
Towards Fully Distributed and Privacy-preserving Recommendations via

Expert Collaborative Filtering and RESTful Linked Data

Jae-wook Ahn, University of Pittsburgh, Pittsburgh, USA

Xavier Amatriain, Telefonica Research, Barcelona, Spain

Abstract—Expert Collaborative Filtering is an approach to
recommender systems in which recommendations for users are
derived from ratings coming from domain experts rather than
peers. In this paper we present an implementation of this
approach in the music domain. We show the applicability of
the model in this setting, and show how it addresses many
of the shortcomings in traditional Collaborative Filtering such
as possible privacy concerns. We also describe a number of
technologies and an architectural solution based on REST and the
use of Linked Data that can be used to implement a completely
distributed and privacy-preserving recommender system.

I. INTRODUCTION

Recommender systems can be seen as a practical alternative

to traditional search. They can satisfy the user need for relevant

information without the overhead of having the user explicitly

state a query. The query is therefore derived from both the

user preferences and the application context. Recommender

systems have proved their business value in many contexts

already, ranging from traditional e-Shopping sites [13] to very

different settings such as Television [17].

One of the most favored approaches to recommending is

Collaborative Filtering (CF). CF is a technique to filter or eval-

uate items through the opinions of other people [22]. It makes

use of peer user ratings in order to provide recommendations

on the items that are unknown but may interest the target user.

Both the CF approach and a number of its shortcomings are

explained in Sec. II

In our previous work [2], we introduced a radically different

approach to CF in which recommendations are drawn from

a pool of domain experts, instead of using the opinion of

the general population. This expert collaborative filtering is

explained in Sec. III. We also highlight how it addresses some

of the main limitations in collaborative filtering.

Since the original study was based on the specific domain of

movie recommendations, there were also some concerns that

expert CF would not be applicable in other domains. For this

reason, we developed our current application to implement the

approach in the music domain. To understand the properties

of this particular domain, we analyze the data obtained from

music expert ratings in Sec.IV.

The original design of our previous experimental evaluation

did not include the development of an application, so there

were many unanswered questions related to the practicality

of the approach. To address these issues, we now present

a distributed application that uses latest web technologies

such as REST [10] and Linked Data [7] to offer a practical

implementation of expert CF. We describe the architecture of

the application in Sec. V.

Therefore, the main contributions of this paper can be

summarized in the following:

• A demonstration of the validity of expert CF in domains

other than cinema

• An analysis of the different rating behavior between

online movie and music critics

• A practical implementation of a completely distributed

and privacy-preserving recommender system using latest

web technologies such as REST and Linked Data.

II. COLLABORATIVE FILTERING

CF is based on the assumption that users/items can be well

predicted by other users/items that behaved in a similar way

in the past. In order to put this into practice, the traditional

approach is based on the nearest-neighbor (kNN) algorithm.

In user-based CF, we build neighborhoods of users while in the

item-based approach, neighborhoods are created from similar

items. In both cases, though, in order to compute nearest

neighbors, we need a previous step of computing similarities

between all users or all items. Regardless of the particular

similarity measure – cosine and Pearson correlation are among

the most used –, this is a costly operation that is computed in

a centralized manner, since the distance computation needs

to access all pairs of users or items. The formation of

neighborhoods, or at least the computation of the similarity

matrix, is usually an off-line process that, similarly to the

index generation in a search engine, is repeated at regular time

intervals.

Once we have obtained the k neighbors N = n1...nk for

a target user u, we can predict the estimated rating value of

a given item i by computing a similarity-weighted average of

the ratings from each neighbor n in N [20]:

rui = σu +

∑
n⊆N

(rni − σn)sim(n, a)
∑

sim(n, a)
(1)

where rui is the predicted rating of item i for user u, rni

is the known rating for user n to item i, and σu and σn are

the respective mean ratings.

A. Practical limitations of CF

Despite the robustness of the CF techniques and popularity

for building Web-based recommendation systems [1], the

nature of the CF algorithm, which strongly depends on the user

ratings, can lead to several problems. We summarize some of

the most prominent issues in the context of this paper in the

following paragraphs.
1) Noise and malicious feedback: Users introduce noise

when giving their feedback to a recommender system, both in

the form of careless ratings (i.e. Natural Noise) [15] and ma-

licious entries [9], [14], [21]. Due to the nature of CF systems

relying on the user ratings to generate the recommendation

list, this noise can seriously harm the performance. In previous

work, we have shown that inconsistencies in user ratings can

negatively impact the quality of the prediction that would be

given by a recommender system [3].

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.53

66

Ratings for all
users stored on
Server

Recommendations
generated in the
server

STANDARD CF

Ratings for
user stored on
Client

Recommendations
generated in the
client

EXPERT CF
Expert ratings
sent from server
to client

Expert ratings
obtained from
the Web

Fig. 1. Comparison of standard CF and Expert CF.

2) Sparseness: In a standard collaborative recommender

system, the user-rating data is very sparse. Although dimen-

sionality reduction techniques such as matrix factorization

[24] can offer some help, this problem is still a source of

inconsistency and error in the predictions.

3) Cold-start: In a CF system, new items lack rating data

and can not be recommended; the same is true when a new user

enters the system [12], [16]. This poses an important problem

on CF recommender systems that usually need to fall back

on other methods such as content-based approaches in these

situations.

4) Scalability: Computing the similarity matrix for N users

in an M -item collection is an O(N2M) problem. This matrix

needs to be updated on a regular basis, as new items and/or

users enter the system. Therefore, CF based approaches typi-

cally suffer from scalability limitations. While there are several

ways to address this issue – such as k-means clustering [25]

–, scalability is still an open research problem in CF systems.

5) Privacy Issues: Privacy in CF recommender systems is

a growing concern and still an area of research [5], [23].

Conventional CF algorithms store all user profiles in a central

location to aggregate everybody’s information and to construct

the user-item matrices. The service provider needs to know

past ratings of the target users and their peers in order to

execute the algorithms. However, this can pose a serious threat

to the privacy of the users, because their personal interest or

preferences can be obtained from the profiles.

III. EXPERT COLLABORATIVE FILTERING

In our previous work [2], we presented a new approach

called expert collaborative filtering that can tackle these prob-

lems. Basically, it replaces the peer user ratings with expert

ratings and implements the collaborative filtering solution

using only the experts opinions.

The expert-based approach for CF uses expert ratings in-

stead of the peers’. All expert ratings for a specific domain are

crawled and collected. This list of ratings can be downloaded

anytime to the clients and be used for completing the calcula-

tions required for CF. Figure 1 illustrates the main components

in expert CF as compared to standard CF. We can summarize

the approach as follows.

(1) Crawl available expert ratings on items and build expert-

item ratings matrix (server side).

(2) Download expert-item ratings matrix from the server (to

client).

(3) Get user feedbacks and store them into local user profiles

(client).

(4) Compare the user profile and the matrix and calculate

k-Nearest experts (client).

(5) Calculate recommendation list from the ratings of the

neighbor experts (client).

Our approach does not require the user-user similarity to be

computed; instead, we build a similarity matrix between each

user and the expert set. In order to predict a user’s rating for

a particular item, we look for the experts whose similarity to

the given user is greater than δ. Formally: given a space V of

users and experts and a similarity measure sim : V ×V → R,

we define a set of experts E = {e1, ..., ek} ⊆ V and a set of

users U = {u1, ..., uN} ⊆ V . Given a particular user u ⊆ U

and a value δ, we find the set of experts E′ ⊆ E such that:

∀e ⊆ E′ ⇒ sim(u, e) ≥ δ.

We also define the confidence threshold τ as the minimum

number of expert neighbors who must have rated the item

in order to trust their prediction. Given the set of experts E′

found in the previous step and an item i, we find the subset

E′′ = e1...en ⊆ E′ such that ∀e ⊆ E′′ ⇒ rei �= ◦, where rei

is the rating of item i by expert e ⊆ E′, and ◦ is the value of

the unrated item. If n < τ , no prediction can be made and the

user mean is returned, else a predicted rating can be computed

and this is done using a simple variation of Eq. 1 where we

replace neighbors N = n1...nk by experts E′′ = e1...en :

rui = σu +

∑
e⊆E′′ (rui − σe)sim(e, a)

∑
sim(e, a)

(2)

67

Fig. 2. Number of ratings per critic

Fig. 3. Number of ratings per album

Our approach addresses some of the traditional shortcom-

ings reviewed in the previous section. Ratings coming from

authoritative experts in a given domain are much less likely

to suffer from natural noise. Therefore, and as shown in our

previous work [4], we expect ratings with less natural noise

to produce more accurate recommendations. As a matter of

fact, in our previous study [2], we explored the quality and

the prediction power of the expert-CF algorithm and found

its potential as a noise-free and competitive recommendation

alternative. Also, because we are using ratings only coming

from a small and supervised pool of experts, we will avoid any

possibility that malicious ratings are injected into our datasets.

We expect experts to have a professional incentive to rate

items as soon as they appear. On the one hand, this means

that, on average, they will rate many more items than a regular

user therefore minimizing sparsity of the rating matrix. On the

other hand, this will also help minimize the problem of the

item cold-start since we expect to have ratings even before

any user has access to the content.

The scalability problem stems from the great size of the

user pool that need to be considered in usual CF approaches.

The number of users can grow up to millions or billions

depending on the size of the service subscribers. However,

we can achieve quality ratings and recommendations from a

relatively reduced number of raters.

A. Expert CF as a Privacy-preserving CF

Although expert CF builds upon traditional CF algorithms,

its dataflow is completely different, since every process except

crawling the expert ratings can be done at the client side (see

Fig. 1). User feedback in the form of ratings does not need to

leave the local client, so user privacy is fully preserved.

Our approach guarantees complete preservation of privacy

for users reporting their ratings, while still offering the advan-

tages of CF. We can accomplish this because we draw a clear

68

TABLE I
STATISTICS OF CRAWLED DATA

Albums Critics Ratings
Count 4,484 63 62,177

distinction between the target user and its related private pro-

file, and the public profiles from experts that can be transmitted

to all clients without worrying about privacy issues. One of

the reasons we can do this in our particular implementation is

because we use a reduced number of experts, and it is feasible

to transmit the whole rating matrix. However, note that we

could implement methods for optimizing this transmission and

perform it, for instance, in an incremental manner.

Traditional approaches to CF do need to somehow share

user information. Therefore, approaches to preserve privacy

necessarily need to use more complex models. Canny [8],

for instance, proposes a privacy-preserving protocol in which

user ratings are not transmitted, but only an aggregate. This is

probably the most complete approach to privacy-preservation

but it still has several shortcomings – such as the fact that

it is vulnerable to malicious attacks and it may affect the

recommendation accuracy.

Other more “traditional” approaches to privacy preservation

include using randomized perturbation to add noise to the

ratings so they cannot be used in isolation to infer the user

preferences [18], [26].

IV. COLLECTING EXPERT RATINGS IN THE MUSIC

DOMAIN

One of our goals for this study is to verify the expert

CF approach in a different setting and domain. Because our

original study focused on recommending movies, for this work

we decided to extend it by applying the idea to the music

domain. Expert ratings for music albums were collected from

Metacritic.com1, a web site that houses reviews for various

media, such as movies, DVD, TV, music, and games. This

is also interesting since our previous study was using ratings

from a different source – RottenTomatoes 2 – so we are now

also verifying our approach is not source-dependent.

Music reviews list music album metadata (album title, artist,

label, genre, etc) and the ratings by music critics and plain

users for each album using a 0 to 100 point scale. In order

to adhere to the definition of our expert CF, we decided to

only use the critics’ ratings. These are mostly from specialized

music magazines or Web sites (see Table III). In our previous

work, we showed that filtering out critics with few ratings did

not impact the recommendation accuracy. Therefore, here we

also decided to remove those critics that had less than 250

ratings.

After downloading the data to a server, we stored it into a

database and created the critic-item matrix which will later be

exposed through a REST API (see Sec. V-A).

TABLE II
AVERAGE NUMBER OF RATINGS

Per Album Per Critic
Average rating count 13.9 986.9
Standard deviation 7.2 786.0

TABLE III
RATINGS DISTRIBUTION BY CRITICS

Rank Critic Ratings Cumulative ratio
1 All Music Guide 3,673 0.06
2 PopMatters 2,893 0.10
3 Pitchfork 2,879 0.15
4 Q Magazine 2,607 0.19
5 Uncut 2,478 0.23
6 Rolling Stone 2,222 0.26
7 Mojo 2,179 0.30
8 Entertainment Weekly 2,104 0.33
9 The Onion (A.V. Club) 1,882 0.36

10 Spin 1,874 0.39

.

.

.
.
.
.

.

.

.
.
.
.

46 CDNow 420 0.90
47 No Ripcord 419 0.91

A. Data Analysis

Table I shows the basic statistics of the crawled data (as of

July 1st, 2009). There were 4,484 albums in the entire dataset

that were originally rated by 88 critics in total. However, we

kept only 63 of these critics after discarding those that had

less than 250 ratings, as described above. The total number

of ratings were more than 62,000. Table II, shows the average

number of ratings per album and critic. Each album had 13.9

ratings and critics posted almost 1000 reviews on average.

However, the large standard deviation of the critics rating

count (786) suggests the distribution of the ratings should

be quite uneven among critics. Figure 2 corresponds to this

prospect. The graph shows a very long tail where a limited

number of critics are responsible for most of the ratings. The

single most frequent critic (All Music Guide) generates about

6% (3,673) of all the ratings, top 10 critics rated 39% , and

less than 50 (around half of the entire group) critics rated 90%

of them (Table III). If we look at the distribution of ratings

per album (see Figure 3), wee see that ratings are more evenly

distributed.

Figure 4 depicts the CDF (cumulative distribution function)

of the mean (a) and the standard deviation (b) of ratings by

album. The average rating is around 70 (out of 100). Very few

albums (less than 20%) have average ratings lower than 60 and

about 10% of the albums rated higher than 80 on average.

The average scores by the critics (see Fig. 5) is more evenly

distributed compared to the average scores by the albums,

which may be disadvantageous for filtering albums because

the scores among the critics could show less discrimination.

However, in the higher average score region (greater than 80),

the distribution is closer to the distribution of the average

rating by albums, which suggests the higher discrimination

power by the critics in this score area. At the same time, The

critics showed more variance than the albums. The average

standard deviation by the album and by the critic was 12.74

1http://www.metacritic.com
2http://www.rottentomatoes.com

69

Fig. 4. Comparisons of (a) average rating and (b) rating standard deviation by album or movie for experts in the music and cinema domain

Fig. 5. Comparisons of (a) average rating and (b) rating standard deviation by music or movie critic

and 15.07 respectively. This difference suggests that the al-

bums have more consistent rating scores and the critics were

able to discriminate the quality of the albums by giving them

a larger range of the scores.

Both Figure 4 and 5 also include the data for the movie

critics in RottenTomatoes for comparison purposes. In Fig. 4

we see a very similar behavior in terms of std per movie and

item. However, there is an important difference in how the

average is distributed. Movie critics rate more movies with

negative ratings (40% below 60 as compared to the 20% in

albums). Our hypothesis is that while music critics tend to

specialize and focus on music of a certain kind – that better

suits the critic’s taste – movie critics rate anything that is

released. This is possible because of the smaller number of

releases in the cinema domain. To support this, in Fig. 5, we

see that the average per critic is slightly lower for movies than

music. Furthermore, we also see that the std is much lower

for music than movie critics.

B. Enhancing available information through Linked Data

In order to enhance the information available as a result of

our Metacritics crawl, we make use of Linked Data resources.

We use GNAT [19] to find corresponding related Linked Data

identifiers for albums rated by the experts. GNAT uses the

available metadata from MetaCritics to identify the songs

MBID on MusicBrainz, and then outputs RDF statements rep-

resenting the links to the remote web identifiers. GNAT uses

a graph matching algorithm that allows for robust matching

even with inaccurate or incomplete metadata.

Using the MBID and the RDF statements, we can access

several Linked Open Datasets and extract high-level descrip-

tors. At this point, we limit ourselves to the use of data

obtained directly from MusicBrainz’s Linked Data. However,

we plan to extend this in the future to include information such

as such as editorial metadata, user comments, genre, album

reviews, or tags available in other Linked Open Datasets.

V. PROTOTYPE SYSTEM

In this section, we describe the architecture of our proposed

prototype system. The goal of our prototype is to implement a

client-side expert-based CF application in the music domain.

The prototype was built as a Rich Internet Application (RIA),

using the most suitable technologies at each stage. Figure

6 shows the components and the dataflow of the system.

The server collects the expert ratings and stores them in a

70

Fig. 6. Wisdom of the Few Components and Dataflow

critic-item matrix that can be used by the clients for the

recommendation process. This matrix does not store any

user data and it is therefore unique for all users. The user

profiles where user ratings are stored, the recommendation

module, as well as the user interface all reside in the client

machines. In order to make the communication between the

client and the server efficient, we defined an API following

the REST architectural style. Within clients, the components

communicate using the XML-RPC protocol. As a result of our

design decisions, and in order to allow for future extensions

an re-usability of the data, we developed our application as a

Linked Data application [11].

A. RESTful Linked Data for Critic Ratings

In section IV-B, we explained the use of Linked Data

to enhance our application. However, in order to make our

application Linked Data compliant we need to observe its

basic principles [6]: (1) Use URIs as names for things; (2)

Use HTTP URIs so that people can look up those names; (3)

When someone looks up a URI, provide useful information,

using the standards (RDF, SPARQL); and (4) Include links to

other URIs. so that they can discover more things. We shall

now explain a RESTful API that exposes our experts rating

data while linking it to other datasets and observing the Linked

Data principles.

We define an API for the client-server communication using

the REST (Representational State Transfer) style. REST is a

style of software architecture for distributed hypermedia sys-

tem such as the World Wide Web, emphasizing scalability of

component interactions, generality of interfaces, independent

deployment of components, and intermediary components to

reduce interaction latency, enforce security, and encapsulate

legacy systems [10]. Systems following the REST architecture

are referred to as RESTful, and they usually have the following

aspects (1) the base URI for the web service, (2) the MIME

type of the data supported by the Web service, and (3) the

set of operations supported by the web service using HTTP

methods (GET, POST, PUT, or DELETE).

Using our RESTful API, the client modules can eas-

ily get resources from the server with unique URIs.

The resource is the information about the expert rat-

ings in this case. For example, all available services are

listed from the base URI using the GET HTTP method

GET <http://SERVER-ADDR/wotf/services>. .

Figure 7 shows some examples that can be returned from

the service. As it can be seen from these examples, this

architecture supports unique and consistent channels to the re-

sources available from the server and helps to build the system

scalable, modular, and independent to the client architecture.

Furthermore, note that we use RDF to describe our data and

link it with remote datasets.

To sum up, because we strive for service interoperability

and extensibility, we choose to use a RESTful architecture.

But, because we also target data interoperability and extensi-

bility, we base our design on the Linked Data principles.

B. Local CF

The local CF module operates in two stages: (1) kNN

calculation and (2) generating recommendation lists. It makes

use of the critic-item rating matrix downloaded from the server

using the API (section V-A). Cosine similarities between

the user rating vector and expert vectors are calculated and

the most similar critics to the current user are selected. In

principle, this calculation needs to be re-done whenever the

ratings vector is updated (either user or the critics). However,

despite the smaller size of the expert-CF ratings compared

to conventional CF ratings, it is still expensive to download

71

GET http://SERVER-ADDR/wotf/services

<WisdomOfTheFew>

<services>

<service>./ratings/all</service>

<service>./albums/recent</service>

<service>./albums/best</service>

<service>./albums/id</service>

</services>

</WisdomOfTheFew>

GET http://SERVER-ADDR/wotf/services/albums/id/10

<album>

<album_id>10</album_id>

<artist>Peter Broderick</artist>

<title>Home</title>

<label>Hush</label>

<release_d>23 September 2008</release_d>

<release_u>1222124400</release_u>

<discs>1 disc</discs>

<genre>Rock, Folk, Singer-Songwriter</genre>

</album>

Fig. 7. REST example: Service root(above), individual album information
(below)

TABLE IV
RECOMMENDATION PERFORMANCE

Task Downloading Indexing kNN Filtering
Time (second) 5.704 0.495 0.711 0.886

the ratings and calculate all similarities. Therefore, we just

periodically update the nearest-neighbor list and store it for

the next stage. This approach can be more appropriate to a

specific type of clients, such as mobile devices, where we can

make use of the idle time of the machine.

In the second stage, we compute the predicted rating rai of

the item i unknown to a user a using equation 2.Similarity

scores are cached from the previous stage, so this part can be

done on the fly whenever users update their ratings on any

item.

We implemented this module in Python, which is a relatively

slower script language. However, thanks to the reduced size of

the expert ratings and the pre-computation in the first stage,

we could achieve almost instant feedbacks from the module

to the user interface. Table IV shows the performance of each

stage of the whole recommendation process. Even though

we didn’t conduct a formal benchmark testing by strictly

controlling various conditions, we believe this result is enough

to show the feasibility of our approach because we just used

plain hardware/settings so that we could best simulate the

ordinary use of information access devices. We ran the four

recommendation stages individually five times and averaged

the running time. By investing enough time (around 6 seconds)

for downloading and indexing the expert-item matrix from

the server we could calculate the neighbors and perform the

filtering quickly. Both stages spent less than one second each.

Considering the neighbor selection result can be saved and

reused, we can perform the filtering less than in one second,

which can provide users with prompt reactions as they interact

with the system.

C. User Interface

The user interface is implemented in Adobe Flex/AIR.

Flex3 is a software development kit for the development and

3http://www.adobe.com/products/flex

Fig. 8. Wisdom of the Few user interface showing the detailed album
information

deployment of cross-platform rich Internet applications based

on the Adobe Flash platform and AIR (Adobe Integrated

Runtime)4 is a cross-platform runtime environment for Adobe

Flash, Flex, HTML, or Ajax. Using the framework, we were

able to build an attractive and interactive user interface easily.

The application can be launched via a Web browser or run in-

dependently without a browser on desktop machines using the

AIR runtime. Flex/AIR is also very appropriate for building

a RIA, and is also available for some mobile platforms. The

choice of this framework allows us to let our users run the

application on various platforms without the hassle of porting

the user interface codes. Figure 8 shows the screenshot of

the interface. It has 4 tabs: Recent Releases, Top 20 Albums,

Search Results, and Recommended.

D. Communication between UI and CF algorithm

The client modules, (1) the user interface, (2) the neigh-

borhood selection component, and (3) the rating prediction

module communicate with each other using the XML-RPC

protocol. XML-RPC is a remote procedure call protocol that

uses XML to encode its calls and HTTP as a transport

mechanism. Unlike REST, which we used for the API between

the server and the client, it is a protocol rather than a style.

Using XML-RPC, a software module can call procedures in a

separate module, and complex objects are exchanged between

the modules encoded in XML format.

We adopted XML-RPC for the client side because it is more

oriented to calling procedures. We used different technologies

for each components: Flex/AIR for the user interface, and

expert selection module in Python and expert-CF calculation

module in Python. For example, the user interface written in

Flex/AIR needs to receive album ratings from users and then

4http://www.adobe.com/products/air

72

pass it to a module that maintains the user model. At the same

time, when a user requests a recommendation list, it needs to

call the recommendation module with specific arguments such

as number of recommended items or the similarity threshold to

sort out best matching neighbors. The recommendation module

returns a list of items, which encapsulates various data fields

such as album id, title, artist, and so forth. This information

is decoded and incorporated to the user interface.

Therefore, considering this complex and more procedure

oriented nature of the communication among client compo-

nents, we decided to use XML-RPC for the client side data

exchange. Compared to REST, which is more appropriate

exchanging pre-computed set of data or resources, the proce-

dure oriented approaches can maintain complex sessions, hide

complex operations behind facade, and are easier to debug

[10] [27].

VI. CONCLUSIONS

Traditional collaborative filtering has some well-known

shortcomings such as the problem of ratings quality, user pri-

vacy, and scalability of data, which can harm the performance

of the systems. An expert-based CF approach can address these

problems. By exploiting the expert ratings instead of plain

user ratings, we can minimize the effect of natural noise in

ratings while avoiding any possibility of shilling. The use of

a reduced and less sparse dataset allows for more efficient

computation than the traditional CF approaches and it avoids

cold-start problems.

In this paper we have shown that the approach is not limited

to the movie recommendation domain and can be directly

ported to the music domain. Our framework is not limited

to music or movies because it is flexible and straightforward

enough to be applied to any domain where expert ratings are

available.

We have also proposed a client-based expert-CF architec-

ture, which maintains the user profiles in users’ machines

and performs the calculation locally with the expert ratings

downloaded from the server. This approach can fundamentally

solve privacy issues because there is no chance that any

private information is transmitted to remote machines. Besides,

it is completely scalable and promises good and efficient

collaborative recommendations.

Finally, we have shown how to develop this kind of RIA by

combining a RESTful architectural style with Linked Data’s

basic principles. This will allow for reusability, no only of

services but also of the data gathered and linked through the

application.

Our future work includes the evaluation of the expert-CF

idea and a complete user study of the prototype introduced

in the paper. We also plan to deploy the prototype in a large

scenario with a large enough number of users. Also, we plan

on making a more extensive use of available Linked Open Data

sets in order to enhance the application with related music

information. Finally, we are currently working on porting the

architectural solution to a mobile scenario.

Acknowledgements

This work has been partly funded by an ICREA grant from

the Catalan Government.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Trans. on Knowl. and Data Eng., 17(6):734–749,
2005.

[2] X. Amatriain, N. Lathia, J. M. Pujol, H. Kwak, and N. Oliver. The
wisdom of the few: A collaborative filtering approach based on expert
opinions from the web. In Proc. of SIGIR ’09, 2009.

[3] X. Amatriain, J. M. Pujol, and N. Oliver. I like it... i like it not:
Evaluating user ratings noise in recommender systems. In UMAP ’09,
2009.

[4] X. Amatriain, J. M. Pujol, N. Tintarev, and N. Oliver. Rate it again:
Increasing recommendation accuracy by user re-rating. In Recys ’09,
2009.

[5] R. Baraglia, C. Lucchese, S. Orlando, M. Serrano’, and F. Silvestri.
A privacy preserving web recommender system. In Proc. of SAC ’06,
pages 559–563, New York, NY, USA, 2006. ACM.

[6] T. Berners-Lee. Linked data - design issues. retrieved 10-29-09.
[7] C. Bizer, T. Heath, and T. Berners-Lee. Linked data – the story so far.

International Journal on Semantic Web and Information Systems, 2009.
[8] J. Canny. Collaborative filtering with privacy. In IEEE 2002 Symposium

on Security and Privacy, pages 45,57, 2002.
[9] Z. C. Cheng and N. Hurley. Effective diverse and obfuscated attacks

on model-based recommender systems. In ACM Recsys ’09, page 141,
2009.

[10] R. T. Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, 2000.

[11] M. Hausenblas. Exploiting linked data to build web applications. IEEE
Internet Computing, 2009.

[12] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong. Addressing cold-start
problem in recommendation systems. In ICUIMC ’08, pages 208–211,
New York, NY, USA, 2008. ACM.

[13] P. Lisboa, M. Ling, T. Etchells, and J. Whittaker. New research directions
in recommender systems for retail grocery domain. In Workshops on
Industrial Applications of Recommender Systems at Recsys ’09, 2009.

[14] B. Mehta and W. Nejdl. Attack resistant collaborative filtering. In Proc.
of SIGIR ’08, 2008.

[15] M. P. O’Mahony. Detecting noise in recommender system databases. In
Proc. of IUI’06, pages 109–115, 2006.

[16] S.-T. Park and W. Chu. Pairwise preference regression for cold-start
recommendation. In ACM Recsys ’09, page 21, 2009.

[17] M. Perrero, F. Antonelli, and M. Geymona. Recommendation on
tv: What do users want? a user study. In Workshops on Industrial
Applications of Recommender Systems at Recsys ’09, 2009.

[18] H. Polat and W. Du. Privacy-preserving collaborative filtering using
randomized perturbation techniques. In ICDM ’03: Proceedings of the
Third IEEE International Conference on Data Mining, page 625, 2003.

[19] Y. Raimond, C. Sutton, and M. Sandler. Automatic interlinking of music
datasets on the semantic web. In Proc. of IDOW08, 2008.

[20] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
plens: An open architecture for collaborative filtering of netnews. In
Proc. of ACM CSCW’94, pages 175–186, 1994.

[21] J. F. S. Zhang, Y. Ouyang and F. Makedon. Analysis of a low-
dimensional linear model under recommendation attacks. In Proc. of
SIGIR ’06, 2006.

[22] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative
filtering recommender systems. The Adaptive Web, pages 291–324,
2007.

[23] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J.-P. Hubaux. Pre-
serving privacy in collaborative filtering through distributed aggregation
of offline profiles. In ACM Recsys ’09, page 157, 2009.

[24] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofirank. maximum
margin matrix factorization for collaborative ranking. In Proc. of
NIPS’08, 2008.

[25] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen.
Scalable collaborative filtering using cluster-based smoothing. In SIGIR
’05: Proceedings of the 28th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages
114–121, New York, NY, USA, 2005. ACM.

[26] S. Zhang, J. Ford, and F. Makedon. A privacy-preserving collaborative
filtering scheme with two-way communication. In EC ’06: Proceedings
of the 7th ACM conference on Electronic commerce, pages 316–323,
2006.

[27] M. zur Muehlen, J. Nickerson, and K. Swenson. Developing web
services choreography standards–the case of REST vs. SOAP. Decision
Support Systems, 40(1):9–29, 2005.

73

