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ABSTRACT
XML has a tree-structured data model, which is used to uniformly
represent structured as well as semi-structured data, and also en-
able concise query specification in XQuery, via the use of its XPath
(twig) patterns. This in turn can leverage the recently developed
technology of structural join algorithms to evaluate the query effi-
ciently. In this paper, we identify a fundamental tension in XML
data modeling: (i) data represented as deep trees (which can make
effective use of twig patterns) are often un-normalized, leading to
update anomalies, while (ii) normalized data tends to be shallow,
resulting in heavy use of expensive value-based joins in queries.

Our solution to this data modeling problem is a novel multi-
colored trees (MCT) logical data model, which is an evolutionary
extension of the XML data model, and permits trees with multi-
colored nodes to signify their participation in multiple hierarchies.
This adds significant semantic structure to individual data nodes.
We extend XQuery expressions to navigate between structurally
related nodes, taking color into account, and also to create new
colored trees as restructurings of an MCT database. While MCT
serves as a significant evolutionary extension to XML as a logi-
cal data model, one of the key roles of XML is for information
exchange. To enable exchange of MCT information, we develop
algorithms for optimally serializing an MCT database as XML. We
discuss alternative physical representations for MCT databases, us-
ing relational and native XML databases, and describe an imple-
mentation on top of the Timber native XML database. Experimen-
tal evaluation, using our prototype implementation, shows that not
only are MCT queries/updates more succinct and easier to express
than equivalent shallow tree XML queries, but they can also be sig-
nificantly more efficient to evaluate than equivalent deep and shal-
low tree XML queries/updates.
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1. INTRODUCTION
XML (eXtensible Markup Language) is rapidly becoming the

de facto standard for exchanging data between applications, and
publishing data, on the Web. The data model that underlies XML is
tree-structured, comprising nodes, atomic values and sequences [14],
and is used by query languages such as XPath [5] and XQuery [7].

The importance of the tree structure in the XML data model can
be appreciated from the rich variety of ways in which XPath and
XQuery support “navigation” between structurally related nodes in
an XML database. In contrast, for XML nodes that are related
only through values (of the ID/IDREF attributes, or otherwise), one
needs to explicitly perform value-based joins, one “edge” at a time,
akin to SQL queries over relational databases. The following ex-
ample is illustrative:

EXAMPLE 1.1. [Deep Trees vs Shallow Trees]
Consider a movie database, with elements movie, movie-genre,
movie-award, actor and movie-role. There are many ways
of organizing this information in XML, two of which are:

Deep-1: The movie-genre nodes are hierarchically organized,
with each movie as a child of its primary movie-genre node.
Each movie has children movie-award and movie-role nodes,
and movie-role nodes have children actor nodes.

Shallow-1: The nodes are in a shallower tree structure, and the re-
lationships between movie-genre and movie nodes, between
movie-award and movie nodes, and between movie, actor
and movie-role nodes, are captured via attributes values. Nodes
have an id attribute, a movie may have a movieAwardIdRefs
and a movieGenreIdRefs attributes, and movie and actor
nodes have the roleIdRefs attributes.

Consider the query “Return names of comedy movies nominated
for an Oscar, in which Bette Davis acted”. In the Deep-1 approach,
one can write the following XQuery expression:

for $m in document("mdb.xml")//movie-genre
[name = "Comedy"]//movie[.//actor/name
= "Bette Davis"]

where contains($m/movie-award/name, "Oscar")
return <m-name> f $m/name g </m-name>

In the Shallow-1 approach, one would have to use value-based
joins. The XQuery expression would be:

for $mg in document("mdb.xml")//movie-genre
[name = "Comedy"]//movie-genre,

$m in document("mdb.xml")//movie,
$ma in document("mdb.xml")//movie-award,
$a in document("mdb.xml")//actor



[name = "Bette Davis"],
$r in document("mdb.xml")//movie-role

where contains($ma/name, "Oscar") and
$mg/@id = $m/@movieGenreIdRef and
contains($m/@movieAwardIdRefs, $ma/@id) and
contains($m/@roleIdRefs, $r/@id) and
contains($a/@roleIdRefs, $r/@id)

return <m-name> f $m/name g </m-name>

Note that the Deep-1 query expression is much simpler than that
of Shallow-1. The increased complexity of the Shallow-1 expres-
sion would also (typically) result in an expensive evaluation, which
cannot make an effective use of structural joins developed for the
efficient evaluation of XQuery’s path expressions [2, 8].

The improved query specification and evaluation in deeper trees
over shallower trees comes at a cost. The deeper representations
are un-normalized [3], and the replication of data (e.g., the actor
and the movie-award nodes, in the above example) raises the
problem of update anomalies (e.g., if one wanted to add a subele-
ment birthDate to an actor). It appears that neither the deep
tree approach nor the shallow tree approach is ideal both for queries
and for updates. What is an XML database designer to do?

The solution proposed in this paper to effectively address the
above-mentioned inadequacies of the conventional XML data model
is a novel logical data model, referred to as multi-colored trees
(MCT). Our MCT data model is an evolutionary extension of the
XML data model of [14] and, intuitively, permits multiple colored
trees to add semantic structure over the individual nodes in the
XML data. Individual nodes can have one or more colors, permit-
ting them to be hierarchically related to other nodes in a variety of
ways, instead of only in one way. This allows (extended) XQuery
expressions to navigate between structurally related nodes, taking
color into account, instead of relying heavily on value-based joins.
An (enhanced) XQuery expression can be used to create a new col-
ored tree over a combination of newly created and existing nodes,
and an (enhanced) update expression can be used to modify existing
data in the MCT data model. We develop our technical contribu-
tions in the rest of the paper as follows:

� We present the MCT logical data model, consisting of evolu-
tionary extensions to the XML data model, in Section 3.

� We propose extensions to the XQuery query language, for
the MCT logical data model, in Section 4.

� While MCT serves as a significant evolutionary extension to
XML as a logical data model, one of the key roles of XML
is for information exchange. To enable exchange of MCT
information, we develop an algorithm for serializing an MCT
database in a schema-optimal way, as XML, in Section 5.

� We discuss alternative ways in which a logical MCT database
can be physically represented and manipulated, using rela-
tional and native XML databases, and describe an implemen-
tation on top of the Timber native XML database, in Sec-
tion 6.

� We used our prototype implementation to experimentally com-
pare MCT queries and updates against equivalent XML queries
and updates, both for shallow and for deep XML trees, in
Section 7. Our results demonstrate that not only are MCT
queries/updates more succinct and easier to express than equiv-
alent shallow tree XML queries/updates, but they can also be
significantly more efficient to evaluate than equivalent deep
and shallow tree XML queries/updates.

Anecdotal evidence suggests to us that choosing a suitable hier-
archy structure is one of the more difficult tasks in XML database
schema design. The use of a multi-colored tree model eases the
burden of the designer, while at the same time permitting concise
query specification and efficient query evaluation over a range of
queries that could not all be well supported with a single choice of
hierarchy.

Next, in Section 2, we present an overview of our MCT data
model, and highlight its benefits over the conventional XML data
model using examples. Related work is discussed in Section 8,
and we conclude in Section 9, outlining several areas of research
opened up by the MCT data model.

2. OVERVIEW OF THE MCT MODEL
The W3C has focused considerable recent attention to develop-

ing a logical model and query language for XML (see, for example,
[14, 27, 6, 7]). The XML data model is an ordered tree of nodes,
with atomic values associated with leaf nodes.

Using examples, we next highlight the benefits of permitting
multiple trees, instead of just a single tree, to add semantic struc-
ture over the individual data nodes. Each tree is distinguished from
the others by a color, and the resulting logical model is called the
multi-colored tree (MCT) data model. We will present a formal
development of the MCT data model in subsequent sections.

2.1 movie Nodes with Multiple Colors
Consider, again, the movie database from Example 1.1. There

are several natural hierarchies: movie genres are akin to a topic
hierarchy (e.g., comedy and action are sibling genres, and slapstick
is a sub-genre of comedy), and the Oscar best-movie awards can
be organized into a temporal hierarchy. Individual movies can be
naturally classified into each of these hierarchies: a movie can be
a child of its most-specific primary movie genre, and, if the movie
was nominated for a best-movie Oscar award in a particular year,
it can be made a child of that year’s node in the best-movie award
hierarchy.

Explicitly modeling such hierarchies in XML allows XQuery ex-
pressions to be effectively used for formulating queries like query Q1
(in Figure 1), without having to identify the most-specific genre
of the movie. While XML allows either of these hierarchies to be
modeled, it does not permit a natural modeling of both these hierar-
chies simultaneously; one of these hierarchical relationships would
need to be captured using attribute values, increasing the complex-
ity of the XQuery specification of a query like Q2 (in Figure 1).

Our multi-colored tree data model extends the XML data model
in permitting both these hierarchies to be first-class semantic hier-
archies over the data nodes, simultaneously. Queries like Q2 can be
easily expressed in a simple extension of XQuery, that takes color
into account in its path expressions. We illustrate an example MCT
database in Figure 2.

Example MCT Database: We depict a multi-colored tree database
by showing each colored tree separately. The example MCT movie
database in Figure 2 has trees of three colors: red, green and blue.
For the moment, focus on just the red and the green trees. The red
tree consists of, among other nodes, the hierarchy of movie-genre
nodes, and their associated children name nodes. The green tree
consists of, among other nodes, the temporal hierarchy of Oscar
movie-award nodes, and their associated children name nodes.
All edges in a colored tree have the same color, depicting the parent-
child relationships in that colored tree.

A node is stored once in the database irrespective of how many
colored trees it participates in. A node that has multiple colors



Q1 : Return names of comedy movies whose title contains the word Eve.

Q2 : Return names of comedy movies that were nominated for an Oscar, whose title contains the word Eve.

Q3 : Return names of comedy movies that were nominated for an Oscar, in which Bette Davis acted.

Q4 : Return names of actors in movies nominated for an Oscar, with more than �� votes.

Q5 : Return the list of Oscar nominated movies, grouped by the number of votes received.

Figure 1: Example queries against movie database
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Figure 2: Example MCT database comprising three single-colored trees. Multi-colored nodes occur in multiple trees, are represented
with multiple circles, and have associated an identifier label comprising the node colors (by their initials) and a unique node number,
e.g., RG012.

is represented in each of its colored trees, e.g., as a green circle
with a red outer circle in the green tree, and as a red circle with
a green outer circle in the red tree. In the example MCT movie
database, a movie node is both red and green (i.e., it participates
in both colored hierarchies), if it has been nominated for an Oscar
movie-award. A movie node is only red if it has not been nom-
inated for an Oscar movie-award. In the example, the children
name nodes of movie nodes have all the same colors as their par-
ents. In addition, movie nodes that are both green and red have
green children votes nodes, indicating the number of first-place
votes received.

Example Queries: As in XQuery, multi-colored XQuery (MCX-
Query) queries are FLWOR expressions (for, let, where, order
by, return), with path expressions replaced by their colored coun-
terparts. An ordinary path expression identifies nodes within a
single tree by executing different location steps; each step gener-
ates a sequence of nodes and filters the sequence by zero or more
predicates. A colored path expression additionally specifies col-
ored labels with each location step, using curly braces, identifying
the colored tree(s) to navigate in that location step. Unabbreviated
MCXQuery expressions for queries Q1 and Q2 (of Figure 1) are
given in Figure 3.

2.2 movie-role Nodes with Multiple Colors
Consider, again, our movie database in Figure 2. All actor

nodes and their children name nodes are represented in a (rel-
atively) shallow blue hierarchy. Since each movie-role node
captures the relationship of an actor with a movie, these nodes
(and their children name nodes) can be made both red and blue:
its red parent is the movie node, and its blue parent is the actor
node participating in this specific relationship. Note that, to demon-

strate the flexibility of our MCT data model, we have chosen (arbi-
trarily) not to let movie-role nodes be green, even if the movie
was nominated for an Oscar movie-award.

Having modeled actor nodes and movie-role nodes, we
can now use multi-colored XQuery to concisely express query Q3,
as in Figure 3. Note that multiple colored path expressions are
needed in the for clause, since we decided to conservatively ex-
tend XQuery, which currently does not support the ancestor and
ancestor-or-self axes [7]. If these axes were supported,
query Q3 would be expressible using a single colored path expres-
sion, with different colors used at different location steps.

2.3 Colors are not Views
An alternative to the MCT model is to use XML views: create

deep tree views over the (stored) shallow tree data, and let users
pose queries against the deep tree views. For example, one could
specify Deep-1, in Example 1.1, as an XQuery view over Shallow-
1. While this would ease query specification, query evaluation over
an unmaterialized view would still be expensive. Further, and more
importantly, updates would still be problematic. Since updates
through XML views can be ambiguous in general (just as for SQL
views), users would be forced to specify updates over the shallow
tree representation, requiring them to be aware of two representa-
tions, one for querying and one for updates. Materializing the view
can address the query evaluation efficiency, but leaves the update
issue unresolved.

In contrast, each element (content and attributes) is stored pre-
cisely once in the MCT model, irrespective of the number of colors
it has. Also, edges between MCT nodes are independently specified
in each colored tree, and are expected to be semantically indepen-
dent; if there are dependencies between edges, these must explicitly



Q1: for $m in document("mdb.xml")/fredgdescendant::movie-genre[fredgchild::name = "Comedy"]/
fredgdescendant::movie[contains(fredgchild::name, "Eve")]

return createColor(black, <m-name> f $m/fredgchild::name g </m-name>)

Q2: for $m in document("mdb.xml")/fredgdescendant::movie-genre[fredgchild::name = "Comedy"]/
fredgdescendant::movie[contains(fredgchild::name, "Eve")],

$m in document("mdb.xml")/fgreengdescendant::movie-award
[contains(fgreengchild::name, "Oscar")]/fgreengdescendant::movie

return createColor(black, <m-name> f $m/fredgchild::name g </m-name>)

Q3: for $m in document("mdb.xml")/fgreengdescendant::movie-award
[contains(fgreengchild::name, "Oscar")]/fgreengdescendant::movie,

$r in document("mdb.xml")/fredgdescendant::movie-genre[fredgchild::name = "Comedy"]/
fredgdescendant::movie[. = $m]/fredgchild::movie-role,

$r in document("mdb.xml")/fbluegdescendant::actor
[fbluegchild::name = "Bette Davis"]/fbluegchild::movie-role

return createColor(black, <m-name> f $m/fredgchild::name g </m-name>)

Q4: for $a in document("mdb.xml")/fgreengdescendant::movie-award
[contains(fgreengchild::name, "Oscar")]/fgreengdescendant::movie
[fgreengchild::votes � 10]/fredgchild::movie-role/fbluegparent::actor

return createColor(black, <a-name> f $a/fbluegchild::name g </a-name>)

Q5: createColor(black, <byvotes> f
for $v in distinct-values(document("mdb.xml")/fgreengdescendant::votes)
order by $v
return

<award-byvotes>
f
for $m in document("mdb.xml")/fgreengdescendant::movie[fgreengchild::votes = $v]
return $m
g
<votes> f $v g </votes>

</award-byvotes>
g </byvotes>)

Figure 3: Example MCXQuery queries

be specified as constraints. Thus, using MCT, one can avoid redun-
dant storage and also update anomalies.

2.4 Overview of the Rest of the Paper
Data modeling traditionally distinguishes between the logical

data model, which consists of data values, structured by a schema
and manipulated by the query language, and the physical data model,
which focuses on the storage, indexing and transformation of these
data values. We make the same distinction, and, in addition, con-
sider an exchange data model, which deals with the serialization of
data values for exchange between applications.

MCT is our logical data model, structuring data values using
multiple hierarchies, and the bulk of this paper is devoted to MCT
(Section 3), and its related query and update languages (Section 4).
One of the key roles of XML is for information exchange, so we
develop algorithms for serializing, as XML, an MCT database in
Section 5. There are multiple physical data models currently be-
ing investigated for storing XML data, including relational and na-
tive approaches; in Section 6, we illustrate how these approaches
could be extended for storing and manipulating MCT databases,
and describe our implementation of MCT on top of the Timber na-
tive XML database. Finally, in Section 7, we validate our intuitions
about the many benefits of MCT queries and updates, using our
prototype implementation.

3. THE MCT LOGICAL DATA MODEL
In this section, we formally develop the MCT logical data model,

which we motivated and illustrated using examples in the previous

section. MCT is an evolutionary extension of the XML data model
of [14], and, hence, is presented as such. As we shall see in the
next section, this evolutionary approach allows us to build on query
and update languages proposed for XML to obtain manipulation
languages for MCT databases.

3.1 Multi-Colored Trees
Nodes in the XML data model are organized in a data tree, which

defines a global document order of nodes, obtained by a pre-order,
left-to-right traversal. Every XML data model value is a sequence
of zero or more items, where an item is either a node or an atomic
value. The multi-colored trees (MCT) data model enhances the
XML data model in two significant ways:

� Each node has an additional property, referred to as a color,
and nodes can have one or more colors from a finite set of
colors C.

� A database consists of one or more colored trees Tc� c � C,
where each node in Tc has color c (as one of its colors).

More formally, we have:

DEFINITION 3.1. [Colored tree] LetN be a finite set of nodes
of the seven kinds defined by the XML data model, and C be a finite
set of colors. A colored tree Tc � �Nc� Ec�� c � C, where (i) The set
of nodesNc � N ; (ii) The set of edges Ec � Nc�Nc�Nc defines
an ordered, rooted tree, satisfying the tree relationships imposed by
the XML data model between the different kinds of nodes, with a



dm:parent($n as Node,
$c as xs:string) as Node?

dm:string-value($n as Node,
$c as xs:string) as xs:string?

dm:typed-value($n as Node,
$c as xs:string) as AtomicValue*

dm:children($n as Node,
$c as xs:string) as Node*

Figure 4: Modified node accessors

triple �np� nl� n� specifying that node n has np as its parent and
nl as its left sibling.1

Essentially, a single colored tree is just like an XML tree. Al-
lowing for multiple colored trees permits richer semantic structure
to be added over the individual nodes in the database.

DEFINITION 3.2. [MCT database] A multi-colored tree (MCT)
is defined as a triple �N � C� fTcg�, where (i) each Tc� c � C, is a
colored tree; (ii) N �

S
cNc; and (iii) each attribute, text

and namespace node n� associated with an element node n�
in any of the colored trees has all the colors of n�, and has n� as
its parent node in each of its colored trees.

An MCT is said to be an MCT database if the root of each of its
colored trees is the same document node (which, hence, has all
colors in C), else it is an MCT database fragment.

Intuitively, in an MCT database (fragment), a node belongs to
exactly one rooted colored tree, for each of its colors. This is sim-
ilar to the XML data model, where a node can belong to exactly
one rooted tree. Unlike an XML database, however, there is no
global document order of nodes in an MCT database: each colored
tree defines its own local order of nodes, obtained by a pre-order,
left-to-right traversal of the nodes in the colored tree.

3.2 Node accessors
In the XML data model [14], ten accessors are defined for all

seven kinds of nodes. Four of these accessors, namely, dm:parent,
dm:string-value,dm:typed-value, and dm:children,
would need to be extended to take a color into account. Their sig-
natures are given in Figure 4. If the node on which these accessors
are called does not have the color that is passed as an argument to
the accessor, an empty sequence is returned. Otherwise the node
and the accessor are said to be color compatible, and the desired
result is returned from the appropriate colored tree.

The other six accessors defined in the XML data model, namely,
dm:base-uri,dm:node-kind,dm:node-name,dm:type,
dm:attributes, and dm:namespaces, are not influenced by
the color of the node, and continue to have the same signature and
meaning as in the XML data model.

In addition, a new accessor needs to be defined on all node kinds
to determine the colors of a given node:

dm:colors($n as Node) as xs:string+

3.3 Node Constructors
In the XML data model, each node kind defines its constructors,

which always return a new node with unique identity. This is feasi-
ble since the nodes can be constructed iteratively, in a “bottom-up”
fashion in the XML tree. In our MCT data model, it is not always
1We use the convention �np� np� n� to identify node n with parent
np, and no left sibling.

possible to construct a node only after all its children in each of
its colors have been constructed, e.g., element node n� may be a
child of element node n� in one color, but a parent in a different
color. To effectively permit the construction of multi-colored trees,
we define two different types of constructors for each node kind.

� First-color node constructors are like constructors in the XML
data model, except that they are extended to take a color into
account, and return a new node with unique identity.

� Next-color node constructors take a previously constructed
node, and add a color and the tree relationships in that color;
the same node is returned.

Example constructor signatures for the element node are de-
picted in Figure 5. Note that the signature of the next-color con-
structor is somewhat smaller than that of the first-color constructor,
since one does not need to repeat some of its properties, and its
attribute and namespace nodes.

The MCT logical data model defines allowable syntactic struc-
tures. The semantics of the database are captured by its schema.
The XML schema language proposed by the W3C deals with both
structure [27] and datatypes [6]. While we briefly use MCT schemas
in Section 5, formally extending XML schema to multi-colored
trees is an interesting direction of future work.

3.4 Shallow and Deep
We conclude this section by characterizing the intuitive notions

of shallow and deep XML trees the we have used in our examples.
We call an XML schema shallow provided it is in XNF, as de-

fined in [3]. More precisely,

DEFINITION 3.3. [Shallow, Deep Schemas] Let �D�F � be
a schema, where D is a DTD and F is a set of functional depen-
dencies. Then, �D�F � is shallow provided for every non-trivial
functional dependency S � p��attr or S � p�content that is
implied by �D�F �, the functional dependency S � p is also im-
plied by �D� F �, where p is any DTD path from the root.
�D�F � is said to be deep if it is not shallow.

It is easy to verify that the Deep-1 and Shallow-1 trees used in
Example 1.1 indeed satisfy the above definition. Note that this def-
inition permits schemas with non-trivial hierarchies to be charac-
terized as shallow. Further, a shallow schema is not necessarily
unique, e.g., a schema with a non-trivial hierarchy can always be
flattened (using ID-IDREFS), while preserving its “shallowness”.

4. DATA MANIPULATION LANGUAGES
We now formally develop the MCXQuery logical query language,

which we motivated and illustrated using examples in Section 2.
The MCT data model, being an evolutionary extension of the XML
data model, allows us to naturally build our logical query language
as an extension to XQuery [7].

4.1 MCXQuery Path Expressions
An XQuery path expression can be used to locate nodes in tree-

structured XML data. Here we discuss only the unabbreviated syn-
tax for path expressions; abbreviated syntax can be developed for
some expressions (as used in examples early in the paper).

Examples of (unabbreviated) XQuery path expressions include:

document("mdb.xml")/child::movie-genre
descendant::movie-genre[name = "Comedy"]
$c/parent::node()



dm:element-node($qname as xs:QName, $nsnodes as NamespaceNode*, $attrnodes as AttributeNode*,
$children as Node*, $type as xs:QName, $color as xs:string) as ElementNode

dm:element-node($self as ElementNode, $children as Node*, $color as xs:string) as ElementNode

Figure 5: Modified and new node constructors

In the MCT logical data model, a node may have multiple colors,
in which case it would belong to multiple colored trees. Hence, an
axis and a node test specification (e.g., parent::node()) does
not suffice to uniquely identify the navigation to be performed in a
single step, from a context node. For example, in the MCT database
of Figure 2, the movie node RG012 has two parent nodes: a
movie-genre node in the red tree, and a movie-award node
in the green tree. However, since a node belongs to exactly one
rooted colored tree, for each of its colors, augmenting the speci-
fication of a step by a color would serve to provide the necessary
disambiguation.

We achieve this by enclosing the color specification in curly
braces, preceding the axis specification in the step expression, e.g.,
fredgdescendant::movie, fbluegchild::movie-role.
The extensions to the relevant productions in the grammar of XQuery
are shown in Figure 6. In general, different steps in an MCXQuery
path expression may have different color specifications, and the re-
sulting navigation over the MCT database can be quite sophisti-
cated. The result of evaluating an MCXQuery path expression is,
as before, a sequence of items, all of which have the same color,
as determined by the color specification of the final step in the path
expression. The order of items in the result sequence is determined
by their local order in the corresponding colored tree.

Figure 3 presents a few illustrative path expressions in MCX-
Query, with each step augmented by a color specification. Query Q4,
in particular, illustrates the use of different color specifications in
different steps of the path expression.

4.2 MCXQuery Constructor Expressions
XQuery provides constructor expressions that can create XML

tree structures within a query, based on the notion of constructors
for the different node kinds in the XML data model.

When the name of the element to be constructed is a constant,
the element constructor is based on standard XML notation. En-
closed expressions, delimited by curly braces (to distinguish them
from literal text),2 can be used inside constructors to compute the
content of the constructed node, and also its attributes.3 Enclosed
expressions are evaluated and replaced by their value (which may
be any sequence of items). For example, the return clauses of the
Deep-1 and Shallow-1 queries in the introduction have constructor
expressions with enclosed expressions.

Since every tree in the MCT logical data model is a colored tree,
XQuery constructor expressions are suitable for the creation of new
colored trees in an MCT database as well. One such constructor ex-
pression could be used for the creation of each colored tree, and an
MCT database/fragment could be created using multiple construc-
tor expressions. One key issue needs to be resolved, however. The
result of an element constructor in XQuery is always a new ele-

2Note that the use of curly braces for enclosed expressions does
not conflict with their use to specify color when navigating steps in
path expressions.
3A special form of constructor called a computed constructor can
be used in XQuery to create an element node or attribute
node with a computed name or to create a document node or a
text node. These can also be extended, in an analogous fashion,
for MCXQuery.

ment node, with its own identity; all the attribute and descendant
nodes of the new element node are also new nodes with their own
identities, even though they may be copies of existing nodes.

Always creating a new node is inappropriate for constructor ex-
pressions in MCXQuery, since such a node would have a different
identity from existing nodes in the MCT database, limiting the ca-
pability of MCXQuery constructor expressions in creating MCT
databases/fragments, where nodes belong to multiple colored trees.
To effectively permit the construction of multi-colored trees, MCX-
Query constructor expressions need the ability to reuse existing
nodes and their descendants, in addition to being able to create el-
ement nodes with new identities. This is achieved as follows.

� When an enclosed expression is evaluated, its value (a se-
quence of items) retains the identities of nodes in the se-
quence, instead of creating copies by default. This is similar
to the behavior of MCXQuery path expressions.

� To create node copies, MCXQuery provides a function named
createCopy. The createCopy function takes any se-
quence of items as its argument, and returns copies of the
items in the sequence, in the same order.

For example, the result of evaluating the enclosed expression in
the return clauses of queries Q1, Q2 and Q3 in Figure 3 would
contain the node with identity RG015, since identities are pre-
served when the enclosed expression is evaluated. If, however, the
return clause contained the constructor expression:

<m-name>
createCopy(f $m/fredgchild::name g)

</m-name>

the result would contain a new node, with a different identity.
To associate a color with the result of a constructor expression,

MCXQuery provides a function named createColor. This func-
tion takes two arguments: a color literal as its first argument, and
any sequence of items as its second argument. It adds the specified
color to the set of colors associated with each node in its second
argument.

Finally, we address an interesting issue that arises if node iden-
tities are retained when evaluating enclosed expressions in a con-
structed expression, especially when this result is colored. Since a
node can be present at most once in any colored tree, the result of
any constructed expression should not have a node (with a given
identity) occur at more than one position in the colored tree. Such
a situation can arise, as the following constructed expression illus-
trates:

createColor(black, <dupl-problem>
<m1> f $m/fredgchild::name g </m1>
<m2> f $m/fredgchild::name g </m2>

</dupl-problem>)

In this case, the expression raises a dynamic error. Note that such
a situation doesn’t arise if the createCopy function is appropri-
ately used.



85: ForwardStep ::= (Color ForwardAxis NodeTest) j (Color AbbreviatedForwardStep)
86: ReverseStep ::= (Color ReverseAxis NodeTest) j (Color AbbreviatedReverseStep)
151: Color ::= ("f" Literal "g")

Figure 6: Productions for MCXQuery path expressions
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Figure 7: Result of evaluating Q5

4.3 XQuery Expressions
We present an example depicting how an MCXQuery expres-

sion can be used to add a new colored tree, consisting of new
nodes and previously existing nodes, to an MCT database. Con-
sider query Q5 from Figure 1. The MCXQuery expression is shown
in Figure 3. The result of evaluating this expression against the
MCT database of Figure 2 is shown in Figure 7. Notice that movie
nodes now have three colors: red (because of their participation
in the movie-genre hierarchy), green (because of their partic-
ipation in the movie-award hierarchy), and black. All other
nodes, including the newly created votes nodes in the result, are
only black. Note that the result is a tree since each movie in the
green movie-award hierarchy has only one child element named
votes.

There is as yet no standard for specifying updates to XML data.
In [25], the authors propose an extension to XQuery (using for,
let, where and update clauses) to perform updates to XML
documents. It is easy to see that the MCXQuery extensions to
XQuery path expressions and constructor expressions, described
previously, can be used in a straightforward manner in conjunction
with the update extensions of [25], to unambiguously update an
MCT database. Each of the update operations can be performed
on existing colored trees, once the tuple of bindings is returned.
Note that update operations implicitly add existing colors to new
nodes, or to existing nodes. Creating new colored trees is done via
extensions to the constructor expressions in MCXQuery.

5. SERIALIZATION OF MCT DATABASES
While the MCT logical data model is the basis for the query

and update languages, and the MCT physical data model (discussed
in Section 6) is the basis for storage of the data values, these are
not appropriate for exchanging information in a flexible manner,
which is crucial in today’s networked world. What is needed is
an exchange data model, which deals with the serialization of data
values for exchange between applications.

Regular XML is the de facto standard for data exchange. So
we need to develop a (serialized) XML representation of an MCT
database, such that the original MCT database can be reconstructed
efficiently from the serialized representation at the receiver’s end.
In addition, we would like this serialization to be compact.
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Figure 8: Example MCT Schema

5.1 Real and Primary Colors
Consider our running example database of Figure 2. For illus-

tration, suppose movie elements additionally have category
subelements in the green hierarchy, movie-role can have payment
subelement in the blue hierarchy and description and scene
subelements in the red hierarchy. The corresponding schema is
illustrated in Figure 8. For each element node type, call the col-
ors (hierarchies) in which it appears in the MCT database its real
colors. Call the hierarchy (color) in which an element is repre-
sented in a serialization, its primary color w.r.t. the serialization.
So, movie elements have red and green as real colors and these
are their only possible primary color choices. Not every movie el-
ement need be both red and green in an instance but ignore this for
now: we will revisit this point. The name subelement of movie
has the same primary color choices, although its choice is deter-
mined by that of its parent movie element. The movie-role
element can have blue or red as its primary color, since it is present
in those hierarchies. But, surprisingly green is also a primary color
choice for movie-role, even though it is not its real color. This
is because when a movie element’s primary color is chosen to
be green, we have the option of using the same color as the pri-
mary color for all its subelements in any colored hierarchy, re-
gardless of their real colors. In our example, some of the op-
tions for primary color choices are: (i) blue for movie-role,
movie-role/name, payment, description, and scene,
red for movie, movie/name, votes, and category; (ii) red
for movie and all its descendants4; (iii) blue for movie-role
and all its descendants in any color, and green for movie and its
immediate subelements in any color, except movie-role; and
(iv) green for movie and all its descendants in any color.

5.2 Cost-based Serialization
To serialize using option (i), we need to associate a movieId

attribute with each (red) movie node and a movieIdRef at-
tribute with each (blue) movie-role node. Similarly, other par-
ent pointers have to be set up, as suitable IDREFs. In addition
to setting up such parent pointers, we need to associate a color at-
tribute with certain elements in the serialization. The color attribute

4We can traverse multiple colors, so payment is considered a de-
scendant of movie for this purpose.



type is a set of strings of the form hcolori� �, where hcolori is a
string representing a color and is one of ���, and is optional.
If the color attribute of an element e contains the value “blue�”,
it means e as well as its entire subtree in the serial representation
have color blue (in addition to others). Similarly, “blue�” says the
relevant subtree is not blue, whereas “blue” only affects e’s color.
These color denotations can override: e.g., “blue” at a descendant
of e whose color includes “blue�” overrides the latter and says the
descendant has color blue. In finding a serialization of minimal
expected cost, we have to account for the cost of such encoding
of color information in addition to parent pointer setup. One ad-
ditional piece of information that is relevant for deciding the cost
of a particular primary color choice for an element is the average
number of its children of each element type. For example, each
movie-role may have only one name and description but,
say, 3 scenes on an average. We assume statistical summary in-
formation of this kind is available. Let cost�e� c�, for element type
e and color c, represent the cost of choosing c as the primary color
for e. For our running example, cost�movie� red� can be calcu-
lated as:

qname � �cost�name� red� � ���
qvotes � �cost�votes� red� � ���
qcategory � �cost�category� red� � ���
qmovie-role �minfcost�movie-role� red��

cost�movie-role� blue�g� �

The q’s represent the average number of each type of subelement
for a movie element. The “��” accounts for the inclusion of color
= “red�” for non-red subelements. The last “�	” accounts for set-
ting up the parent pointer (as an ID/IDREF) for a movie element
in the green hierarchy. In general, for each element type, the min-
imal cost, among possible primary color choices for each element,
as well as the best color choice itself can be determined using a
dynamic programming approach.

5.3 Optimal Serialization
In this paper, we consider only serializations where one of the

colors present in the original MCT database is chosen as the pri-
mary color for any element. Furthermore, we assume for simplicity
that elements that are multi-colored are not involved in any cycles
in the schema, and that for each multi-colored element type, there
is only one “production” in its schema grammar. Even then, deter-
mining the optimal serialization is non-trivial. The optimal serial-
ization algorithm is given in Figure 9. The algorithm uses a helper
function quant�m� shade� that for an element type m and color
shade, returns the average number of children of type m for an el-
ement corresponding to m’s parent type in the hierarchy with color
shade. For example, quant�movie-role� red� � �� means
on an average, a movie has 10 movie-roles. The serialization
scheme itself can be obtained by running the algorithm and then
associating with each element of a given type, the best primary
color choice found by the algorithm, and then following the ideas
described earlier regarding setting up of parent pointers and color
attribute values for various nodes.

Finally, recall so far we have assumed whenever an element type
has multiple colors, all its instances will appear in each of its col-
ored hierarchies. This is not always true; e.g., some movie ele-
ments may not appear in the green hierarchy since they were not
nominated for an Oscar. Our algorithm can be easily extended to
this case by noting: (i) the calculations and book-keeping used to
determine the best primary color choice, for an element type, can
be used to maintain a ranked set of color choices from best to the
worst, and (ii) whenever an actual element of a given type does
not appear in the current primary color choice for that type, use

Algorithm
Input: An MCT schema, together with stats
Output: Optimal serialization scheme
for (each color c) f

identify, proceeding top-down, the
multi-colored element types;
for (each such element type m) f

find cost�m� shade�, �shade � m�colors ;
pick the shade with the least cost; gg

end Algorithm

function cost�m� shade�;
Input: element type m and color shade, one of its

legal primary color choices;
Output: cost of choosing shade as m’s primary color;
if (jm�colorsj � �) f

if (m is a leaf) f
if (m�color � shade) cost � �;
else if (m is a child of a node whose

color includes shade)
cost � � � quant�m� shade�;
else cost � �� quant�m� shade�;
return cost; gg

cost � �� �jm�colorj � ��;
//parent pointer setup cost for other colors;

for (each color c � m�color) f
let m � e

�
� ���� ek be m’s production in color c,

where ‘‘ ’’ is 1, ?, +, or *;
for (each ei) f

let qi � quant�ei� shade�;
find the primary color choice c� with min.

cost for ei, subject to the constraint that
m’s choice is shade;

cost � cost� qi � cost�ei� c
��; gg

return cost;
end function

function findColor�e� p� cp� ce�;
Input: given e’s parent e has cp as primary
color choice, find best primary color choice ce for e;
set ce to that color c � e�color � p�color that
minimizes the cost cost�e� c�;

Figure 9: Algorithm optSerialize

the next best choice for that element and proceed iteratively for its
subelements. We omit details. We can show:

THEOREM 5.1 (OPTIMALITY OF SERIALIZATION). LetS be
an MCT schema together with summary information for each color,
of the average number of child elements of each type for each multi-
colored parent element type. Then the serialization scheme found
by Algorithm optSerialize is optimal w.r.t. S.

6. IMPLEMENTATION
There are many physical data models currently being investi-

gated for storing XML data, including relational and native ap-
proaches. First, we briefly discuss how these could be enhanced for
the physical representation and manipulation of an MCT database.
Next, we present greater detail with regard to the specifics of a
physical structure we have implemented.

6.1 Physical Model
One popular technique for the physical representation of XML

data is to map the data to an existing (relational) database sys-
tem. Several mapping techniques have been proposed (see, e.g.,
[16, 23, 30, 26]) to map tree-based XML data to flat tables in a
relational schema. Due to the heterogeneity of XML data, a sim-
ple XML schema often produces a relational schema with many
tables. Structural information in the tree-based XML schema is



modeled by joins between tables in the relational schema. Two
main strategies have been proposed for this purpose. First, one
could use primary-key foreign-key joins in relational databases to
model the parent-child relationships in the XML tree. Second, one
could use a (start, end, parent-start) interval encod-
ing or a Dewey-style encoding of each node in an XML tree, as the
node’s key, represented in one or more attributes of the relation, to
more directly determine relationships like ancestor-descendant and
preceding-following between nodes in the XML tree.

Since an MCT database consists of multiple colored trees, each
of which is akin to an XML tree, relational approaches for the phys-
ical representation of XML are easily extended to handle MCT
databases. Essentially, an MCT node content can be fragmented
into relations as with XML data. The structural participation of
a node in multiple colored trees can be represented using foreign-
keys, (start, end, parent-start) interval encodings, or
Dewey-style encodings, for each colored hierarchy, separately.

There are also several native XML databases, where the phys-
ical representation and manipulation of XML data is independent
of relational databases (see, e.g., [22, 18, 15]). Such native XML
database systems store XML data directly, retaining its natural tree
structure, but often take recourse to the previously mentioned en-
codings for node identification, especially for indexing purposes.
Two choices suggest themselves for the native physical represen-
tation of MCT databases. First, one can rely on mapping MCT
databases to XML (as discussed in Section 5), and then store this
using the native XML systems. Alternatively, one could use the na-
tive XML system for separately storing each colored tree. Where
one element appears in multiple colored trees, straightforward data
structures can be used to link the multiple occurrences of this ele-
ment, once in each tree, and to minimize the amount of data repli-
cated across these multiple occurrences.

6.2 Our Implementation
We modified the Timber [18] database system to implement the

MCT data model. In this system, element content and attributes are
stored separately from the element structural relationships. Thus,
each (traditional) XML element is represented as one structural
“node”, a separate content node, if the element has content, and
an attribute node, if the element has attributes. Sub-elements have
a similar representation of their own, and are merely linked to their
parent through the structural node.

For a multi-colored element, the content and attribute nodes re-
main the same as before. However, we create one structural rela-
tionships node for each color hierarchy that the element participates
in. Since the structural relationships for any one color are no differ-
ent than in the single color case, no modification is required to the
representation of the structural relationship node, or to the manner
in which nodes are indexed.

With the design just described, we have an effective representa-
tion of multi-colored elements, but with one critical shortcoming –
there is no way to determine the multiple colors of a given node.
Given a particular structural node, we can obtain its attribute and
content parts. But the XML database system we had did not pro-
vide a means to navigate in the opposite direction. We addressed
this by introducing additional “attributes” for multi-colored nodes
that provide links back to each of the corresponding single-colored
structural nodes. The physical structures corresponding to a portion
of the logical data of Figure 2 are depicted in Figure 10.

Each MC-query is decomposed into components that have a sin-
gle color. Each single color query evaluation proceeds in the nor-
mal manner. A color transition is accomplished by a cross-tree join
access method, which simply follows the links described above to
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Figure 10: Physical Model

obtain the structural node of each element for the color being tran-
sitioned to. This bulk access method is implemented in a straight-
forward fashion as an attribute-value based join. Since color transi-
tions are not free, alternative plans are often worth considering. For
example, we could choose to evaluate multiple single-color queries
first, and perform cross-tree joins at the end, minimizing the cost of
the cross-tree join. Alternatively, it may be preferable to perform a
single-color query, then a cross-tree join, before evaluating the next
single-color query, to benefit from a selection that greatly reduces
the size of the latter computation. Such choices must be evaluated
by a query optimizer in choosing a good plan. While we do not
anticipate any significant new challenges on account of having one
more type of join operator, the query optimizer design is beyond
the scope of this paper. For all the experimentation described next,
we manually specified the query plan, always choosing the one ex-
pected to be the best.

7. EXPERIMENTAL EVALUATION
Whereas the primary motivation for the multi-colored model is

ease of data modeling, it is frequently the case that better data mod-
els lead not just to simpler query specification but also to superior
performance. To test whether this is the case for MCT, we per-
formed an extensive experimental analysis, using the implementa-
tion described above. All experiments were performed on a sin-
gle processor Pentium IIIM 866MHz equipped with 512 Mbytes of
memory, 30GBytes of disk storage and Windows 2000 operating
system. The buffer pool size was set to 256Mbytes and data page
size configured to 8Kbtyes.

We used two popular data sets drawn from very different do-
mains: TPC-W and SIGMOD-Record. The TPC-W benchmark [28]
has been converted to XML format by XBench [29] using ToX-
gene [4]. The workload simulates an Internet commerce-oriented
transactional web server. We cannot directly use the XBench con-
version of TPC-W because it is not multi-colored. Instead, we used
the same tool, ToxGene, to generate TPC-W data in a multi-colored
schema of our design. As a baseline, we also generated the same
data in a shallow tree schema and in a deep tree schema. The shal-
low tree schema is a minor enhancement of the schema used by
XBench. The deep tree schema places customer at the top level
of the hierarchy, then order, address, country, item, and fi-
nally author. The MCT schema is comprised of 5 single-colored
hierarchies:

� customer--order--orderline,



MCT Shallow Deep
TPC-W Num. Elements 1,502,357 1,502,357 3,883,320

Num. Attrs 153,713 153,713 339,674
Content Nodes 1,295,818 1,295,818 3,307,589
Data MBytes 786.27 329.02 893.09
Index MBytes 520 215 538

SIGMOD Num. Elements 112,408 112,407 125,403
Record Num. Attrs 110,086 110,086 111,961

Content Nodes 108,823 108,823 118,202
Data MBytes 103.81 88.05 152.95
Index MBytes 29.7 18.7 20.5

Table 1: Storage Requirement

� billing address--order--orderline,

� shipping address--order--orderline,

� date--order--orderline, and

� author--item--orderline.

SIGMOD-Record is first scaled up by a factor of 100 (from 600KB
to 60MB), and then dealt with in the same manner. Its MCT schema
is comprised of 2 colored hierarchies:

� date--issue--articles, and

� editor--topic--articles.

The shallow tree schema has 3 trees: articles, date--issue,
and editor--topic. The deep tree schema is a minor enhance-
ment of the original schema.

Each experiment was run five times. The lowest and highest
readings were ignored and the other three were averaged. For our
experiments, we constructed an index on element tag name and
attribute id. We also constructed indices on element content and
attribute value, where needed.

7.1 Storage Requirements
First, we compare storage requirements of the three approaches.

Table 1 shows the numbers. As expected, the deep tree approach
has many more elements and requires considerably greater storage
due to its replication of data. The MCT approach has exactly the
same number of elements as shallow, but requires storage that is
greater than shallow but less then deep. The reason for this is that
each multi-colored element is physically stored as multiple struc-
tural nodes (see Figure 10), one for each color, with an attendant
overhead for this storage.

Looking at the sizes of indices created, we find similar trends.
Since it is the structural nodes that are most interesting to index,
the size of index in the case of MCT is comparable to deep and
much larger than for shallow.

7.2 Query Processing Time
Table 2 shows the execution time in seconds of 20 queries from

the TPC-W XBench workload and 7 queries from the SIGMOD-
Record workload. In addition, it also shows times for a few update
statements that we defined.5

We ran these experiments for a range of buffer pool sizes, and
found no significant differences in the trends for the results ob-
tained. As such, we report results for only on a buffer size of 256

5All queries will be made available on a website as supplemental
data upon paper acceptance.

Query Results MCT Shallow Deep Colors Trees
TQ1 1 0.12 0.11 0.12 1 1
TQ2 719 0.60 0.60 0.61 1 1
TQ3 4 0.82 0.83 0.16 2 2
TQ4 726 0.37 0.39 0.38 1 1
TQ5 3 0.05 0.05 0.05 1 1
TQ6 3244 1.79 1.72 1.81 1 1
TQ7 58 0.02 0.01 112.25 1 1
TQ7D 44929 2.79 1 1
TQ8 1 0.35 0.35 0.67 1 1
TQ9 5110 0.55 30.16 0.76 1 2
TQ10 90 6.61 8.96 0.71 2 2
TQ11 63 0.23 9.68 0.25 1 2
TQ12 1 0.01 0.01 0.54 1 1
TQ12D 3 0.54 1 1
TQ13 2893 0.11 2.36 0.23 1 2
TQ14 253 0.09 2.29 0.25 1 2
TQ15 97 0.72 38.11 1.34 1 2
TQ16 92 0.40 20.09 34.61 1 2
TU1 1 0.01 0.02 1 1
TU1D 335 3.18
TU2 1 0.03 0.02 1 1
TU2D 5 0.19
TU3 22 0.36 15.14 0.65 1 2
TU4 1 0.12 0.49 1 2
TU4D 10 0.33
SQ1 1 0.01 0.01 0.01 1 1
SQ2 3 0.02 0.91 0.02 1 2
SQ3 20 0.02 10.32 0.02 1 2
SQ4 6 0.01 0.01 0.30 1 1
SQ4D 1994 0.13
SQ5 84 0.01 3.11 0.01 1 2
SU1 5 0.01 0.01 1 1
SU1D 25 0.04
SU2 1 0.01 0.01 1 2
SU2D 7 0.05

Table 2: Query Processing Time in Seconds. The first let-
ter of the query label indicates the data set used: T=TPC-W,
S=SIGMOD-Record. The second letter indicates query type:
Q=Read-only, U=Update. The results column indicates the
number of results produced for a read-only query, and the
number of elements updated for an update query.

Megabytes. We also ran experiments for a range of data-set sizes
and found that most of the times scaled linearly with data set size.
The only exceptions were the two queries involving an inequality
value join, which is implemented as nested loops, and hence has a
quadratic dependence on data set size. Once more, in the interests
of space, we report numbers only for the full size data set.

We repeated our experiments under both cold cache conditions
(by flushing all buffers completely before each query evaluation)
and warm cache conditions (where a first time execution of the
query is allowed to populate the buffer for subsequent warm cache
executions). The trends were similar in both cases. We choose to
report numbers here for the warm cache case since the differences
stand out more – in the cold cache case, even a query plan that is
very good about managing memory pays at least some penalty for
getting data into the buffer, and this penalty is more closely related
to the size of data stored than to the locality/quality of the query
plan.

Overall, one can immediately see that MCT in all cases is either
comparable to shallow or substantially faster. However, deep seems
to have a large variance – performing much better some times, and
much worse at others.

Additional annotations in Table 2 help to clarify the picture. For
each query we have indicated the number of different trees in-



volved, indicating the number of value joins that were required by
shallow, and the number of colors involved, indicating the number
of color transitions required by MCT. We observe that structural
joins are substantially cheaper to evaluate than value joins, with
color crossings having a cost only slightly less than that of a value
join in our implementation. (A more sophisticated implementation
could bring down the cost of a color crossing substantially – but
that is only speculation on our part at this time.) No value joins
are required for the MCT and deep representations. Obviously,
the concept of color crossings only applies to MCT. The relative
cost of a query is immediately determined by the number of value
joins or color crossings. When there are not any, shallow and MCT
have comparable performance, and are never beaten by deep. When
there are value joins or color crossings, performance suffers. MCT
beats shallow precisely in the cases where it does not need a color
crossing, because it was able to fold the hierarchy relevant to the
query into a single color, whereas shallow had to join trees. Since
MCT has multiple colors available to it, it is indeed possible to have
multiple hierarchies that could each be the one most appropriate for
a query, and choose one of them a priori as part of database design.

Furthermore, with value-joins, the total running time of the query
is very sensitive to the sizes of inputs to the join. Consider TQ9 and
TQ11, which are similar, except that the former computes a larger
join (input sizes to the join are 5110 and 10000) than the latter (with
input sizes 33 and 25912). The final result cardinality of the former
is also correspondingly higher. The running time of the shallow
tree query is dominated by the value join, and grows linearly with
the size of the join. In contrast, the running times of deep and MCT
change very little between these two queries.

The queries where deep does poorly all involve duplicate re-
sults. (The other queries happened to have no duplicates, due to
the schema specifications.) Deep not only has the cost of retrieving
more (duplicate) results, but it also has to perform costly duplicate
elimination afterwards. To tease these two factors apart, for each
of these queries, we report two versions for deep, with and without
duplicate elimination. (Queries run without duplicate elimination
are marked with a “D” at the end in Table 2.) The conclusion is that
any one of these factors is enough to render deep uncompetitive –
the two together just compound the difficulty.

TQ16 is particularly interesting since it both requires value joins
in shallow and also generates duplicate intermediate results in deep.
In consequence, MCT is able to perform better than both shallow
as well as deep. Note that TQ16 includes grouping with duplicate
elimination as part of the query specification: since the duplicates
are in intermediate results rather than in the final results, we are
not able to define and run a separate TQ16D query to measure the
performance of deep without duplicate elimination.

The update queries showed trends similar to read-only queries.
Where the update specification was simple, and there were no du-
plicates, all three schemes performed comparably. Once duplicates
are involved, the performance of deep suffers because of having to
update multiple copies. When the update specification is complex
enough to require a value join to identify the nodes to be updated,
shallow takes a performance hit.

7.3 Query Simplicity
We have looked at performance metrics above, including costs

for storage, for queries, and for updates. But for a data model, per-
haps a more important metric is query simplicity. A central goal of
a good data model should be to make it easy to express complex
queries. While simplicity itself is hard to quantify, we have iden-
tified several metrics that are likely to be correlated – the number
of path expressions and the number of variable bindings. For each
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Figure 11: Query Specification Complexity: Number of Path
Expressions
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Figure 12: Query Specification Complexity: Number of Vari-
able Bindings

of the TPC-W queries we studied above, we present these metrics
in Figure 11 and Figure 12; queries that result in identical num-
bers for all three strategies are not reported. Our conclusion is that
MCT and deep are comparable, with the equivalent shallow tree
query being quite a bit more complex. The reason is that struc-
tural traversals are succinctly expressed in XPath (and XQuery)
whereas value-based joins, as required by shallow, require the def-
inition of multiple variables and the introduction of a predicate in
the WHERE clause stating the join condition.

8. RELATED WORK
Graph-based models have been investigated for data modeling

in depth, initially in a general context (e.g., see GraphLog [11],
Hy+ [10]), and more recently, for semi-structured data (e.g., see
StruQL [13], UnQL [9], Lorel [1]). Indeed, there have been recent
proposals to even extend the already expressive and powerful semi-
structured data models (e.g., see [12, 24]). Our work is distinct
from all of these in that on a per-color basis, our model is tree-
based, with all the simplicity and performance benefits trees have
to offer. Besides, our extension is specifically set in the context
of XML. Indeed, we have discussed at length how the basic XML
model and query language syntax (XQuery) can be extended to take
advantage of multiple colored hierarchies.



Data warehouses typically provide support for multiple hierar-
chies, one (or more) for each dimension (see, e.g., [17, 19, 20]).
A data warehouse schema consists of one or more fact tables and
a number of dimension tables. The latter model hierarchical rela-
tionship among members of a dimension: e.g., coke and pepsi
are children of soda, while soda and juice may be children of
softdrinks. A tuple in a fact table can be thought of having
a presence in each dimension for which it has values. However,
to our knowledge, none of the works in data warehousing/OLAP
leverage this perspective in any formal way.

Finally, Pedersen et al. [21] are investigating the integration of
OLAP technology with XML data. However, their main concerns
are modeling cost and query optimization in the context of provid-
ing OLAP-style functionality for heterogeneous XML data. Given
the applicability of the MCT data model for XML data warehous-
ing and OLAP, their work neatly complements ours.

9. CONCLUSIONS
We have developed a multi-colored tree model, which eases the

restriction of developing a single hierarchy over data to be repre-
sented in XML. We described how this logical data model could
be specified using only evolutionary extensions to the XML data
model and to XQuery. Given the importance of exchanging data,
we presented an algorithm to obtain a size-optimal serialization of
data represented in our model, rendering it in pure XML. We also
discussed the changes necessary to XML databases to be able to
support multi-colored trees, and describe an implementation on top
of the Timber native XML database. Finally, an experimental eval-
uation, using our implementation, demonstrates the many advan-
tages of MCT over shallow and deep XML trees.

The multi-colored tree model proposed in this paper has three
major benefits:

� Ease of Schema Design: The hard choices required for a deep
tree design (i.e., which element to put below which) are made
easier by permitting multiple hierarchies to co-exist over the
same data. An added benefit is that, like shallow, MCT can
avoid update anomalies.

� Ease of Query Specification: XQuery (and XPath) make it
much easier to specify hierarchical structural navigation than
value-based or ID-IDREF joins. Multi-colored trees help
avoid the latter and use the former instead.

� Efficiency in Query Processing: Structural (containment) joins
are much cheaper to compute than value-based (or pointer)
joins. This makes it much cheaper to evaluate MCT queries
compared with equivalent single-color queries that require
value-based or ID-IDREF joins. Another way of thinking
about this is that more “pre-computed” structural paths are
available (as opposed to ad hoc join paths).
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