
Algorithm Design and Synthesis for Wireless Sensor Networks�

Amol Bakshi and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089

�amol, prasanna�@usc.edu

Abstract

Most of current research in wireless networked embed-
ded sensing approaches the problem of application design
as one of manually customizing network protocols. The de-
sign complexity and required expertise make this unsuitable
for increasingly complex sensor network systems. We ad-
dress this problem from a parallel and distributed systems
perspective and propose a methodology that enables do-
main experts to design, analyze, and synthesize sensor net-
work applications without requiring a knowledge of imple-
mentation details. At the core of our methodology is a vir-
tual architecture for a class of sensor networks that hides
enough system details to relieve programmers of the burden
of managing low-level control and coordination, and pro-
vides algorithm designers with a clean topology and cost
model. We illustrate this methodology using a real-world to-
pographic querying application as a case study.

1. Introduction

Wireless sensor networks (WSNs) are ad hoc networks
of unattended smart sensors performing in-network collabo-
rative computation and communication to monitor the envi-
ronment for events of interest. Most of the current research
on information processing in WSNs has focused on mostly
manual optimization and application-specific customization
of the network protocol stack. While this approach has been
successful for relatively simple application scenarios, there
is now an increasing realization of the need for new pro-
gramming models and abstractions for algorithm designers
and programmers that do not demand an expertise in wire-
less networking - in addition to a knowledge of the applica-
tion domain [4, 12].

In this paper, we explore a methodology for algorithm
design and synthesis for a class of sensor network appli-
cations, with the goal of reducing design complexity. Our

� This work is supported by the National Science Foundation under
award number IIS-0330445.

methodology enables a domain expert to design and ana-
lyze algorithms, and synthesize programs for the virtual ar-
chitecture, without requiring a knowledge of low level net-
working aspects of the deployment. While WSNs are ap-
proached from a wireless ad hoc networking perspective in
most of state of the art, we model them as parallel and dis-
tributed systems. However, there are important differences
between sensor networks and traditional distributed systems
that should be considered while defining models of compu-
tation and algorithm design methodologies for WSNs.

Sensor networks are data driven in the sense that data is
created in the network (by the sensing interfaces) and the
values of sensor data and the application semantics deter-
mine the pattern of computation and communication at run
time. Also, the computation has to be performed as close
to the data as possible, in order to reduce communication
energy consumption in the network. This means that the
(re)distribution of data and computation to nodes of the net-
work is subject to constraints that arise from application se-
mantics and performance requirements. In traditional paral-
lel and distributed processing, latency and throughput of ex-
ecution have been the major performance metrics, and the
overall objective is to manage the resources efficiently so as
to minimize execution time of the computation. In embed-
ded systems such as sensor networks, the application es-
sentially executes in an infinite loop, and the concept of a
round of execution is ill defined in many scenarios due to
their data driven behavior. Hence, at the system level, min-
imizing energy consumption of the network as a whole is
the dominant concern, sometimes even at the expense of in-
creased latency of some path of execution.

The rest of this paper is organized as follows. Section 2
presents our overall design methodology. Sections 3 and 4
illustrate the process of defining a virtual architecture, algo-
rithm design, and (manual) program synthesis for our case
study. Section 5 describes a set of protocols to implement
the modeling abstractions at run time. Related work is dis-
cussed in Section 6, and we conclude in Section 7.

Model of Computation

Program for the

virtual architecture

Networked sensing application

Architecture-independent

algorithm specification

Algorithm for the

virtual architecture

Performance analysis

re
fin

e

Algorithm Design

Synthesis

Target tracking, micro-climate
monitoring, wildfire detection

Task flow, CSP, FSM,
Process network

- Asynchronous network
- Regular grid topology
- Uniform cost function
- Group formation

primitives

Topology emulation, Phy/MAC
protocols, routing protocols

Large-scale, homogeneous, dense,

arbitrarily deployed sensor network

Network
model

Latency and
energy costs

Virtual Architecture

Programming
primitives

Middleware
services

Runtime System

Underlying sensor network

EXAMPLE

Figure 1: Our Proposed Design Methodology

2. Our Proposed Methodology

Our methodology is based on a virtual architecture for
the sensor network that enables algorithm design and syn-
thesis. A virtual architecture is an abstract machine model
for algorithm design and synthesis and a set of primitives
that are independent of low level protocols used to imple-
ment them in the underlying network. It is important for the
end user that the modeling abstractions correspond to men-
tal notions of application behavior on a sensor network sys-
tem, that a formalism exists to specify such behavior, and
that some mechanism exists to map the behavior onto the
underlying network such that theoretical performance anal-
ysis corresponds to real performance measurements.

Defining a Virtual Architecture: The virtual architecture
should: (i) facilitate rapid first-order performance estima-
tion of algorithms, (ii) provide suitable primitives to en-
able translation of the selected algorithm into a program for
the underlying network, and (iii) export appropriate middle-
ware services that allow the end user to think in terms of ab-
stract logical entities such as events of a specific type. Key
components of our virtual architecture are:

Network model: The network model specifies the topol-
ogy of the deployment that can be assumed at design time.
This (virtual) topology can be emulated on the real net-
work deployment in a variety of ways that could be hidden
from the algorithm designer. The choice of virtual topol-
ogy will be influenced by the expected nature of the deploy-

ment, and also by the nature of collaborative computation
and collaboration in the target application. Depending on
the type of network, the model could support synchronous
algorithms (e.g., TDMA), purely asynchronous message-
passing paradigms, or a combination of the two [8].

Programming primitives: The virtual architecture specifies
the computation and communication primitives available to
the programmer. These primitives could be for the individ-
ual node or for a set of nodes (collective). Communication
primitives could range from the simple send() and receive()
message passing primitives to more sophisticated ones for
group communication. Computation primitives could in-
clude summing, sorting, or ranking a set of data values from
a set of sensor nodes [5]. The implementation of these prim-
itives could be transparent to the end user who is aware only
of their functionality and associated costs.

Middleware services: A middleware service implements a
high-level functionality that is commonly needed for a cer-
tain class of applications [20]. For example, collaborative
computation through the formation of logical groups is a
very useful concept for a large number of WSN applica-
tions, allowing the end user to reason in terms of a follower-
leader relationship between nodes in a group. Middleware
services are essential in decoupling high-level functional
abstractions from their implementation details, and hence
are part of our virtual architecture.

Cost functions and performance metrics: Computation and
communication costs in terms of time and energy are spec-

ified for each primitive, as well as for the operations sup-
ported by the middleware services. These cost functions,
combined with the application representation should pro-
vide sufficient information to decide an efficient mapping
of application tasks onto sensor nodes and for communica-
tion synthesis. The performance metric to be used for eval-
uating an algorithm will be based on these cost functions,
but will depend on the application. For example, total en-
ergy, energy balance, total latency of a set of operations,
system lifetime, etc., are various performance metrics that
can be calculated from the cost model, but which of these
to use will depend on the algorithm designer’s objective.

Design Flow: In Figure 1, the graphical depiction of the ma-
jor components of our methodology and the design flow is
annotated with concrete examples for some of the abstrac-
tions. First, the network model and cost model for the target
class of sensor networks is defined using a bottom-up ap-
proach that involves analysis of the expected nature of de-
ployment, characteristics of the node hardware, etc. The end
user analyzes alternate algorithms for the desired function-
ality and selects one with the best performance for that net-
work and cost model. For example, the end user could de-
cide if a divide and conquer approach is better than a cen-
tralized approach if, say, total latency of one round of the
application is to be minimized. After the algorithm is cho-
sen, a top-down approach is required to convert (synthe-
size) it into the program that executes on each node of the
network. In the top-down approach, the algorithm is spec-
ified using an architecture-independent application model
such as an annotated task graph. The application graph is
used as an input to a mapping tool (manual or automatic)
that will explore alternate design time and run time role as-
signments in the network and determine an efficient one.
When the roles are assigned (i.e., the tasks are mapped), the
actual software has to be synthesized for each node. The
structure of the task graph and explicit annotations by the
application developer are used to determine which of the
available middleware services (if any) are useful. For in-
stance, in a task graph structured as a �-ary tree, the inter-
action between every parent node and its � children can be
implemented using a middleware API for group commu-
nication if one is available. Further, if logical naming ser-
vice is supported, the group membership can even be de-
termined at run time. Finally, the program for each node is
synthesized, including the appropriate calls to middleware.

3. Case Study: Identification and Labeling of
Homogeneous Regions

The purpose of this case study is to demonstrate the defi-
nition and use of a virtual architecture for an example appli-
cation scenario. For the problem described in the next sub-
section, we choose a divide-and-conquer algorithm for in-

network merging of boundary information. This algorithm
is represented as a high-level task graph. Using the com-
munication primitives and cost models offered by the vir-
tual architecture, the performance of this algorithm can be
analytically estimated. Then we illustrate how this high-
level specification is (manually) synthesized into an algo-
rithm for the virtual architecture. This synthesis includes
mapping logical entities in the high-level representation to
nodes in the (virtual) topology, while satisfying some con-
straints on the mapping process. We then demonstrate how
the architecture-specific algorithm is expressed as a pro-
gram that executes on the individual node of the (virtual)
topology. Finally, in Section 5, we present some protocols
that could be used to to implement the modeling abstrac-
tions, with a view to preserving the correspondence between
the theoretical performance analysis and the actual perfor-
mance on the underlying network. These protocols are rep-
resentative of the approaches that can be adopted to imple-
ment a virtual architecture.

3.1. The Application

Topographic querying is the process of extracting data
from a sensor network for understanding the graphical de-
lineation of features of interest in the environment. The end
user might be interested in visualizing gradients of sensor
readings across the region or other queries such as enumer-
ation of regions with sensor readings in a specific range.
Application areas where this is useful range from contami-
nant monitoring to HVAC (heating, ventilation, and air con-
ditioning) applications. Boundary estimation and counting
regions of interest can also be used in acoustic monitoring
and tracking applications. Querying the properties of sen-
sor node such as residual energy levels is useful for resource
management, dynamic retasking, preventive maintenance of
sensor fields, etc.

A basic operation that supports a large class of topo-
graphic queries is the identification and labeling of homo-
geneous regions. A homogeneous region (or feature region)
is one where all sensors have the same reading of a phe-
nomenon. Sensor nodes whose readings are of interest to a
particular query are called feature nodes. For simplicity we
assume that a sensor node has a binary status (feature node
or not a feature node) for the query. Once this information
is gathered and stored in the network, other queries can be
answered. For example, a query to count the number of re-
gions of interest can obtain and sum the local counts of each
of the distributed storage nodes. Processing and responding
to queries could be in most cases decoupled from the ac-
tual data gathering and boundary estimation process, which
can occur independently.

3.2. Our Virtual Architecture

We define the following virtual architecture for algo-
rithm design and synthesis on large scale, homogeneous
sensor networks that are arbitrarily and densely deployed
on a terrain for purposes of environment monitoring appli-
cations such as topographic querying described above.

The network: In our application scenario, the end user is
interested in monitoring the temperature over the entire ter-
rain with a certain granularity. In other words, the set of lo-
cations - or points of coverage (PoCs) - are uniformly dis-
tributed over the entire terrain. For a rectangular terrain, the
PoCs form a grid with a certain ‘cell size’ corresponding to
each PoC. Note that the locations of the PoCs (in this case,
in a grid) is not necessarily related to the pattern of deploy-
ment. As long as there is at least one sensor node in each
geographic cell, the topology emulation algorithm (Sec. 5)
is responsible for overlaying the virtual grid topology over
the possibly irregular topology of the underlying network.
Other topology creation and maintenance algorithms such
as the one proposed in [17] can also be employed.

A grid will be an appropriate choice of virtual topol-
ogy for uniform node deployment over the terrain. For non-
uniform deployments, other virtual topologies such as a
tree could be more appropriate. For the purposes of this
case study, our virtual architecture in this case study ab-
stracts the underlying network topology as an oriented, two-
dimensional grid.

Middleware services: The concept of a group is central to
networked sensing applications. Most in-network collabo-
rative computation is accomplished by temporarily or per-
manently organizing sensor nodes in terms of groups. The
membership in a group can be determined based on differ-
ent factors such as geographic location, current reading of a
sensor, the functionality of the program running on a node,
etc. Geographic groups are ones where all nodes that are de-
ployed in a certain geographic region are members of the
group. Our virtual architecture incorporates a group forma-
tion middleware service specifically tailored for our case
study. In a general application scenario, this service can be
implemented using a combination of geographically con-
strained groups and logical naming, but for simplicity of
exposition, the service is defined as follows.

The concept of hierarchical groups is supported for the
grid topology. At the lowest level of hierarchy (level 0), ev-
ery node is both a group member and a group leader. At
level 1, the grid is partitioned into blocks of � � � nodes.
The node in the north-west corner is designated a level 1
leader, and remaining nodes of the block are level 1 follow-
ers, and so on. Since every node knows its own grid coordi-
nates, it can also determine its role as leader and/or follower
at each level of the hierarchy.

Communication primitives: The virtual architecture in
this case study supports send() and receive() message pass-
ing primitives that a node can use to communicate with any
other node in the network. A group communication primi-
tive is also available that can be used by a node to directly
address a level � leader as a logical entity.

Cost functions: We assume that each node has a short-
range, omnidirectional antenna. For such antennas, the re-
ception and transmission energy is of similar magnitude,
and depends only on the radio electronics [13]. A uniform
cost function for energy and time analysis of these systems
can be defined – the energy cost for transmission, recep-
tion or computation of one unit of data is defined to be one
unit of energy. One unit of latency is the time taken to com-
plete � computations or transmit � units of data, where �
and � are the processing speed and transmission bandwidth
of the node respectively. This simple cost model has been
used in most of the recent work related to algorithm design
for sensor networks [5, 14, 18]. Whether these cost func-
tions are realistic for a specific network is a decision for the
end user. A different set of cost functions can be used if the
characteristics of the deployment necessitate it.

4. Algorithm Design and Synthesis

4.1. Algorithm Specification

Our starting point is an algorithm for topographic query-
ing that runs in ��

�
�� steps for a

�
� ��

� grid, by using
a divide and conquer strategy [3]. A step denotes a round of
computation and is used for convenience of analysis. No as-
sumptions are made about the degree of synchronization in
the network. This algorithm can be represented as a data
flow graph structured as a quad-tree (Figure 2). A leaf node
corresponds to a task that is linked to the sensing interface,
and interior nodes represent in-network processing on the
sampled data. At each level of the tree, every node trans-
mits its information to its parent at the next higher level.
Processes at higher levels have greater oversight in terms of
the extent of the regions they represent. In terms of groups,
nodes at higher levels of the quad-tree are group leaders
whose group members are its children in the tree.

A leaf node can compute its status as a feature node by
comparing its current reading with a pre-specified thresh-
old. At each level of hierarchy, a node receives data from
its four children, containing a description of the boundaries
of feature regions contained within the sender’s geographic
oversight. The boundary information also indicates whether
the feature region(s) lie entirely within that extent, or infor-
mation from neighboring extents is required to identify the
true boundary of the feature region.

Again, the choice of application model will depend on
the deployment scenario. In this case study, a task graph rep-

0 1 2 3 8 9 10 11 12 13 14 154 5 6 7

0

8 1240

Level 2

Level 1

Level 0

Sensor Data

Figure 2: Quad-tree representation of the algorithm

0 1

2 3

8 9

10 11

12 13

14 15

4 5

6 7

Figure 3: Example mapping

resentation is an appropriate model because we assume that
the pattern of computation and communication is known at
design time. Leaf nodes sample at a known frequency, and
every ‘round’ of sampling triggers one execution of the en-
tire task graph. This model might not be suitable for event-
driven applications such as target tracking where only the
sensor nodes in the vicinity of the target (event) perform the
sampling and in-network collaborative signal processing. If
a task graph model has to be used for this scenario, the fre-
quency of sampling at the leaf nodes could be expressed in
probabilistic terms derived from a knowledge of expected
events in the network.

The semantics of our application impose the following
design time constraints on the task-to-node mapping.

Coverage: Each node in the virtual topology corresponds to
one point of interest in the terrain and accordingly, the num-
ber of leaf nodes in the task graph is equal to the number of
nodes in the virtual network graph. The coverage constraint
states that each leaf node of the task graph (that represents
one sampling task) should be mapped to a distinct node of
the virtual topology to ensure the desired level of coverage.

Spatial correlation: In our application, the data exchanged
between nodes represents boundaries of feature regions.
When this data is merged at the parent nodes, the algo-
rithm expects that the information from child nodes repre-
sents spatially adjacent geographic extents. That way, max-
imum data compression can be achieved in terms of repre-
senting the results of the processing. Hence, the spatial cor-
relation constraint states that all children of a given node
should represent information about a single contiguous ge-
ographic extent.

4.2. Role assignment

The virtual topology, cost model, and application graph
can be provided as input to any of the numerous task map-
ping algorithms that exist in literature [6]. Since energy is
an important consideration for sensor networks, the opti-
mization criteria for the chosen algorithm will have to re-
flect new performance metrics such as total energy and/or

energy balance. Also, for the mapping to be feasible, con-
straints such as coverage and spatial correlation will have to
be satisfied.

Our virtual architecture exports a grid topology, and a
mapping that satisfies both constraints is shown by the la-
beling of the quad-tree nodes in Fig. 2, which indicates their
mapping to the regions of the grid in Fig. 3. As shown in the
figures, the terrain of deployment is partitioned into � � �
blocks and groups of four level 0 nodes of the quad-tree that
share the same parent are mapped onto each block.

Only the leaf nodes perform the actual sampling. Hence,
the non-leaf nodes can be mapped anywhere in the grid sub-
ject to performance optimization. In general, the algorithm
designer can express the relationship between a parent and
child as a leader and follower in a collaborative group, and
leave their mapping entirely to the group formation middle-
ware service of the virtual architecture. Evaluating the rela-
tive performance of this algorithm compared to some other
approach means that the middleware should provide the as-
sociated cost for member to leader communication within
the group. With our group formation technique described
in Sec. 3.2, the latency and energy of transmitting a data
packet from a level � follower to the level � leader is pro-
portional to the minimum number of hops separating them
in the virtual network graph, assuming shortest path rout-
ing. We do not provide a detailed latency and energy analy-
sis in this paper due to space limitations. Interested readers
can refer to [16] for a detailed analysis and high-level sim-
ulation results of this algorithm on a sensor network archi-
tecture very similar to the algorithm described above.

Using the static group formation provided by the virtual
architecture, the mapping that will finally occur is shown by
the labels of non-leaf nodes in Fig. 2 and corresponding re-
gion labels of the grid in Fig. 3. The root node is mapped
to location 0, and the four level 1 nodes are mapped to lo-
cations 0, 4, 8, and 12 respectively, which are the leaders of
their corresponding groups. The mapping exploits the corre-
spondence between the quad-tree structure, and the idea of
recursively dividing the topology into quadrants and merg-
ing data within quadrants.

4.3. Program Synthesis

The output of the mapping stage is an algorithm speci-
fied for a grid topology, which relies on middleware support
for group formation, and on communication primitives that
can be used by any node to send a message to group leaders
at the appropriate level of hierarchy. The next step is to syn-
thesize this algorithm into a program that executes at each
node of the grid topology.

We use a reactive, event-driven programming model
that is supported by state-of-the-art code generation frame-
works [8] and programming languages [10] for sensor net-
works. An asynchronous data flow model of computation
is assumed, which means that a process need not wait for
all its input data (incoming messages) before computing on
them. This is because latency of message delivery is un-
predictable in typical sensor networks and some messages
might even be dropped. Therefore, it is advisable to struc-
ture the program in such a way that incoming information
is incrementally processed wherever possible. In our appli-
cation, since the information represents region boundaries,
it can be incrementally merged into the existing aggregated
information at that leader.

A manually synthesized program specification for the
algorithm is given in Figure 4. A brief description of the
working of this program is as follows. Initially (����� �
��	
), each node decides if it is a feature node and con-
structs its local data structure to store the information. It
then increments the level of recursion (hierarchy) and trans-
mits the information to the appropriate leader node for
merging. For all levels higher than 0, a node can expect
to receive 3 messages from group leaders at the next lower
level of recursion since the network is partitioned into quad-
rants at every stage and by virtue of the mapping, one of
the four incoming messages in the quad-tree representa-
tion is from the node to itself. An array is used for the
����

�
��
� data structure in consideration of the fact
that information can be transmitted and processed at differ-
ent speed in each quadrant.

In a grid of size
�
���� where ���

�
� is an integer, all

level � leaders are also level ����� leaders. A level � leader
can receive messages from other level ����� leaders before
it completes processing messages from level ����� leaders
in its own quadrant. Hence, messages contain their level in-
formation, and on receipt are merged with other messages at
that level of recursion. Once a level � leader that is not also a
level ����� leader sends a message to a level ����� leader,
it no longer participates in the aggregation process and its
level of recursion does not increase. Only the node which
performs the final aggregation reaches ����
��
�
�, trig-
gers the corresponding Action clause, and exfiltrates the en-
tire boundary information (or stores it locally, depending on
the end user requirements).

State (initial values) :
start(= false), recLevel(=0), maxrecLevel,
 mySubGraph[1..maxrecLevel](=NULL),
myCoords, msgsReceived[1..maxrecLevel](=0)
transmit(= false)

Message alphabet :
mGraph = {senderCoord, msubGraph, mrecLevel}

Condition : start = true
Action : start = false

compute mySubGraph[recLevel]
 from intra-cell readings

transmit = true
recLevel = recLevel + 1

Condition : received mGraph
Action : merge(mGraph,mySubGraph[mrecLevel])

msgsReceived[mrecLevel]++

Condition : transmit=true
Action : message = {myCoords, mySubGraph, recLevel}

 if (recLevel = maxrecLevel)
exfiltrate message

 else
send message to Leader(recLevel+1)

 transmit = false

Condition : msgsReceived[recLevel] = 3
Action : transmit=true

recLevel = recLevel + 1

Figure 4: Synthesized program specification

5. The Runtime System

We now briefly describe some protocols for the runtime
system designed to accomplish two main functionalities:
emulating the grid topology on the arbitrary network de-
ployment, and binding virtual processes of the synthesized
program to real nodes of the underlying network.

5.1. Topology Emulation

The underlying network consists of � identical sen-
sor nodes deployed over a square terrain of side �. Let
�� � ��� � ��� denote the virtual network graph (grid).
The terrain can be partitioned into non-overlapping equal
sized cells each of side � - such that �

�
�

�
�, where

� � ��� �. Each sensor node has a transmission range of
�. Let �� � ���� ��� � � � � ��� be the set of sensor nodes.
The real network can therefore be represented by a graph
�� � ���� ���, where vertices correspond to sensor nodes,
and ��� �� � �� iff Æ���� ��� � �, where Æ is the Euclidean
distance. We assume �� is connected. Let ��� be the set

of neighbors of ��, where �� � ��� iff ��� �� � ��. Each
node is aware of its ��� �� coordinates in an absolute or rela-
tive co-ordinate system, and also knows the outer boundary
of the terrain of deployment in the same co-ordinate sys-
tem. Let ��� and ��� be the � and � coordinates of node � �.

Let � ! 	 �� 	 " � " associate each �	 � �� with
a pair of grid coordinates ��� �� where ��
� � �� is the node
to be emulated. Let #����
� � ��	�� ! ��	� � ��� ���,
i.e., the set of nodes that collectively emulate the ��� ��-th
node in the virtual grid. In this paper, we assume that the
subgraph of�� induced by nodes in#����
� (
�� �) is con-
nected.

A simple, cell-based protocol can be used to emulate��

on��. We assume that localization and neighbor discovery
has occurred and each node can compute � ! �� �� and
knows the number and location of its one-hop neighbors.
The routing table at node �� is a function
$�� 	 %"
 	
��� � ��&���, where %"
 � ��'����(
� �'� is
the set of directions in the oriented grid. Some entries of
the routing table can be filled in using the initially avail-
able information. For example,
$����'� can be associ-
ated with �� if ��� � ��� s.t. �� � #������
� . If there
is no node in ��� that lies in a neighboring cell, the rout-
ing table entry is �&��. Now each node �� now tries to
discover multi-hop paths to neighboring cells that are asso-
ciated with �&�� entries in
$�� . Each node �� initially
broadcasts its own (small) routing table to all its neighbors.
When a node �� receives a message from some �� � ���

where � ! ����
� � ! ����, the message is ignored. If
�� � ���, � ! ���� � � ! ���� and �� � %"
 such
that
$�� ���
� �&�� and
$����� � �&��, �� sets

$�� � �� . Since new nodes can be added to the network
or existing nodes can leave or fail, the above protocol should
execute periodically. The user can choose any routing pro-
tocol implemented on the oriented grid using the routing ta-
ble to forward messages between adjacent cells of the grid.

This topology emulation protocol is time and energy-
efficient because (i) the path setup in all cells occurs in par-
allel, (ii) messages cross at most one cell boundary before
being suppressed, and (iii) the latency is proportional to the
maximum, over all cells, of the length of the longest path
between pairs of nodes in a cell.

5.2. Binding virtual processes to physical nodes

To execute the mapping on the real network, a mecha-
nism is required where the functionality of the � nodes of
the virtual topology is somehow mapped onto the � nodes
of the underlying, real network. We assume that �) � and
describe one way of accomplishing this mapping, using the
same cell-based approach as for topology emulation.

Let ���
� denote the geographic center of cell �� � and
����
� and ����
� denote its � and � coordinates. Since each

node �� knows its own coordinates, the cell size, and the
boundary of the terrain of deployment, it can compute
����
� and ����
� . Also, it can compute its Euclidean dis-
tance to the center of the cell. Each node maintains a
flag �
��
� initially set to $
&�. Each �� now broad-
casts Æ���� ���
� ����� to its neighbors. As in the path setup
phase, messages crossing cell boundaries are suppressed. If
node �� receives a value from �� � ��� that is less than its
own Æ value, it sets �
��
� � * ��� and broadcasts the
updated value to all �� � ���. Eventually, the only node
whose �
��
� � $
&� will be the one that has not re-
ceived Æ values lower than its own from any of its neigh-
bors, and hence is the node closest to the geographic cen-
ter. This node can start executing the program specified for
node ��
� in�� . The choice of the node closest to the center
of the cell as leader is an effort to align the problem geome-
try and the network geometry as closely as possible. Resid-
ual energy level or more sophisticated metrics could also
be employed depending on the particular application, espe-
cially if the role of leader is to be periodically rotated among
nodes in the cell.

6. Related Work

The state-centric programming framework proposed
in [12] has a similar motivation as our work: to define an ap-
propriate mental model that application developers can use
to program distributed sensor networks. The framework is
based on the concept of collaboration groups which ab-
stract common patterns in application-specific communica-
tion and resource allocation. We consider the state-centric
framework complementary to our proposed methodol-
ogy in the sense that it provides programming primitives
and a means of implementing the synthesized algo-
rithms on the target network. The UW-API [15] is an
example of a communication library for distributed com-
putations in sensor networks, motivated by the MPI
library [9]. Similar to MPI, some of the UW-API primi-
tives are to be invoked by a single sensor node and others
are for collective communication, to be invoked simul-
taneously by a group of nodes in a geographic region.
All operations take place on regions, which can be cre-
ated using specific primitives. Even barrier synchronization
is supported for the sensor nodes that lie within a re-
gion.

There are other efforts in the community that are address-
ing algorithm development [5, 11], task allocation [7, 21],
middleware services [19, 20], and programming models [1,
2] for sensor networks. However, we are not aware of any
coherent top-down methodology to simplify and ultimately
automate the design and synthesis of networked sensing ap-
plications.

7. Discussion

End to end application design for large scale sensor net-
works is a complex process. A significant fraction of this
complexity is at the networking layer because a host of in-
teracting low level services and protocols are required for
the sensor network to be functional. In addition, the end user
is required to coordinate the execution of different tasks at
the application level, and their interactions with each other
and with the physical world through the sensing interface.
System wide energy performance has to be optimized for
extending the network lifetime, and issues such as fault
tolerance must also be handled. State of the art protocol-
centric approaches assume an omniscient end user who has
a good understanding both of the application domain and
of wireless networking issues, and who is capable of en-
ergy efficient and robust cross-layer design and customiza-
tion of the protocol stack. There is now a growing body of
research on high level abstractions and middleware that aim
to hide low level networking details from the application de-
veloper, and thereby reduce the design complexity.

Design methodologies that employ multiple layers of ab-
straction to reduce design complexity risk doing so at the
expense of performance of the implementation compared
to hand-optimized designs. We believe, however, that the
obvious and significant benefits of this approach - rapid
first-order analysis of algorithms and greatly reduced com-
plexity of programming - outweigh performance consid-
erations, especially where hand-optimization at reasonable
cost might not be possible.

References

[1] T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George,
S. George, T. He, L. Luo, S. Son, R. Stoleru, J. Stankovic,
and A. Wood. EnviroTrack: An Environmental Program-
ming Model for Tracking Applications in Distributed Sen-
sor Networks. In Proceedings of International Conference
on Distributed Computing Systems (ICDCS), 2004.

[2] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,
B. Shucker, J. Deng, and R. Han. MANTIS: System Sup-
port for MultimodAl NeTworks of In-situ Sensors. In 2nd
ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA), pages 50–59, 2003.

[3] H. M. Alnuweiri and V. K. Prasanna. Parallel architec-
tures and algorithms for image component labeling. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
14(10):1014–1034, 1992.

[4] R. Barr, J. Bicket, D. Dantas, B. Du, T. Kim, B. Zhou, and
E. Sirer. On the need for system-level support for ad hoc and
sensor networks. In Operating Systems Review, ACM, April
2002.

[5] R. S. Bhuvaneswaran, J. L. Bordim, J. Cui, and K. Nakano.
Fundamental protocols for wireless sensor networks. In In-
ternational Parallel and Distributed Processing Symposium

(IPDPS) Workshop on Advances in Parallel and Distributed
Computational Models, April 2001.

[6] S. H. Bokhari. Assignment Problems in Parallel and Dis-
tributed Computing. Boston: Kluwer Academic, 1987.

[7] B. Bonfils and P. Bonnet. Adaptive and decentralized opera-
tor placement for in-network query processing. In Informa-
tion Processing in Sensor Networks (IPSN), 2003.

[8] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A
programming model for event-driven embedded systems. In
ACM Symposium on Applied Computing (SAC), March 2003.

[9] MPI Forum. MPI: A message-passing interface standard. In-
ternational Journal of Supercomputer Applications and High
performance Computing, 8(3/4), 1994.

[10] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proceedings of Programming
Language Design and Implementation (PLDI), 2003.

[11] B. Krishnamachari and S. Iyengar. Bayesian algorithms for
fault-tolerant event region detection in wireless sensor net-
works. IEEE Transactions on Computers, 53(3), 2004.

[12] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric
programming for sensor-actuator network systems. In IEEE
Pervasive Computing, 2003.

[13] R. Min and A. Chandrakasan. Top five myths about the en-
ergy consumption of wireless communication. Mobile Com-
puting and Communications Review, 6(4), 2003.

[14] K. Nakano, S. Olariu, and A. Zomaya. Energy-efficient rout-
ing in the broadcast communication model. IEEE Transac-
tions on Parallel and Distributed Systems, 13(2):1201–1210,
December 2002.

[15] P. Ramanathan, K. C. Wang, K. K. Saluja, and T. Clouqueur.
Communication support for location-centric collaborative
signal processing in sensor networks. In DIMACS Workshop
on Pervasive Networks, May 2001.

[16] M. Singh, A. Bakshi, and V. K. Prasanna. Constructing to-
pographic maps in networked sensor systems. Technical Re-
port CENG-2004-09, Department of EE-Systems, Univ. of
Southern California, June 2004.

[17] M. Singh, A. Pathak, and V. K. Prasanna. Constructing and
maintaining a clustered mesh topological infrastructure in
sensor networks. Technical Report CENG-2004-08, Dept of
EE-Systems, Univ. of Southern California, May 2004.

[18] M. Singh and V. K. Prasanna. Energy-optimal and energy-
balanced sorting in a single-hop wireless sensor network. In
International Conference on Pervasive Computing and Com-
munications (PERCOM), March 2003.

[19] M. Welsh and G. Mainland. Programming sensor net-
works using abstract regions. In Proceedings of the First
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI), March 2004.

[20] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues in de-
signing middleware for wireless sensor networks. IEEE Net-
work, 18(1), 2004.

[21] Y. Yu and V. K. Prasanna. Energy-balanced task alloca-
tion for collaborative processing in wireless sensor networks.
(accepted by) Mobile Networks and Applications (MONET),
special issue on Algorithmic Solutions for Wireless, Mobile,
Ad Hoc and Sensor Networks, 2004.

