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ABSTRACT
In this paper, we look at a supply chain of commodity goods
where customer demand is uncertain and partly based on
reputation, and where raw material replenishment is uncer-
tain in both the amount that is available, as well as the price
to pay. Successful participation in such supply chains re-
quires a good inventory management strategy. Actors must
find a balance between inventory costs and client satisfac-
tion: structurally high inventory costs reduces the profit,
but customers that are faced with a depleted supplier will
lose confidence and next time purchase from a competitor.
This paper presents a model and a simulation environment
to learn successful strategies for participation in this type
of supply chains. We combine evolutionary algorithms with
logistic theories, and use them in a case in a petrochemical
setting. We show that software agents are capable of learn-
ing basic and more complex strategies, and that complex
learned strategies perform better than basic learned strate-
gies.

1. INTRODUCTION
Supply chain management is an important topic in the area
of logistics. The field is still increasing in its relevance and
applications, both for industry and the society as a whole. In
this field, various mathematical and algorithmic techniques
are used[27, 19], typically being part of operations research.
The use of agents for studying, optimizing, and implement-
ing supply chains is a rather new and young development.
One of the recent developments is e.g. the trading agent
competition for supply chain management.

An important aspect of supply chain management is inven-
tory management for the parties in the supply chain. Actors
in supply networks are faced with many uncertainties when
deciding on a strategy for purchasing their raw materials.
They have to find a balance between keeping inventory, with
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its accompanying inventory costs, and fulfilling the demand
of their customers. When structurally keeping an inventory
that is larger than required, the costs will reduce the profit.
However, when customers are faced with a depleted supplier
too often, they can lose confidence and switch to a competi-
tor, thereby decreasing the total sales of the actor, and thus
the profit. The aspect of customer satisfaction with respect
to inventory management is an important topic in logistics.
Several heuristics and methods exist, including look-up ta-
bles, but with limited detailed modeling [27]. Therefore, it
is important to be able to derive effective inventory manage-
ment strategies by means of learning agents and agent-based
simulations (e.g. like in the field of agent-based computa-
tional economics[21, 11, 4].)

In this paper, we consider agents in combination with find-
ing good inventory management strategies for a factory that
has a reputation-based share of a stochastic customer base
(see section 2). To replenish his inventory, the factory can
participate in multi-unit uniform-price auctions[14].

In this paper, we

1. give a model for the supply-market, the demand mar-
ket with a reputation-based stochastic customer base
and the agents that participate in these markets. We
base this on agent theory[23], logistics literature[19],
client models, and specific types of application cases[13].
This combination enables us to have very realistic mod-
els, while keeping a thorough foundation in logistic sci-
ence.

2. describe the simulation environment we designed, based
on this model. The simulation environment allows us
to study the market behaviour of software agents in
commodity supply chains, together with reputation-
based stochastic customer bases.

3. show the results of our experiments with several hard-
coded strategies based on logistic theories, and with
learning new strategies using adaptive agents. We
studied the performance of the strategies in both static
and stochastic markets.

4. show that software agents are capable of learning strate-
gies that perform well against theory-based heuristics,



with respect to profit, the competition for market-
share, and client satisfaction. We also show that in
several settings, complex learned strategies perform
better than basic learned strategies.

This paper is structured as follows: in section 2, we give a
detailed description of the two markets in which the factory
and its competitors participate. Section 3 gives an overview
of how our research relates to other work in these fields.
The model we designed is described in section 4, the learn-
ing algorithm is explained in section 5 and the setup of the
simulations and the results are given in section 6. We then
summarize our conclusions, and explain our future plans in
section 7.

2. DOMAIN
We consider a 4-stage supply chain[19] of commodity goods1:
raw-material supplier, semi-manufacture producer, end-pro-
duct factory, and consumer. We focus on the end-product
factory stage. As a running example, we look at a case
in a petrochemical setting[13]. In this example, our focus
stage is the plastics factory, that buys the semi-manufacture
(granulates), and sells one or more types of plastic products
to its customers.
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Each month, these customers place their orders with a fac-
tory. The factory has until the start of the next month to
produce the products. Customers that get the products they
ordered are satisfied with the factory, customers that didn’t
receive their products are unsatisfied. Unsatisfied orders are
not backordered, but lost. The percentage of satisfied cus-
tomers influences that factory’s reputation and, after com-
parison to the reputation of the competitors, influences the
number of customers willing to purchase from the factory in
the next month.

The factories can purchase the raw material they need for
production through year-contracts and/or monthly auctions.
With year-contracts, the factories sign a contract with the
semi-manufacture producer for the delivery of semi-manu-
facture for each of the next 12 months, for a fixed price. The
disadvantage of this contract is that once a year, the facto-
ries need to make an estimation of their monthly needs for
raw materials for each of the next 12 months, and are bound
to this contract, even when the estimation turns out to be
completely off. The discovery of trends that lead to continu-
ous changes in demand cannot be used until the start of the
next year. The advantage of ordering raw materials through
year-contracts is the certainty of delivery at the start of each
month, for a fixed price. Participating in the monthly auc-
tions has the advantage of knowing how much raw material

1Goods that are traded on the basis of price, not on differ-
ences in quality or features

is needed, but the drawback of uncertainty about the price
to pay and amount of the granulates that is acquired. The
factories need to find a good purchase strategy in the right
combination of both types.

3. LITERATURE REVIEW
The literature relating to multi-agent simulations, multi-
unit auctions, repeated games and supply chain manage-
ment is extensive. In this section, we intent to compare
our work to prior research and give examples of current re-
lated work. Our research is closely related in subject and
methods to the research performed in the Trading Agent
Competition (TAC[26]) and the Supply Chain Management
game for the Trading Agent Competition (TAC-SCM[1]). In
both games, researchers are invited to compete against other
agents in trade games. In the TAC, an agent represents a
number of travelling clients, each with their own preference
on a bundle of services. These services can be obtained in
a variety of auctions. The objective of the agent is to pur-
chase valid bundles2 that are as close a match to the clients’
preferences as possible. The TAC-SCM is a competition
for trading agents specializing in supply chain management.
An agent plays the role of a PC manufacturer, competing
against 5 other agents for both customer orders and compo-
nent procurement, using requests-for-quote[5] in both mar-
kets. Production-capacity is limited, and both the customer
demand and the component availability can vary. The ob-
jective in this game is to make a high profit using a good
purchase strategy, production strategy and sell strategy.

Both competition types show several similarities and sev-
eral differences with our research. Like in our research, the
TAC-SCM agents try to find optimal strategies for inven-
tory management in a repeated game. However, both the
supply side market and demand side market are quite dif-
ferent. Where the TAC-SCM agents use requests for quote,
our agents have to procure their raw-material in single-seller
multi-unit uniform-kth-price auctions (see section 4). When
the TAC-SCM agents accept a request for quote, they close
a contract with the supplier for both amount and price and
know exactly how much material they will receive, and what
they have to pay. Our agents face an uncertain supply-
market. When they make an offer in an auction, they don’t
know how much, if any, raw material they will receive, and
they only know the maximum of the price they have to pay.
The TAC-SCM uses customer satisfaction between the raw-
material supplier and the agent, where agents that have a
high reputation of accepting quotes get a preference in re-
ceiving new quotes. Our model uses customer satisfaction
as part of the client-model of the agent: a high reputation
in delivering the goods to the customer results in a larger
share in the demand of the customer base.

The TAC agents share with our agents their need to find
an optimal strategy to bid in auctions. The TAC agents
need to learn to bid in many parallel auctions, to satisfy
given customer needs. Our agents must be able to learn
realistic inventory management strategies for an unknown
customer demand in repeated auctions. The agents can try
to build an inventory at a low price, and use the inventory

2Regardless of client preference, the bundles must follow
certain rules before they are considered valid.



when market-prices are high, or to compensate for the un-
certainty in the amount of customer orders. Markets with
an uncertain supply amount, an uncertain supply price and
an uncertain demand that is influenced by reputation, make
a more difficult, but also more realistic setting, based on lo-
gistic literature and market literature for commodity goods.

Many of the participants in the TAC and TAC-SCM have
an active interest in trading agents in general. The AI labo-
ratory of Wellman, the founder of the TAC, works on auto-
mated markets[15, 18, 25] and strategic reasoning[24]. The
Intelligence, Agents and Multimedia Group of the Univer-
sity of Southampton, supervised by Jennings, is active in
the fields of adaptive behavior[10, 12] and inter-agent nego-
tiation[3, 9].

In the field of supply chain management, and more specifi-
cally in inventory control, we base our work on the book of
Silver, Pyke and Peterson[19], and the work of Zipkin[20].
Cachon[6, 7] takes a more game-theoretic approach to in-
ventory management.

4. MODEL
In our model, we have a set B = {b1 . . . bn} of n competitive
buyer agents representing the factories in the supply chain.
The environment further contains an auctioneer agent and a
client base. In the model, time is divided into rounds, each
representing one month.

4.1 Auction
In each round the agents are informed of the amount of
customers that are willing to buy a product from them, the
amount of raw material units A that are available in the
auction3 and a reserve price per unit pres. Each agent bx

then informs the auctioneer of his bid (ax, px) containing an
amount of units of raw material 0 ≤ ax ≤ A and a price per
unit px ≥ pres. The auctioneer determines the set of agents
W ⊆ B that win and for each w ∈ W the amount of raw
material units wonw he won. The bidder with the highest
price per unit receives the amount he asked for. Then the
second-highest bidder receives his share, and so on, until
either all bidders received they amount the asked for, or the
supply of raw material is completely allocated, whichever
comes first. When the last share to be allocated contains
less material than the agent who is entitled to it asked for,
the agent has to accept the smaller share. We use a uniform-
kth-price auction[14], which means that the price q to pay
is max{pl | l ∈ B \W}, the highest price offered by agents
that did not win anything. In the case that all agents won
something, W = B, the price to pay q = pres.

4.2 Inventory management
The amount of raw material needed by each agent bx in a
round t depends on the size of the current inventory invt

x ≥
0, the chosen inventory management technique, the amount
of raw materials ordered in the year-contract, and the cus-
tomer demand for this round. In our model, we combine
the year-contract amount and the customer demand into
one value dt

x, representing how much the amount of raw-
material needed to satisfy the demand for month t deviates

3For easy calculation, all products the agents can produce
require one unit of raw material to produce.

from the amount ordered in the year-contract. A value of
dt

x < 0 means that the demand needs less raw material than
the amount in the year-contract, and that part of the raw
material material from the year-contract must be added to
the inventory. With dt

x > 0, the demand requires more
raw material than the amount in the year-contract, and the
agent has to use his inventory (if any) or buy raw material in
the auction in order to satisfy the demand. Even if the cur-
rent inventory is sufficient to satisfy the customer demand,
the agent can choose to buy raw material to build inventory,
knowing that it can afford to bid a low price. As mentioned,
any unsatisfied demand is lost, and also results in a loss in
client satisfaction.

To keep track of the performance of the agents in the mar-
ket, we do some bookkeeping[19]. To calculate the profit
profitt

x for agent x in a round t, we need the accumulative
revenue revenuet

x, the holding costs per round per unit h,
the accumulative holding costs hct

x, the accumulative pur-
chase costs pct

x, the amount of products soldt
x sold in this

round, and the fixed retail price per product rt
x. We use the

following formulas:

• soldt
x = min(dt

x, invt
x + wont

x)

• pct
x = pct−1

x + (wont
x ∗ qt

x)

• hct
x = hct−1

x + h ∗ (invt
x + wont

x − soldt
x)

• revenuet
x = revenuet−1

x + (soldt
x ∗ rt

x)

• profitt
x = revenuet

x − pct
x − hct

x

At the end of a round, we can calculate the inventory left
for the next round:

• invt+1
x = invt

x + wont
x − soldt

x

where we assume that the inventory can hold an unlimited
number of items.

4.2.1 Inventory Management Techniques
In conventional base-stock inventory management techniques
[8, 19], the agent defines a reorder point[22] rp. Whenever
an agent bx finds that the inventory drops below this reorder
point, he orders enough items to increase the inventory to
the reorder point:

at
x = max(0, dt

x + (rpx − invt
x))

In function-based inventory management techniques, the a-
mount and the price offered by an agent are functions of
the current inventory size and the current demand. We use
N -point piece-wise linear functions for both the amount and
the price. We represent these by the set of N (inventory-size,
amount, price)-tuples:

{(σ0, α0, π0), (σ1, α1, π1), . . . , (σN , αN , πN )} ,
σ0 ≤ σ1 ≤ . . . ≤ σN



which defines the amount at
x offered by agent x in round t

as:

ax =

8
>>>>>>>>>><
>>>>>>>>>>:

invx
σ0

α0, if invx < σ0

αk, if invx = σk;∀k ∈ [0, N ]

αk + (invx−σk)
(σk+1−σk)

(αk+1 − αk) if σk ≤ invx ≤ σk+1;

∀k ∈ [0, N − 1]

αN , if invx > σN

and when we substitute πi for αi, we get the price pt
x offered

by agent x in round t.

4.2.2 Client Satisfaction
As mentioned in section 2, the demand for an agent x is
influenced by his reputation: the client satisfaction ratio of
the agent, compared to that of his competitors. We can de-
fine the client satisfaction cst

x ∈ [0, 1]:

• cst
x =

8
><
>:

1, if t = 0

Pt−1
i=0 soldi

xPt−1
j=0 d

j
x

, if t > 0

The demand also consists of a part that is independent of
reputation: the constant loyal customers lcx of agent x, for
whom the reputation of an agent is not the dominant fac-
tor in their choice where to buy. Our client statisfaction
model is an abstract model, that captures the basic aspects
of customer satisfaction. With constant loyal customers, our
model is completed as a consistent and stable model.

We take Dmax as the maximum total demand for any round,
and Dt ∈ [0, Dmax] the actual total demand for a round t.
The demand dt

x for agent x in a round t is then defined as:

• dt
x = lcx +

cst
xPn

i=1 cst
i

�
Dt −Pn

j=1 lcj

�

5. LEARNING ALGORITHM
We will use a genetic algorithm [16] with a linear ranking
and elitist selection[2], to let adaptive agents learn purchase
strategies. In this genetic algorithm, a population of popmax

strategies is randomly generated and each strategy is used
by an agent in a simulation of the inventory model. In the
simulation, a learning agent competes with (n−1) competi-
tors that use fixed values, a heuristic, or another adaptive
algorithm to participate in the auctions. When all strate-
gies have been used in a simulation, the population is ranked
by profit, the best strategy is copied to the next generation,
and the other (popmax−1) places in the population are filled
using a linear ranked selection process of two parent strate-
gies, and the use of recombination and mutation to arrive at
an offspring strategy. This process is repeated for genmax

generations.

The chromosome used for the learning agent depends on the
chosen inventory management technique. In case of base-
stock inventory management, the chromosome for an agent
bx consists of:

• Reorder-point rpx ∈ N0

• Price px ∈ N
• Reorder-point-mutation size rmx ∈ Z
• Price-mutation size pmx ∈ Z
• Mutation probability probx ∈ [0, 1]

In the case of the function-based inventory management, we
use the following chromosome:

• Inventory point ixj ∈ N0, for j ∈ 1, 2, ..., N

• Amount point axj ∈ N0, for j ∈ 0, 1, ..., N

• Price point pxj ∈ N, for j ∈ 0, 1, ..., N

• Inventory mutation size imx ∈ Z
• Amount mutation size amx ∈ Z
• Price mutation size pmx ∈ Z
• Mutation probability probx ∈ R ∩ [0, 1]

With both techniques, the genetic algorithm creates the off-
spring chromosome by choosing randomly, for each part of
the chromosome, the corresponding value of one the par-
ents. When the new chromosome is created, the muta-
tion probability and mutation sizes are used to mutate the
values of the reorder-point and price (in case of the base-
stock technique) or inventory-point, amount, and price (in
case of the function-based technique). Finally, the mutation
sizes and mutation probability themselves are mutated with
small, fixed values, randomly up or down. For the base-
stock agents, the process of evolution is depicted in figure
1.

6. EXPERIMENTAL SETUP AND RESULTS
In our experiments, we first use a number of different heuris-
tic competitor strategies to test our learning agents against.
In the following section, we choose bn as our learning agent,
and b1 . . . bn−1 as the heuristic competition. We continue
the experiments with simulations in which multiple adap-
tive agents compete against eachother, in coevolving simu-
lations.

6.1 Agents with a base-stock inventory man-
agement

6.1.1 Model
We setup our experiments with the following parameter val-
ues for each simulation:4

• Number of agents n = 5

• Number of rounds T = 500

4As an abbreviation, we use the following notation:
UniformZ(x,y) denoting a function drawing values

uniformly from Z ∩ [x, y].
UniformR(x,y) denoting a function drawing values

uniformly from R ∩ [x, y].
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Figure 1: The evolutionary algorithm for an agent
with a base-stock inventory management.

• Amount sold in auction A = 50

• Reserve price pres = 1

• Revenue per item sold rt
x = 20, ∀x ∈ [1, n]; ∀t ∈ [0, T ]

• Holding costs per item per round h = 1

• Maximum global demand Dmax = 55

• Monthly demand Dt = UniformZ(n, Dmax),∀t ∈ [0, T ]

• Constant loyal customers lcx = 0,∀x ∈ [1, n]

In this first simulation, there are no constant loyal cus-
tomers, and the demand share of the agents depends com-
pletely on their customer satisfaction.

According to [27], we can calculate a good practice for the
level of the base-stock, if we know the mean absolute devia-

tion of the demand5, desired customer service level6 and the
lead time. The function given in [27] for calculating base
stock is:

base-stock = Cust. serv. factor×MAD×
√

lead time

where the customer service factor is a factor depending on
the desired service level. For a service level of 50%, the fac-
tor is 0, for 80% the factor is 1, for 90% it is 1.6 and for
99.99% the factor is 5 (see [17]). With a monthly demand
uniformly distributed between 5 and 55, the MAD = 12.7;
divided between 5 agents. When we use each of the service
levels for one of the heuristic agents, we get the following
base-stock levels:

Agent Service level Reorder-point
b1 50% rp1 = 0
b2 80% rp2 = 3
b3 90% rp3 = 4
b4 99.99% rp4 = 13

The heuristic agents b1 . . . bn−1 use the following algorithm
to compute the price to bid each round:

p0
x =

rt
x+pres

2

pt
x =

8
<
:

pt−1
x − 1 if (it−1

x > 0) ∧ (wont−1
x > 0)

pt−1
x + 1 if (it−1

x > 0) ∧ (wont−1
x = 0)

pt−1
x otherwise

In summary, the agent starts with a price halfway between
the reserve price and the highest price that would give him a
profit. The agent decreases the price offered if in the previ-
ous round, he participated in an auction (it−1

x > 0) and won
(wont−1

x > 0). When he participated but lost (wont−1
x = 0),

the price for this round is increased. If he didn’t participate
in an auction in the previous round, the price stays the same.

6.1.2 Genetic Algorithm
The genetic algorithm for learning agent bn used these pa-
rameters:

• Population size popmax = 100

• Number of generations genmax = 300

• Initial reorder-point rp0
n = UniformZ(0, 100)

• Initial price p0
n = UniformZ(1, 20)

• Init. rpn-mutation size rm0
n = UniformZ(−25, 25)

• Init. pn-mutation size pm0
n = UniformZ(−5, 5)

• Init. mutation prob. prob0
n = UniformR(0, 1)

6.1.3 Results
The reorder-point and price strategy learned by the adaptive
agents in each of the generations in our simulation is shown
in figures 2 to 6.

5the mean of the absolute deviation from a set of values to
the mean of that set:
MAD(x) = 1

N

PN
i=1 |xi − x|

6The desired service level is the percentage of customer de-
mand that on average should be satisfied.
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Figure 2: Average reorder-point of the adaptive
agent, per generation, in a market without constant
loyal customers.
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Figure 3: Average price bid of the adaptive agent,
per generation, in a market without constant loyal
customers.

As can be seen from the pictures, the adaptive agent learned
to keep a reorder-point just above 50, the amount of items
for sale. The offered price didn’t converge, and was high
enough to always be a winning bid. Of course, as our model
uses a uniform-price auction, the price that is actually paid
is much lower, as long as either all agents win at least one
unit of raw material, or at least one agent who didn’t win
anything bid a low price (see section 4.1), due to the auc-
tion type. The continuously upward direction of the price
graph can be attributed to the fall-off of the lower values, a
property inherent to our AI approach. The profit averages
just above 200,000; but it is obvious that the agent cannot
rely on making this profit: the variation in the profit is very
high.

Because of the reputation-dependent demand function, and
the absence of constant loyal customers (lcx = 0), the adap-
tive agent learned to push his competitors out of the market,
almost creating a monopoly, as can be seen from the market-
share figure (figure 5). The agent couldn’t afford to create
a complete monopoly: the second-price auction mechanism
requires the agent to keep at least one competitor that bids
a low price, to avoid having to pay his own, very high, price.

We repeated the simulation, this time with a small constant
loyal demand: lcx = 1. All agents are ensured that they get
at least one customer each round, giving them a possibility
to improve their reputation. The results of this experiment
can be seen in figures 7 to 11.

 0

 50000

 100000

 150000

 200000

 250000

 0  50  100  150  200  250  300

pr
of

it

generation

Profit per generation

Figure 4: Average profit earned by the adaptive
agent, per generation, in a market without constant
loyal customers.
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Figure 5: Demand-market share of the adaptive
agent, per generation, in a market without constant
loyal customers.

Without the possibility to remove his competitors from the
market, the agent faces a market that is much more uncer-
tain in who wins, and for what price. This increased uncer-
tainty can be seen in the figures as a much lower reorder-
point: the agent behaves as if the demand market was split
evenly among the five agents. The market-share figure (fig-
ure 10) shows that this is almost the case: the adaptive
agent reached a demand-market-share of 22%.

Keeping the reorder-point low apparently ensures that there
is always more supply than demand (keeping the price-to-
pay at the reserve price). This allows the agent to bid ex-
tremely high (as can be seen in figure 8), without running the
risk of paying that price. The profit earned by the adaptive
agent averages between 38,000 and 40,000; a lot less than
when he was able to monopolize the market. There is still
a lot of variation in the profit.

6.2 Coevolution learning with base-stock in-
ventory management agents

In our next simulation, we let several adaptive agents learn
simultaneously, while competing against each other.

6.2.1 Model
The model for the coevolution learning simulations is sim-
ilar to that of the simulations with one learning agent, as
described in section 6.1.1, but this time all agents are learn-
ing.
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Figure 6: Client-satisfaction rate of the adaptive
agent, per generation, in a market without constant
loyal customers.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

re
or

de
r-

po
in

t

generation

Reorder-point per generation

Figure 7: Average reorder-point of the adaptive
agent, per generation, in a market with loyal cus-
tomers.

6.2.2 Genetic Algorithm
The genetic algorithm used for coevolution is an extension
of the algorithm used in the single-agent learning simula-
tions (see sections 5 and 6.1.2). Instead of one population
of agents, we use n populations, one for each of the partici-
pants in the auction.

Within one generation, each agent strategy from one popu-
lation is used 5 times, each time against different strategies
from the other populations. By making sure that no strat-
egy is used more than 5 times, we know that after 5∗popmax

simulations, each strategy in each population in that gen-
eration has been used in 5 simulations. Each population
then simultaneously, but independently, evolves to the next
generation, where the process is repeated.

6.2.3 Results
The entire experiment as described above is repeated 5 times,
and the results are averaged. Figures 12 to 16 show the re-
sults from the simulations.

The figures show that the agents were able to learn a prof-
itable strategy. They reached an even-split situation, divid-
ing the supply in almost equal shares. With a stochastic
demand for each agent in each round, it is very probable
that not all agents require a complete refill of their inven-
tory. When at least one agent needs less than his reorder-
level, all other agents can bid for a amount equal to their
reorder-level, and all agents still pay the reserve price. Be-
cause of this strategy, the agents can afford to bid any price
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Figure 8: Average price of the adaptive agent, per
generation, in a market with loyal customers.

 0

 10000

 20000

 30000

 40000

 50000

 0  50  100  150  200  250  300

pr
of

it

generation

Profit per generation

Figure 9: Average profit earned by the adaptive
agent, per generation, in a market with loyal cus-
tomers.

they want, and never pay more than the reserve price, a be-
haviour that we clearly see in the figure of the price function
(figure 13).

6.3 Agents with a function-based inventory man-
agement

Similar to our experiments with base-stock agents, we start
with one adaptive agent competing against a number of
heuristic agents. The function-based technique allows agents
to let both the amount and the price in his offer, to be de-
pendent on the current inventory (see section 4.2.1). This
allows agents to try to buy cheap raw material, even when
their inventory is already sufficient to satisfy their demand.

6.3.1 Model
We setup our experiments for the function-based inventory
management with the following parameter values:

• Number of agents n = 5

• Number of rounds T = 500

• Amount sold in auction A = 50

• Reserve price pres = 1

• Revenue per item sold rt = 20

• Holding costs per item per round h = 1

• Maximum global demand Dmax = 55

• Monthly demand Dt = UniformZ(n, Dmax)
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Figure 10: Demand-market share of the adaptive
agent, per generation, in a market with loyal cus-
tomers.
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Figure 11: Client-satisfaction rate of the adaptive
agent, per generation, in a market with loyal cus-
tomers.

• Loyal customers lcx = 1,∀x ∈ [1, n]

• Number of function steps N = 5

The heuristic agents are identical to the heuristic agents
used in section 6.1.

6.3.2 Genetic algorithm
The genetic algorithm for the function-based agent simula-
tions use the following parameter values:

• Population size popmax = 100

• Number of generations genmax = 300

• Initial inventory point value i0xj = UniformZ(0, 50),
∀j ∈ {1, . . . , N}

• Initial amount point value p0
xj = UniformZ(0, 50),

∀j ∈ {1, . . . , N}
• Initial price point value a0

xj = UniformZ(0, 50),
∀j ∈ {1, . . . , N}

• Initial inventory mutation size im0
x = UniformZ(−25, 25)

• Initial amount mutation size am0
x = UniformZ(−25, 25)

• Initial price mutation size pm0
x = UniformZ(−25, 25)

• Initial mutation probability prob0
x = UniformR(0, 1)
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Figure 12: Average reorder-point of co-learning
agents, per generation.
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Figure 13: Average price of co-learning agents, per
generation.

6.3.3 Results
The results of the simulations with an agent with a function-
based inventory management, without constant loyal cus-
tomers (lcx = 0), and with constant loyal customers (lcx =
1) are depicted in figures 17 to 22.

In these figures, the functions for amount and price are those
of the best performing agents in the simulations. To be
able to compare the performance with those from the base-
stock agents, the profits for both the markets with constant
loyal customers, and without constant loyal customers are
averaged over the entire population, similar to the results
from the base-stock agent experiments.

We see from figures 17 and 20 that the function-based agent
learns to behave like a base-stock when the inventory is
empty. When the inventory is non-empty, the function-
based agent buys more than the base-stock agent would.
The base-stock agent buys enough to fill the inventory up
to the reorder point (on average 51 for the market without
constant loyal customers, on average 11 for the market with
constant loyal customers), the function-based agent’s inven-
tory size plus the amount he orders exceeds these values,
for all values of the inventory-size. This strategy turns out
to be more successful than that of the base-stock agent. In
the market without constant loyal customers, the averaged
profit of the function-based agent is around 240000, as op-
posed to around 220000 for base-stock agents. In the market
with constant loyal customers, the averaged profit is around
42000, as opposed to around 39000 for the base-stock agents.
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Figure 14: Average profit of co-learning agents, per
generation.
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Figure 15: Average market-share of co-learning
agents, per generation.

6.4 Coevolution learning with a function-based
inventory management

Our last set of experiments presented in this paper let agents
with a function-based inventory management technique com-
pete and learn simultaneously.

6.4.1 Model
The model for the coevolution learning simulations with a
function-based inventory management is similar as to that
of the simulations with only one learning agent.

6.4.2 Genetic Algorithm
The genetic algorithm for coevolution with function-based
agents is an extension to the algorithm described in section
6.3.2. The extensions are similar to the extensions used in
coevolution with base-stock agents (section 6.2.2).

6.4.3 Results
In figures 23, 24 and 25 we show the results of coevolutionary
learning of 5 agents with function-based inventory manage-
ment. The best-performing strategy from each population
is chosen as that population’s winner. Figure 23 shows the
functions learned by the 5 winning agents, for calculating
how much to buy, depending on the size of the inventory. In
figure 24 we show the learned functions for the price to bid,
depending on the size of the inventory. The third figure, fig-
ure 25 shows the profit earned by the agents, averaged over
the populations, to allow us to compare the results to those
of the coevolving base-stock agents.

As we can see from figure 25, the coevolution learning agents
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Figure 16: Average client satisfaction of co-learning
agents, per generation.
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Figure 17: Amount to buy as function of the in-
ventory size for a function-based agent in a market
without constant loyal customers.

with function-based inventory management succeeded in learn-
ing succesful strategies. The profit of the coevolving base-
stock agents averaged around 220000, the profit of three
of the five evolving function-based agents averaged around
230000.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have given a model based on agent the-
ory, logistics literature, client models, and an application
case, for participating in a supply chain of commodity goods
with uncertain, reputation-based customer demand and un-
certain raw-material replenishment. We describe the simu-
lation environment we designed, based on this model, and
showed the results of our experiments with several hard-
coded strategies and with (co)learning agents, using two
types of inventory management. We have shown that soft-
ware agents are capable of learning successful strategies,
with respect to profit, the competition for market-share, and
client satisfaction. We have also shown that more complex
inventory management techniques perform better than stan-
dard inventory management techniques in several settings.

In our future research, we will improve the coevolution al-
gorithm for function-based inventory management agents,
to prevent the premature convergence that lowers its per-
formance. We will also add the possibility for the function-
based agents to submit a list of bids, instead of just one bid.
This will allow the agents to differentiate between amounts
of raw-material that they really need (by offering a high
price), and raw-material that they can get cheap, and use
when market prices are high.
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Figure 18: Price to bid as function of the inventory
size for a function-based agent in a market without
constant loyal customers.
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Figure 19: Average profit of the function-based
agents in a market without constant loyal customers.

A third extension will be to allow for multiple types of prod-
ucts that can be ordered by the customers, and multiple
types of raw-material needed to produce them. We will in-
clude the possibility that one of the products is ’in fashion’,
and the agents must learn whether it is more profitable to
specialize in one item, or to stay generalized and target a
broader set of customers.
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[4] S.M. Bohté, E.H. Gerding, and J.A. La Poutré.
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