must wait for a file to be downloaded
or a remote computation to conclude and then verify the
correctness of the result. Checking the validity of the file or
service response may itself be a costly but necessary oper-
ation in the presence of malicious nodes. Because such an
operation is highly domain-specific, we assume the existence
of a global verification function, V (R) which checks whether
resource R provided by a peer is valid. Any node can per-
form this verification, but it is indeterminately expensive to
compute and may require human interaction (such as lis-
tening to a song after downloading it from a music service
to ensure it is the correct song and uncorrupted) or even
a third-party. In addition, a resource must be downloaded
or accessed before it can be verified, which costs time and
bandwidth. We include this cost in the verification func-

tion, so that it represents the full price of accessing a bad
resource. We do not explicitly consider the monetary cost
of the resource, though it may be a component of the price.

To simplify the discussion we present our work in the con-
text of a file-sharing system, where users query the network,
fetch files from other peers, and verify the files’ content is
correct. Nodes hearing the query reply to the query orig-
inator if they have a copy of the file. The originator then
fetches copies of the file from the responders until a valid, or
authentic copy is located. Though we use the term “files”
in the rest of the paper, most concepts apply to generic re-
sources.

2.1 Threat Model
As stated above, the threat we are studying is that of a

group of malicious nodes that wish to propagate inauthentic
(or fake) copies of certain files. They do not care if they
themselves are unable to query the system for files, thus
incentive schemes fail to deter them. In addition, we assume
they may pass false information to other nodes to encourage
them to fetch bad files. We consider three behaviors for
malicious nodes; abbreviated as N , L and C:

N : No misinformation is shared. All nodes give true opin-
ions.

L: Malicious nodes lie independently for their own gain.
They give a bad opinion of everyone else.

C: Malicious nodes collude. They give good opinions of each
other and bad opinions of well-behaved nodes. For this
model, we will briefly consider the situation where some
malicious nodes act as “front” nodes by providing only
authentic files (but never from the subversion set) in an
attempt to gain the trust of other nodes and spread their
malicious opinions.

Our threat model specifies a set of files, called the subver-
sion set, that all malicious nodes wish to subvert by dissem-
inating invalid copies. The percentage of nodes in the net-
work that are malicious is given by the parameter πB . This
value includes not only the actual number of malicious users,
but also all valid network identities the malicious users have
attained in order to masquerade as multiple distinct nodes.

Each unique file has an equal probability of being in the
subversion set, specified by the parameter pB . We assume
no correlation exists between a file’s popularity and its like-
lihood to be targeted for subversion. Malicious nodes also
share valid copies of files not in the subversion set. The
effects on performance of varying both πB and pB are dis-
cussed in Section 6.2 and more information is available in [20].

We assume well-behaved nodes always verify the authen-
ticity of any file they have before sharing it in the network.
Though this assumption may be unrealistic for many peer-
to-peer systems, experiments in which a small fraction of
the files provided by good nodes were invalid demonstrated
little effect on our experimental results.

We assume no other malicious activity, such as denial-of-
service style attacks, are occurring in the network.

3. REPUTATION SYSTEMS
When a node queries the system for a file, it collects all

replies (and their source IDs) in a response set. The node
repeatedly selects responses from the set, fetches the copy
of the file offered by the responder and verifies it (using the
verification function) until an authentic copy is found.
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As nodes interact with each other, they record the out-
come, such as whether the file received was authentic of not.
As a node collects statistics, it develops an opinion, or rep-
utation rating, for each node. We make no assumptions of
how this rating should be computed, but since it is used to
compare and rank nodes, it should be scalar (see below for
an example).

Each node records statistics and ratings in a reputation
vector of length n, where n is the total number of nodes in
the network. When a node first enters the system all entries
are undefined. As the node receives and verifies files from
peers, it updates the corresponding entry. Nodes may also
share their opinions about other nodes with each other and
incorporate them in their ratings. The reputation vectors
can be viewed as an n × n reputation matrix, R, where the
ith row is node i’s reputation vector. Cell Ri,j would contain
node i’s “opinion” of node j.

When a node has collected replies to a query, the rep-
utation system calls a selection procedure, which takes as
input the query response set and the node’s reputation vec-
tor, and selects and fetches a file. The verification function
is then calculated on the selected file. As stated earlier, this
may be done programmatically if possible, but most likely
requires presenting the file to the user. The system up-
dates its statistics for the selected response provider based
on the verification result. If verification failed, the selection
procedure is called again with a decremented response set.
This is repeated until a valid file is located, the response set
is empty, or the selection procedure deems there are no re-
sponses worth selecting (such as if the remaining responders’
ratings are too low).

For this paper we study variants on two reputation sys-
tems, one in which peers share their opinion and one in
which only local statistics are used. They are compared
against a random selection algorithm.

Random Selection: Our base case for comparison is an
algorithm which randomly chooses from the query responses
until an authentic file is located. Since no knowledge or
state about previous interactions is stored, shared or used,
this algorithm models the performance of a system with no
reputation system.

Local Reputation System: With this reputation sys-
tem each node maintains statistics on how many files it has
verified from each peer and how many of those were au-
thentic. Each peer’s reputation rating is calculated as the
fraction of verified files which were authentic. This results in
a rating ranging from 0 to 1, with 0 meaning no authenticity
check passed and 1 meaning all authenticity checks passed.
When processing a query, these ratings are used in the se-
lection procedure to select the peer from which to fetch the
file. We consider two procedures in our experiments:

• The Select-Best selection procedure selects the response
from the response node with the highest rating. If the
selected response is invalid, the procedure chooses the
next highest-rated node.

• Select-Best will prefer to choose good nodes it has pre-
viously encountered and thus may overload a small
subset of reputable peers. To spread out file requests
we propose the Weighted selection procedure, which
probabilistically selects the file to fetch weighted by
the provider’s rating. For example, if nodes i and j
both provide replies to node q and R(q, i) = 0.1 and

R(q, j) = 0.9, then j is nine times as likely to be chosen
as i. We study load distribution in Section 6.3.

The Select-Best method requires a node maintain an or-
dered list of the most reputable nodes it knows. We call
this list a Friend-Cache of maximum size FC. There are
additional benefits to maintaining a Friend-Cache in the lo-
cal reputation system. By sending queries directly to nodes
in the Friend-Cache before propagating the query normally,
the message traffic of query floods in flat unstructured net-
works can be greatly reduced. We call this the Friends-First
technique and evaluate it in Section 6.4.

Voting Reputation System: This system collects statis-
tics and determines local peer ratings just as the local sys-
tem does. It extends the previous system by considering
the opinions of other peers in the selection stage. When a
node, q, has received a set of responses to a query, it con-
tacts a set of nodes, Q, for their own local opinion of the
responders. Each polled node, or voter v ∈ Q, replies with
its rating (from 0 to 1) for any responder it has interacted
with and thus has gathered statistics. The final rating for
each responder is calculated by the formula

ρr = (1 − wQ)R(q, r) + wQ

∑
v∈Q R(q, v)R(v, r)
∑

v∈Q R(q, v)
(1)

For each responder r, the querying node q sums each voter’s
(v) rating of r weighed by q’s rating for v. This result is
the quorum rating. If node q has no prior knowledge of
r, it uses the quorum rating as r’s rating in the selection
procedure. If q already has statistics from prior interaction
with node r, the rating for node r is the combination of the
local statistics and the quorum rating, by some given weight
called the quorumweight, wQ. Note that when wQ = 0 the
voting system works exactly like the local system.

Until now we have not discussed how the nodes in the
quorum Q are selected to give their opinion. We consider
two methods of selecting voters. The first method is to ask
one’s neighbors in the overlay topology. These are typically
the first peers a node is introduced to in the network and,
though neighbors may come and go, the number of voters
will remain relatively constant. The other method is to ask
peers from whom one has fetched files and who have proven
to be reputable. This group would consist of the peers with
the f highest local ratings at node q. The former quorum
selection we call Neighbor-voting while the latter is referred
to as Friend-voting. In the Friend-voting scheme we reuse
the Friend-Cache described above to maintain our list of
voters. The cache has a maximum size of FC. We study
the effects of varying FC in Section 6.1.

Above, we describe the source node as contacting each
voter for their opinion for each and every query once it has
collected the responses. Realistically, nodes may instead
periodically exchange reputation vectors with each other.
If the rate at which reputation vectors are exchanged is as
frequent as once per query, then the two methods are equiv-
alent. For simplicity, we assume this equivalence in our sim-
ulator and model the system as acquiring voter opinions at
the time of the query.

Both reputation systems have two additional parameters.
An initial reputation rating ρ0 is used for responding peers
for which no statistics are available, or “new” nodes. In
some domains it may be easy for malicious nodes to auto-
matically generate fake responses to queries. Therefore, in
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situations where a node is querying for a rare file, it may re-
ceive many replies, all of which are bad. To prevent the node
from fetching every fake file and calculating V (R), we intro-
duce a selection threshold value (ρT ). Any response from
a node whose reputation rating is below this threshold is
automatically discarded and never considered for selection.1

This technique is used in both the local and voting-based
reputation systems. We present an analysis of the effects of
parameters ρ0 and ρT in [19].

3.1 Identity
To collect statistics on peers, nodes must be able to iden-

tify and distinguish their peers over a period of time. There-
fore, building reputation requires persistent node identities.
Enforcing persistent identities conflicts with the goal of ano-
nymity expounded by many P2P networks.

We discuss in detail certain viable identity models in [19]
and study their impact on P2P reputation systems. Here
we will consider two identity models derived from our pre-
vious work. The stricter model is equivalent to a trusted
login server requiring one’s real-world identity be tied to
one unique system identity. This scheme ensures users can-
not (easily) change identities to hide their misbehavior. In
this system the trusted server need not know which system
ID refers to which real-world ID [10].

The second model relies on users generating their own
certificates and public/private key pairs as forms of iden-
tification. Though robust to spoofing, any user can easily
discard an identity and generate a new one. Using self-
managed identities makes the system vulnerable to white-
washing, where malicious nodes periodically change their
identities to hide their misbehavior [16]. We conduct exper-
iments using both identity models and distinguish the two
as the whitewashing and static scenarios. In our results, the
default identity model is the static model, unless whitewash-
ing (WW ) is specified.

4. METRICS
Here we present the metrics we use to evaluate our exper-

imental results. We ran simulations of our system model for
a period of time and gathered statistics at the end. These
statistics are used to compute the metrics. They are sum-
marized in Table 1.

From among all the queries generated during execution
(qtot) we are specifically interested in the number of suc-
cessful queries (qsucc). A successful query is a query that
results in an authentic copy of the requested file being se-
lected and verified by the selection procedure.

4.1 Efficiency
When designing reputation systems our primary concern

is to reduce the number of files which must be fetched and
verified before locating a valid query response. During exe-
cution we record the number of file verifications supplied by
each node i, which we refer to as Vi. From this data we com-
pute the total number of verification function evaluations,
V , as

V =

n∑

i=1

Vi (2)

1New nodes are automatically exempt from being discarded,
even if ρ0 < ρT .

Table 1: Simulation statistics and metrics
Metric Description
qtot # of queries generated
qsucc # of successful queries where the selection

procedure located an authentic file
Vi # of verification function evaluations per-

formed on files fetched from node i
nG Number of good nodes in the network
V # of verification function evaluations
VG Total number of verification function evalu-

ations of files fetched from good nodes
rV Verification ratio
�i Load on node i
�G Average load on good nodes
MTrel Relative message traffic of Friends First

w.r.t. flooding

But V alone is insufficient. A system could ignore every
response, report failure on every query, and have V = 0.
To account for the fact that some systems may incur more
verification checks, but locate valid files to more queries, we
divide V by the number of successful queries (qsucc). We
call this metric the verification ratio (rV ).

rV =
V

qsucc
(3)

The lower the value of rV , the more efficient the system is.
The best possible performance would be a prescient algo-
rithm which always chose a valid file if one was available
in the response set, and ignored all responses if not. This
would give an rV of 1. The verification ratio measures the
efficiency of a reputation system and is our principal metric
of system performance.

4.2 Load
We are also interested in measuring the load on the net-

work under the various reputation systems and threat mod-
els. We are primarily concerned with the load on the well-
behaved nodes in the network from file fetches. If each file is
transferred only when it is selected to be verified, then the
number of files a node has uploaded is equal to the number
of verification function evaluations of files from that node.
We define the load on node i (�i) as the number of veri-
fication checks on files it supplies normalized by the total
number of queries, or

�i =
Vi

qtot
(4)

We measure the average load on the network as the av-
erage load across well-behaved nodes, �G. Let G be the set
of all good nodes in the network and let nG be the total
number of good nodes. Therefore, the average load is

�G =

∑
i∈G �i

nG
(5)

Network load is analyzed in Section 6.3.

4.3 Message Traffic
To measure the message efficiency of the Friends-First

method we compare the network query message traffic gen-
erated by this method to the default practice in unstructured
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networks of flooding the network for each query. We calcu-
late the relative message traffic (MTrel) using the formula

MTrel =
Number of Friends-First Messages

Number of Flooding Messages
(6)

and compute it using the system parameters and the statis-
tics gathered from the Select-Best experiments. Note that
the number of Friends-First messages includes messages sent
directly to friends and messages from query floods, resulting
when the query goes unanswered by friends.

5. SIMULATION DETAILS
We evaluate the reputation systems using our own P2P

Simulator based on our system model. The simulations were
run on a Dual 2.4Ghz Xeon processor machine with 2GB
of RAM. Each data point presented in the results section
represents the average of at least 5 simulation runs with
different seeds.

Though most of our findings apply to any peer-to-peer
network, for our experiments we construct a Gnutella-like
flat unstructured network. Specifying the overlay topology
is necessary for studying certain issues, such as Neighbor-
voting and message traffic reduction. Studies of unstruc-
tured peer-to-peer networks have shown their topologies are
power-law networks [9]. We use randomly generated, fully
connected power-law networks with n = 1000 nodes, a max-
imum node degree of dmax = 50 and an average node degree
of davg ≈ 3.1. We have experimented with larger networks
of up to 10,000. Results are not shown due to space limi-
tations but observed trends are similar to what is reported
here. For some of these results see [19] and [20].

Queries are propagated to a TTL of 5. For simplicity we
assume the network structure does not change, though we
simulate a node leaving and a new node taking its place in
the network. Each timestep a query is generated and com-
pletely evaluated before the next query/timestep. There-
fore, a simulation run of 100 timesteps processes 100 queries.
For the results dealing solely with the local reputation sys-
tem, which does not exchange reputation information be-
tween peers, all queries are sent from a single node randomly
chosen at startup. Each simulation seed selects a different
node. For experiments using the voting-based system a node
is randomly chosen as the query source at each timestep.

The simulation component most specific to file-sharing (as
opposed to general resource-sharing) is our query model. It
is similar to the one proposed in [25]. We assume a to-
tal of 100,000 unique files. The number of copies of each
file in the system is determined by a Zipf distribution with
α = 1.2. Each node is assigned a number of files based on
the distribution of shared files collected by Saroiu et al [23].
The query popularity distribution determines which file each
query searches for. For this distribution we use a two-part
Zipf distribution with an α of 0.63 from rank 1 to 250 and
an α of 1.24. This distribution better models query popular-
ity in existing peer-to-peer systems [24]. Though our query
model is based on data collected on today’s file-sharing net-
works, we expect networks providing other content or ser-
vices to have similar distributions.

We model node turnover by having a random node leave
the network and a new node enter on average once per
query from a single node. Therefore, a turnover occurs every
timestep for the single query source experiments and every
1000 timesteps for the multiple query source experiments

Table 2: System parameters, and default values
Param. Desc. Value

n Number of nodes 1000
πB Frac. of malicious nodes 0.3
pB Frac. of docs in subversion set 0.9
ρ0 Initial reputation rating 0.3
ρT Selection threshold. 0.2
FC Size of Friend-Cache -
wQ Weight given to voters’ opinions w.r.t.

local statistics
0.1

in a 1000 node network. For the reputation system, this
is equivalent to clearing all information in the ith row and
column of R, when node i leaves. For the whitewash exper-
iments all malicious nodes change identity every 10 queries
from a single node (or every 10000 queries with multiple
query sources), by clearing all the columns of R relating to
malicious nodes.

Based on our analysis in [19] we use a selection threshold
of 0.2 in all experiments reported in this paper. We use an
initial reputation rating of 0 for the whitewashing experi-
ments, and 0.3 otherwise. Unless otherwise specified, the
experiments were run with πB = 0.3 and pB = 0.9.

6. RESULTS
In this section we discuss the following important issues:

1. How well does the voting-based system perform? How
do the parameters wQ and FC affect performance?

2. How do the Select-Best and Weighted methods com-
pare in terms of overall efficiency?

3. How does the reputation system affect the distribution
of load across well-behaved nodes?

4. Can maintaining a Friend-Cache reduce message traf-
fic?

Due to space constraints we present a concise analysis of a
subset of our experimental results. A list of system param-
eters, their descriptions, and values used (unless otherwise
specified) are given in Table 2. For more information on
these and other related topics please refer to [20].

6.1 Voting System Parameters
In this section, we analyze the performance of the voting-

based reputation system for various parameter values. All
experiments were performed using the multi-source query
generator for a total of 100,000 queries. For this scenario
the random algorithm obtained an rV = 28.2, off the scale of
the graphs. The relative performance of the local reputation
system is given by the data point for a quorumweight of 0.

Figure 1 presents the effects of varying the quorumweight,
wQ. It shows results for both with whitewashing (WW )
and without, both Neighbor (Nbr) and Friend (Frd) voting,
and both the selfish lying (L) and colluding (C) malicious
opinion-sharing models. No (N) opinion-sharing misbehav-
ior mirrored the L curves, performing only marginally better
across all experiments, and are not graphed. In the selfish
lying model, malicious nodes give themselves a rating of 1
and all others a rating of 0. Since malicious nodes cannot
vote for themselves and give everyone else an equal rating
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Figure 1: Efficiency of the voting reputation sys-
tem (using Select-Best) with respect to varying quo-
rumweight (wQ). Lower rV is better. 1 is optimal.

of 0, they do not greatly impact a vote in favor of malicious
nodes.

Note that the values of rV in Figure 1 are relatively high.
For example, an rV value of only 3 means we would expect to
download and verify three files for each query. In an actual
system, it may not be feasible for a node to thoroughly check
each downloaded file’s authenticity. The node may simply
trust the file to be valid. In this case, rV can be viewed as the
inverse probability that such a file is valid. Accounting for
well-behaved nodes offering bad copies of files complicates
the threat model. We have conducted experiments with this
assumption and, as long as the probability of a good node
offering a bad file is small, it does not noticeably affect our
results.

Observing the drop in rV from wQ = 0 to wQ = 0.05,
we conclude that incorporating other nodes’ opinions tends
to improve the efficiency of the system. Except when ma-
licious nodes collude to subvert the voting process, varying
the weight of the voters opinions beyond wQ = 0.05 has
no effect on the system performance. This behavior indi-
cates that the greatest benefit from voting is in the situa-
tion where the local node has no opinion of their own. When
bad nodes collude (C), system performance decreases as the
weight given to the quorum’s opinion increases, reinforcing
that there is no substitute for personal experience in an un-
trusted environment.

Comparing the Frd family of curves to the Nbr curves
within the same whitewash scenario (e.g. Frd L vs. Nbr
L), we clearly see that Friend-voting outperforms Neighbor-
voting. Nodes that have given you good service in the
past have demonstrated some effort to be reliable and well-
behaved. Asking them for their opinions is more reasonable
than relying on one’s neighbors, a third of which, in this sce-
nario, are likely to be bad. Not only does Neighbor-voting
not perform as well, but it is more susceptible to malicious
collusion as neighbors’ opinions are given more weight (see
Nbr C curve). Friend-voting, however, tends to avoid ask-
ing malicious nodes for their opinions, mitigating the effects
of collusion.

Though the whitewash scenario performs worse than no
whitewashing, it can benefit more from opinion-sharing. As
the Frd WW curves between wQ = 0 and wQ > 0 illus-
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Figure 2: Efficiency of the voting reputation system
with respect to Friend-Cache size (FC).

trate, efficiency for Friend-voting improves by a factor of 3
over the local reputation system. The Nbr L/C WW curve
shows that Neighbor-voting in the WW scenario is almost
completely unaffected by opinion-sharing, no matter the ma-
licious opinion-sharing model. As stated before, in the WW
scenarios an initial reputation rating of 0 is assigned to un-
known nodes. Since this value is used for weighing the opin-
ions of the voting nodes, any unknown peer in the neighbor
quorum (including malicious nodes that have whitewashed)
will have their votes ignored. Because the average number
of neighbors is small (approx. 3.1) the probability of a well-
behaved neighbor providing a query response that is tested,
and thus becoming “known” and having their opinion used,
is rare. In contrast, in the no WW scenario, since ρ0 = 0.3,
even untested peers’ opinions are considered, explaining its
poor performance when bad nodes collude.

In summary, this experiment shows that choosing a rel-
atively small quorumweight around 0.1 with Friend-voting
improves performance by a factor of 2 or more across all
scenarios. But how many reputable nodes should one keep
in the Friend-Cache? Does increasing the size of the Friend-
Cache always result in better efficiency? In a real system,
a larger cache means greater maintenance cost periodically
checking the liveness of the nodes in the cache. Is this cost
always justified?

Figure 2 shows the performance of both the whitewash-
ing and no whitewashing scenarios for various Friend-Cache
sizes (FC) with no bad opinion-sharing (N).2 Both scenar-
ios stabilize so that increasing the size of the cache yields no
performance improvement, but a system dealing with white-
washing benefits from a larger cache. For instance, while a
Friend-Cache of 10 is sufficient when there is no whitewash-
ing, the whitewash scenario can benefit from a cache as large
as 25. As expected, when tested with the malicious opinion-
sharing models (N , L, C), all three models produced similar
rV values, with the C values being slightly greater than that
of the N and L values by about 0.4 in the no WW scenario.
Thus, we only plot the N curve in Figure 2. A surprisingly
small cache is needed for this technique to be efficient. We
ran this experiment with a variety of network sizes, ranging
from 100 to 5000 nodes and found very little variance in the

2FC = 0 corresponds to the local reputation system
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Figure 3: Effects of front nodes on efficiency.

shape of the curve or the point at which it stabilizes. There-
fore, the Friend-Cache does not need to grow linearly with
the size of the network to give best performance.

Friend-voting is effective against collusion because it only
considers the opinions of nodes that have shown to behave
well by providing good files. Given our threat model, this
quickly bars malicious nodes from the Friend-Cache. One
technique malicious nodes may employ to defeat Friend-
voting would be to set up front nodes. These nodes properly
trade only authentic files, but when asked for their opinion
of other nodes, act according to the collusion model, C, pro-
moting only malicious nodes.

We have run simulations where a fraction of the malicious
nodes are set to be front nodes. We present the results for
both a quorumweight of 0.1 and 0.8 in Figure 3. These ex-
periments show that, in the case of wQ = 0.8, front nodes
can cause considerable harm to the system. The damage
peaks when 40% of the malicious nodes are front nodes, de-
creasing the system performance by more than a factor of 3!
For a larger number of front nodes, rV steadily drops, indi-
cating that too many malicious nodes are behaving well to
promote a smaller group causing actual damage. To be opti-
mally effective, attackers would need to use the right balance
of front nodes and actively malicious nodes. Surprisingly,
front nodes appear to have no adverse effect when wQ = 0.1.
We believe this shows that a very low quorumweight limits
the impact of front nodes’ bad opinions sufficiently that the
damage caused by front nodes is negated by the benefit of
having fewer actively malicious nodes.

6.2 Efficiency Comparisons
Given the results of our analysis on the voting parame-

ters, we wish to evaluate the system with respect to varying
threat parameters. Specifically, we demonstrate how overall
efficiency is affected by varying the percentage of malicious
nodes in the system (πB). We have run similar experiments
varying the probability of a unique file being in the subver-
sion set (pB) and obtained similar results and performance
comparisons.

We test the voting system with wQ = 0.1 and FC = 10,
and using the two selection procedures both with and with-
out whitewashing. Malicious nodes did not lie or collude
with their opinions (N). These experiments were also run
using the multi-source query generator for 100,000 queries.
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Figure 4: Comparison of the efficiency of the two
reputation systems with the random algorithm as a
function of πB.

We evaluate the efficiency of the reputation systems for val-
ues of πB between 0 and 0.4 using the default pB of 0.9.

It may seem unlikely that a network would have 40% ma-
licious peers attacking 90% of the files. However, in the real
world, there are large entities, with access to vast resources,
which have an interest in subverting peer-to-peer networks.
We have simulated across several degrees of malicious activ-
ity (varying both πB and pB) and the relative performance
of the different reputation system variants is comparable in
weaker threat scenarios to those presented here.

Figure 4(a) shows the performance of the voting reputa-
tion system. Clearly, using any statistics when selecting a
provider results in significantly better efficiency than purely
random selection (base case). While the base case climbed
to 42.5 at 40% malicious nodes, the voting reputation system
attained an efficiency of 2 (with no whitewashing), a factor
of improvement of 21! Whitewashing adversely affects the
performance of the system, but not as badly as expected.
For example, with a verification ratio of 4.5 the reputation
system in the whitewash scenario performs 2.3 times worse
than when there are no whitewashers. This means that on
average a node would have to fetch more than twice as many
copies of a file before finding a valid one, showing a clear ad-
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vantage to preventing whitewashing by requiring users to log
in through a trusted authority that can verify each real user
has only one system identity.

We also executed the experiments using the local reputa-
tion system under equivalent conditions (100 queries from
a single querying node). The results, shown in Figure 4(b),
were only a factor of 2 worse performance than the voting
system in the non-whitewashing scenario.3 The performance
difference between the two systems was greater in the white-
washing scenario, a factor of 4. These results support our
findings in Section 6.1 that opinion-sharing is worthwhile in
spite of its slightly higher implementation complexity.

When comparing the performance of the Select-Best (Best)
and Weighted selection procedures in either graph of Fig-
ure 4, we see no large efficiency advantage of one procedure
over the other, though the Select-Best method outperforms
Weighted across all values of πB . As expected, selecting the
best known provider is slightly more efficient than proba-
bilistically choosing a provider, but this comes at a cost,
which we discuss in the following section.

6.3 Load on Good Nodes
One critical issue is that reputation systems may unfairly

burden some of the good nodes in the network. We now
look at the amount of load placed on well-behaved nodes in
the network in terms of the number of files they upload. We
are interested only in the effect produced by requests from
well-behaved nodes running the algorithms correctly. We
use the same setup as above with no whitewashing.

In an ideal system with no malicious nodes, we would
expect exactly 1 download per query, giving a value of �G =
0.001 for a 1000 node network. In our case, when there are
no malicious nodes, the value of �G is 0.00098. This value is
less than ideal because a few queries go unanswered by any
node in the network.

As the fraction of malicious nodes increases, so does �G.
For instance, when πB = 0.3 the average load is 0.00138.
With only 70% as many good nodes to service requests, we
would expect �G = 1

0.70·1000 = 0.00143. Both the fact that
malicious nodes provide some good files, and that the proba-
bility of a successful query is lower, account for the difference
between the observed and expected loads. Comparing the
two selection procedures shows an insignificant difference in
average load. Both procedures fetch the same number of
files from good nodes overall.

Although there was little difference between the selec-
tion procedures in terms of average load, it is important to
consider the load distribution. In a homogeneous network
where all nodes have similar bandwidth, it is preferable if
load is distributed evenly across all nodes, as opposed to a
few nodes handling most of the traffic while the majority
are idle. To study load distribution we measured the load
(using Eq. 4) on each individual node using the two voting-
based reputation system selection procedures and compared
them to the random selection algorithm. The values were
then sorted in descending load order. The results, averaged
across 10 runs with different seeds, are shown by the three
line curves on the left y-axis in Figure 5(a). Here we see that,
using the Select-Best selection procedure, the most heavily
loaded node (with rank 1) has a load of almost 0.015. This
value is more than 10 times the average load of 0.00138.

Though both selection procedures incurred greater load

3Note the difference in scale between the two graphs in Fig-
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Figure 5: Distribution of load on good nodes (and
their corresponding number of files shared). The x-
axis corresponds to nodes sorted by amount of load
in (a) and load per file stored on node in (b) (note
logscale axis). The curves relate to the left y-axis
and specify the amount of load measured at each
node. The points map to the right y-axis and indi-
cate the number of files on the corresponding node.

on the highest ranked nodes than the base case, Select-Best
concentrated the load on a few nodes while Weighted dis-
tributed the load better. The maximum load on a node with
the Select-Best method was almost twice that of Weighted.
This is expected since Select-Best locates a few good nodes
and tries to reuse them when possible, while the Weighted
model encourages fetching files from new nodes (broaden-
ing its pool of known good nodes). If load-balancing in a
homogeneous system is an important requirement, then the
Weighted selection procedure would be preferable.

Another factor to consider is how load relates to the num-
ber of files shared by each node. It would be expected that
good nodes with more files are more likely to be able to an-
swer queries, increasing the number of files they upload and
thus their load. Figure 5(a) plots as points the number of
files on each good node on the right-hand y-axis. For exam-

ure 4.
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ple, for rank 1, there are three points around 38,000. This
means that, for all three systems, the most heavily loaded
node shared an average of around 38,000 files. As expected,
all distributions show a strong correlation between nodes
sharing more files and higher load.

In Figure 5(b) we divide the load on each node by the
number of files it provides and reorder the distribution. For
instance, the node at rank 1 has a load per file of 2.8×10−6

for the Weighted selection procedure, but only 2.2 × 10−6

for the Select-Best procedure. The result is surprising. The
Select-Best method generated much less load per node than
the Weighted or random methods. To understand this re-
sult we again plot the number of files offered by each node
on the right y-axis. Here we see two trends. The base case
and the Weighted method both curve from the bottom left
upwards, showing that the nodes with highest load per file
offer very few files. This effect is due to the sublinearity of
the answering power of a node with respect to the number
of files it is offering. For example, if node i has twice as
many files as node j, we expect node i to be able to answer
less than twice as many queries as j. In general, given a
probability p that any individual file in the system matches
a query, the probability that a node with f files can respond
to a query equals 1 − (1 − p)f . In a purely random selec-
tion model this probability is an indicator of the expected
load on a node; as f increases, so does the probability, and
thus the likely load. This is corroborated by our results in
Figure 5(a). Now if we divide this probability by f we have

an indicator for the load per file: 1−(1−p)f

f
. This equation

has a maximum value when f = 1 and decreases as f in-
creases. This explains the behavior we see from the random
base case and the Weighted case in Figure 5(b).

The Select-Best method, on the other hand, shows a dif-
ferent trend. The most heavily loaded (per file) nodes share
a very large number of files. The Select-Best procedure se-
lects nodes which have proven reliable in the past. This be-
havior favors well-behaved nodes which respond to queries
early in the simulation and often, nodes sharing many files.
This procedure gives nodes with many files an even greater
chance of being chosen with respect to the random model.

Whether or not it is desirable to send greater traffic to
nodes with more files is dependent on the environment. Some
have suggested that in some peer-to-peer systems, the num-
ber of files a node offers correlates to its available bandwidth.
If so, using the Select-Best selection procedure, which gives
preference to nodes with more files, may result in more ef-
fective bandwidth usage. But if peers have similar resource
constraints or fair load-balancing is a priority, then we would
prefer the Weighted selection procedure, which better equal-
izes load yet is almost as efficient at locating authentic files.

6.4 Message Traffic
Finally, we present our experiments on mitigating mes-

sage traffic using the Friends-First technique. As explained
earlier, Friends-First takes advantage of the Friend-Cache to
try and locate a positive query response among the known
reputable nodes, before querying the entire system. As we
will see, in a flood-based querying system, this can result in
85% less message traffic!

Before presenting the results, we redefine the general for-
mula for relative message traffic, given in Equation 6, in
terms specific to our model. The numerator is the total mes-
sage traffic for Friends-First. For all queries, messages are
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Figure 6: Relative message traffic of Friends-First
and maximum Friend-Cache utilization as a function
of the size of the cache.

sent to all nodes in the Friend-Cache (qtot ·FC). In addition
there is the cost in messages of flooding the network when
a valid response is not located from the Friend-Cache. The
number of messages generated in the network to propagate
a query will be at least equal to the number of nodes which
hear the query, and most likely much larger due to several
occurrences of two nodes forwarding the query to the same
node. We roughly estimate the number of messages gener-
ated by a query flood as the average number of nodes reached
by a query flood (nfld). Therefore, the additional cost of
flooding for Friends-First would be the number of queries
not answered by a node in the Friend-Cache (qtot − qFC)
times nfld. The denominator is the number of messages
generated assuming every query is a flood (qtot · nfld).

Note that FC is greater than or equal to the actual num-
ber of nodes in the Friend-Cache at any time, so not all
queries will have FC nodes to query directly. Let FCi be
the number of nodes in the Friend-Cache after i− 1 queries.
FCi is the number of messages sent directly to reputable
nodes for the ith query. Note that for all i FCi ≤ FC and
FC1 = 0 since all nodes are initially unknown. We can
define our message traffic metric as

MTrel =

∑qtot
i=1 FCi + (qtot − qFC)nfld

qtot · nfld
(7)

Note that this is still a conservative calculation of relative
traffic since nfld is less than or equal to the total number of
messages generated due to a query flood.

We conducted these experiments using the local reputa-
tion system and the single-source query generator. For the
results in this section, we ignored whitewashing and node
turnover. We ran simulations for various numbers of queries
(1000, 10,000, 50,000, etc).

The solid line in Figure 6 plots the relative message traffic
of Friends-First with respect to regular flooding (MTrel) as
a function of the maximum Friend-Cache size, after 50,000
queries. We see that, as the size of the Friend-Cache in-
creases, the query message traffic drops quickly to approx-
imately MTrel=0.15 until it reaches a point where growing
the cache no longer provides any benefit. This means that
the Friends-First method is generating only 15% as much
message traffic as flooding without any loss in effectiveness!
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Interestingly, for cache sizes greater than 120, the traffic
overhead actually increases slightly, before levelling off at
around 200. For small FC, increasing the cache size greatly
reduces message traffic because of the high likelihood of lo-
cating future query answers at the additional nodes stored
in the cache. Every additional query satisfied by a node in
the cache saves the system a query flood, outweighing the
cost of the additional messages sent to the new nodes in the
Friend-Cache for every query. But when FC is large, any
node added to the cache will likely be sharing few files (thus
rarely provide a response in the future). If the node had
more files, it would have been located earlier and already
be in the Friend-Cache. We find that well-behaved nodes
sharing many files tend to be located quickly and be placed
in the Friend-Cache early. Nodes added later offer fewer
(approx. 5) files and do not offer any more query responses,
thus wasting bandwidth on query messages sent directly to
them.

As stated earlier, we performed experiments for varying
lengths of time. In our shorter simulations (e.g. 1000 queries)
there were no rise in relative traffic for large FC. Instead
MTrel drops quickly and levels off, with no single minimum.
These shorter simulations end before the Friend-Cache be-
gins collecting useless nodes with very few files. Runs of
20,000 and 100,000 queries, on the other hand, also showed a
preferred FC around 130. This result supports our hypoth-
esis that, once only small nodes remain outside the cache,
adding a node to the cache increases overall traffic because
the cost of sending them a direct query outweighs the slim
probability of their answering a request and avoiding a query
flood.

In studying the efficiency of Friends-First, it is useful to
consider the utilization of the Friend-Cache. The right y-
axis of Figure 6 corresponds to the number of reputable
nodes in the Friend-Cache when the simulation ended, rep-
resented in the graph by the points on the dashed line. No-
tice that the number of nodes in the cache increases linearly
until MTrel reaches the minimum, and levels off when MTrel

levels off. Interestingly, the value it reaches is 126, approxi-
mately the same value as the optimal cache size. We believe
this is not a coincidence. This value is an average of sev-
eral simulation runs with different seeds. Some runs had
lower values and others higher, but it does indicate that, on
average, the system did not use responses from more than
130 reputable nodes. Any peers entering the cache after the
first 130 are highly unlikely to provide any further useful and
unique responses. Therefore, limiting the Friend-Cache to
a size of 130 prevents useless nodes from entering the cache
and worsening performance.

In Section 6.1 we used the Friend-Cache to choose peers
from which to gather opinions for response selection. We
saw that there was little benefit from gathering opinions
from more than the 10 or 15 most reputable peers. Yet the
traffic results indicate that we can take advantage of Friend-
Caches larger than 100. Should we use our entire large cache
for gathering opinions? No. Though a large Friend-Cache
is easy to maintain (it is a list of known nodes ordered by
their reputation statistics), asking a large number of nodes
to share their opinions, either per query or periodically, will
greatly increase the amount of message traffic produced yet
not improve our selection performance. Thus, though we
may maintain a large Friend-Cache for direct querying, we
would only ask the top nodes to participate in our quorum.

7. DISCUSSION
With our experiments we have studied the benefits and

costs of our voting reputation system using a variety of dif-
ferent metrics. The results show that even dynamic peer-to-
peer systems benefit from limited opinion-sharing in terms of
efficiency in locating good results. The cost of implementing
the voting system is the additional messages sent to share
opinions on other peers and maintaining ordered reputation
statistics in a Friend-Cache. The messages can be limited to
periodically sending deltas of a node’s sparse reputation vec-
tor. In addition, the Friend-Cache has beneficial side effects
of decreasing both query traffic and latency.

As expected, high rates of whitewashing significantly de-
crease the effectiveness of reputation systems. For e-com-
merce systems it may be necessary to impose a large cost of
participation [17] or strongly tie network identities to real-
world identities [10]. High turnover likewise limits the effec-
tiveness of reputations systems as reputable peers disappear
quickly. We hope to study turnover rates in more detail in
future work.

For simplicity we have considered all files equal. In a real
e-commerce system this would likely not be the case. Each
transaction has some value which may differ widely from one
to another. The value of a transaction will likely determine
the amount of risk the user will accept. In our system this
may translate to dynamically changing the quorumweight,
the quorum size, or the selection threshold to adapt to the
cost risk of the current transaction.

For further discussion on these and other related experi-
ments please refer to the extended technical report [20].

8. RELATED WORK
Extensive research has been done on general issues of rep-

utation (eg. [13] [14] [18]). Much work has been done in the
area of locating reputable nodes in resource-sharing peer-
to-peer networks and many interesting reputation systems
have been proposed (eg. [6] [16] [11]). Here we describe a
few related examples.

In [16], Lai et al. propose a reciprocative incentive strat-
egy to combat freeriders, based on the Evolutionary Pris-
oners Dilemma [2]. They compare the performance of pri-
vate history versus shared history and develop an adaptive
stranger response strategy that balances punishing white-
washers with overly taxing new nodes.

Reference [15] presents EigenTrust, a system to compute
and publish a global reputation rating for each node in a
network using an algorithm similar to PageRank [21]. Rep-
utation statistics for each node are maintained at several
nodes across a content-addressable network to mitigate the
effects of bad nodes colluding.

In [5], Damiani et al enhance their previous work on rep-
utation [4] by proposing the concept of resource reputation,
where peers give opinions on a resource’s authenticity based
on its reported digest. This technique complements the pro-
cess of maintaining peer reputations, which is still necessary
in situations where the resource is rare and no other peers
have encountered it.

9. CONCLUSION
We have presented a simple voting-based reputation sys-

tem that significantly mitigates the deleterious effects of ma-
licious nodes, by sharing information with a small group of
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nodes. Even with 40% of the network attempting to sub-
vert 90% of the resources, a node would expect to only have
to attempt twice before locating a good provider, though it
increases to four or five tries if the system is vulnerable to
whitewashing. In addition, system performance is largely
unaffected by malicious users using some of their network
identities to distribute legitimate files in an attempt to pro-
mote accessing nodes which are providing bad files.

We compared two methods for selecting providers given
reputation information and showed that, while one provides
better efficiency, it also significantly skews the load on the
well-behaved nodes in the network. Depending on the amount
of heterogeneity in the network this may be acceptable.

Finally, we showed how the Friend-Cache developed for
the reputation system can be applied to significantly reduce
message traffic in unstructured peer-to-peer networks.

The possible applications of P2P reputation systems to-
wards e-commerce are considerable. As peer-to-peer net-
works are increasingly used as an efficient medium for the
exchange of valued goods or money, the impetus for users
to exploit the system will also increase. Reputation sys-
tems have succeeded at maintaining consumer confidence in
centralized online trading systems, such as eBay [8]. They
will undoubtedly be a component of any successful P2P ex-
change system where users risk losing money, not just idle
bandwidth and CPU.
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