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Abstract— Economic models are found efficient in managing 
heterogeneous computer resources such as storage, CPU and 
memory for grid computing. Commodity market, double 
auction and contract-net-protocol economic models have been 
widely discussed in the literature. These models are suitable for 
sharing distributed computer resources that belong to different 
owners. Agent technology can be used to manage these 
heterogeneous resources without human intervention, since 
agents are autonomous and intelligent in behavior. In this 
paper, we develop and simulate an agent-oriented double 
auction economic model. We compare the performance of our 
agent-oriented model with traditional double auction model, and 
show that the agent-oriented model is good in maximizing profit 
for providers. 

I.   INTRODUCTION 

 Grid computing is a promising platform to solve 
computationally intensive problems in science, engineering 
and technology. Grid computing is termed as a promising 
platform due to three reasons [1] – (a)  it is more cost-
effective than traditional computing, (b) it provides a 
significant amount of computing power to solve complex 
problems and (c) dispersed resources can be shared 
cooperatively toward a common objective.  
 Economic approaches are suitable for managing grid 
resources [2, 3]. Price is an important factor that allows users 
belonging to different organizations to access grid resources 
legally. Along with better management of grid resources, 
economic approaches can provide incentives such as profit 
and ability to negotiate. Double auction is one of the widely 
proposed models for grid computing. It is well known in this 
context due to its ability in handling large number of users, 
maintaining market equilibrium and minimizing 
communication overhead [4, 5]. 
 Agents are defined as “a computer system that is situated 
in some environment, and that is capable of autonomous 
action in this environment in order to meet its design 
objectives [6]”. Due to the autonomous characteristic of agent 
technology, it could benefit the grid in dynamically 
negotiating and managing large-scale heterogeneous 
resources. In the grid computing, this negotiation could be 
based on several attributes such as price, quality of service 
and deadline. 

This paper focuses on how to maximize profit for 
providers by integrating agent characteristics (such as 
decision making) with double auction economic model. In 

this model, user-agents and provider-agents work 
autonomously on behalf of the users and providers, 
respectively. We use continuous double auction where the 
auction process continues until there is at least one user or 
one provider in the simulated market. In our auction 
mechanism, we develop a provider-agent which is able to 
sense runtime rejection rate (rate of failure auction) of jobs 
and update the pricing accordingly to prevent from 
maximizing rejection rate. 

The rest of the paper is organized as follows. Section 2 
presents some related work in double auction model in grid 
computing. Section 3 explains our proposed framework. 
Section 4 describes the implementation of our proposed 
framework with agent technology. Section 5 discusses the 
simulation setup and ends with an evaluation and discussion. 

II.   LITERATURE SURVEY 
 In Double Auction model (DA), users post their requests 
and service providers their offers. If a user’s request matches 
with a provider’s offer, the trade is executed. There are two 
types of DA in the literature. The first type is the periodic DA 
in which the auction has a predefined time frame during 
which participants can submit their bids and asks. The second 
type is Continuous DA (CDA) in which users and providers 
can submit their bids and asks at any time during the trading 
phase. In this paper, we focus on CDA, since it is more 
flexible for submitting requests and offers. 
 Marek et al. [7] apply CDA for workflow scheduling in 
grid resource allocation. They propose different workflow 
execution strategies such as resource selection, resource 
valuation for users and providers, and bidding strategy to 
help users to do a fast and cheap execution of the workflow. 
They assume that their users have unlimited budget so that, 
they can focus on minimizing the execution cost. However, in 
real grid scenarios, the proposed model may not be applicable 
for users with budget constraints. Their strategy to update 
provider-bids is based on auction success ratio. In our model, 
we update based on supply and demand, which is more 
appropriate in market-oriented grid computing. 
 Tan et al. compare SCDA (Stable Continuous Double 
Auction) with CDA (Continuous Double Auction) [2]. A 
Compulsory Bidding Adjustment Layer (CBAL) to identify 
an appropriate bid for a current market is added to CDA. 
Hence, it is called SCDA. They have shown SCDA as 
superior to the CDA in terms of economic efficiency and 
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Figure 1: Proposed framework of agent-oriented continuous double auction 

scheduling efficiency. However, they have conducted their 
experiments with a few requests and offers. Therefore, we do 
not really know whether their conclusions are valid for a 
large scale grid computing. 

 Pourebrahimi et al. [8] propose CDA against traditional 
non-market based resource allocation and find market-based 
allocation more efficient than simple FCFS (First Come First 
Serve) mechanism in terms of resource and task utilization. 
Their proposed pricing function is able to reflect market price 
based on supply and demand. The focus of our work is to use 
supply and demand and to develop a provider agent to 
maximize profit for providers. 

III.   PROPOSED FRAMEWORK 

 Our framework is built on three main parts; user-agent 
(UA), provider-agent (PA) and auctioneer (Figure 1). These 
parts are presented below with a brief explanation. 

A. User-Agent 
A UA is supposed to be set by a user itself. Typically, a 

user sets his/her UA with resources such as storage and 
number of CPUs to execute his/her job. In addition, a user 
sets a deadline to get the job done and a minimum and 
maximum budget he/she is willingly to pay for the job. The 
auction happens in multiple rounds and the current round 
number is denoted by n. The last action by the UA is to check 
the round of auction and update budget, if necessary. 

B. Provider-Agent 
We develop an algorithm so that a PA can update its 

pricing based on supply and demand during runtime. To 
define the algorithm, we initiate a parameter called f which 
tells how frequently a provider would like to update his 
resource prices.  
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 The parameter cpr refers to current percentage of a 
particular resource. Once a provider-agent gets its cpr, it can 
check whether the resource prices have to be updated or not 
using the following equation, 
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  [Change the resource price] 
  else [Do not change the resource price] 

C. Auctioneer 
Auctioneer performs several crucial tasks to precede the 

auction. At first it evaluates and lists potential users and 
providers, who would like to join the auction. A user and a 
provider can be removed from their respective list, if the 
user’s maximum budget is reached and still fails in all 
previous rounds, and the provider does not have enough 
resources to serve at least one user. Auctioneer then starts 
measuring a proposed request (starts from the maximum 
bidder) and checks whether it matches with an available offer 
(stars from the minimum asker) or not. In our work, we 
develop the PA using some strategies, so that the agent can 
make decision to maximize profit for providers. 

 

 

 

 
Figure 2. Amended provider-agent 

 Figure 2 shows the structure of our proposed PA. Here, 
two actions have been added. One is to measure the job-
rejection rate by the PA dynamically during runtime. Job-
rejection-rate is explained in the next section. Then, decide a 
method to update the pricing based on the measured 
rejection-rate. Here, we apply two methods to update pricing; 
one is based on supply and demand, as aforementioned, and 
the other one does not consider supply and demand but 
relaxes pricing based on user-budgets. The following 
algorithm shows how prices are relaxed: 
Algorithm to choose a pricing method: 
if (measured job-rejection-rate > job-rejection-rate set by a 
provider) 
   [relax pricing based on user-budget] 
 else [follow supply and demand-based pricing] 

To let the algorithm work, a provider is supposed to 
predefine a rejection-rate. A question arises: “How to set the 
best rejection-rate to get more revenue from the auction?”. 
The focus of this paper is to find the answer for this question 
through a comprehensive simulation with different number of 
users and providers. 

Provider-Agent 
1. Update resource availability 
2. Pricing demand (min, max) 
3. Measure job-rejection-rate 
4. Decide method to update 

pricing 
5. Update pricing 
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IV.   IMPLEMENTATION 
 We implement the proposed model using a cross-platform 
multi-agent programmable modeling environment known as 
Netlogo [9], [10]. We choose Netlogo because: 

       ●  Netlogo is a FIFA (Foundation for Intelligent 
Physical   Agent) conformant platform [11] 
       ● It has extensive built-in models to deal with multi-
agents  
       ●     It can work as a ‘simulated parallel’ environment [9] 
       ●   It is platform (Mac, Windows, and Linux) 
independent [10] 

A.    Agent Interaction and Output 
 In the Netlogo framework, three different results can be 
obtained based on the interaction of UA and PA with the 
auctioneer. The first result describes the job rejection rate for 
a provider. Job rejection occurs due to scenarios such as 
disagreement of resource prices or unavailability of 
resources. This rate is calculated using two parameters - the 
total number of rejected jobs (nrejected) and the total number of 
requested jobs (nrequested). The job rejection rate is assumed to 
range from 0 to 1. The job rejection rate, Rrate, is: 
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�
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�
��
�
��
�

                             (1) 

 The second output demonstrates the total revenue earned 
by a provider. It sums only the prices of the accepted jobs. 
Hence, the total revenue, Trev, is: 

��
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�
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 Where i denotes the executed job number, j denotes total 
number of executed jobs and Mi defines agreed price 
(between a user and a provider) for the ith executed job. The 
third output presents how the resources on provider side are 
being utilized. In this paper, we consider the utilization of 
storage and CPU. The percentage of utilization, ��
��  of any 
resources can easily be calculated using the following 
equation: 
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Where, m refers to the utilization (U) of a specific 
resource of type res. 

V.   SIMULATIONS and RESULTS 
We use the following parameters in Table 1to simulate 

the performances of the traditional and agent-based CDA 
models. 

TABLE 1.  RESOURCE CONFIGURATION 
User/provider-level   
parameter 

User-level-range Provider-level-
range 

 Storage/diskspace (GB) 500-1000 60000-60500 

 Number of CPUs (MIPS 
per CPU) 5-10 800-850 

Minimum 
Budget/demand ($) 100-200 100-200 

Maximum 
Budget/demand ($) 200-400 200-400 

Column 1 of Table 1 represents different parameters that 
a user and a provider use to set their agents. Since the total 
number of users and providers in our model is large, we 
select a value from the ranges shown in columns 2 and 3 
automatically. In addition, to simplify simulation, we assume 
concurrent arrival of different requests and offers. 

In order to find the best rejection-rate for more revenue, 
we conducted a comprehensive simulation for the following 
cases; 
Case (I) 1000 users and 50 providers 
Case (II) 1000 users and 10 providers 
Case (III) 100 users and 50 providers 
Case (IV) 100 users and 10 providers 
 

    We use the algorithm in Section 3.3.2 for a few providers. 
The rest of the providers use traditional CDA. We vary the 
rejection rate from 0 to 1 for each case to find the rate, which 
gives the maximum profit. We performed many simulations. 
In this paper, we only presented the average results for job-
rejection rate, revenue and utilization of resources (storage 
and CPU). Using the results, we compare two types of 
providers;  

(i) one type that uses traditional CDA and denoted by 
Traditional Provider (TP) and  

(ii) the other type that uses our agent-based algorithm 
and denoted by Intelligent Provider (IP). 

                                                                             IP             TP 

                   

       Figure 3. Job rejection rate                               Figure 4. Revenue                      Figure 5. Utilization of  diskspace           Figure 6. Utilization of processor 
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        Figure 7. Job rejection rate                              Figure 8. Revenue                      Figure 9. Utilization of  diskspace          Figure 10. Utilization of processor 

Case (I) 1000 users and 50 providers 
 The results obtained for Case I is shown in Figures 3-6. In 
this case, ten are IPs and the rest are TPs. Hence, the 
predefined rejection-rates along X-axes are only applicable 
for IPs. In terms of job rejection rate (Figure 3), IPs perform 
better than TPs. The overall rejection rate of TPs is always 
high, since they have no mechanism to control the rejection 
rate. IPs have the mechanism to control the rejection rate. 
The control mechanism tells us when and how to relax 
pricing. For example, if a predefined rejection rate is 0.4, the 
corresponding PA only relaxes pricing when the rejection 
rate exceeds 0.4 during runtime. For some pre-defined 
rejection rates (e.g. 0.2, 0.4), the average rejection rates 
obtained are higher than the pre-defined values. Most of the 
IPs do not get any job or get few jobs, since other IPs have 
accepted all the jobs. For this reason, the average rejeciton 
rate for these values is higher than the predefined rejection 
rate. The actual rejection rates are closer to pre-defined 
rejection rates for increasing pre-defined rejection rates. If the 
pre-defined rejection rate is high, the chance to get jobs 
increases for most IPs. This drives the average rejection rate 
closer to the pre-defined rejection-rate. 
 Figure 4 compares the revenue of IPs and TPs. The 
revenue for IPs is greater than that of TPs. In terms of IPs, the 
overall revenue is not affected by the predefined rejection 
rates. When the predefined rejection rate increases, it 
increases the chance of getting some revenue by all the IPs, 
but it does not increase the chance of getting more users in 
total compared to that of lower predefined rates. For instance, 
if we consider a predefined rejection rate of 0.2, only a few 
IPs would be enough to accommodate more jobs and the rest 
of the IPs do not get any jobs or only get a few jobs. If the 
predefined rejection rate is 0.8, a few IPs take time to relax 

their pricing, which helps rest of the IPs to get jobs. For these 
same reasons, there is not much variation in revenue for TPs. 
 Figure 5 and Figure 6 present the utilization of diskspace 
and processor respectively. The utilization of resources for 
IPs is better than that of TPs. The reasons given for Figure 4 
are sufficient to explain the results in Figures 5 and 6. 
 Based on the above discussion, we recommend a rejection 
rate of 0.8 for Case I. Although this rejection rate does not 
ensure increased profit, it at least ensures some jobs for all 
IPs. 
Case (II) 1000 users and 10 providers 
 In this case, IPs have less job rejection rate than TPs as 
shown in Figure 7. Unlike in Case I, in this case, the demand 
(number of users) is greater than the supply (number of 
providers). Hence, even for low predefined rejection rates 
(such as 0.2 and, 0.4), the IPs that get the jobs earlier cannot 
accommodate all the jobs. Therefore, the rest of the IPs get 
chance to accommodate the left over jobs and helps to make 
the average rejeciton rate less. Due to excess demand 
compared to supply, TPs earn more revenue than IPs at all 
predefined rates (Figure 8). In our algorithm, IPs relax prices 
based on predefined rates. This pushes IPs to accept jobs with 
relaxed prices and quickly utilize all the resources. On the 
other hand, due to excess demand, the TPs continue to 
receive and accept jobs based on supply and demand. This 
helps them to get more revenue. The same explanation can be 
imposed for resource utilization as well (Figure 9 and 10). 

We recommend no predefined rejection rates for this 
case, since demand is higher than the supply. Hence, it would 
be good for IPs to follow the method of TPs for getting 
competitive revenue. 

                                                  IP             TP 

                 
        Figure 11. Job rejection rate                          Figure 12. Revenue                        Figure 13. Utilization  of  diskspace         Figure 14. Utilization of processor 
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Case (III) 100 users and 50 providers 
 In this case, ten providers are IPs and the rest are TPs. We 
present the average results of 10 IPs and 40 TPs below for 
brevity. Figure 11 presents the comparison of job rejection 
rates for IPs and TPs. Since the supply (number of providers) 
is greater than demand (number of users), most of the 
providers remain unutilized. This causes high rejection rate 
for both IPs and TPs. The overall rejection rate is roughly 
constant for TPs. For IPs, this first decreases and then 
increases. We define two conditions that help to discuss this 
interesting trend in rejection rate. The first property is 
“acceptation of jobs by more IPs” and the second one is 
“quick acceptation of jobs”. If both of them are satisfied, job 
rejection rate is less. If the predefined rejection rate is 0.2, the 
second condition occurs, since prices are quickly relaxed to 
get jobs. When the predefined rate is 0.8, the first condition 
occurs. For this rate, it takes time to relax prices. This allows 
the other IPs to get jobs. For these reasons, the average 
rejection rates at 0.2 and 0.8 are high. For the predefined 
rates 0.4 and 0.6, both conditions occur and help to reduce 
the rejection rate. 
 The trend in Figure 12, which shows the revenue, can be 
explained based on the trend in Figure 11. Revenue of IPs is 
higher than that of TPs. Revenues at predefined rates 0.4 and 
0.6 are higher than those at 0.2 and 0.8. Figure 13 and Figure 
14 show the comparison of resource utilizations. The overall 
resource utilization is very less, since there are only 100 jobs. 

 For the values in the range [0.4, 0.6], the rejection rate is 
less, because both the conditions are satisfied, which were 
used to explain Figure 11. Due to less rejection rate, more 
revenue can be achieved. Hence, we recommend a predefined 
rejection rate in the range of [0.4, 0.6] for this case. 

Case (IV) 100 users and 10 providers 
For this case, we get similar results as in Case III. Based 

on the results and discussions presented thus far, we can 
answer the question raised in Section III using Table 2. 

TABLE 2.  SCENARIO-BASED PREDEFINED REJECTION RATE FOR 
INTELLIGENT PROVIDERS 

Case Recommended predefined  
rejection rate 

1000 users and 50 providers 0.8 
1000 users and 10 providers Not applicable 
100 users and 50 providers [0.4, 0.6] 
100 users and 10 providers [0.4, 0.6] 

 
Table 2 summarizes the recommended predefined 

rejection rates for the IPs for the four cases. When the 
number of users is greater and there is enough providers to 
serve them all (Case I), we recommend the predefined rate of 
0.8. If there is not enough providers to serve them all (Case 
II), we recommend no predefined rate. On the other hand, if 
demand is less than the supply, we recommend a predefined 
rate in the range from 0.4 to 0.6. 

 

VI.   CONCLUSIONS 
Grid computing allows for large scale resource 

collaboration. However, seamless collaboration is a challenge 
due to distributed rules and policies. Agent technology would 
be suitable to meet this challenge, since agents are 
autonomous and intelligent. Pricing helps users to access 
legally distributed resources which belong to different 
owners. In this work, we develop a multi-agent based 
continuous double auction model to maximize profit for 
providers. We presented our results for different cases with 
different number of users and providers. We showed that our 
agent-based intelligent providers perform better than 
traditional providers in most cases. Currently we are working 
on how provider agent can sense current number of requests 
autonomously and adjust the predefined rate accordingly. 
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