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ABSTRACT
Recommender systems are intelligent E-commerce applications that
assist users in a decision-making process by offering personalized
product recommendations during an interaction session. Quite re-
cently, conversational approaches have been introduced in order to
support more interactive recommendation sessions. Notwithstand-
ing the increased interactivity offered by these approaches, the sys-
tem employs an interaction strategy that is specified apriori (at de-
sign time) and followed quite rigidly during the interaction. In
this paper, we present a new type of recommender system which
is capable of learning autonomously an adaptive interaction strat-
egy for assisting the users in acquiring their interaction goals. We
view the recommendation process as a sequential decision prob-
lem and we model it as a Markov Decision Process (MDP). We
learn a model of the user behavior, and use it to acquire the adap-
tive strategy using Reinforcement Learning (RL) techniques. In
this context, the system learns the optimal strategy by observing
the consequences of its actions on the users and also on the final
outcome of the recommendation session. We apply our approach
within an existing travel recommender system which uses a rigid,
non-adaptive support strategy for advising a user in refining a query
to a travel product catalogue. The initial results demonstrate the
value of our approach and show that our system is able to improve
the non-adaptive strategy in order to learn an optimal (adaptive)
recommendation strategy.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of Systems—
Decision Support

General Terms
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1. INTRODUCTION
Nowadays, the rapid development of the Internet has led to the

availability of a tremendous amount of online information. In par-
ticular, E-commerce web sites have started offering a large quan-
tity of diverse products and services to their customers. Hence,
it becomes difficult for the inexperienced user to choose an item
from amongst this potentially-overwhelming set of available op-
tions. Recommender systems [13] are intelligent E-commerce ap-
plications that are aimed at addressing this problem of information
overload, by suggesting those products to the user that best suit her
needs and preferences, in a given situation and context. They have
been exploited for recommending travel products, books, CDs, fi-
nancial services, and in many other applications [2, 7, 16]. Many
recommender systems are designed to support a simple type of
human-computer interaction where two phases can be identified: 1)
user model construction and 2) recommendation generation. The
user model is typically acquired by either exploiting data from a
collection of previous user-system interactions, or by information
provided by the user during the recommendation session (the user
feedback). Then, the recommendation generation reduces to the
identification of the subset of products that “match” the user model.
For instance, in collaborative filtering-based systems, the user model
is comprised of ratings provided by the user for a set of products,
and the recommendations are computed by first identifying a set
of similar users according to the user profiles, and then, by recom-
mending products that have been rated highly by these similar users
[2].

This behavior deviates from a more natural (human-to-human)
type of interaction, where the user and the recommender (advisor)
would interact by exchanging requests and replies, until the user
accepts some recommendation. To this end, conversational rec-
ommender systems [20, 3, 12, 5] have been proposed. In these
systems, there is no clear separation between the user model con-
struction and the recommendation generation stages. In fact, in
conversational systems a dialogue is supported, in which the user
and the system interact with each other over a sequence of inter-
action stages. In this context, we define an interaction session as
the complete set of interaction stages that constitutes a particular
dialogue between the user and the system. Then, at each stage of
the interaction session, the user takes some action, i.e., calls some
system functionality, in order to acquire her goal, e.g., formulate
and execute a query to a product catalogue. In response, the sys-
tem can execute one action from among a set of alternative moves,
in order to assist the user in acquiring her goal. For instance, the
system could decide to execute the query and show the retrieved
products, or could ask the user to input some product characteris-
tics etc. This exchange of actions continues until the user’s goal
is fulfilled. Furthermore, we say that the particular action which
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the system executes at each stage depends on its current strategy.
We define a strategy as the abstract plan of action which the system
employs during the interaction session. For instance, imagine that
a conversational travel recommender system has the task of sug-
gesting a few hotels that would suit the user preferences. To this
end, the system may employ the following two strategies (amongst
many others):

1. Strategy 1: start querying the user about her preferences,
and acquire enough information from her, in order to select a
candidate set of hotels, or

2. Strategy 2: initially propose some candidates and acquire
user preferences as critiques (a critique is a special type of
user feedback [12]) in order to personalize the future recom-
mendations.

A major limitation of conversational recommender systems is
that they exploit a strategy which is rigid, i.e., one that is hard-
coded in advance and remains fixed during the interaction session.
In order to understand this limitation, suppose that, in the hotel rec-
ommendation scenario, the system rigidly follows Strategy 2. We
argue, however, that such a strategy is not suitable for users who
are, for instance, completely unwilling to provide critiques during
the session, or for those users who are willing to give only partial
feedback, i.e., they do not always provide critiques when the sys-
tem asks them to do so. For such users, employing Strategy 2 might
lead to failure situations, e.g., the users might suddenly quit the ses-
sion if they are not satisfied with the system’s responses. In this sit-
uation, we believe that the system should be able to decide by itself
during the session, when to stop collecting critiques and to start
querying the user for her preferences, i.e., abandon Strategy 2 and
adopt Strategy 1. In fact, current critique-based recommenders can
decide in an adaptive way the products to recommend (e.g. more
similar to the query or more diverse [12]), but as they follow a fixed
strategy, they cannot decide autonomously, for instance, when to
stop collecting critiques and to start offering the user the possibil-
ity to sort products. In order to address this limitation, we believe
that the system should have the capability of improving its current
strategy during the session, by abandoning it and adopting a differ-
ent one, until it is able to identify (and adopt)the best strategy for
generating and offering useful recommendations to its users.

We would like to tackle these requirements by proposing a new
type of recommender system that, rather than simply recommend-
ing products by following a rigid interaction design, offers a range
of information and decision support functions and, during the in-
teraction session, is able to improve an initial strategy and adopt
a better one, i.e., a strategy that provides more adaptive support to
the user for acquiring her goal. In traditional conversational sys-
tems, the particular action that the system takes at each stage of the
session is hard-coded in advance, according to the fixed strategy. In
our proposed approach, the system is able to decide autonomously
which action to execute, and hence, is able to adopt different strate-
gies. For instance, suppose that at some stage of the session, the
user has taken some action, e.g., request the system to display the
top-ten products bought by the customers. Then, the job of the sys-
tem is to decide which action to execute in response, e.g., it can
decide to ask the user to provide some product characteristics, or
can decide to show the requested products etc. The system’s goal is
to select the action that will bring the dialogue in the best possible
next state, i.e., in a state that is more closer to her goal.

In the rest of this paper we shall first define more precisely our
adaptive recommendation model. Then, we shall model the rec-
ommendation process as a sequential decision problem, and in or-
der to solve it, we shall introduce the Markov Decision Process

Figure 1: Adaptive Recommender Model

(MDP) framework and the Reinforcement Learning paradigm [19].
We define the concept of a recommendation policy (which repre-
sents the interaction strategy) and we shall explain in which sense
a policy can be optimal. Then, we shall apply our model within
a previously-implemented travel recommender system, in order to
analyze and optimize a particular type of interaction that occurs
quite commonly in recommender systems, i.e., the incremental re-
quest of product features to further constrain a query to a product
catalogue. The current system uses an initial (rigid) non-adaptive
policy in order to decide whether to actively ask the user for ad-
ditional product features (to retrieve a small set of candidate prod-
ucts) or to let the user to autonomously take this decision and man-
ually change the query. We show that the system, by observing the
user responses to its actions, can improve the rigid policy in order
to learn an optimal one. The policy dictates asking the user for
features, only when the query’s result set size is greater than a cer-
tain numeric threshold. We show that different policies are learned
when the agent estimates in a different way 1) the cost of each in-
teraction, i.e., the dissatisfaction of the user to not have reached the
goal, which, in this case, is the selection of the best product, and 2)
the Reinforcement Learning-based discount rate parameter γ, that
models the probability of the user being willing (or unwilling) to
continue the interaction. Finally, we shall point out some related
approaches, stress the limitations of our work and list some future
extensions.

2. ADAPTIVE RECOMMENDER MODEL
In our proposed model, shown in Figure 1, the recommender

system is comprised of two entities, namely the Information Sys-
tem (IS) and the Recommendation Agent (RA). Basically, IS is the
non-adaptive entity which is accessed by the user in order to obtain
some information. Its function is entirely controlled by the user
and serves requests like displaying a query form page, displaying
the query results, showing the most popular products etc. On the
other hand, the Recommendation Agent (RA) is the adaptive entity
whose role is to observe the user, the IS and the on-going inter-
action in order to support the user in his decision task, by helping
him to obtain the right information at the right time. For instance,
in a travel agency scenario, a traveller browses a catalogue (IS) to
get suggestions/recommendations, and the travel agent (RA) helps
the user to find suitable products by asking questions or pointing to
some catalogue pages or products. The distinction between the In-
formation System and the Recommender Agent is transparent to the
user but it helps to understand the proposed wider role of the recom-
mender component. In fact, this definition of recommender system
contrasts with the classical idea of recommenders as information
filtering tools, i.e., applications that can shade irrelevant products
and hence alleviate the information overload problem.

To further explain this recommendation process, we assume that
the user might execute a number of actions during her interaction
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with the system. We label these user actions as the information
functions, since these are requests for various kinds of information
offered by the IS. For instance, the user may request the list of
top-N travel destinations, or the list of hotels liked by the people
she knows. It is important to stress that the user interacts with the
system to achieve some goal, e.g., to buy some product, and at each
stage of the interaction session, she decides to call one among the
available information function in order to attain her goal. The job
of the Recommendation Agent is to decide what to do after this
user request. In fact, this decision is not uniquely identified; the
agent can, for instance, decide to show the requested information,
or decide to ask for some additional information, or to recommend
modifying the current request etc. We say that the agent’s ultimate
goal is to take those system actions that, in the long run, i.e., at the
end of the interaction session, are more likely to bring the user to
her goal, whatever this might be. We name these decisions as the
system actions.

As the interaction proceeds, the agent should learn to improve or
optimize the system actions that it executes, and hence, must learn
the best, or an optimal recommendation strategy, i.e., one that is
most helpful to the user in acquiring her goal. In this context, as
the system must decide to take an action at each stage, we model the
recommendation process as a sequential decision problem and we
solve it by exploiting the Markov Decision Process (MDP) frame-
work. Then, we use this framework along with techniques from Re-
inforcement Learning in order to solve the strategy-learning prob-
lem.

Our approach can be positioned within the iterative personaliza-
tion process presented in [1]. The process comprises three major
phases: 1) understand customers by collecting information about
them, 2) deliver personalized offerings based on this information,
and 3) measure the personalization impact by determining the user
satisfaction with these offerings. Our approach operates within the
second phase, where the goal is to learn the best strategy to deliver
personalized offerings to the users, i.e., decide when to push some
recommendation, acquire some user characteristics, pop-up some
information, show most popular products etc.

2.1 The Markov Model of the
Recommendation Agent

In this section, we shall present a general model of the Sequential
Recommendation Problem as a Markov Decision Process (MDP).
Later on, we shall illustrate an example by completely specifying
all the elements of the model (States, Actions, Transitions, Re-
ward). The MDP model of the recommender agent includes:

1. A set of states S, which represents the different ‘situations’
that the recommendation agent can observe as it interacts
with the user. Basically, a state s ∈ S must define what is im-
portant for the agent to know in order to take a good action.
For a given situation, the complete set of states is called the
state space. We model the state space through a set of vari-
ables, i.e., each unique combination of the values of these
variables represents a unique state. These variables could be
related to: 1) the state of the user (U), e.g., the number of
times the user has modified her query, the action taken by the
user in the current web page that she is viewing, etc., 2) the
state of the agent (A), e.g., the number of times the system
has taken a particular action, the system action taken at the
previous stage etc., and 3) the state of the interaction session
(I), e.g., the number of stages elapsed, the time elapsed since
the start of the interaction session etc. In order to formulate
the state representation for a given scenario, we can select the
relevant variables from one or more of either U, A or I. So,

for instance, S might comprise only the variable “number of
stages elapsed”.

2. A set of possible system actions A which the agent can per-
form in a given state s (s ∈ S) and that will produce a tran-
sition into a next state s′, where s′ ∈ S. In fact, the selection
of the particular action depends on the policy of the agent,
where a “policy” simply specifies how the agent’s strategy is
implemented during the interaction in terms of the system’s
actions. Hence, we use the term optimal policy to refer to
the optimal strategy, i.e. the (improved) final strategy learnt
by the agent. We formally define the policy as a function
π : S → A that indicates for each state sεS, the action
π(s) = a taken by the agent in that state. In general, we
assume that the environment, with which the agent interacts,
is non-deterministic, i.e., after executing an action, the agent
can transit into many alternative states. For instance it may
“recommend a product” and this could be either selected or
discarded by the user.

3. A transition function T (s, a, s′) which gives the probabil-
ity of making a transition from state s to state s′ when the
agent performs the action a. This function completely de-
scribes the non-deterministic nature of the agent’s environ-
ment.

4. A reward function R(s, a) which assigns a scalar value, also
known as the immediate reward, to the agent for each action
a taken in state s. As we are basically interested in systems
that aid the user in his decision process, the immediate re-
ward should reflect the user’s acceptability of the action a.
So, for instance, if the agent takes an action that is satis-
factory for the user, then the agent should be rewarded with
a positive immediate reward, e.g., +1. On the other hand,
if the action is unsatisfactory, the agent should be punished
through a negative reward, e.g., -0.01. However, the agent
cannot know the reward function exactly, because the reward
is assigned to it through the environment. Therefore, we shall
make as few assumptions as possible about the reward by as-
suming that a transition into any terminal (goal) state (for
instance a state in which the user buys something) will yield
a positive reward to the agent, while a transition into non-
terminal states will yield a small negative one. The rationale
is to continue to lightly punish the agent for its actions until
the goal state is reached.

The transition probabilities and the reward function completely
specify the behavior, or the model, of the agent’s environment.
Some techniques for solving MDP-based problems, e.g., Dynamic
Programming (DP), require previous knowledge of the environ-
ment model in order to learn the optimal policy. This model is
generally learned by exploiting extensive off-line experience, with
a simulation of the given task [19]. We shall describe this model-
learning process later on in the paper.

2.2 The Environment-Recommender Agent
Interaction

In this section, we shall describe how the MDP model is ex-
ploited along with techniques from Reinforcement Learning (RL),
in order to solve the policy learning problem. Basically, Rein-
forcement Learning is all about learning by directly interacting
with an environment, and from the consequences of actions rather
than from explicit teaching [19]. In this context, we represent our
recommender system by a decision-making agent that is currently
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Figure 2: Interaction Model

following some policy. The agent interacts with the user, who is
part of it’s environment, in a series of interaction stages (Figure 2).
At each stage, the agent observes different aspects of the environ-
ment’s state, and takes what it believes to be the best system action
in that state, according to its policy; so, during the first stage, the
agent receives a representation of the current state S0 and decides to
take action a0. In response, the user then takes some action which
the environment exploits in order to compute the next state S1, and
also the reward r0 to the agent for action a0. The agent exploits
r0 in order to learn to take better actions in the future. Then, the
agent, after observing S1, takes action a1 (according to the policy)
and receives a reward r1, along with the new state S2. Reinforce-
ment Learning techniques guarantee that, as the agent-environment
interaction session proceeds, the agent would eventually learn to
take the best actions for all possible environment states, and would
hence adopt the optimal policy.

In fact, the optimal policy actions are those which maximize the
expected cumulative reward that the agent receives in the long run,
i.e., at the end of the interaction session. Reinforcement Learning
techniques guarantee that when the expected reward is maximized
for each state of the environment, then the agent would converge to
the optimal policy. We now present some mathematical notations
for the cumulative reward and the optimal policy. In our recom-
mendation scenario, although the interaction session will constitute
a finite number of stages, we are not sure about their total count. In
such a situation, the cumulative reward obtained by the agent dur-
ing the session, RT , is normally computed with an infinite-horizon
discounted model [19]:

RT = E(
∞∑

t=0

γtRt)

where Rt is the reward obtained at the t-th stage and γ is the dis-
count rate parameter, 0 < γ ≤ 1. The discount rate determines the
present value of the future rewards: a reward received after some
stages (into the future) is likely to be of less worth, i.e., discounted,
than if it is received immediately, i.e., during the current stage. So,
a large value of γ implies that the agent takes the future rewards
into account very strongly while a smaller value implies that the
agent aims to maximize just the immediate reward for the current
stage.

Now, suppose that the agent is currently following some policy
π. Then, we define the value of a state s under π, denoted by
V π(s), as the expected cumulative reward which the agent receives
when it starts in s and follows π thereafter. For MDPs, V π(s)
satisfies the following recursive equation:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

T (s, π(s), s′)V π(s′) (1)

where s′εS is the next state reached, when the agent takes action
π(s) in s. In fact, Equation 1 is a system of |S| simultaneous linear
equations in |S| unknowns, i.e., the value of each state in the set
S. The solution of these equations yields the value function of the
policy π, denoted by V π , which specifies the value for every state
sεS.

The optimal behavior of the agent is given by a policy π∗ : S →
A such that, for each initial state s, if the agent behaves accordingly
to this policy, then RT is a maximum. In this case, the expected
reward RT for each state s is called the optimal value for s, denoted
by V ∗(s):

V ∗(s) = max
π

E(
∞∑

t=0

γtRt)

This optimal value is unique and is the solution of the equations:

V ∗(s) = max
a

(R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)),∀s ∈ S

Given the optimal value, the optimal policy is given by:

π∗(s) = arg max
a

(R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′))

2.3 Adaptive Recommendation Algorithm
In this section, we shall describe the Policy Iteration algorithm

[19] which we shall exploit later on in the paper in order to eval-
uate our proposed approach. Policy Iteration requires an environ-
ment model in order to compute the optimal policy. Given such
a model and an initial arbitrary policy π, the agent (using this al-
gorithm) iterates through the following two steps at each run: 1)
Policy Evaluation, where the agent computes the value function
V π for the policy π by repeatedly solving the system of equations
given in 1) Policy Improvement, where the agent uses the com-
puted value function, in order to improve the policy π. Basically,
for some state s, the algorithm determines whether the current ac-
tion π(s) can be improved, i.e., whether some other action, say a,
which the agent can take in s, is better than π(s). In fact, a would
be better if the agent could accumulate more reward in s by execut-
ing a, rather than π(s). If the condition holds, then π is improved
to take action a in s, i.e., π(s) = a. This procedure is repeated
for all the states in S. If any improvements occur in this phase,
then a new run starts, i.e., the new policy is evaluated (first step)
and then improved (second step). This process continues until no
improvement in the current policy is possible. Then, this current
policy would be the optimal policy.

3. CASE STUDY
In this section, we will consider the application of the proposed

recommendation methodology to the query tightening process sup-
ported by NutKing, a conversational recommender system [9]. NutK-
ing combines Interactive Query Management technology with col-
laborative ranking in order to recommend travel products that are
promoted by the regional tourism organization of Trentino (Italy).
It assists the user in building a personalized travel plan, i.e., a col-
lection of diverse travel products and services, e.g., accommoda-
tion, sports activities, cultural activities etc. that the user selects
during her conversation with the recommender.
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Figure 3: General Travel Preferences

NutKing supports a human-computer interaction that mimics a
typical counselling session in a real travel agency. In order to con-
struct a plan, the user initially specifies the general preferences for
her proposed trip. For example, in Figure 3, the user has speci-
fied that she would be travelling alone, she will travel by train and
would like to book a hotel, she wants to travel in July and that
she is interested in adventure-related activities. These preferences
are used both to recommend products and also to set default con-
straints for the ensuing user product searches. In the next step, the
system allows the user to search and add products to her plan by
posing queries to the system. A query is a conjunction of con-
straints on the product features, wherein the user provides values
for these constraints. For example, Figure 4 shows a page where
the user has formulated the following query in the column on the
left: q ≡ (Area=Valle dell’Adige) ∧ (Accommodation Type=Hotel)
∧ (Number of Beds=2) ∧ (Parking=true), i.e., she is searching for a
hotel in the area of Valle dell’Adige, with a double-bed room, and
that she would prefer the hotel that provides parking for cars. The
query is defined on the left part of the user interface, and on the
right part the result of the query execution is shown. If the query
retrieves either too many (as it is shown in Figure 4) or no products,
the system suggests useful query changes by exploiting the Interac-
tive Query Management technology. These changes save the gist of
the original user request and help the user in solving the interaction
problem. This process goes on iteratively till the user selects a rea-
sonable number of products. In this case study, we are concerned
with the situation where too many products are retrieved; hence
the system exploits a feature selection method in order to suggest
to the user how to tighten the current query, i.e., reduce the size
of its retrieval set, or its result size. To this end, it suggests three
features from amongst those that are as yet unconstrained in the
current query [9]. We refer to this process as the Query Tightening
Process (QTP).

If the user accepts one of these suggestions, she is supposed to
provide a preferred value for a feature, hence generating an addi-
tional constraint in the current query that could reduce its result
size. For example, when the user executes the query in Figure 4,
a large result size of forty eight (48) products is produced, hence

Figure 4: Query Tightening Suggestions

the system suggests the following features to the user: “cost/day
of the hotel”, “hotel category” e.g. 3-star, 4-star etc, and “TV” i.e.
whether the user would like to have a TV in his room. If the user
accepts the features “cost” and “TV” and constrains them in the
query, then a small result size of 5 products is produced which the
system displays to the user. (See Figure 5).

As mentioned in Section 1, the rigid policy of NutKing pre-
scribes always to suggest features for tightening when the result
size is larger than some threshold value. Otherwise, it executes the
query and shows the list of retrieved products. We have previously
evaluated this policy in an online evaluation with real users (with
a threshold set to 10), and the observed user acceptance rate for
tightening suggestions was only 28% [14]. This low acceptance
rate proves that the rigid non-adaptive policy is not optimal and
clearly indicates that a rigid strategy could be improved. Hence the
motivation for an adaptive recommendation model is to learn a bet-
ter (adaptive) tightening policy, i.e., one which can really save the
user’s searching time, and can maximize the probability that she
will ultimately find the desired product.

3.1 The MDP model of QTP
We will now describe the MDP model for QTP . Before defin-

ing the states, actions, and rewards of this model we must describe
the Information System and the user actions. In this case, the Infor-
mation System comprises five web-pages P = {S, QF, RT, T, G}
and a set of six information functions
F = {go, execq, modq, acct, rejt, add}, or user actions, that we
shall soon describe. At each stage of the user-system interaction
session, the user requests a function f ∈ F in some page p ∈ P . In
response, the recommendation agent will take some action, causing
a transition into another page p′εP . This process continues until the
interaction terminates. Figure 6 illustrates the user actions in each
page for the QTP model.

In the start page (S), which is shown to the user each time he logs
on to the system the user can only decide to continue by selecting
the go function. This always causes a transition to the page Query
Form (QF ) in which the user formulates, modifies and executes his
queries. If the user executes a query (execq) in QF , the system can
transit to either the tightening page (T ) or the result set page (R).
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Figure 5: Tightening Accepted

Figure 6: User Interaction Graph

The outcome depends on the system action that will be performed
when the user will request to execute a query. We note that the
MDP describes the actions of the system and not the actions of the
user. The actions of the user and the page where the action is per-
formed are considered as part of the state definition (see below for
the state representation of QTP). In the tightening page (T ) the user
can either accept one of the three proposed features for tightening
(acct) or reject the suggestion (rejt). Both of these user actions
will lead to the result page (R), but with different results. In fact,
if the user rejected tightening, then the original query is executed,
and if the user accepted the tightening and provided a feature value
then this user modified query is executed by the system. Finally, in
the result set page (R) the user can either add a product to the cart
(add) or go back to the query form (QF ) page, while requesting to
modify the current query (modq).

3.1.1 State Space Representation:
In QTP the state model is described by the following variables:

1. The Page-UserAction variable pua, which lists the possi-
ble combinations of pages p ∈ P = {S, QF, RT, T, G} and
user actions ua ∈ UA = {go, execq,modq, acct, rejt, add}.
Thus, from Figure 6, the set of these combinations is PUA =
{S-go, QF-execq, T-acct, T-rejt, T-modq, R-modq, R-add,
G}.

2. The result set size c of the current query which can take on
of the 3 qualitative values small,medium, large. A small

Figure 7: State Transition Diagram

value is that of a result size smaller than some threshold c1. A
medium value is between c1 and another threshold c2, while
a large value is above c2. In the experiments we set c1 = 20
and c2 = 40. Furthermore, we assume that c = large in the
initial state with pua = S − go because we assume that the
initial query is the empty one.

3. The estimated result set size ec after tightening is the (qual-
itative) system estimation of the result set size after the best
feature is used for tightening by the user. (We will describe
this variable in detail later on). Similarly to the variable c,
we assume that ec ∈ small, medium, large in the initial state.

As |PUA| = 8 and both c and ec can take three values, the num-
ber of possible states is 8∗3∗3 = 63. However, as ec can never be
greater than c and there is only one (initial) state with pua = s−go
which we consider separately, there are 6 (c, ec) possible combina-
tions and the total number of states is 7∗6+1 = 43. These combi-
nations are: (s, s), (m, s), (m,m), (l, s), (l, m), (l, l), where s =
small, m = medium and l = large.

3.1.2 System actions and state transition diagram
In QTP there are four possible system actions: show the query

form page (showQF ); suggest tightening features (sugg); execute
the current query (exec); add a product to cart (add). Figure 7
depicts how these actions (black nodes) cause transitions between
the states (white nodes). For simplicity, we illustrate below only
the pua variable in the state representation.

In state S-go, the agent executes showQF that causes a transi-
tion into state QF-execq. This state models a situation where the
query form is displayed, the user has formulated a query and has
requested its execution. From here, according to the values of c
and ec, the system decides to either execute the query (exec) going
either to states R-modq or R-add, or to suggest tightening (sugg).
In the first case, the outcome depends on the user, i.e., whether she
decides to modify the query R-modq or to add an item to the cart
R-add. If the system suggests features for tightening (sugg) then
the transition could be to state: T-acct if the user accept tightening;
T-rejt if the user reject tightening, or T-modq if the user decides to
modify the query. In the states T-acct and T-rejt the system can
only execute either the tightened query or the original query, re-
spectively. In states T-modq and R-modq the only possible action
for the agent is to show the query form showQF to allow the user
to modify the query. Finally, in state R-add, the agent can only pro-
ceed to G (add). We observe from Figure 7 that the MDP system
has a stochastic behavior only for a small subset (4) of the possible
state-actions combinations. In fact, only the state-actions: (QF-
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execq, sugg), (QF-execq, exec), (T-acct, exec), and (T-rejt, exec),
the outcome of the system action depends on the user choice.

3.1.3 Reward
The reward for a system action is defined in such a way that: for

each transition into a non-terminal state, the agent is penalized with
a negative reward cost, unless it transits to the goal state, where the
agent gets a +1 reward. In the experiments below we shall see how
different cost values will impact on the optimal strategy. We recall
that a negative cost for each non terminal transition models the fact
that each interaction has a "cognitive" cost, which we assume to be
constant for the sake of simplicity.

4. EVALUATION
In this section we shall perform some experiments aimed at show-

ing that the recommendation agent is able to improve an initial rec-
ommendation policy as it interacts with the user, and that it can
finally adopt an optimal one. To this end we will conduct some
simulations. In these simulations, after having defined a user be-
havior model, we shall learn the transition probabilities. The user
behavior model describes how the user will react to the system ac-
tions, hence for instance, it describes when the user will accept or
reject a tightening suggestion. After having learned the transition
probability model T (s, a, s′) we shall apply the Policy Iteration al-
gorithm [19] to improve the initial policy, i.e., one currently used
by the Nutking Recommender, and to learn the optimal policy.

The evaluation procedure basically simulates user-system ses-
sions or trials, where each trial simulates a user incrementally mod-
ifying a query to finally select/add a product and is composed of
some interactions, with the initial state being (pua = S − go, c =
large, ec = large). We run this procedure for a set of randomly
selected products (from the catalogue). In each interaction, the user
takes some action which is followed by the agent’s response. The
interactions continue until the goal state is reached (pua = G). In
this simulation we perform a leave-one-in selection, i.e., for each
trial we select a product t, in which values are specified for product
features, i.e., t = (v1, ..., vn). We call t as the test item, and we
simulate a user who is searching for this item. In the simulation,
the values used by the simulated user to tighten a query when a
suggested feature is accepted or when a query is modified are those
of the test item. Note that not all the features in t have a specified
value, i.e., some of these vi may be NULL.

4.1 User behavior model
The user behavior model must tell how the simulated user will

behave during the simulated interaction in the following three cases:

• (Case 1) When the user is in state QF-execq, how will she
modify the current query.

• (Case 2) When the system suggests tightening (sugg), whether
the user will decide to modify the query (T-modq), or to ac-
cept the tightening (T-acct), or to reject the tightening (T-
rejt).

• (Case 3) When the system execute a query (exec), whether
the user will add the test item to the cart (R-add) or modify
the query (R-modq).

Let us now describe these three situations. (Case 1) At the be-
ginning of each session, we sort the features of the test product ac-
cording to their frequency of usage (as observed in real interactions
with NutKing [14]). Then we use this sorting to choose the first fea-
ture to use in the initial query and to incrementally select the next

feature to constrain when the user is back to state QF-execq. For
instance, suppose that the first 4 sorted features are (f1, f5, f4, f3),
then the initial query is q = (f1 = v1) (where v1 is the value of
the first feature in the test item). Then, if the user decides to mod-
ify q, the next constraint that will be added is (f5 = v5) (where
v5 is the value of f5 in the test item) and the query will become
q = (f1 = v1)AND(f5 = v5).

When system suggests a tightening (Case 2), we may have three
outcomes:

1. The user accepts tightening (T-acct)if one of the three sug-
gested features has a non NULL value in the current test item.
If this holds, the first of these features having a non NULL
value, in the preference order of the user, is used to further
constrain the query, using the value specified in the test item
(as above in Case 1).

2. If the user doesn’t accept tightening, and the result size is
smaller than some threshold (which we set to 40 in the ex-
periments) then the user rejects it and executes the original
query (R-rejt).

3. In the remaining cases (i.e., for large result sets and when the
tightening suggestion does not indicate a feature for whom
the user is supposed to have a preferred value) the user is
supposed to modify autonomously the query T-modq, as de-
scribed for Case 1.

In Case 3, the user will add the test item to the cart (R-add) if the
test item is found in the top N items returned by the query (N=3 in
the experiments). Otherwise the user will opt to modify the current
query (R-modq).

4.2 Model learning and optimal policy
Before applying the Policy Iteration algorithm, we used the user

behavior model to learn the transition probabilities. The process of
learning the transition model is a supervised learning task where
the input is a state-action pair and the output is the resulting state.
We keep track of how often each action outcome occurs and made
a maximum likelihood estimate of the probability T (s, a, s′) us-
ing the frequency of reaching s′ when a is executed in s. To this
end, we ran the Passive ADP algorithm [15] for 6000 trials. Pas-
sive ADP captures the experience generated with a fixed policy to
update the transition probabilities. A fixed policy implies that the
agent doesn’t explore it’s environment and its actions in each state
remain fixed. However, the success of an optimal policy depends
heavily on exploration while gaining experience [19]. In our (sim-
ple) model, the agent must really choose one action among two
alternatives (sugg or exec) only in the six states with pua = QF-
execq. As there are two possible actions, the system can adopt
a total of 26 = 64 possible policies. We generated exploratory
behavior by alternating the fixed policy amongst these 64, by ran-
domly selecting an action for each of the 6 states after every 150
trials.

At this step, as we mentioned above, we applied the Policy It-
eration algorithm to learn the optimal policy. In the experiments
we analyzed the policy improvement process, and the resulting op-
timal policy for two different configurations: 1) different negative
rewards (cost) for all the transitions into the non-terminal states
(interaction cost); and 2) different values of the discount rate γ,
which represents the percentage of the expected future reward that
the agent considers while maximizing its cumulative reward. In
fact, in the context of our system, γ is the probability that, given
the agent has taken an action in some state, the user is willing to
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Optimal Actions for states with pua=QF-execq

cost (s, s) (m, s) (m, m) (l, s) (l, m) (l, l)

InitPol. exec exec exec sugg sugg sugg
−0.01 exec exec exec exec exec exec
−0.02 exec exec exec exec exec sugg
−0.04 exec exec sugg exec sugg sugg
−0.08 exec sugg sugg sugg sugg sugg
−0.12 sugg sugg sugg sugg sugg sugg

Table 1: Optimal Policies for Varying Interaction Costs (s =
small, m = medium, l = large)

continue her interaction with the system. So, a high value of γ im-
plies that the user is interested in continuing the interaction till the
end, and hence, it is reasonable for the agent to consider a larger
amount of the future reward.

5. RESULTS AND DISCUSSION
We shall now present our results and their analyses for these two

configurations. We allowed the policy evaluation phase of the Pol-
icy Iteration algorithm to run for 100 trials and the algorithm itself
to run for 10 policy improvement iterations. Here, we shall show
the policy behavior only for the states with pua = QF-execq, i.e.,
when the agent must select whether to suggest tightening or to ex-
ecute the query. Thus, we will list the prescribed actions (under
the optimal policy) for only 6 states, i.e., for all the possible com-
binations of the remaining state variables c and ec. We recall that
in the initial policy (implemented in NutKing), the agent suggests
tightening only when c = large; otherwise it executes the query.

5.1 Different Interaction Costs
In our experiments we considered five possible values for cost

(the reward obtained for transitions to a non terminal state): -0.01, -
0.02, -0.04, -0.08, -0.12. Moreover, in these experiments γ = 0.85.
Table 1 shows the actions prescribed by the optimal policy for the
above mentioned 6 states, for different cost values, and the initial
policy (Init Pol. row), that is not optimal. Here the 6 combinations
of variables c and ec are shown in abbreviated form. Hence, for
instance the column (l, s) shows the action prescribed for different
cost values when c = large and ec = small.

These results illustrate that for each value of cost, the agent is
able to improve an initial policy and to finally adopt an optimal
one, and that the policy depends on the value of the interaction
cost. We observe that when the cost is small (−0.01), the agent has
learned that executing the query for all the combinations of c and
ec is the optimal behavior. On the other extreme, when the cost is
large (−0.12), the optimal policy dictates to suggest tightening for
all the c and ec values. All the other optimal policies vary between
these two extremes. In order to understand these results let us con-
sider Figure 8, which shows a portion of the QTP state transition
diagram, along with the probabilities of some transitions (specifi-
cally, for the case where c=large, ec=large). For this discussion
we show only the state variable PUA, and assume that R-add is the
goal state. Furthermore, let us consider a situation where the user
has formulated a query q that has a result set that doesn’t contain
the current test product in the top three positions; hence, R-add can-
not be reached. Let us further assume that if an additional feature
is constrained in q, this will make the result set smaller and would
bring the test product in a top-three position, and therefore R-add
could be reached.

When the interaction cost is low, (−0.01), the system reaches R-

Figure 8: Different Transition Paths to R − Add

add by always executing q in state QF-execq (action exec). In this
case, the probability that the user modifies q is very high (0.99), as
compared to the probability that he adds a product to the cart (0.01)
to reach R-add. Therefore, we need to consider what happens when
the user modifies q (in state R-modq). In this case the system will
reach R-add in a minimum of three transitions (the path highlighted
in black): first moving to R-modq, then again to QF-execq (since
the test product is not among the first three positions), then finally,
after a manual modification of the query to R-add, since we are
assuming that with one additional feature constrained in it the query
will return a result set where the test product is in the top three
positions. Conversely, when the interaction cost is large (−0.12),
the system tries to reach R-add by always suggesting tightening
(action sugg). In fact this state can be reached in two steps (the
path highlighted in gray) if the user accept the tightening, and that
occurs with probability 0.32. Thus, although the chances of the user
accepting the tightening are small (with probability 0.32), if the
user does accept tightening, then one expensive interaction step can
be saved. Conversely, if the user modifies the query, which actually
occurs with a higher probability(0.68), the situation is equivalent
to the R-modq scenario discussed previously, i.e., a larger number
of interactions are required to reach R-add.

Thus, we see that when the interaction cost is large, the system
always takes actions that have a certain probability to reduce the
interaction length, i.e., speed up the process of reaching the goal,
even if this probability is small. By doing so, we say that the agent
takes a risk because the outcome of its action is actually dependent
on the user’s response, e.g., in Figure 8, the user might not accept
tightening and he can modify q or execute q, and even if she does
accept tightening, the desired product might not be in the top three
positions, forcing the user to modify q one more time. Both these
failure situations would lead to the execution of extra costly inter-
actions, which is what the agent wants to avoid. Thus, there is a
risk because there is no guarantee that R-add would definitely be
reached. On the other hand, when the interaction cost is low, the
agent doesn’t take any risk; it always takes those actions that guar-
antee that, in the long run, the goal state would be finally reached.
As shown in Figure 8, with this behavior the system always exe-
cutes the query repeatedly modified by the user in R-modq, until,
at the end, the test product appears in the top three positions. The
behavior of the optimal policies obtained for the remaining values
of cost varies between the two behaviors described above. As the
interaction cost increases, the system prefers to suggest tightening
for more and more states.

It is worth noting that if one correlates the interaction cost with
some specific user behavior, then the previous results show how
different optimal policies can be offered to different types of users.
For instance, the interaction cost can be related to the experience
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Optimal Actions for states with pua = QF-execq

γ (s, s) (m, s) (m, m) (l, s) (l, m) (l, l)
InitPol. exec exec exec sugg sugg sugg

0.9 exec exec exec exec sugg sugg
0.7 exec exec sugg sugg sugg sugg
0.5 exec sugg sugg sugg sugg sugg
0.3 exec sugg sugg sugg sugg sugg
0.1 sugg sugg sugg sugg sugg sugg

Table 2: Optimal Policies for Varying γ (s = small, m =
medium, l = large)

of the users in travel recommendation domain; where a larger cost
is assigned to inexperienced users. In this setting our results show
that the system is able to learn that inexperienced users need more
substantial system guidance (tightening) in order to quickly ac-
quire their goals, whereas experienced users do not need much
system guidance, and can eventually acquire their goals more au-
tonomously.

Similarly, if the interaction cost is correlated with the users’ nav-
igation strategy, i.e., a small cost is assigned to window-shopping
users who are not interested in buying then the adaptive system will
allow them to browse by themselves without providing any exten-
sive support. On the other hand, more goal driven buyers (who want
to buy something quickly) could be assigned to a larger interaction
cost model, and the system will provide plenty of useful sugges-
tions along with speeding-up the process of reaching the goal.

5.2 Different Discount Rates
In a second set of experiments, we considered five possible val-

ues for γ: 0.9, 0.7, 0.5, 0.3, 0.1; Table 2 shows the optimal policy
actions obtained for a fixed cost = −0.04. Here we see that when
γ is large (0.9) the system prefers to execute the query for most
of the six combinations of c and ec. Previously, we interpreted a
high value of γ as depicting a user who is willing to continue the
interaction till the end, and as a consequence, a large percentage
of future rewards can be considered. Hence, the result agrees with
our interpretation, and the system tends to execute the query in state
QF-execq because this guarantees that the willing user would even-
tually fulfil his goal in the long run (as discussed in the previous
section).

On the other hand, when γ is small (0.1), the system prefers to
suggest tightening for all of the six combinations. This result also
agrees with our interpretation that the system must use a low value
of γ for an unwilling user, i.e., one who is less likely to be engaged
in a long conversation. Thus, the system risks by giving a lot of
tightening suggestions as this can speed-up the process of reaching
the goal (as discussed previously). The optimal policy behaviors
for the remaining values of γ varies between these two extremes;
as γ decreases, the system prefers to suggest tightening for more
and more states.

5.3 Additional Example
Our analysis have shown that the optimal policy adopted by the

system depends on the selected values of cost and γ, and these val-
ues, in turn, should be influenced by different user behaviors and
characteristics, e.g., browsing strategy, experience etc. We con-
clude our discussion by illustrating in a simpler MDP the emer-
gency of different optimal interaction policy. In the MDP shown in
Figure 9 a simpler (abstract) model of the Query Tightening Pro-
cess is shown. Here S and G are the start (QF-execq) and goal

Figure 9: A Simpler Example

(R-add) states respectively, and 1, 2, and 3 are some intermediate
states. The system can repeatedly execute a with probability 1.0 (in
states S, 1 and 2 respectively) in order to reach G, i.e., a plays the
role of the query execution without tightening suggestion (exec).
But, the system can also execute b, having a probability of 0.5 to
bypass an intermediate state, but also having a 0.5 probability to
get stuck in state 3. Action b is similar to sugg. We assume that the
system receives a reward of −r for each transition not leading into
G, and a reward of +1 for the transition into G. We now introduce
the Q∗ notation [19]. Basically, Q∗(s, a) is the value of the state s
when the system takes action a in s and follows the optimal policy
π thereafter. For all states s ∈ S, it is calculated as:

Q∗(s, a) = max
a

(R(s, a) + γ
∑

s′∈S

T (s, a, s′)Q∗(s′, π(s′))

i.e., the action with the highest Q∗ value is the best action for that
state. Referring to Figure 9 and the definition of Q∗(s, a), the fol-
lowing can be obtained:

Q∗(s, a) = γ2 − r(1 + γ)

and

Q∗(s, b) = −r + γ/2

The system will risk taking action b, when Q∗(s, b) > Q∗(s, a).
Solving for r and γ, we get that action b is preferred to a iff r >
γ − 1/2.

This inequality shows that if γ is large (for instance 0.85) then
the action a can be preferred if r is low (less than 0.35). Conversely
if γ < 0.5, then b is always the best action. The interpretation is
that if the cost of the interaction is low and the probability to keep
the interaction alive is high, then it is better not to risk and execute
a, whereas if the cost of the interaction is larger or if the probability
to keep the interaction alive is low, it is better to risk with b.

6. RELATED WORK AND CONCLUSIONS
The MDP model has been successfully applied for adaptive bi-

lateral negotiation in a dynamic E-commerce environment [10, 11].
In these applications, one or more software agents interact on be-
half of a retailer, in order to negotiate online with a specific con-
sumer (buyer) for the price of a certain product. The aim, then, is
to find a negotiation strategy that adapts to this environment and
allows the agent to reach their goals in a timely manner. Further-
more, [4] use a finite state machine (FSM), which is a generalized
model of computation for MDP-based problems, in order to de-
scribe the sequence of speech acts that are admissible in a standard
appointment scheduling dialogue and to check the on-going dia-
logue whether it follows these expectations. In this context, [18]
also use an FSM in order to detect the relevant interaction strategy
(from a pre-determined set) that is being pursued by a user during
a dialogue, in a given situation. This strategy is then used to further
guide the users during the interaction. Although these FSM appli-
cations are interesting, their behavior is quite limited, as they con-
centrate on just mediating the dialogue between users rather than
learning an adaptive strategy during the dialogue.
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The research work in the domain of MDP-based recommender
systems is still in its infancy, with only limited results, and with
a quite different model of the overall recommendation process. In
[17], the authors model the states as the set of products previously
bought by a user and the system actions correspond to the next
possible product recommendations. Hence, in this case, the goal
is similar to that of a classical recommender system i.e., to learn
what products to recommend next, rather than to display a more in-
telligent behavior by deciding what action to choose in a more di-
verse set of possible moves. Adaptive recommender systems have
also exploited Reinforcement Learning to display intelligent be-
havior, by identifying the best recommendation algorithm among
some competitive alternatives in order to personalize the recom-
mendations for some user [8], and also by exploiting the current
user feedback as a reward for determining the presentation order of
future recommendations [21]. Our approach is strongly inspired by
[6] where the objective is to design an intelligent system that ac-
tively monitors a user attempting a task and offers assistance in the
form of task guidance. In this application the process describes a
hand-washing task and the system is supposed to provide cognitive
assistance to people with Alzheimer’s disease.

In conclusion, in this paper, we have provided a new applica-
tion of MDP techniques to recommender systems and we have
shown that more adaptive recommendation processes can be sup-
ported. The experimental study shows promising results in a lim-
ited situation. Our next goal is to evaluate our methodology with
real users. To this end, we have applied our adaptive methodol-
ogy within an online travel recommender system and are now run-
ning experiments with real users in the context of the etPackaging
project funded by Austrian Network for E-Tourism (ANET). Here,
our methodology would allow the system to learn a variety of in-
teractive decisions, e.g., whether the system should ask the user to
provide the travel characteristics at the beginning of the interac-
tion (or later on), in which situations the system should push the
user to add a product to her cart, when is it better to suggest query
tightening, or to execute the query, etc. The goal is to validate the
improved system performance, while it employs the optimal policy,
as compared to the performance of a system with a rigid policy.
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