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Abstract—Most real-world negotiation involves multiple in-
terdependent issues, which makes an agent’s utility functions
nonlinear. Traditional negotiation mechanisms, which were
designed for linear utilities, do not fare well in nonlinear
contexts. One of the main challenges in developing effective
nonlinear negotiation protocols is scalability; they can produce
excessively high failure rates, when there are many issues, due
to computational intractability. One reasonable approach to
reducing computational cost, while maintaining good quality
outcomes, is to decompose the utility space into several largely
independent sub-spaces. In this paper, we propose a method for
decomposing a utility space based on four types of issue inter-
dependencies. This method allows good outcomes with greater
scalability than previous efforts. We also analyze how the types
of issue interdependency influence the solution optimality and
failure rate.

Keywords-Multi-issue negotiation; Nonlinear utility function;
Bargaining and negotiation

I. INTRODUCTION

Negotiation is an important aspect of daily life and
represents an important topic in the field of multi-agent
systems research. There has been extensive work in the
area of automated negotiation; that is, where automated
agents negotiate with other agents in such contexts as e-
commerce [1], large-scale argumentation [2], collaborative
design, and so on. Even though many contributions have
been made in this area [3] most have dealt exclusively
with simple negotiations involving one or more independent
issues. Many real-world negotiations, however, are complex
and involve interdependent issues. When designers work
together to design a car, for example, the utility of a given
carburetor is highly dependent on which engine is chosen.
The key impact of such issue dependencies is that they result
in agent utility functions that are nonlinear, i.e. that have
multiple optima. Most existing negotiation protocols, though
well-suited for linear utility functions, work poorly when
applied to nonlinear problems [4].
Recently, some studies have focused on negotiation with

nonlinear utility functions. The following are the represen-
tative studies on multiple issues negotiations for complex
utility spaces: A bidding-based protocol was proposed in
[5]. Agents generate bids by finding high regions in their

own utility functions, and the mediator finds the optimum
combination of submitted bids from the agents. In [6], the
representative based protocol for reducing the computational
cost was proposed. In this method, the scalability of agents
was improved, however, the scalability of issues was not
enough. In [7], utility graphs were used to model issue
dependencies for binary-valued issues. [8] proposed an ap-
proach based on a weighted approximation technique to
simplify the utility space. [9] proposed bilateral multi-issue
negotiations with time constraints. [10] proposed an auction-
based protocol for nonlinear utility spaces generated using
weighted constraints, and [11] extended this work to address
highly-rugged utility spaces. However, unsolved problem is
the scalability of the protocols against the number of issues.
Thus, reducing this computational cost has been a key focus
in this research.

We propose a new protocol in which a mediator tries to re-
organize a highly complex utility space into several tractable
utility subspaces, in order to reduce the computational cost.
Issue groupings are generated by a mediator based on an
examination of the issue interdependencies. First, we have to
define a measure for the degree of interdependency between
issues. In this paper, we define four such measures. Second,
we generate a weighted non-directed interdependency graph
based on this information. By analyzing the interdependency
graph, a mediator can identify issue subgroups. Note that
while others have discussed issue interdependencies in utility
theory [12], this previous work doesn’t identify optimal issue
groups. Finally, we demonstrate that our protocol, based on
issue-groups, has higher scalability than previous efforts,
and discuss the impact on the optimality of the negotiation
outcomes.

The remainder of this paper is organized as follows. First,
we describe a model of nonlinear multi-issue negotiation
and utility functions. Second, we describe several measures
for assessing the degree of issue interdependency, present
a technique for finding issue sub-groups, and propose a
protocol that uses this information to enable more scalable
negotiations. Third, we present the experimental results.
Finally, we describe related works and draw conclusions.
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Figure 1. Example of constraint

II. NEGOTIATION WITH
NONLINEAR UTILITY FUNCTIONS

We consider the situation where N agents (a1, . . . , aN )
want to reach an agreement with a mediator who manages
the negotiation from a man-in-the-middle position. There
are M issues (i1, . . . , iM ) to be negotiated. The number of
issues represents the number of dimensions in the utility
space. The issues are shared: all agents are potentially
interested in the values for all M issues. A contract is
represented by a vector of issue values �s = (s1, ..., sM ).
Each issue sj has a value drawn from the domain of integers
[0, X ], i.e., sj ∈ {0, 1, , . . . , X}(1 ≤ j ≤ M ). We assume
that agents have an incentive to cooperate to achieve win-
win agreements because a non-agreement has lower utility
than an agreement.
An agent’s utility function, in our formulation, is de-

scribed in terms of constraints. There are l constraints,
ck ∈ C. Each constraint represents a region in the contract
space with one or more dimensions and an associated utility
value. Constraint ck has a value va(ck)(1 ≤ k ≤ l). In
addition, ck has value wa(ck, �s) if and only if it is satisfied
by contract �s. Function δa(ck, ij) is a region of ij in ck,
and function εa(ck) is the number of terms in ck. Actually,
function εa(ck) is ∅ if ck has no region regarded as ij . Every
agent has its own, typically unique, set of constraints.
An agent’s utility for contract �s is defined as the sum

of the utility for all the constraints it satisfies, i.e., as
ua(�s) =

∑
ck∈C,�s∈x(ck) wa(ck, �s), where x(ck) is a set of

possible contracts (solutions) of ck. This expression pro-
duces a “bumpy” nonlinear utility function with high points
where many constraints are satisfied and lower regions where
few or no constraints are satisfied. This represents a crucial
departure from previous efforts on multi-issue negotiation,
where contract utility is calculated as the weighted sum of
the utilities for individual issues, producing utility functions
shaped like flat hyper planes with a single optimum.
Figure 2 shows an example of a utility space generated via

a collection of binary constraints involving Issues 1 and 2.
In addition, the number of terms is two in Figure 2. Figure1,
for example, which has a value of 55, holds if the value for
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Figure 2. An example of a nonlinear utility space

Issue 1 is in the range [3, 7] and the value for Issue 2 is
in the range [4, 6]. The utility function is highly nonlinear
with many hills and valleys. For our work, we assume that
many real-world utility functions are more complex than
this, involving more than two issues as well as higher-order
(e.g. trinary and quaternary) constraints. In recent work (e.g.
[10], [13]), several types of constraints were proposed.
This constraint-based utility function representation al-

lows us to capture the issue interdependencies common
in real world negotiations. The constraint in Figure 2, for
example, captures the fact that a value of 4 is desirable for
issue 1 if issue 2 has the value 4, 5 or 6. Note, however, that
this representation is also capable of capturing linear utility
functions as a special case (they can be captured as a series
of unary constraints). A negotiation protocol for complex
contracts can, therefore, handle linear contract negotiations.
The objective function for our protocol can be described

as follows:

arg max
�s

∑

a∈N

ua(�s).

Our protocol, in other words, tries to find contracts that
maximize social welfare, i.e., the total utilities for all agents.
Such contracts, by definition, will also be Pareto-optimal.
It is of course theoretically possible to gather all the

individual agents’ utility functions into one central place
and then find all optimal contracts using such well-known
nonlinear optimization techniques as simulated annealing or
evolutionary algorithms. However, we do not employ such
centralized methods for negotiation purposes because we
assume, as is common in negotiation contexts, that agents
prefer not to share their utility functions with each other, in
order to preserve a competitive edge.
Note that, in negotiations with multiple independent is-

sues, we can find the optimal value for each issue in isolation
to quickly find a globally optimal negotiation outcome. In
negotiation with multiple interdependent issues, however,
the mediator can’t treat issues independently because the
utility of a choice for one issue is potentially influenced

400



Figure 3. Relationship of interdependency and optimality rate with
nonlinear utility function

ID Issue1 Issue2 Issue3 Issue4 Utility
1 [2, 4] ∅ [4,6] ∅ 20
2 ∅ 5 [3,7] [1,6] 40
3 [3,8] ∅ ∅ ∅ 25
4 4 [2,7] 9 [4,5] 50

Table I
UTILITY FUNCTION FOR AN AGENT

by the choices made for other issues. Figure 3 shows the
relationship between issue interdependency and negotiation
optimality in an example with interdependent issues. In
figure 3, we ran an exhaustive social welfare optimizer for
each issue independently, as well as for all possible issue
combinations. The number of agents is four, and the domain
of per issues is five. The linear utility function (independent
cases) is generated by ua(x) = k ∗ x + c (where x is the
value for that issue, k and c are constants, and a is the
agent). The nonlinear function is generated by 10 unary
constraints, 5 binary constraints. If the mediator ignores
the issue interdependencies (i.e. finds optima for each issue
in isolation), optimality declines rapidly as the number of
issues increases. This means that the mediator must account
for issue interdependencies in order to find high quality
solutions. But if the negotiation protocol tries to do so
by exhaustively considering all issue-value combinations,
it quickly encounters intractable computational costs. If we
have, for example, only 10 issues with 10 possible values
per issue, this produces a space of 1010 (10 billion) possible
contracts, which is too large to evaluate exhaustively. Nego-
tiation with multiple interdependent issues thus introduces a
difficult tradeoff between optimality and computational cost.

III. INTERDEPENDENCY RATE AND
INTERDEPENDENCY GRAPH

A issue interdependency for multi-issue negotiations is
defined as follows: If there is a constraint between issue
X (iX ) and issue Y (iY ), then we assume iX and iY
are interdependent. If, for example, an agent has a binary
constraint between issue 1 and issue 3, issue 1 and issue 3
are interdependent for that agent - see Table I.
The strength of issue interdependency is measured by

Figure 4. Interdependency Graph

interdependency rate. We define four measures for the
interdependency between issue ij and issue ijj for agent
a:
(A) Number of constraints only: D

(A)
a (ij , ijj) =

�{ck|δa(ck, ij) �= ∅ ∧ δa(ck, ijj) �= ∅}. This measures
the number of constraints that inter-relate the two issues.
(B) Number of terms of constraints: D

(B)
a (ij , ijj) =∑

ck∈C εa(ck) if ck is δa(ck, ij) �= ∅ ∧ δa(ck, ijj) �= ∅.
This sums the order of the constraints relating two issues,
based on the intuition that higher-order constraints are more
important than lower-order (e.g. binary) constraints.
(C) Utility value of constraints: D

(C)
a (ij , ijj) =

∑
ck∈C

va(ck) if ck is δa(ck, ij) �= ∅ ∧ δa(ck, ijj) �= ∅. This sums the
weights of the constraints that inter-relate the two issues.
(D) Number of terms and utility of constraints:
D

(D)
a (ij , ijj) = D

(B)
a (ij , ijj) ∗ D

(C)
a (ij , ijj). This is the

product of measures B and C. In addition, we assume that
D

(B)
a (ij , ijj) and D

(C)
a (ij , ijj) are normalized.

The agents capture issue interdependency information as
an interdependency graph. An interdependency graph is
represented as a weighted non-directed graph, in which
a node represents an issue, an edge represents the inter-
dependency between issues, and the weight of an edge
represents the interdependency rate between the issues. An
interdependency graph is thus formally defined as:

G(P, E, w) : P = {1, 2, . . . , |I|}(finite set),

E ⊂ {{x, y}|x, y ∈ P}, w : E → R.

Figure 4 shows the interdependency graph for the con-
straints listed in Table 4.

IV. NEGOTIATION PROTOCOL
BASED ON ISSUE INTERDEPENDENCY

Our proposed negotiation protocol works as follows. A
mediator gathers private issue interdependency graphs from
each agent, generates a social interdependency graph, iden-
tifies issue sub-groups, and then uses that information to
guide the search for a final agreement. In fact, we apply the
concept of issue-grouping to a bidding based approach[5]
in our negotiation protocol. In bidding based approach,

401



Figure 5. Evaluation value in identifying issue-groups

agents can make agreement without submitting all agents’
privacy information, however, the scalability is not enough.
By applying the concept of grouping-issues to bidding based
approach, we can propose high scalable protocol considering
the agents’ privacy. We describe the details below:
[Step 1: Analyzing issue interdependency] Each agent
analyzes issue interdependency in its own utility space, using
Algorithm 1, and generates an interdependency graph. Each
agent sends its’ interdependency graph to the mediator.

Algorithm 1 get Interdependency(C)
C: a set of constraints
1: for c ∈ C do
2: for i := 0 to Number of issues do
3: for j := i + 1 to Number of issues do
4: if Issue i and Issue j are interdependent in c then
5: Calculate interdependencyGraph[i][j]
6: end if
7: end for
8: end for
9: end for

[Step 2: Grouping issues] In this step, the mediator iden-
tifies the issue-groups. First, the mediator generates a social
interdependency graph from the private interdependency
graphs submitted by the agents. A social interdependency
graph is almost same as a private interdependency graph.
The only difference is that the weight of an edge repre-
sents the social interdependency rate. The social interde-
pendency rate between issue ij and issue ijj is defined
as:

∑
a∈N Da(ij , ijj). (Da(ij, ijj): Interdependency rate

between issue ij and issue ijj by agent a).
Next, the mediator identifies the issue-groups based on the

social interdependency graph. In this protocol, the mediator
tries to find optimal issue-grouping using simulated anneal-
ing (SA) [14]. The evaluation function for the simulated
annealing is the sum of the weights of the edges that do not
span separate issue-groups. The goal is to maximize this
value. Figure 5 shows an example of evaluation values for
two issue-groups. In Figure 5 (A), the evaluation value is 8
because there are non-spanning edges between issue 1 and

Figure 6. Division for the bid by agents

issue 2, issue 3 and issue 4, issue 3 and issue 5, and issue 4
and issue 5. In Figure 5 (B), the evaluation value is 9 because
there are non-spanning edges among issue 1, issue 2, issue
3, and issue 5. The number of issue-groups is decided before
the protocol begins.
Agents are at risk for making an agreement that is not

optimal for themselves by dividing the interdependent issues.
In other words, there is the possibility of making a low
utility agreement by ignoring the interdependency of some
issues. However, agents can make a better agreement in
this protocol because the mediator identifies the issue-groups
based on the rate of interdependency.
[Step 3: Generating bids] First, each agent generates bids
for the entire set of issues using the bidding-based protocol
[5]. Concretely speaking, each agent samples its entire
utility space in order to find high-utility contract regions.
After that, each agent uses a nonlinear optimizer based on
simulated annealing [14] to try to find the local optimum
in its neighborhood. For each contract �s found by adjusted
sampling, an agent evaluates its utility by summation of
values of satisfied constraints. If that utility is larger than
the reservation value δ(threshold), then the agent defines a
bid that covers all the contracts in the region that have that
utility value.
Next, agents divide these bids into sub-bids for each issue-

group, and determine their valuations for each sub-bid. In
this paper, agents set their valuation for a bid to be the utility
of the highest-value contract in the bid region. In Figure 6,
for example, an agent selects the global bid Ball = [1, 2, 3]
for all issues, and divides Ball into sub-bids B1 = [1, X, X ]
for issue group 1 and B2 = [X, 2, 3] for issue group 2 (X:
any value). In this case, the agent’s evaluations for both sub-
bids are 9.
[Step 4: Finding the Solutions] The mediator identifies
the final contract by finding all the combinations of bids,
one from each agent, that are mutually consistent, i.e., that
specify overlapping contract regions1. If there is more than
1A bid can specify not just a specific contract but an entire region. For

example, if a bid covers the region [0,2] for issue 1 and [3,5] for issue 2,
the bid is satisfied by the contract where issue 1 has value 1 and issue 2
has value 4. For a combination of bids to be consistent, the bids must all
overlap.
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one such overlap, the mediator selects the one with the high-
est social welfare (i.e. the highest summed bid value). The
mediator employs breadth-first search with branch cutting to
find the social-welfare-maximizing bid overlaps. After that,
the mediator finds the final contract by consolidating the
winning sub-contracts from each issue-group.
In terms of an agent’s strategic behavior, we assume

agents are truthful in this paper. In addition, theoretically,
our protocol can be made incentive-compatible (i.e. where
agents are given incentive to provide the truthful bid values
that are necessary to ensure [near-]optimal social welfare)
if we employ the Groves mechanism [15] with some the-
oretical assumptions on unlimited budgets and unlimited
computational resources. Also, we must assume that the cost
(payment) does not depend on the other issues. Then, we
can define agent i’s utility function as follows: ui = vi − ci,
where vi is value of agreement when some multiple issues
are satisfied and ci is the payment computed by one of
the Grove’s mechanisms. We describe the details in the
appendix.

V. EXPERIMENTAL RESULTS

A. Setting

We conducted several experiments to evaluate our ap-
proach. In each experiment, we ran 100 negotiations. The
following parameters were used. The domain for the issue
values was [0, 9]. The number of constraints was 10 unary
constraints, 5 binary constraints, 5 trinary constraints, and
so on. (a unary constraint relates to one issue, a binary
constraint relates to two issues, etc). The maximum value
for a constraint was 100 × (Number of Issues). Constraints
that satisfy many issues have, on average, larger utility,
which seems reasonable for many domains. In the meeting
scheduling domain, for example, higher order constraints
concern more people than lower order constraints, so they
are more important. The maximum width for a constraint
was 7. The following constraints would all be valid: Issue 1
= [2, 6], Issue 3 = [2, 9].
We compare the following six methods: “(a) Issue-groups

(Number of constraints),” “(b) Issue-groups (Number of
terms),” “(c) Issue-groups (utility),” “(d) Issue-groups (terms
& utility),” “(e) Basic Bidding,” and “(f) Q-Factor.” (a)-
(d) are variants of the issue-group protocol proposed in
this paper, using the four different interdependency rate
measures D

(A)
n ∼ D

(D)
n we described above. This allows

us to compare the efficacy of the different interdependency
rate measures. “(e) Basic Bidding” is the bidding-based
protocol proposed in [5], which does not employ issue-
grouping. In this protocol, agents generate bids by finding
the highest utility regions in their utility functions, and the
mediator finds the optimum combination of bids submitted
from agents. “(f) Q-Factor” is the Maximum Weight Interde-
pendent Set (MWIS) protocol proposed in [10], [11]. MWIS

is a variant of bidding protocol where agents use the Q-
factor, a combination of region and utility, to decide which
bids to submit. This reduces the failure rate because agents
are less likely to submit low-volume bids that do not overlap
across agents.
The parameters for generating bids in (a)-(f) are as follows

[5]. The number of samples taken during random sampling
is (Number of Issues) × 200. The starting temperature for
the simulated annealing algorithm used to find high points
near the samples is 30 degrees . For each iteration, the
temperature decreases 1 degree, so the annealer runs for 30
iterations. Note that it is important that the annealer does
not run too long or too hot because then each search will
tend to find the global optimum instead of the peak of the
optimum nearest the sampling point. The threshold used to
cut out contract points that have low utility is 100. The
limitation on the number of bids per agent is N

√
6, 400, 000

for N agents, because it was only practical to run the
deal identification algorithm if it explored no more than
about 6,400,000 bid combinations. The reservation value for
generating bids is 100. The parameters for identifying issue
sub-groups, in (a)-(d), are as follows. The initial temperature
for the simulated annealing algorithm is 30 degrees. For each
iteration, the temperature decreased 3 degrees, producing a
total of 10 iterations. The number of issue-groups generated
is three. In “(f) Q-Factor,” Q (Q-Factor) is defined as
Q = uα ∗ vβ(u: utility value, v: volume of the bid or
constraint), α = 0.5, β = 0.5.
We used simulated annealing (SA) [14] to approximate

the optimum social welfare for each negotiation test run. Ex-
haustive search was not a viable option because it becomes
computationally intractable as the number of issues grows.
The SA initial temperature is 50.0 and decreases linearly to
0 over the course of 2,500 iterations. The initial contract for
each SA run is randomly selected. The optimality value for a
negotiation run, in our experiments, is defined as (The social
welfare achieved by each protocol) / (The social welfare
calculated by SA).
Our code is implemented in Java 2 (1.5) and run on a core

2-duo CPU with 1.0 GB memory on a Mac OS X (10.6).

B. Experimental Results
Figure 7 compares the optimality rate of the different

protocols. The lines represent the min and max values,
the boxes represent +/- 1 standard deviation, and the ‘-’
represents the average. This results are counted when the
negotiations don’t fail. The optimality rate of our method
((a)-(d)) is higher than “(f) Q-Factor” when the number
of issues is large. In addition, “(d) Issue-Groups (terms &
utility)” produces a higher optimality rate than (a). In t-test,
there is a significant difference between (a) and (d) in case
5 (t(198) = 0.003, P < 0.05, one-sided testing). Therefore,
the interdependency rate measure based on constraint utility
and number of constraint terms works best of those we
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Figure 7. Box-plots of the optimality rate

Figure 8. Failure rate

tried. “(e) Basic Bidding” produces the highest optimality
scores in case 1 and case 2 where it does not fail. This is
because that (e) doesn’t generate the issue-groups. However,
(e) succeeded for none of the negotiations in case 3, so it’s
scalability is limited.
Figure 8 compares the failure rates. The failure rate of

our method ((a)-(d)) is lower than “(e) Basic Bidding”, es-
pecially as the number of issues increases. Also, our method
((a)-(d)) has essentially the same (very low) failure rate
as “(f) Q-Factor.” Our proposed method and Q-Factor thus
achieve the same reduction in failure rate by different means:
one by negotiating by issue-groups, the other by bidding
based on the quality factor. It should be noted, however, that
the Q-factor approach is probably not incentive-compatible.

Figure 9. Effect of the number of issue-groups

While using the Q-factor to pick bids does reduce the failure
rate, there is an incentive for agents to cheat and submit bids
based only on their utility. This increases the likely utility of
the final deal, for them, and may not substantially increase
the probability of a failed negotiation if the other agents do
not cheat as well. This thus creates an prisoner’s dilemma
game, such that all agents are individually incented to take
actions that make things worse for everybody. Our issue-
clumping protocol, by contrast, does not require that agents
selflessly prefer higher volume bids, and thus avoids this
incentive compatibility problem.
Figure 9 shows the optimality rate and failure rate as a

function of the number of issue subgroups in our protocol,
for experiments with four agents. The optimality rate de-
creases as the number of issue subgroups increases. This is
because the possibility that important interdependencies cut
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across issue subgroups (and are thus ignored) increases when
there are more subgroups. On the other hand, the failure
rate for making agreements decreases as the number of issue
subgroups increases. This is because the number of issues in
each issue subgroup decreases, and the computational cost
for finding agreements becomes smaller, thereby reducing
the likelihood of missing an agreement and therefore having
a failed negotiation. Thus, there is a trade-off between the
optimality rate and the failure rate in selecting the number
of issue groups in our protocol.

VI. RELATED WORK

Even though negotiation seems to involve a straightfor-
ward distributed constraint optimization problem [16], [17],
we have been unable to exploit existing work on high
efficiency constraint optimizers. Such solvers attempt to find
the solutions that maximize the weights of the satisfied
constraints, but do not account for the fact that the final
solution must satisfy at least one bid/constraint from every
agent.
[18] explored a range of protocols based on mutation and

selection on binary contracts. This paper does not describe
what kind of utility function is used, nor does it present any
experimental analyses, so it remains unclear whether this
strategy enables sufficient exploration of utility space.
[4] presented a protocol applied with near optimal results

to medium-sized bilateral negotiations with binary depen-
dencies, but was not applied to multilateral negotiations and
higher order dependencies.
[8] proposed an approach based on a weighted approxi-

mation technique to simplify the utility space. The resulting
approximated utility function without dependencies can be
handled by negotiation algorithms that can efficiently deal
with independent multiple issues, and has a polynomial time
complexity. Our protocol can find an optimal agreement
point if agents don’t have in common the expected nego-
tiation outcome.
[19], [9] proposed bilateral multi-issue negotiations with

time constraints. This method can find approximate equi-
librium in polynomial time where the utility function is
nonlinear. However, this paper focused on bilateral multi-
issue negotiations. Our protocol focuses on multilateral
negotiations.
[20] presents an axiomatic analysis of negotiation prob-

lems within task-oriented domains (TOD). In this paper,
three classical bargaining solutions (Nash solution, Egali-
tarian solution, Kalai-Smorodinsky solution) coincide when
they are applied to a TOD with mixed deals but diverge if
their outcomes are restricted to pure deals.
[10], [11] proposed an auction-based protocol for nonlin-

ear utility spaces generated using weighted constraints, and
proposed a set of decision mechanisms for the bidding and
deal identification steps of the protocol. They proposed the
use of a quality factor to balance utility and deal probability

in the negotiation process. This quality factor is used to bias
bid generation and deal identification taking into account the
agents’ attitudes towards risk. The scalability on the number
of issues is still problem in these works.
In [7], [21], utility graphs were used to model issue

dependencies for binary-valued issues. Our utility model is
more general.

VII. CONCLUSION
In this paper, we proposed a new negotiation protocol,

based on grouping issues, which can find high-quality agree-
ments in interdependent issue negotiation. In this protocol,
agents generate their private issue interdependency graphs,
the mediator identifies the issue-groups based on these
graphs, and multiple independent negotiations proceed for
each issue sub-group. We demonstrated that our proposed
protocol has greater scalability than previous work, and
analyzed the effectiveness of different measures of the
interdependency rate.
For future work, we will investigate how to improve

optimality while maintaining the failure rate advantages
of our protocol. One possible track, for example, is to
select the number of issue groups adaptively based on the
issue dependency topology. Another is to conduct additional
negotiation, after the concurrent sub-contract negotiations,
to try to increase the satisfaction of constraints that crossed
sub-contract boundaries.
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APPENDIX: INCENTIVE COMPATIBILITY
Our negotiation protocol can be made incentive compati-

ble by defining payments for agents and employing Groves
mechanism[15]. We assume unlimited agent budgets, which
is a standard assumption for these kinds of incentive analyses
[22]. We also assume each agent knows its own utility
space completely and can find the optimal points without
any cost. We call the new mechanism (protocol) M. We
define agent is type θi to be a set of constraints Ci and its
value wi: θi = (Ci, wi), where wi =

∑
c∈Ci

w(c). θi can
be viewed as a bid from agent i. In this mechanism, agent i
submits type θ̂(a bid), which may not be true (i.e. may not
represent the true weight for those constraints). Based on the
reported types θ = (θ1, . . . , θN ), our mechanism computes:
s∗(θ̂) = args∈S,s is consistentmax

∑
i zi(s, θ̂i), where S is

a set of contracts, zi(s, θ̂i) is agent i’s valuation function
on the consistent contract s when i reports θ̂i. s does not
violate any constraints in θ̂. zi(s, θ̂i)) is a nonlinear function
in our case. For the purpose of this analysis, we will assume
an ideal case in which each agent has complete knowledge
on his/her own utility space. We define agent is payments as
follows a direct adaptation of Groves mechanism: ti(θ̂) =
hi(θ̂−i)−

∑
j �=i zj(s∗(θ̂), θ̂j)−(1) The first term, hi(θ̂−i), in

the right hand in the equation (2) is an arbitrary function on
the reported types of every agent except i. Agent i’s utility
for making a bid (i.e. reporting a type) θ̂i can be defined as
follows: uM

i (θ̂i) = zi(s∗(θ̂), θi) − ti(θ̂) − (2)
Proposition 1 (Incentive compatibility). M is incentive
compatible (i.e. truth telling is a dominant strategy).
Proof. The proof is almost the same as that for Grove’s
mechanism. Based on the utility function (2), uM

i (θ̂i) =
zi(s∗(θ̂), θi) − ti(θ̂) = zi(s∗(θ̂i), θi) +

∑
j �=i(s

∗(θ̂), θ̂j) −
hi(θ̂−i). Agent i can not control hi(θ̂−i). Therefore he wants
to maximize zi(s∗(θ̂i), θi) +

∑
j �=i(s

∗(θ̂), θ̂j)(∗). On the
other hand, mechanism M computes the following because
to maximize social welfare efficiency: argmaxs∈Szi(s, θ̂i).
This can be written as follows: argmaxs∈S [zi(s, θ̂i) +∑

j �=i zj(s, θ̂j)]. For agent i, to maximize the equation (*),
he must report θ̂i = θi, i.e. his truthful type.
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