
Continuous Double Auction in Grid Computing: An Agent Based Approach to
Maximize Profit for Providers

Aminul Haque1, Saadat M. Alhashmi2

School of Information Technology
Monash University Sunway Campus

Bandar Sunway, Malaysia
1aminul.haque@infotech.monash.edu.my

2saadat.m.alhashmi@infotech.monash.edu.my

Rajendran Parthiban

School of Engineering
 Monash University Sunway Campus

Bandar Sunway, Malaysia
rajendran.parthiban@eng.monash.edu.my

Abstract— Economic models are found efficient in managing
heterogeneous computer resources such as storage, CPU and
memory for grid computing. Commodity market, double
auction and contract-net-protocol economic models have been
widely discussed in the literature. These models are suitable for
sharing distributed computer resources that belong to different
owners. Agent technology can be used to manage these
heterogeneous resources without human intervention, since
agents are autonomous and intelligent in behavior. In this
paper, we develop and simulate an agent-oriented double
auction economic model. We compare the performance of our
agent-oriented model with traditional double auction model, and
show that the agent-oriented model is good in maximizing profit
for providers.

I. INTRODUCTION

 Grid computing is a promising platform to solve
computationally intensive problems in science, engineering
and technology. Grid computing is termed as a promising
platform due to three reasons [1] – (a) it is more cost-
effective than traditional computing, (b) it provides a
significant amount of computing power to solve complex
problems and (c) dispersed resources can be shared
cooperatively toward a common objective.
 Economic approaches are suitable for managing grid
resources [2, 3]. Price is an important factor that allows users
belonging to different organizations to access grid resources
legally. Along with better management of grid resources,
economic approaches can provide incentives such as profit
and ability to negotiate. Double auction is one of the widely
proposed models for grid computing. It is well known in this
context due to its ability in handling large number of users,
maintaining market equilibrium and minimizing
communication overhead [4, 5].
 Agents are defined as “a computer system that is situated
in some environment, and that is capable of autonomous
action in this environment in order to meet its design
objectives [6]”. Due to the autonomous characteristic of agent
technology, it could benefit the grid in dynamically
negotiating and managing large-scale heterogeneous
resources. In the grid computing, this negotiation could be
based on several attributes such as price, quality of service
and deadline.

This paper focuses on how to maximize profit for
providers by integrating agent characteristics (such as
decision making) with double auction economic model. In

this model, user-agents and provider-agents work
autonomously on behalf of the users and providers,
respectively. We use continuous double auction where the
auction process continues until there is at least one user or
one provider in the simulated market. In our auction
mechanism, we develop a provider-agent which is able to
sense runtime rejection rate (rate of failure auction) of jobs
and update the pricing accordingly to prevent from
maximizing rejection rate.

The rest of the paper is organized as follows. Section 2
presents some related work in double auction model in grid
computing. Section 3 explains our proposed framework.
Section 4 describes the implementation of our proposed
framework with agent technology. Section 5 discusses the
simulation setup and ends with an evaluation and discussion.

II. LITERATURE SURVEY
 In Double Auction model (DA), users post their requests
and service providers their offers. If a user’s request matches
with a provider’s offer, the trade is executed. There are two
types of DA in the literature. The first type is the periodic DA
in which the auction has a predefined time frame during
which participants can submit their bids and asks. The second
type is Continuous DA (CDA) in which users and providers
can submit their bids and asks at any time during the trading
phase. In this paper, we focus on CDA, since it is more
flexible for submitting requests and offers.
 Marek et al. [7] apply CDA for workflow scheduling in
grid resource allocation. They propose different workflow
execution strategies such as resource selection, resource
valuation for users and providers, and bidding strategy to
help users to do a fast and cheap execution of the workflow.
They assume that their users have unlimited budget so that,
they can focus on minimizing the execution cost. However, in
real grid scenarios, the proposed model may not be applicable
for users with budget constraints. Their strategy to update
provider-bids is based on auction success ratio. In our model,
we update based on supply and demand, which is more
appropriate in market-oriented grid computing.
 Tan et al. compare SCDA (Stable Continuous Double
Auction) with CDA (Continuous Double Auction) [2]. A
Compulsory Bidding Adjustment Layer (CBAL) to identify
an appropriate bid for a current market is added to CDA.
Hence, it is called SCDA. They have shown SCDA as
superior to the CDA in terms of economic efficiency and

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.105

347

Figure 1: Proposed framework of agent-oriented continuous double auction

scheduling efficiency. However, they have conducted their
experiments with a few requests and offers. Therefore, we do
not really know whether their conclusions are valid for a
large scale grid computing.

 Pourebrahimi et al. [8] propose CDA against traditional
non-market based resource allocation and find market-based
allocation more efficient than simple FCFS (First Come First
Serve) mechanism in terms of resource and task utilization.
Their proposed pricing function is able to reflect market price
based on supply and demand. The focus of our work is to use
supply and demand and to develop a provider agent to
maximize profit for providers.

III. PROPOSED FRAMEWORK

 Our framework is built on three main parts; user-agent
(UA), provider-agent (PA) and auctioneer (Figure 1). These
parts are presented below with a brief explanation.

A. User-Agent
A UA is supposed to be set by a user itself. Typically, a

user sets his/her UA with resources such as storage and
number of CPUs to execute his/her job. In addition, a user
sets a deadline to get the job done and a minimum and
maximum budget he/she is willingly to pay for the job. The
auction happens in multiple rounds and the current round
number is denoted by n. The last action by the UA is to check
the round of auction and update budget, if necessary.

B. Provider-Agent
We develop an algorithm so that a PA can update its

pricing based on supply and demand during runtime. To
define the algorithm, we initiate a parameter called f which
tells how frequently a provider would like to update his
resource prices.

��� = ������	 �
����
 ����� − ���
�� �
����
 �����
���

Where,
��� = ������	 �
����
 �����

100

 The parameter cpr refers to current percentage of a
particular resource. Once a provider-agent gets its cpr, it can
check whether the resource prices have to be updated or not
using the following equation,

��� = ���
� = ���
�� ���
 �� �ℎ���
 �� �
����

��
�
��� �� �ℎ���
 �
����
 ����

�� [��� >= 1]
 [Change the resource price]
 else [Do not change the resource price]

C. Auctioneer
Auctioneer performs several crucial tasks to precede the

auction. At first it evaluates and lists potential users and
providers, who would like to join the auction. A user and a
provider can be removed from their respective list, if the
user’s maximum budget is reached and still fails in all
previous rounds, and the provider does not have enough
resources to serve at least one user. Auctioneer then starts
measuring a proposed request (starts from the maximum
bidder) and checks whether it matches with an available offer
(stars from the minimum asker) or not. In our work, we
develop the PA using some strategies, so that the agent can
make decision to maximize profit for providers.

Figure 2. Amended provider-agent

 Figure 2 shows the structure of our proposed PA. Here,
two actions have been added. One is to measure the job-
rejection rate by the PA dynamically during runtime. Job-
rejection-rate is explained in the next section. Then, decide a
method to update the pricing based on the measured
rejection-rate. Here, we apply two methods to update pricing;
one is based on supply and demand, as aforementioned, and
the other one does not consider supply and demand but
relaxes pricing based on user-budgets. The following
algorithm shows how prices are relaxed:
Algorithm to choose a pricing method:
if (measured job-rejection-rate > job-rejection-rate set by a
provider)
 [relax pricing based on user-budget]
 else [follow supply and demand-based pricing]

To let the algorithm work, a provider is supposed to
predefine a rejection-rate. A question arises: “How to set the
best rejection-rate to get more revenue from the auction?”.
The focus of this paper is to find the answer for this question
through a comprehensive simulation with different number of
users and providers.

Provider-Agent
1. Update resource availability
2. Pricing demand (min, max)
3. Measure job-rejection-rate
4. Decide method to update

pricing
5. Update pricing

348

IV. IMPLEMENTATION
 We implement the proposed model using a cross-platform
multi-agent programmable modeling environment known as
Netlogo [9], [10]. We choose Netlogo because:

 ● Netlogo is a FIFA (Foundation for Intelligent
Physical Agent) conformant platform [11]
 ● It has extensive built-in models to deal with multi-
agents
 ● It can work as a ‘simulated parallel’ environment [9]
 ● It is platform (Mac, Windows, and Linux)
independent [10]

A. Agent Interaction and Output
 In the Netlogo framework, three different results can be
obtained based on the interaction of UA and PA with the
auctioneer. The first result describes the job rejection rate for
a provider. Job rejection occurs due to scenarios such as
disagreement of resource prices or unavailability of
resources. This rate is calculated using two parameters - the
total number of rejected jobs (nrejected) and the total number of
requested jobs (nrequested). The job rejection rate is assumed to
range from 0 to 1. The job rejection rate, Rrate, is:

����
 = ��
�
��
�
��
�
��
�

 (1)

 The second output demonstrates the total revenue earned
by a provider. It sums only the prices of the accepted jobs.
Hence, the total revenue, Trev, is:

��
� = � ��

�

�=1
 (2)

 Where i denotes the executed job number, j denotes total
number of executed jobs and Mi defines agreed price
(between a user and a provider) for the ith executed job. The
third output presents how the resources on provider side are
being utilized. In this paper, we consider the utilization of
storage and CPU. The percentage of utilization, ��
�� of any
resources can easily be calculated using the following
equation:

��
�� = ������	 �
����
�
�� − ����	��	
 �
����
�
��

������	 �
����
�
�� ∗ 100 (3)

Where, m refers to the utilization (U) of a specific
resource of type res.

V. SIMULATIONS and RESULTS
We use the following parameters in Table 1to simulate

the performances of the traditional and agent-based CDA
models.

TABLE 1. RESOURCE CONFIGURATION
User/provider-level
parameter

User-level-range Provider-level-
range

 Storage/diskspace (GB) 500-1000 60000-60500

 Number of CPUs (MIPS
per CPU) 5-10 800-850

Minimum
Budget/demand ($) 100-200 100-200

Maximum
Budget/demand ($) 200-400 200-400

Column 1 of Table 1 represents different parameters that
a user and a provider use to set their agents. Since the total
number of users and providers in our model is large, we
select a value from the ranges shown in columns 2 and 3
automatically. In addition, to simplify simulation, we assume
concurrent arrival of different requests and offers.

In order to find the best rejection-rate for more revenue,
we conducted a comprehensive simulation for the following
cases;
Case (I) 1000 users and 50 providers
Case (II) 1000 users and 10 providers
Case (III) 100 users and 50 providers
Case (IV) 100 users and 10 providers

 We use the algorithm in Section 3.3.2 for a few providers.
The rest of the providers use traditional CDA. We vary the
rejection rate from 0 to 1 for each case to find the rate, which
gives the maximum profit. We performed many simulations.
In this paper, we only presented the average results for job-
rejection rate, revenue and utilization of resources (storage
and CPU). Using the results, we compare two types of
providers;

(i) one type that uses traditional CDA and denoted by
Traditional Provider (TP) and

(ii) the other type that uses our agent-based algorithm
and denoted by Intelligent Provider (IP).

 IP TP

 Figure 3. Job rejection rate Figure 4. Revenue Figure 5. Utilization of diskspace Figure 6. Utilization of processor

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8
0

2

4

6

0.2 0.4 0.6 0.8
0

15

30

45

60

0.2 0.4 0.6 0.8
0

15

30

45

0.2 0.4 0.6 0.8

R
ej

ec
tio

n
ra

te

Pre-defined rejection-
rate for IPs

R
ev

en
ue

 (×
10

3) $

U
til

iz
at

io
n

(%
)

U
til

iz
at

io
n

(%
)

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

349

 Figure 7. Job rejection rate Figure 8. Revenue Figure 9. Utilization of diskspace Figure 10. Utilization of processor

Case (I) 1000 users and 50 providers
 The results obtained for Case I is shown in Figures 3-6. In
this case, ten are IPs and the rest are TPs. Hence, the
predefined rejection-rates along X-axes are only applicable
for IPs. In terms of job rejection rate (Figure 3), IPs perform
better than TPs. The overall rejection rate of TPs is always
high, since they have no mechanism to control the rejection
rate. IPs have the mechanism to control the rejection rate.
The control mechanism tells us when and how to relax
pricing. For example, if a predefined rejection rate is 0.4, the
corresponding PA only relaxes pricing when the rejection
rate exceeds 0.4 during runtime. For some pre-defined
rejection rates (e.g. 0.2, 0.4), the average rejection rates
obtained are higher than the pre-defined values. Most of the
IPs do not get any job or get few jobs, since other IPs have
accepted all the jobs. For this reason, the average rejeciton
rate for these values is higher than the predefined rejection
rate. The actual rejection rates are closer to pre-defined
rejection rates for increasing pre-defined rejection rates. If the
pre-defined rejection rate is high, the chance to get jobs
increases for most IPs. This drives the average rejection rate
closer to the pre-defined rejection-rate.
 Figure 4 compares the revenue of IPs and TPs. The
revenue for IPs is greater than that of TPs. In terms of IPs, the
overall revenue is not affected by the predefined rejection
rates. When the predefined rejection rate increases, it
increases the chance of getting some revenue by all the IPs,
but it does not increase the chance of getting more users in
total compared to that of lower predefined rates. For instance,
if we consider a predefined rejection rate of 0.2, only a few
IPs would be enough to accommodate more jobs and the rest
of the IPs do not get any jobs or only get a few jobs. If the
predefined rejection rate is 0.8, a few IPs take time to relax

their pricing, which helps rest of the IPs to get jobs. For these
same reasons, there is not much variation in revenue for TPs.
 Figure 5 and Figure 6 present the utilization of diskspace
and processor respectively. The utilization of resources for
IPs is better than that of TPs. The reasons given for Figure 4
are sufficient to explain the results in Figures 5 and 6.
 Based on the above discussion, we recommend a rejection
rate of 0.8 for Case I. Although this rejection rate does not
ensure increased profit, it at least ensures some jobs for all
IPs.
Case (II) 1000 users and 10 providers
 In this case, IPs have less job rejection rate than TPs as
shown in Figure 7. Unlike in Case I, in this case, the demand
(number of users) is greater than the supply (number of
providers). Hence, even for low predefined rejection rates
(such as 0.2 and, 0.4), the IPs that get the jobs earlier cannot
accommodate all the jobs. Therefore, the rest of the IPs get
chance to accommodate the left over jobs and helps to make
the average rejeciton rate less. Due to excess demand
compared to supply, TPs earn more revenue than IPs at all
predefined rates (Figure 8). In our algorithm, IPs relax prices
based on predefined rates. This pushes IPs to accept jobs with
relaxed prices and quickly utilize all the resources. On the
other hand, due to excess demand, the TPs continue to
receive and accept jobs based on supply and demand. This
helps them to get more revenue. The same explanation can be
imposed for resource utilization as well (Figure 9 and 10).

We recommend no predefined rejection rates for this
case, since demand is higher than the supply. Hence, it would
be good for IPs to follow the method of TPs for getting
competitive revenue.

 IP TP

 Figure 11. Job rejection rate Figure 12. Revenue Figure 13. Utilization of diskspace Figure 14. Utilization of processor

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8
0

4

8

12

16

0.2 0.4 0.6 0.8
0

25

50

75

100

0.2 0.4 0.6 0.8

0

20

40

60

80

0.2 0.4 0.6 0.8

0

0.25

0.5

0.75

1

0.2 0.4 0.6 0.8
0

2

4

6

0.2 0.4 0.6 0.8
0

2

4

6

0.2 0.4 0.6 0.8

0

2

4

6

0.2 0.4 0.6 0.8

R
ej

ec
tio

n
ra

te

R
ev

en
ue

 (×
10

3) $

U
til

iz
at

io
n

(%
)

U
til

iz
at

io
n

(%
)

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

R
ej

ec
tio

n
ra

te

R
ev

en
ue

 (×
10

2) $

U
til

iz
at

io
n

(%
)

U
til

iz
at

io
n

(%
)

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

Pre-defined rejection-
rate for IPs

350

Case (III) 100 users and 50 providers
 In this case, ten providers are IPs and the rest are TPs. We
present the average results of 10 IPs and 40 TPs below for
brevity. Figure 11 presents the comparison of job rejection
rates for IPs and TPs. Since the supply (number of providers)
is greater than demand (number of users), most of the
providers remain unutilized. This causes high rejection rate
for both IPs and TPs. The overall rejection rate is roughly
constant for TPs. For IPs, this first decreases and then
increases. We define two conditions that help to discuss this
interesting trend in rejection rate. The first property is
“acceptation of jobs by more IPs” and the second one is
“quick acceptation of jobs”. If both of them are satisfied, job
rejection rate is less. If the predefined rejection rate is 0.2, the
second condition occurs, since prices are quickly relaxed to
get jobs. When the predefined rate is 0.8, the first condition
occurs. For this rate, it takes time to relax prices. This allows
the other IPs to get jobs. For these reasons, the average
rejection rates at 0.2 and 0.8 are high. For the predefined
rates 0.4 and 0.6, both conditions occur and help to reduce
the rejection rate.
 The trend in Figure 12, which shows the revenue, can be
explained based on the trend in Figure 11. Revenue of IPs is
higher than that of TPs. Revenues at predefined rates 0.4 and
0.6 are higher than those at 0.2 and 0.8. Figure 13 and Figure
14 show the comparison of resource utilizations. The overall
resource utilization is very less, since there are only 100 jobs.

 For the values in the range [0.4, 0.6], the rejection rate is
less, because both the conditions are satisfied, which were
used to explain Figure 11. Due to less rejection rate, more
revenue can be achieved. Hence, we recommend a predefined
rejection rate in the range of [0.4, 0.6] for this case.

Case (IV) 100 users and 10 providers
For this case, we get similar results as in Case III. Based

on the results and discussions presented thus far, we can
answer the question raised in Section III using Table 2.

TABLE 2. SCENARIO-BASED PREDEFINED REJECTION RATE FOR
INTELLIGENT PROVIDERS

Case Recommended predefined
rejection rate

1000 users and 50 providers 0.8
1000 users and 10 providers Not applicable
100 users and 50 providers [0.4, 0.6]
100 users and 10 providers [0.4, 0.6]

Table 2 summarizes the recommended predefined

rejection rates for the IPs for the four cases. When the
number of users is greater and there is enough providers to
serve them all (Case I), we recommend the predefined rate of
0.8. If there is not enough providers to serve them all (Case
II), we recommend no predefined rate. On the other hand, if
demand is less than the supply, we recommend a predefined
rate in the range from 0.4 to 0.6.

VI. CONCLUSIONS
Grid computing allows for large scale resource

collaboration. However, seamless collaboration is a challenge
due to distributed rules and policies. Agent technology would
be suitable to meet this challenge, since agents are
autonomous and intelligent. Pricing helps users to access
legally distributed resources which belong to different
owners. In this work, we develop a multi-agent based
continuous double auction model to maximize profit for
providers. We presented our results for different cases with
different number of users and providers. We showed that our
agent-based intelligent providers perform better than
traditional providers in most cases. Currently we are working
on how provider agent can sense current number of requests
autonomously and adjust the predefined rate accordingly.

REFERENCES
[1] Foster, I., and C. Kesselman, The grid blueprint for a future

computing infrastructure, Morgan Kaufmann, 1999.
[2] T. Zhu, and R. John, “Market-based grid resource allocation

using a stable continuous double auction”, In Proceedings of
the 8th IEEE/ACM International Conference on Grid
Computing, IEEE Computer Society, 2007.

[3] K. L. Mills, and C. Dabrowski, “Can Economics-based
Resource Allocation Prove Effective in a Computation
Marketplace?”, Journal of Grid Computing, 2008, pp. 291–
311.

[4] A. Marcos, and R. Buyya, “An evaluation of communication
demand of auction protocols in grid environments”, In
Proceedings of the 3rd International Workshop on Grid
Economics and Business (GECON, 2006), World Scientific
Press, 2006.

[5] R. Buyya, D. Abramson, and S. Venugopal, “The Grid
Economy”, In Proceedings of the IEEE, 2005, pp. 698-714.

[6] Wooldridge, M. An Introduction to MultiAgent Systems, John
Wiley & Sons Ltd., Chichester, England, 2002.

[7] W. Marek, P. Stefan, P. Radu, and F. Thomas, “Applying
double auctions for scheduling of workflows on the Grid”,
Proceedings of the ACM/IEEE conference on Supercomputing,
IEEE Press, Austin, Texas, 2008.

[8] B. Pourebrahimi, K. Bertels, G. M. Kandru, and S. Vassiliadis,
“Market-Based Resource Allocation in Grids”, Second IEEE
International Conference on e-Science and Grid Computing (e-
Science '06), 2006, pp. 80-80.

[9] Y. Sallez, T. Berger, and C. Tahon, “Simulating intelligent
routing in flexible manufacturing systems using NetLogo”,
IEEE International Conference on Industrial Technology,
2004, pp. 1072-1077.

[10] R.-C. Damaceanu, “An agent-based computational study of
wealth distribution in function of resource growth interval
using NetLogo”, Applied Mathematics and Computation, 2008,
pp. 371-377.

[11] J. N. Michael, T. C. Nicholson, and R. V. Jerry, “Experiences
creating three implementations of the repast agent modeling
toolkit”, ACM Trans. Model. Comput. Simul., 2006, pp. 1-25.

351

