
From HTML Documents to Web Tables and Rules

Kai Simon Georg Lausen

Institut für Informatik, Universität Freiburg
Georges-Köhler-Allee, Gebäude 51

79110 Freiburg i.Br., Germany

{ksimon,lausen} AT informatik.uni-freiburg.de

Harold Boley

Institute for Information Technology – e-Business
National Research Council of Canada
Fredericton, NB, E3B 9W4, Canada

Harold.Boley AT nrc.gc.ca

ABSTRACT
We present a browser-extending Semantic Web extraction
system that maps HTML documents to tables and, where
possible, to rules. First, the basic data extractor ViPER
distills and reorganizes semi-structured information into a
tabular data structure, which can again be browsed and/or
submitted to further machine processing. Second, exem-
plifying the latter, the extended knowledge extractor Rex
ViPER mines the resulting tables for structural properties
and functional dependencies. Rules are generated to obtain
a more compact and manageable, often also enriched, knowl-
edge representation. The resulting fully structured informa-
tion, RuleML-serialized facts and rules, can be stored along
with the orginal documents, queried by rule engines such as
OO jDREW and FLORID, and interchanged between Web
Services. Thus Rex ViPER contributes to automating the
construction of a machine-processable Semantic Web.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous—Data Extraction, Wrapper Generation, Web

General Terms
Rule-based languages

Keywords
Data extraction, data record alignment,Rule-based languages

1. INTRODUCTION
The Internet has revolutionized the way we search for

information, extract information, and also the way we ex-
change information. However, due to the fact that a huge
amount of information available on the Web is only accessi-
ble through presentation-oriented HTML pages, most of the
interactions take place between humans. In order to pave

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICEC’06, August 14–16, 2006, Fredericton, Canada.
Copyright 2006 ACM 1-59593-392-1 ...$5.00.

the way for the Semantic Web, which focuses on computer-
computer interactions, we require techniques empowering
machines to extract, represent, and process information re-
sources, on behalf of humans. The benefits a user would
obtain from these techniques are obvious. For instance,
the system could extract (XML) representations from vari-
ous Web sources, semantically integrate and process them,
e.g. finding regularities in the form of (RuleML) rules, and
present results in a suitable manner.

First, we start with the description of our fully automatic
Web data extraction system, called ViPER [17], which has
already been embedded into a wide-spread Web browser.
Equipped with the plugin the user is able to extract infor-
mation from arbitrary Web pages containing multiple sim-
ilarly structured data records, which is a typical character-
istic of static Web catalogs as well as dynamic Web pages.
Due to the fact that these sites are often filled with infor-
mation from back-end databases by predefined templates or
server-side scripts, the extraction process can be seen as re-
verse engineering on the basis of materialized database views
which have been published in HTML pages. Consequently,
we reorganize the extracted information as an interactive
XML-serialized table opening the door to a wide range of
post-processing functionalities.

After the extraction process and reorganization of the in-
sulated data records into a tabular representation, we mine
structural properties and functional dependencies with an
extension of the ViPER system referred to as the Rule-
extracting ViPER system, Rex ViPER for short. Previous
work in rule extraction includes the LISp-Miner project for
discovering statistical association rules in databases1 and the
XRML framework for obtaining rules from natural language
[11].

In this paper, we focus on data-driven methods to discover
correlations inside the resulting table, both in their columns
and rows. Rex ViPER employs dependency mining to gen-
erate rules which become serialized in XML, specifically in
RuleML [4]. We will focus on rules that enable the (column
and row) compactification and enrichment of tables. These
rules can then derive the original and enriched information
on demand. Such rules also benefit the table representa-
tion produced by the basic ViPER system because the re-
maining columns and rows become easier to navigate and
administrate interactively. A balanced representation em-
ploying both tables and rules can result in improved infor-
mation processing and management, and also benefits the

1[http://lispminer.vse.cz/]



user through a personalized view of each of the currently
materialized HTML pages. To ensure the portability of Rex
ViPER, two rule engines are employed to query represen-
tations consisting of tables (facts) and rules: the RuleML
implementation OO jDREW [1] and the F-logic implemen-
tation FLORID [6].

2. WEB DATA EXTRACTION AND ALIGN-
MENT

Wrapper tools for extracting information from HTML pag-
es started attracting major research interest during the mid-
nineties. One significant characteristic is their degree of au-
tomation, reaching from specially designed standalone wrap-
per programming languages, for manual wrapper generation,
over machine learning, and interactive approaches with more
or less human interaction to fully-automatic wrapper tools.
We refer the interested reader to [10] for a brief survey of
different wrapping techniques. Whereas the majority of the
approaches rely on user interaction to extract information,
more recently, interest in automatically generated wrappers
without human involvement has grown substantially.

2.1 Automatic Extraction
We developed a fully-automatic wrapper extraction tool

named ViPER (Visual Perception-based Extraction of Records).
The original prototype controls the Gecko Engine of Mozilla
over the XPCOM interface via the Java Framework JREX2

which enables us to use the correction and rendering power
of Gecko within Java. The principle assumption made is
that a Web page contains at least two multiple spatially
consecutive data records building a data region which ex-
hibits some kind of structural and visible similarity. ViPER
is then able to extract and discriminate the relevance of dif-
ferent repetitive information contents with respect to the
user’s visual perception of the Web page. Having identi-
fied the most relevant data region the tool extracts similar
data records by declaring one data record contained in that
data region as pattern and aligns matching data records uti-
lizing a fast and robust multiple sequence alignment (MSA)
technique. In [17] we already showed the accuracy of the ex-
traction process by comparing our system with the results
reported by existing fully-automatic state-of-the-art wrap-
ping tools. Meanwhile, we have developed a slim plugin re-
alization of ViPER for the Mozilla Firefox Web browser with
additional interactive post-processing functionalities. Most
of these functionalities pertain modifications of the resulting
table such as labeling or sorting of the aligned columns. On
the other side the user has also the possibility to manually
select different patterns from a ranked list of reported pat-
terns after the extraction process. Some of these patterns
could for instance match structured advertisements or links
pointing to following pages.

Figure 1 depicts our running example on the basis of which
we like to illustrate both the extraction and rule mining
process. More examples and their corresponding outputs
can be found under the following link3. The Web page
in 1A) contains similar structured information denoted as
data records where each of them consists of the following
data items: a linked picture of the product, a link labeled
with product description, product code, color, different price
2[http://jrex.mozdev.org/]
3[http://dbis.informatik.uni-freiburg.de/ViPER/Rex/Rules.html]

information and optional shipping information. Inside the
Web page the data records are arranged in a 3x4 dimen-
sional table and therefore build a compact data region. The
most relevant extraction pattern suggested by ViPER con-
sists of 59 HTML tag elements whereas text content becomes
abstracted by an artificial element symbolize by <TEXT>.
Within these 59 elements only <A>,<IMG> and <TEXT>
elements become displayed in the final table representation
which finally sums up to 14 data items.

2.2 Automatic Alignment
After the extraction process the system attempts to align

the data records. In [17] we described our partial data align-
ment approach based on global sequence alignment tech-
niques, tree structure information and string similarity. The
reported benchmarking results performed on a labeled third
party data set underpin the accuracy and efficiency of our
data alignment technique. The advantage of aligned data
records is that it is easy to store the data records in a data-
base, export them as XML or synchronize them with data
extracted from other Web pages. The result of the alignment
process of our example Web site is shown in figure 1B). Each
data record corresponds to a row in the table and aligned
data items belong to the same column. We have to mention
that in the majority of cases the number of data items in
the pattern doesn’t determine the final number of columns
because of additional data items in data records matching
the pattern with respect to the modified edit-distance com-
putation as described in [17].

3. TABLE MINING
In this paper, we focus on data-driven methods to discover

correlations between columns of the resulting aligned table.
Hence, the system explores the rich dependency structure
that often prevails in most real-world Web data based on
the aligned data records. We apply heuristics and statistical
analysis to identify both structural and functional proper-
ties. Our approach is totally data-driven and instance/sample-
based because we can only identify properties from the pre-
sented Web view and have no access to schema information
or catalog statistics. To ensure that the number of data
records exceed a statistical significance we accumulate data
records from so called following pages and insert them into
our resulting table if available.

3.1 Preliminary Definitions
Before we describe the mining techniques we want to spec-

ify our table in more details. Let t define the resulting table
after the alignment process and K ×N its dimension where
K denotes the total number of rows and N the total num-
ber of columns. A particular data item in the i-th row and
the j-th column is addressed by t.si,j or shortly si,j with
1 ≤ i ≤ K, 1 ≤ j ≤ N . The short notation is practical
because in our case we always refer to the same relation t.
A common notation to refer to a special entry contained in
a row or a column is Ri := si,. or Cj := s.,j , respectively.

Next we define some statistical dimensions describing the
table in more details. If we focus on a specific column Cj

with Dj ≤ N distinct values, say Dj := {1, 2, ..., Dj}, then
nk,j denotes the number of times value k ∈ Dj occurs in the
j-th column. With total sum nj :=

PDj

k=1 nk,j where the
relative frequency of value k corresponds to pk,j := nk,j/nj ,



A

B

C

D

Figure 1: Example Web page with horizontally and vertically arranged data records and their corresponding
tabular representation after the extraction and alignment process. Figure C) illustrates a compact table view
of the data records with partially labeled columns. The final figure D) represents a personalized user view
of the Web content where functionally dependent and redundant information has been removed.

with property
PDj

k=1 pk,j = 1. Additionally we rank the
values according to their frequency nk,j and denote by vk,j

the k-th frequent value in column j.

3.2 Heuristic Mining
Applying heuristics is a straight forward strategy to mine

simple properties in a table. Therefore in a first step we in-
troduce some simple heuristics which identifies trivial prop-
erties. Based on these initial properties we are able to create
more complex heuristics, subsequently. We made the follow-
ing observations which have been directly hard coded into
the table mining mechanism:

1. If the number of distinct values Dj in a column Cj

is close to the column dimension, i.e. Dj = N − ε
with some small ε ≥ 0, then we denote the column a
key column. If ε > 0 then the column represents ”al-
most” a key and we call such a column a soft key col-
umn. It can be easily observed that the data items in
the column determine the row with a high probability
and hence the values in any other column. Therefore
a (soft) key column is trivially statistically correlated

with every other column in t and consequently we will
not use these columns when searching for functional
dependencies.

2. On the other hand if a column Cj contains only one
type of data item, Dj = 1, then any other column
functionally determines Cj in a trivial manner. Thus,
we also omit this column when searching for functional
dependencies.

Web data records often contain unique links resulting in
soft/hard keys after the alignment process. We like to men-
tion that sometimes more than only one column could be-
come a key, for instance, the same unique link might be
referenced multiple times inside a data record. Titles, pic-
tures, etc. enclosed by anchor tags and pointing to the same
location are common examples for such a situation. Deriv-
ing key columns from small sample sets is not statistically
meaningful, therefore we always have to verify the key con-
straints afresh.

The second case often occurs if the data records contain fix
data items appearing ”next to”, with respect to the HTML



<br><b>Our Price:</b> <span class="sprice">$299.95</span>
<br>List Price: $499.99<br>

<span class="sprice">$299.95 </span><b>Our Price</b>
<br>$499.99 List Price<br><br>

<tr><td><b>Our Price</b></td><td>List Price</td></tr>
<tr><td class="sprice">$299.95</td><td>$499.99</td></tr>

Coli Coli+1 Coli+2

Our Price: $299.95 List Price: $499.99

Coli Coli+1 Coli+2

$299.95 Our Price $499.99 List Price

Coli Coli+1 Coli+2

List Price: $299.95

Coli+3

Our Price: $499.99

Rendered
representation HTML source code Alignment result

Figure 2: Heuristics to label data items have to rely on render information. We capture three different kinds
of data item arrangements. The above figure illustrates these by showing the rendered browser representation
(left) of their corresponding HTML tag sequence (middle) and aligned table representation (right) for each
of the three cases. A column with fix content (gray), is a potential label and becomes assigned (arrows) with
respect to the render information to the spatially closest column with variable content.

representation, variable data items. The interpretation of
the resulting fix column depends on the layout structure.
Figure 2 illustrates an example of three typical types of fix
columns and their interpretation handled by our heuristics.
Scanning top-down through the examples we distinguish the
following label assignment strategies: left-to-right, right-to-
left and in case of vertical orientations up-to-down assign-
ment. We will not regard the fourth orientation down-to-up
because of its rareness. The first orientation especially holds
for documents encoded in (western) languages on account
of the reading direction. In this case the aligned fix con-
tent (gray) can be easily assigned to the next column with
presumable variable content (arrow). Otherwise, if the la-
bel is positioned on the opposite side of the variable content
then we also have to assign the aligned fix content (gray)
to its predecessor column. These label notations are often
used for units. An indication which of these two assignment
directions should be applied is realized by a decision tree.
First we test whether the surrounding data items are in the
same line, with respect to the render information. Provided
that they are in the same horizontal line we next test if
there exists a special separation character at the end of one
of the strings, e.g., the colon in ”Our Price:” from our first
example. Of course we cannot apply this rule, if both of
the surrounding data items are images. A final rule con-
siders the complete row. Thereby the assignment direction
which have been applied most times inside the row takes
place. If non of these rules decide the assignment problem
we leave the column untouched. A typical characteristic of
the up-to-down assignment is that inside the aligned table
a number of fix columns appear next to each other. To map
the labels to the corresponding data items we search for the
spatially closest located variable column in the render repre-
sentation and thus assign the consecutive fix columns from
left to right.

In our running example figure 1B) the gray marked columns

at position 5,7,9 and 11 in the table have fix content end-
ing with a colon. With the additional render information
the heuristic assigns the content of the fix columns to their
adequate right neighbor column as column label. Next each
column becomes scanned for static text objects appearing
in each row inside that column. For instance in figure 1B)
each data item of column 8 and 10 contains the currency
character ”$” respectively in column 13 the coherent words
”Usually ships in” are fix. Some objects on the other hand
could split a column into two or more new columns. For
instance in column 12 in figure 1B) each data item contains
the fix characters ”$,(,%,)”. In our heuristic mining system
we have specified some characters as column separator. In
this case the pair of opening and closing parenthesis match
these separators and therefore divide the column into two
new columns. The resulting table generated by the heuristic
mining algorithm which has become augmented by a leading
enumeration column is depicted in 1C).

3.3 Dependency Mining
Automated database analysis and discovery of correla-

tions between columns and rows from relations has received
considerable interest [16, 8, 5, 14]. The most important
ones in our context are functional dependencies (FDs) and
arithmetic dependencies (ADs) between columns.

3.3.1 Functional Dependency Mining
With respect to relational data model we denote our table

t relation and define:
The relation t satisfies the functional dependency (FD)

X → Y , if for every X-value x, πY (σX=x (t)) has at most
one tuple. Here, X and Y denote subsets of attributes and
π and σ denote the projection and selection operators, re-
spectively.

For instance, in the data records in figure 1, the You Save
price is determined by the List Price and Our Price. If there
exists only some tuples violating the FD we speak of a soft



functional dependency (soft FD for short). We define a soft
FD (denoted by Cx → Cy), the finite set of attribute values
of Cx which determines the values of Cy not with certainty,
but merely with high probability. The discovery of unex-
pected but meaningful soft FDs seems to be an interesting
and attractable goal because these kind of FDs provide valu-
able hints to many different information. The uncertainty of
such a soft FD is based on the number of tuples that need
to be removed from the relation t to become a hard FD:
error(X → Y ) := min {|r| |r ⊆ s and X → Y holds in s \ r} / |s|.
We next describe our set of statistical measurements to de-
rive soft FDs.

When searching for dependencies in the table we have to
check all possible column pairs against each other. After the
previously mentioned heuristics have been executed we can
use pruning rules to reduce the search space.

• Text Constraints: Prune columns which contain data
items of mixed string type with more than 200 charac-
ters. This is typically the case for short text snippets
describing a data record in more detail.

• Pairing Constraints: Prune column pairs where one of
the participants fulfills a criteria mentioned previously
in the heuristic part. [soft key or fix columns]

For the final set of column candidate pairs (Cl, Ck) and
triples (Cl, Ck, Cm) we explore some classical statistical mea-
sures of association.

Our statistical dependency mining approach is divided
into two stages:

In the first stage we use hash tables to mine functional
dependencies. Hereby we generate a key value for the hash
table function by combining at most two different columns,
respectively their data items and insert it into the hash table.
If we have a collision when inserting another row key from
the combined columns into the hash table then we search
for columns having equal data at the corresponding colliding
rows. This technique directly checks the FD properties as
defined above and enables us to discover FDs between pairs
and triples of columns with arbitrary content. We have to
mention that some of these FDs don’t make sense. Therefore
the user has to be consulted interactively which FD finally
should be used.

In the second stage we inspect only those remaining col-
umn candidates which either consist of numeric data or cat-
egorical data like month names of a calender. Categorical
data could be normalized by allocating a unique number to
each possible text value. Finally, the candidates become dis-
cretized and normalized with the LUCS-KDD DN Software
[15] leading to a greater data mining accuracy. Next start
computing classical statistical measurements of association.
One is the Shannon entropy which is a typical concept in
information theory and expresses the randomness of data:

H(Cj) = −κ

NX
i=1

pi,j log pi,j ,

where κ denotes a constant value which is just a choice of
measurement units, we set κ := 1.443 and pi,j denotes the
relative frequency. The entropy is maximal if the data items
appear with the same frequency. In this case we have a uni-
form distribution of the data items contained in the column.
We normalize the entropy to the interval 0 ≤ bH ≤ 1 by mul-
tiplying log2(N) to bH := H∗ log2(N). Next we search for an

association between for instance a pair of columns by com-
puting the the chi-square distribution (χ2) and test if the
null hypothesis is true.

χ2
Cx,Cy

=

KX
i=1

NX
j=1

(ni,j − ninj)

ninj

Another prominent test which measure the strength of as-
sociation of a cross tabulation is the Cramer’s V -test. We
define it by using the mean-square contingency (φ2)

Φ2
Cx,Cy

=
χ2

N

resulting in:

VCx,Cy =

s
Φ2

Cx,Cy

min {K − 1, N − 1} with 0 ≤ VCx,Cy ≤ 1

The values of VCx,Cy ranges from 0 (no association) to
1 (the theoretical maximum possible association). Due to
the fact that in real-world datasets most column values are
biased and therefore VCx,Cy never exactly equals zero, we
consider the attributes of the pair (Cx, Cy) independent if
VCx,Cy ≤ ε for some small ε > 0. If this condition holds
then we have sampled a column-value pair (Cx, Cy) from
our table which is totally independent to each other.

Returning to our example in figure 1 and the resulting
table after the heuristic mining 1C) we are now able to il-
lustrate the dependency mining technique. First, the system
discovers that the content of the column labeled ”Color:” is
redundant since it is totally determined by the column with
label ”Towel Ring” (totally equal data items). Additionally
the system detects with statistical mining techniques that
column Cu with labeled ”List Price: $” and Cv labeled with
”Our Price: $” determines column Cw labeled ”You Save:
$” or the column Cx labeled with ”%”. The user now can
decide in a post-processing step which of these functional
dependant columns are of interest. In the resulting table
1D) we can see that first the redundant ”Color:” column
disappeared and only column Cv and Cw are further dis-
played because they contain all the information needed to
reconstruct the vanished columns Cu and Cx.

3.3.2 Arithmetic Dependency Mining
In the last dependency mining step we try to discover

arithmetic dependencies between columns containing nu-
meric data items. With respect to the computational com-
plexity we limit the mining process to equations of the type

Cz = λ1Cx + λ2Cy Cz = λ1Cx

where λi ∈ R with i ∈ 1, 2. To get the relations between
numeric columns we check the homogeneous system of linear
equations for non trivial solutions. In case we have a solution
and thus have linear dependent columns we try to describe
each of these columns by a linear combination of at most
two other columns as describes by the upper equations.

4. RULE GENERATION
Two language families that predated the (Semantic) Web,

yet have been very useful for it, are positional languages
based on Horn logic such as Prolog, and slotted languages
with object-centered instance and class descriptions plus



tab(?̂ s1 → f1; . . . ; si−1 → fi−1; si →v1; si+1 → fi+1; . . . ; sN → fN )
...

tab(?̂ s1 → f1; . . . ; si−1 → fi−1; si →vK; si+1 → fi+1; . . . ; sN → fN )

(1)

tab(?̂ s1 → f1; . . . ; si−1 → fi−1; si → ?x; si+1 → fi+1; . . . ; sN → fN ) :- member(?x, [v1, . . . , vK ]) (2)

tab(?̂ s1 → f1; . . . ; si−1 → fi−1; si → ?x1; . . . ; si+D−1 → ?xD; si+D → fi+D; . . . ; sN → fN )

:- member([?x1, . . . , ?xD] , [[v1,1 . . . v1,D] , . . . , [vK,1 . . . vK,D]]) (3)

tab(r1 ŝ1 → f1; . . . ; sx−1 → fx−1; sx → v1; sx+1 → fx+1; . . . ; sy−1 → fy−1; sy →w1; sy+1 → fy+1; . . . ; sN → fN )
...

tab(rK ŝ1 → f1; . . . ; sx−1 → fx−1; sx → vK ; sx+1 → fx+1; . . . ; sy−1 → fy−1; sy →wK ; sy+1 → fy+1; . . . ; sN → fN )

(4)

tab(r1 ŝ1 → f1; . . . ; sx−1 → fx−1; sx → v1; sx+1 → fx+1; . . . ; sy−1 → fy−1;sy+1 → fy+1; . . . ; sN → fN )
...

tab(rK ŝ1 → f1; . . . ; sx−1 → fx−1; sx → vK ; sx+1 → fx+1; . . . ; sy−1 → fy−1;sy+1 → fy+1; . . . ; sN → fN )

(5)

Table 1: Table compactification with POSL rules.

rules as in F-logic [9, 18]. Both have concise ASCII syn-
taxes, elegant semantics, and decent computational prop-
erties. Since these positional and slotted styles are often
needed conjointly in the XML&RDF Web, they have been
integrated in POSL4. In this paper, we use POSL as the
‘human-oriented’ syntax for tables (in the form of facts with
the same relation name) as well as rules. For XML serializa-
tion, POSL is translated to RuleML [3] via the online POSL
converter5.

In its positional sublanguage, POSL uses a Prolog-like
syntax except that variables are prefixed by a “?”, with
the anonymous variable written as a stand-alone “?”. In
its slotted sublanguage, POSL uses an F-logic-inspired syn-
tax, where “name->filler” slots are separated, unordered, by
a “;” infix, and slotted rests are made explicit with a “!” in-
fix, usually followed by a variable. Facts and rule heads can
be anchored by an OID (usually a URI) as a special ‘zeroth’
argument separated from further arguments by an up-arrow
”^” infix.

Rules can be employed to compactify tables (without loss
of information) or to enrich tables (with additional infor-
mation). Compactification can affect table rows or columns.
Enrichment is considered here for columns only.

Row compactification employs a rule to merge two or
more rows that differ only in a few columns. This rule is
constructed as follows. The rule head is formed from the
merged rows by introducing fresh variables for data items
that are different in the original rows. The rule body enu-
merates bindings of the tuple of these variables to tuples of
data item values from the corresponding original rows. Enu-
meration can be done in several ways, one of which being
the Prolog-like member predicate used here.

In particular, if there are K rows identical except for pair-
wise different data items vj (1 ≤ j ≤ K) in column si

as formalised in table 1 with the POSL notation shown in
(1) we are able to generate the rule (1). An example is
guitar-describing rows that differ only in the color column.

4[http://www.ruleml.org/submission/ruleml-shortation.html]
5[http://www.ruleml.org/posl/converter.jnlp]

For D > 1 distinguishing columns si, . . ., si+D−1, we can
assume without loss of generality that these columns are
adjacent in the POSL notation, obtaining the rule (3) no-
tated in the table 1. An example with D = 2 might be
amplifier-describing rows that differ only in the watt and
price columns.

Column compactification employs rules to elide one
or more columns that can be inferred from other columns.
The head and body of these rules both refer to the table.
The rules express specific column dependencies much like
computable functional dependencies in relational databases.
The computation is done by a function φ that can range
from inserting a constant value, to copying a value, to using
built-ins applied to a value. We consider here two important
special cases.
Dependencies Cx → Cy: The table show in (4) has the
following form, where without loss of generality Cx is as-
sumed to be on the left of Cy and wj = φ(vj) (1 ≤ j ≤ K).
This will be compactified to this table without column Cy

as given in (5). The data items in column Cy will instead be
computed when needed using a rule as follows. The body,
for each row j (1 ≤ j ≤ K) identified by an object vari-
able ?r, reads the slot filler vj corresponding to column Cx

and computes the functional value wj = φ(vj) from it. The
head inserts, for those row objects ?r, the results into the
slot filler wj corresponding to column Cy. In the POSL no-
tation we assume without loss of generality that columns Cx

and Cy are adjacent, obtaining the following rule, with the
φ equation specialized to the appropriate function:
tab(?r^sx->?v;sy->?w!?z)
:- tab(?r^sx->?v!?z), ?w = φ(?v).
An example in figure 1C) is the column labeled ”Our Price:

$” which is multiplied with 0.63 the column labeled with
”%”. This could be expressed by φ = λ(a)a∗0.63, where the
resulting φ equation can also be written as a relation call
mult(?w,?v,0.63).
Dependencies Cx1×Cx2 → Cy: The table has an obvious
generalized form in which the two independent columns Cx1

and Cx2 together map to the dependent column Cy. With



the φ equation wj = φ(v1j , v2j), the rule becomes:
tab(?r^sx1->?v1;sx2->?v2;sy->?w!?z)
:- tab(?r^sx1->?v1;sx2->?v2!?z), ?w = φ(?v1,?v2).
An example is the total column labeled ”List Price: $” in

table 1C) which is the sum of the column ”Our Price: $”
and ”You Save: $” with φ = λ(a1, a2)a1 + a2, where the
resulting φ equation can also be written as a relation call
add(?w,?v1,?v2).

Column enrichment employs rules to add one or more
columns that can be inferred from other columns. This
is similar to column compactification except that inferred
columns contain new information rather than data items
elided from the original table. The information derived by
rules constitutes extra virtual columns, i.e. the table itself
is not changed.

Column enrichment can thus be regarded as starting with
a table that results from column compactification and de-
riving the same rules. The two special cases discussed for
column compactification above thus also apply here.

Without dependent columns available in the table for test-
ing hypotheses, column enrichment requires other criteria
for deciding whether new information may be of interest,
ultimately via user interaction.

5. CONCLUSION
In this paper we presented a table mining extension of our

fully-automatic information extraction system called ViPER.
With the presented plugin realization of ViPER for Firefox a
user is able to extract structured information from arbitrary
Web pages while surfing the Web.

The system rearranges the information into a tabular rep-
resentation and consolidates the resulting table by mining
for structural and functional properties. Layered upon this,
the Rex ViPER system compactifies and/or enriches the
resulting tables by mining them for rules capturing struc-
tural and functional properties. At the current state of the
system, some functional properties have to be interactively
post-processed by the user. Finally, we serialize the com-
pactification and enrichment rules in XML, specifically in
RuleML.

By partially automating rule formation, Rex ViPER con-
stitutes a major step towards Web Rules as envisaged by
RuleML [4] and RIF6. This paper focused on the results of
Rex ViPER, phase 1, where table and rule extraction per-
form visual structure recognition plus shallow string match-
ing/parsing, and operate on a single document containing
repetitive data records.

An obvious phase 2 enhancement will be the modular in-
corporation of a (controlled) English parser for those hy-
pothetical table data items and rule arguments that are
amenable to natural language processing as provided by
projects such as Attempto Controlled English [7] and TRANS-
LATOR7.

An independent phase 2 enhancement will be the extrac-
tion from, and integration of, tabular and rule information
in multiple documents, as exemplified by our previous work
on the New Brunswick Business Knowledge Base [12]8. A
further opportunity would be the mapping of imperfect cor-
relations between table rows or columns to uncertain rules
6[http://www.w3.org/2005/rules]
7[http://www.ruleml.org/translator]
8[http://www.ruleml.org/usecases/nbbizkb]

of the kind studied in Fuzzy RuleML9.
Similarly, weights could be employed as in AgentMatcher

[2] to sort columns according to their relative importance.
Finally, background knowledge, e.g. in the form of ontolo-
gies about particular domains, could be utilized both for
extraction and for rule generation, calling for rule-ontology
integrations such as DatalogDL[13].

6. REFERENCES
[1] M. Ball, H. Boley, D. Hirtle, J. Mei, and B. Spencer. The OO

jDREW Reference Implementation of RuleML. In Proc. Rules
and Rule Markup Languages for the Semantic Web (RuleML-
2005), pages 218–223. LNCS 3791, Springer-Verlag, November
2005.

[2] V. C. Bhavsar, H. Boley, and L. Yang. A Weighted-Tree Sim-
ilarity Algorithm for Multi-Agent Systems in e-Business Envi-
ronments. In Proc. Business Agents and the Semantic Web
(BASeWEB) Workshop. To appear in: Computational Intelli-
gence, Nov. 2004.

[3] H. Boley. Object-Oriented RuleML: User-Level Roles, URI-
Grounded Clauses, and Order-Sorted Terms. In Proc. Rules
and Rule Markup Languages for the Semantic Web (RuleML-
2003). LNCS 2876, Springer-Verlag, Oct. 2003.

[4] H. Boley, S. Tabet, and G. Wagner. Design Rationale of RuleML:
A Markup Language for Semantic Web Rules. In Proc. Semantic
Web Working Symposium (SWWS’01), pages 381–401. Stan-
ford University, July/August 2001.

[5] P. G. Brown and P. J. Haas. BHUNT: Automatic Discovery of
Fuzzy Algebraic Constraints in Relational Data. In Proceedings
of the 29th VLDB Conference, 2003.

[6] J. Frohn, R. Himmeröder, P. Kandzia, G. Lausen, and C. Schlep-
phorst. FLORID: A Prototype for F-Logic. In International
Conference on Data Engineering, pages 583–583, 1997.

[7] N. E. Fuchs and U. Schwertel. Reasoning in Attempto Controlled
English. In PPSWR, pages 174–188, 2003.

[8] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga.
CORDS: Automatic Discovery of Correlations and Soft Func-
tional Dependencies. In SIGMOD, Paris, France, June 2004.

[9] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM
JACM, 42(4):741–843, 1995.

[10] A. H. F. Laender, B. Ribeiro-Neto, A. S. D. Silva, and J. S. Teix-
eira. A brief survey of web data extraction tools. ACM SIGMOD
Record, 31(2):84–93, 2002.

[11] J. K. Lee and M. M. Sohn. The eXtensible Rule Markup Lan-
guage. Communication ACM, 46(5):59–64, 2003.

[12] A. Maclachlan and H. Boley. Semantic Web Rules for Business
Information. In Proc. International Conference on Web Tech-
nologies, Applications, and Services (WTAS 2005), Calgary,
Canada. IASTED, July 2005.

[13] J. Mei, H. Boley, J. Li, V. C. Bhavsar, and Z. Lin. DatalogDL:
Datalog Rules Parameterized by Description Logics, 2006. To
appear in CSWWS2006.

[14] U. Nambiar and S. Kambhampati. Mining Approximate Func-
tional Dependencies and Concept Similarities to Answer Impre-
cise Queries. In Seventh InternationalWorkshop on theWeb and
Databases (WebDB), 2004.

[15] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI Repository
of machine learning databases, 1998.

[16] A. Pivk, Y. Sure, P. Cimiano, M. Gams, V. Rajkovi, and
R. Studer. Transforming Arbitrary Tables into F-Logic Frames
with TARTAR. In Elsevier Science, 2005.

[17] K. Simon and G. Lausen. Viper: Augmenting automatic infor-
mation extraction with visual perceptions. In Proceedings of the
2005 ACM CIKM Conference on Information and Knowledge
Management, pages 381–388, Bremen, GERMANY, November
2005. ACM Press.

[18] G. Yang and M. Kifer. Reasoning about Anonymous Resources
and Meta Statements on the Semantic Web. In S. Spaccapietra,
S. T. March, and K. Aberer, editors, J. Data Semantics I, vol-
ume 2800 of Lecture Notes in Computer Science, pages 69–97.
Springer, 2003.

9[http://image.ntua.gr/FuzzyRuleML]


