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ABSTRACT
We present a simple dynamic equilibrium model for an on-
line exchange where both buyers and sellers arrive according
to a exogenously defined stochastic process. The structure
of this exchange is motivated by the limit order book mech-
anism used in stock markets. Both buyers and sellers are
elastic in the price-quantity space; however, only the sellers
are assumed to be patient, i.e. only the sellers have a price
- time elasticity, whereas the buyers are assumed to be im-
patient. Sellers select their selling price as a best response
to all the other sellers’ strategies. We define and establish
the existence of the equilibrium in this model and show how
to numerically compute this equilibrium. We also show how
to compute other relevant quantities such as the equilibrium
expected time to sale and equilibrium expected order den-
sity, as well as the expected order density conditioned on
current selling price. We derive a closed form for the equi-
librium distribution when the demand is price independent.
At this equilibrium the selling (limit order) price distribu-
tion is power tailed as is empirically observed in order driven
financial markets.

Categories and Subject Descriptors: J.4 [Social and
Behavioral Sciences]: Economics; G.3 [Probability and Statis-
tics]: Queuing Theory Applications

General Terms: Economics, Experimentations, Theory.

Keywords: Multi-agent models, online C2C Commerce,
Limit Order Book.

1. INTRODUCTION
Standard models for dynamic economies have had limited
success in predicting the real world market dynamics mainly
because of the following two reasons: first, it is difficult
to analyze a dynamic market with complex dynamics, con-
sequently models that are solvable are necessarily simple
abstractions that are not able to incorporate many impor-
tant features of “real” markets; second, in order to remain
tractable economic models need to assume that agents are
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rational; however, rationality imposes such unreasonable de-
mands that agents are almost never rational in “real” mar-
kets.
To overcome these issues, many models (see, e.g. [4, 6, 7, 11])
for dynamic markets assume that the actions of the agents
are randomly distributed according to a distribution that is
chosen to reflect nominal economic behavior of agents. In
such models, the interesting features of the statistical behav-
ior of the market is a consequence of the market dynamics
itself.
In this paper, we present a model that incorporates features
of both of these approaches. In our model, the agents are
strategic, i.e. they do not take random actions; however,
agents have bounded rationality, and therefore, do not base
their actions on the detailed market conditions at the arrival
epoch but on the average long term market characteristics
arising from the random actions of other agents. In effect,
we define an equilibrium concept on the distribution induced
by the random agent actions. In this equilibrium the long
run the essential market information filters to the agents and
gets reflected in the statistical properties of the market. The
contributions of this paper can be summarized as follows.

(a) We define an equilibrium concept on the supply in a
dynamic exchange where agents react to the long-term
average impact of the actions of all the agents in the
exchange. We show that such an equilibrium always
exists in our model and show how to numerically com-
pute it. We also provide closed form expressions for
various statistical properties of the market, such as the
expected time to execution, the average outstanding in-
ventory and the average outstanding inventory condi-
tional on current lowest selling price. Our model is a
good approximation to online used book market at ama-
zon.com, where multiple copies of substitutable prod-
ucts are available at different prices and sellers strategi-
cally post their selling prices based on their beliefs about
the execution time.

(b) We show that our proposed equilibrium can be com-
puted in closed form in a market where buyers are not
price sensitive. In this solution, the trade execution
prices exhibit power tails distribution that matches the
empirically observed distribution limit-book driven fi-
nancial markets.

There is a large body of literature investigating financial
markets with the limit order book as a market clearing
mechanism. Farmer and Zovko [7] demonstrate a striking
regularity in the way people place limit orders in financial
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markets using a data set from the London Stock Exchange.
They define the relative limit price as the difference between
the limit price and the best price available for instantaneous
execution. They conclude that for both buy and sell orders,
the unconditional cumulative distribution of relative limit
prices decays roughly as a power law with an exponent ap-
proximately β ≈ 1.5, i.e. P(limit price > x) = A

(x0+x)β .

This behavior spans more than two decades, ranging from a
few ticks to about 2000 ticks. Bouchaud et al [3] also report
a power law distribution of prices. Our model shows that
this type of power tail distribution can arise in equilibrium
for a limit order book mechanism when more patient trader
get better price in order for less patient trader to get better
execution time.
The models in [11, 12, 5] are not strategic in that they as-
sume a stationary order arrival independent of the state of
the book. This can be reasonable in very fast highly liq-
uid market, where for small time horizon, large number of
traders participate in the trading process; thus, their strate-
gies average out to result in a random stationary behavior.
In addition, these models assume that the order arrival pat-
tern is exogenous to the model; consequently, their approach
reduces to performance evaluation for a given supply and
demand function. This approach leads to many patholo-
gies, such as accumulation of orders outside the active win-
dow [11]. In contrast, in our model the stationary equilib-
rium behavior of traders gives rise to endogenous limit order
distribution. Our model is similar to the separable markets
discussed in [11].

2. CONTINUOUS ONLINE EXCHANGE
We consider a continuous time online exchange market for
a single commodity or a set of substitutable commodities.
There is no fee for using the online exchange and orders can-
not be canceled. This exchange only allows the posted prices
to be multiples of a tick size ǫ. We assume that there exists
a high enough constant price (N+1)ǫ at which an exogenous
seller is willing to sell unlimited amount of the commodity
and, symmetrically, a low enough price (normalized to 0)
at which an exogenous buyer is willing to buy an unlimited
quantity. Thus, the set of allowed selling prices is a grid
{ǫ, 2ǫ, . . . , Nǫ}.
The sellers on this exchange arrive according to a Poisson
process with rate λ. Each seller is offering only one unit
of the commodity for sale. The sellers are assumed to be
risk neutral and incur a cost that is proportional to their
execution time, i.e. the time elapsed between their arrival
and sale of their item. On arrival, the sellers choose a selling
price, or equivalently a price tick j, based on their beliefs
about expected time to trade execution at each price tick.
We assume that sellers believe that the expected time to
execution depends only on the selling price; thus, excluding
the possibility of sellers exploiting the complete state of the
online exchange, specifically the number of unsold items at
each tick. Note that we are implicitly assuming that sellers
only react to the long-term average impact of the actions of
all the agents in the exchange
The buyers on this exchange arrive according to an inde-
pendent Poisson process with rate µ. On arrival, each buyer
independently decides to buys one unit with probability β(p)
when the current lowest (outstanding) selling price is p,
where the demand function β(p) is downward slopping, i.e.

the β(p) function is non-increasing in p. Buyers who arrive
to find no sellers are lost. Note that our model assumes that
the sellers are patient whereas the buyers are impatient.
The expected profit un of the n-th arriving seller is given by

un(jn, δn) = jnǫ − δnTn(jn) (1)

where jn denotes the price-tick selected by the seller, δn is
the patience parameter of the seller, and Tn(jn) is the ex-
pected execution time at price tick jn. We have normalized
the cost (or exogenous value) of the commodity to the seller
to zero. The patience parameters {δn : n ≥ 1} are assumed
to be IID sampled from a distribution function Fδ, which
is assumed to be continuous with support [0, δ̄]. Thus, the
sellers are heterogeneous in their patience parameter. We
assume that this heterogeneity in patience is a manifesta-
tion of the heterogeneity in the agents’ own business models.
The utility function in (1) is motivated by the money value
of time (e.g. lost labor, cost of tracking the trade etc) rather
than time value of money (i.e. delayed payments), see [8],
but we expect results similar to presented in the paper to
hold for a large class of utility function that are monotone
in price and execution time.
In this paper, we ask what equilibrium supply function would
result from the interaction of sellers heterogenous in their
patience and impatient buyers in a stationary online ex-
change market environment. In particular, we are interested
in how this supply function depends on the market param-
eters such that demand elasticity and traffic intensity.

2.1 Information Structure
We assume that market mechanism is common knowledge
i.e. all sellers know that a sequence of sellers would arrive
according to a Poisson process and offer their unit of sup-
ply at price that optimizes their own utility function given
by (1). The patience parameter distribution Fδ is common
knowledge among the sellers, whereas the patience parame-
ter δn is a private information of seller n.
Sellers form beliefs about the expected execution time Tn(j)
at the price tick j based on the their information set and post
their unit at the price

σn(δ) = argmax
j∈{1,2...,N}

{

jǫ − δT
σ
−n

n (j)
}

, (2)

where the notation T
σ
−n

n (j) indicates that the belief about
the execution time depends on the action of all other sell-
ers. Note that we assume that the sellers beliefs about the
expected execution time depends only on the price tick j.
Since the information sets are symmetric, we restrict our-
selves to symmetric equilibrium strategies. Thus, the equi-
librium beliefs of all sellers is symmetric, i.e. T

σ
−n

n (j) =
T (j). In rest of the paper, by equilibrium and beliefs we
mean symmetric equilibrium and symmetric beliefs.

Definition 1. A selling strategy σ∗(.), that maps a pa-
tience parameter δ to a selling price tick in {1, 2, . . . , N}, is
a Bayesian Nash Equilibrium (BNE) if it solves (2) when

T σ∗

(j) is the stationary expected execution time given that
all future trader follow the strategy σ∗.

The execution time T
σ
−n

n in (2) has a two-fold expectation:
first, given the sample path of patience parameter δn of ar-
riving sellers, it is expectation over the arrival process of the
buyers; and second, there is the expectation over all sample
paths of patience parameters. The latter expectation give
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rise to the notion of Bayesian Nash equilibrium. Since the
patience parameters of sellers are assumed to be indepen-
dent, it follows that the knowledge of a the draw δn does
not give seller n any information about the patience param-
eter of the other sellers.

2.2 Simple example
The following example illustrates our proposed model and
the nature of results we establish later in this section.
Two sellers with one unit each of a given product arrive at
time t = 0 into a market place where sellers are restricted to
sell their product at a price p ∈ {p1, p2}, (p1 < p2). Buyers
arrive according to a Poisson process with µ1 (resp. µ2) if
cheapest unit of the product is available at price p1 (resp.
p2).
The sellers decide their selling prices as a function of their
waiting cost rate δ at time 0 and then the market clears.
Suppose at a symmetric equilibrium1, a seller posts the price
pj , j = 1, 2, whenever the cost coefficient δ ∈ Bj , where
B1 ∪ B2 = [0, δ̄]. Let αj = Fδ({B1}) denote the equilibrium
probability of selecting price p1 at this equilibrium.
Suppose whenever there are two sellers at a given price, each
seller receives the next order with probability 1

2
. Then the

expected waiting time if a seller selects price p1 (resp. p2)
is α2

µ1
+ 3α1

2µ2
(resp. 3α2

2µ2
+ α1(

1
µ1

+ 1
µ2

)).
Since we assume that sellers only react to long-term average
values, a seller would choose price p1 if, and only if,

p1 − δ
[

α2
1

µ1
+ α1

3

2µ2

]

> p2 − δ
[

α2
3

2µ2
+ α1(

1

µ1
+

1

µ2
)
]

,

i.e.

δ >
µ1µ2(p2 − p1)

µ1 − µ2 + α2

2
(µ1 + µ2)

.

Since, at equilibrium, the probability of choosing price p2 is
α2, it follows that

α2 = Fδ

(

µ1µ2(p2 − p1)

µ1 − µ2 + α2

2
(µ1 + µ2)

)

(3)

The solution to (3) uniquely characterizes the equilibrium.
Suppose δ ∼ unif[0, 1], i.e. Fδ(x) = x, for all x ∈ [0, 1].
Then at equilibrium

α2 =

√

(µ1 − µ2)2 + 4(µ1 + µ2)µ1µ2(p2 − p1) − 2(µ1 − µ2)

µ1 + µ2

Note that the three factor affecting this equilibrium are: the
price tick size ǫ = p2−p1, the demand elasticity µ1−µ2 and
the distribution Fδ.

2.3 Stationary Equilibrium Outcomes
In order to characterize the BNE we need to be able to
solve for the stationary behavior of the exchange for a given
strategy σ. In the following we show that the exchange
is a Markovian priority queuing system with closed form
analytical solution for the waiting time.
Since {δn : n ≥ 1} are IID, (2) implies that a selling strategy
σ thins the arriving sellers according to some probability
mass function ασ

j , j = 1, . . . , N , i.e. the arrival rate of sellers
that post their unit at the price-tick j is λασ

j , j = 1, . . . , N .
Let Xn(j) denote the inventory of outstanding orders at
price tick j when the n-th seller arrives in the exchange,

1Symmetric Bayesian Nash equilibrium of the one shot game
with δn as private information to be precise.

and let Xn = (Xn(1), ..., Xn(N)). The dynamics described
in Section 2 implies that Xn is the queue length process for
the Markovian preemptive priority queuing system with N

customer classes where the customer class j has an arrival
rates λασ

j and a service rate µβj . It follows that the proper-
ties of the state process {Xn : n ≥ 1} are completely deter-
mined by thinning probabilities {ασ

j }. In order to emphasize
this fact, we drop the superscript σ and index variables by
α.
For j = 1, . . . , N , define the traffic intensity in customer
class j as

ρ
α
j ,

λ

µ
·
αj

βj

The following lemma gives a closed-form solution for the
steady state expected execution time T α

j at the price tick j.

Lemma 1. For j = 1 . . . N , if
∑j

i=1 ρα
i < 1, then the

expected execution time at price tick j is finite and is given
by

T
α(j) =

1

µ

(

1

1 −
∑j−1

i=1 ρα
i

)





1

βj

+

∑j

i=1(
ρα

i

βi
)

1 −
∑j

i=1 ρα
i



 (4)

otherwise the queue at the price tick j grows beyond bound
and T α(j) = ∞.

The proof of this Lemma can be found in [1] (pp 90, equation
9.5) Little’s law implies that the long-term average expected
inventory Qα

j of unsold items at price tick j is given by

Q
α
j , EX

α
∞(j) = λαjT

α(j) (5)

where Xα
∞ = limn→∞ Xα

n if it exists. Since ρα
j ≥ 0, and βj

is decreasing in j, the expected execution time T σ(j) is non-
decreasing in j for all α. Thus, the sellers face the following
tradeoffs - a better execution price can only be obtained at
the cost of a larger expected waiting time at the exchange.
Next, we characterize the average inventory seen by buyer or
seller arriving to the exchange when the current outstanding
price-tick is j, or equivalently,

∑j−1
l=1 Xα

∞(l) = 0.

Lemma 2. Let X∞(j) denote the steady state number of
class j customers in Markovian n-class priority queue with
preemption. Then

E

[

k
∑

l=j

X∞(l)
∣

∣

∣

j−1
∑

l=1

X∞(l) = 0
]

=
ρjk(1 − 2ρ1,j−1 + ρ2

1,j−1 + ρ1,j−1ρjl)

(1 − ρ1,j−1)2(1 − ρ1,j−1 − ρjl)
, (6)

where ρij =
∑j

k=i
λk

µk
, λk is the arrival rate of class k cus-

tomers and µk is the service rate of the class k customers.

Proof: Since the distribution of
∑k

l=j X∞(l) and
∑j−1

l=1 X∞(l)
does not depend on the service discipline within the sets
{1, . . . , j − 1} and {j, . . . , k}, it suffices to prove (6) for
a queue with two customer classes and traffic intensities
ρ2 = ρjl and ρ1 = ρ1j .
The generating function for the joint distribution of
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(X∞(1), X∞(2)) is given by (see (3.15) on pp. 95 in [10])

Π̂(z1, z2) = (1 − ρ1 − ρ2)
[

1 +
(λ1{z1 − b1[λ2(1 − α2)]}

λ1(1 − z1) + λ2(1 − z2)

)

×

( 1 − S1{λ1(1 − z1) + λ2(1 − z2)}

1 − 1
z1

S1{λ1(1 − z1) + λ2(1 − z2)}

)]

×
(z2 − 1)c2{λ2(1 − z2)}

z2 − c2{λ2(1 − z2)}

where

b1(s) =
µ1 + λ1 + s −

√

(µ1 + λ1 + s)2 − 4λ1µ1

2λ1
,

Si(s) =
µi

µi + s
i = 1, 2,

c2(s) = S2{λ1(1 − b1(s)) + s}.

We obtain the generating function Π(z) for distribution of
X∞(2) | X∞(1) = 0 by substituting z1 = 0 and z2 = z in

the expression for Π̂(z1, z2), i.e.

Π(z) = (1 − ρ1 − ρ)
(z − 1)c2{λ2(1 − z)}

z − c2{λ2(1 − z)}

The expectation E[X∞(2)|X∞(1) = 0] = ∂Π(z)
∂z

∣

∣

∣

z=1
. Sim-

plifying we get,

E[X∞(2)|X∞(1) = 0] =
ρ2(1 − 2ρ1 + ρ2

1 + ρ1ρ2)

(1 − ρ1)2(1 − ρ1 − ρ2)

Lemma 2 describes the steady state expected inventory the
buyers or sellers see when the current price is jǫ. Although
we restrict the sellers to base their beliefs of the execution
time on only on the price tick j, Lemma 2 allows us to
reconstruct the entire state of the exchange when a seller
places an order.
Before characterizing the equilibrium selling strategy, we
would like to point out that the distribution of the steady
state price sα that an arriving buyer observes is

P(sα
> jǫ) = 1 −

j
∑

k=1

ρk (7)

Note that this distribution is not the same as the distribu-
tion of trade execution prices αj . The distribution sα is an
average over time, and latter, i.e. {αj}, is an average over
orders. In this paper we will focus on the latter. Also, it is
easy to notice that if the demand is inelastic, i.e. β(p) ≡ 1,
the distribution of s conditional on it being finite is same
as the distribution α. We consider inelastic demand in Sec-
tion 3.
By Definition 1 a selling strategy σ∗ is a symmetric BNE
strategy iff

σ
∗(δ) ∈ argmax

k∈{1,...,N}

{

kǫ − δT
σ∗

(k)
}

, (8)

equivalently, a distribution α∗ is a symmetric BNE strategy
iff

α
∗
j = P

{

j ∈ argmax
1≤k≤N

{

kǫ − δT
α∗

(k)
}

}

(9)

The following theorem establish the existence of a symmetric
equilibrium in this model.

Theorem 1. An equilibrium distribution α∗ satisfying (9)
always exists. Furthermore, suppose the expected execution
time T α∗

(j) is strictly increasing and convex in j, i.e. for

j = 2, . . . , N the difference T α∗

(j) − T α∗

(j − 1) is non-
negative and non-decreasing in j. Then every equilibrium
selling strategy σ∗ that results in α∗ is non-increasing in δ

i.e. at the equilibrium α∗ the seller with higher waiting cost
rate post a lower selling price.

Proof: Define Ψ : SN 7→ SN as follows

Ψj(α) =

P

[

δ ∈
{

x ∈ [0, δ]
∣

∣jǫ − xT
α(j) ≥ kǫ − xT

α(k) ∀k
}

]

, (10)

where SN denotes the probability simplex with N support
points. Observe that for any α, the set

{

x ∈ [0, δ] | jǫ − xT
α(j) ≥ kǫ − xT

α(k) ∀k
}

is either empty or an interval and Ψj is the probability of δ

belonging to this interval under Fδ. Since the time to exe-
cution T α : SN 7→ R

N
+

⋃

{∞}N is continuous2 function of α

and Fδ is assumed to be continuous, Ψ is a continuous func-
tion of α. Thus, the Brouwer fixed point theorem implies
that Ψ has at least one fixed point. Since a fixed point of
Ψ is a solution to (9), an equilibrium satisfying (9) always
exists.
If at an equilibrium α∗, T α∗

is convex in j then

h
∗(j, δ) = jǫ − δT

α∗

(11)

is concave in j. Also, since T α∗

(j) is strictly increasing j,
h(j, δ) is strictly decreasing difference in (j, δ). Thus, Theo-
rem 10.6 in [13] implies that σ∗(δ) ∈ argmax h(j, δ) is non-
increasing in δ.

2.4 Numerical example
In the following example, we numerically compute the equi-
librium in a market with elastic demand function.
Suppose N = 50, ǫ = 1, δ ∼ U [0, 160], λ = 3, µ = 12 and
the demand function be given by

βj =
1

12

[

0.5 +

(

N − j + 1

15

)2
]

These parameters are chosen so as to get a full support equi-
librium.
Theorem 1 guarantees us that

α
∗ ∈ min

α∈SN
‖Ψ(α) − α‖

2
, (12)

where Ψ(α) is defined in (10). We used matlab optimiza-
tion routine fmincon to solve optimization problem (12).

Figure 1 displays the expected execution time T α∗

and the
supply thinning distribution α∗. Figure 2 displays λ times
the equilibrium CDF of α∗, i.e. the supply function, and
the demand function µβ(p). For the choice of parameters

2 T α is clearly continuous every α where it is finite and it
approaches ∞ as

∑k

j=1 ρα
k approaches 1 for any 1 ≤ k ≤ N

and hence is continuous at the boundary as well.
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Figure 1: The equilibrium supply density and the
execution time as a function of price
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Figure 2: The equilibrium supply function and the
demand function

in this example, the Walrasian market clearing price is ap-
proximately 28. Recall that the trading price available to a
random buyer, i.e. the time average of the trading price, is
distributed according to P(sα∗

= jǫ|sα∗

≤ Nǫ) =
ρj

∑

k ρk
cor-

responding to the tail CDF given in (7). For the parameters
in this example, this distribution has a mean value of 23.77
and a standard deviation 15.55. Thus, the time-average of
the prices is close to the Walrasian market clearing price.
On the other hand, the mean and standard distribution of
thinning distribution {α∗

j}, i.e. the average price available
to the sellers, are, respectively, 12.70 and 10.52. This is
significantly lower than the Walrasian price. A possible ex-
planation for this phenomenon is that, since arriving sellers
does not observe current outstanding price sα∗

, they post
a low price even though the current selling price is higher.
Such low price orders are traded very fast, thus, does not
contribute to the time averages.
Figure 2 plots the supply thinning function α∗

j and the de-
mand decay βj as a function of the price-tick j. Notice that
the equilibrium supply thinning function α∗

j decays signifi-
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Figure 3: The βj and equilibrium Tail of α as a func-
tion of price.
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Figure 4: The (conditional) expected order densities

cantly faster than the demand function βj . This is because
sellers not only want to reduce their waiting time by posting
low prices but also faces competition in doing so from other
sellers.
Figure 4 plots the expected inventory of outstanding sell-
ers as a function of the price. The expected inventory is
hump shaped as a function of price and increases rapidly at
the right boundary because of the boundary effects, which
is empirically observed in the context of limit order book
in [3]. We also observe that the shape of expected inventory
conditional on current selling price is essentially indepen-
dent of the current price. We expect this not to be the case
if the sellers are allowed to condition their selling strategy
on the current price because a seller facing a high current
price would undercut more frequently than in this model re-
sulting in smoother boundary in the density at the current
price.

3. EXCHANGE WITH INELASTIC DEMAND
In previous section, we observed that the demand elasticity
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has a serious impact on the equilibrium price distribution
because sellers with low patience parameter are not able to
force the buyers to pay a high price. In this section, we
assume that the demand is inelastic in price, i.e. β(p) = 1
for all p ∈ (0,∞). Later in this section we show that an
inelastic demand model is reasonable for most commodities
in markets with very high trade frequency. Our main goal in
this section is to investigate whether competition between
sellers is sufficient to maintain reasonable (low) prices in a
market with inelastic demand. The results in this section
settle this question in the negative, i.e. sellers are able to
leverage their market power to set very high prices. This
result is consistent the result in [2] which finds that inelastic
demand in conjunction with an continuous exchange mecha-
nism gives rise to unprecedented high prices in the California
electricity markets.
In this section, we work with continuous prices. We de-
rive the differential equation characterizing the equilibrium
thinning rate α∗(p) by taking appropriate limits in (9). Let
ǫ → 0, N → ∞, such that Nǫ → ∞ and the selling pricing
grid

{ǫ, 2ǫ, . . . , Nǫ} → (0,∞).

Let αP (p) and FP denote, respectively, the density and
the CDF of the equilibrium selling price. Taking the limit
in (11), the seller’s expected surplus is given by

h(p, δ) = p −
δ

µ

[

ρFP (p)

(1 − ρFP (p))2
+

1

(1 − ρFP (p))

]

(13)

We focus on explicitly constructing equilibrium, and there-
fore, do not focus on whether (13) has a solution. After
differentiating h(p, δ) with respect to p and simplifying, the
first order conditions are

δ(p) =
µ

2
·
(1 − ρFP (p))3

ραP (p)
(14)

Assume that σ∗(δ) is monotone in δ. We later verify that in
the equilibrium that we construct this indeed is the case.
The equilibrium conditions are equivalent to the following
conditions on the tail of the selling price distribution FP :

P(price > p) = P(δ ≤ δ(p)) ∀p (15)

In order to obtain a closed form solution, we assume that
the patience parameter δ is distributed uniformly on [0, δ].
Thus, (14) is equivalent to the following implicit point-wise
condition on the FP :

αP (p) =
d

dp
FP (p) =

µ

2δ
·
(1 − ρFP (p))3

ρ(1 − FP (p))
(16)

The following result follows from solving the above ordinary
differential equation (ODE).

Lemma 3. The equilibrium price distribution, i.e. the so-
lution to the ODE (16), is given by

F
∗
P (p) =











0, p ≤ 0,
ρ(1+ µ

δ
p)−

√

1−(1−ρ)(1+ρ(1+ µ

δ
p))

ρ(1+ρ(1+ µ

δ
p))

, 0 ≤ p ≤ K,

1, p ≥ K,

where the support K of the equilibrium selling price distri-
bution is given by

K =
δ

µ
·

ρ

1 − ρ
. (17)

As ρ → 1, the support K → ∞ and

limρ→1F
∗
P (p) = 1 −

2δ

2δ + µp
, p ≥ 0. (18)

Using (16) and (14) we get that the equilibrium selling strat-
egy

σ
∗(δ) = F

∗−1
P

(

1 −
δ

δ

)

Since, F ∗
P is continuous on [0, K] in Lemma 3 this equilib-

rium satisfy our assumption that σ∗ is monotone in δ over
[0, δ].
Lemma 3 establishes that as the congestion ρ increases, the
distribution of prices approach a power-law distribution, i.e.
the equilibrium price distribution has very heavy tails even
when the patience parameter δ is uniformly distributed be-
tween 0 and a finite upper bound δ. Thus, in congested
markets with inelastic demand the sellers are able to lever-
age their market power to set (and obtain) very high prices.
This partially explains the phenomena observed in Califor-
nia electricity markets [2].
The stationary expected inventory Q(p) at price p is given
by

Q(p) =
∂

∂p

{

ρFP (p)

(1 − ρFP (p))

}

,

=
µ

2δ

(

1 +
(1 − ρ)FP (p)

1 − FP (p)

)

. (19)

We use Lemma 2 to compute the conditional expected den-
sity of outstanding orders. For all p ≥ s, the conditional
expected seller density

Q
c(p, s) , E [Q(p)| current selling price = s]

is given by

Q
c(p, s) =

∂

∂p

{

(̺2(p) − ̺1)(1 − 2̺1 + ̺2
1 + ̺1(̺2(p) − ̺1))

(1 − ̺1)2(1 − ̺2(p))

}

where ̺2(p) , ρFP (p) and ̺1 , ρFP (s). Simplifying this
expression we obtain

Q
c(p, s) =
(1 − 3̺1 + ̺2

1 + 2̺1̺2(p) − ̺1̺
2
2(p)

(1 − ̺1)2(1 − ̺2(p))2

)

ρFp(p) (20)

3.1 Non-uniform patience distribution
Suppose the distribution Fδ of δ is given by

Fδ(x) =

(

x

δ

)γ

, 0 ≤ δ ≤ δ,

where γ ∈ ( 1
2
, 1]. The ODE describing the CDF F

γ
P (p) of

equilibrium price distribution is given by

d

dp
F

γ
P (p) =

µ

2δ

(1 − ρF
γ
P (p))3

ρ(1 − F
γ
P (p))

1

γ

(21)

For ρ = 1, the equilibrium solution of the ODE (21) is given
by

1 − F
∗γ
P (p) =

1
(

1 + (2γ−1)µ

2γδ
p
)

γ
2γ−1

(22)
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Using (19) the expected outstanding inventory is given by

Qγ(p) =
µ

2δ

(

1 +
(2γ − 1)µ

2γδ
p

)
1−γ
2γ−1

(23)

By substituting F
∗γ
P from (22) in (14) and solving for p in

terms of δ, we obtain that in equilibrium a seller with a
patience parameter δ posts the price

p
∗
γ(δ) =

2γδ

µ(2γ − 1)

(

( δ

δ

)(2γ−1)

− 1

)

(24)

At γ = 3
4
, we get a power tailed equilibrium selling price

distribution as empirically observed in [7] in the context
of limit order book. In this case, the outstanding order

increases Q(p) ∼
(

1 + p

3

) 1

2 . Thus, the expected number of
outstanding orders between 0 and p, i.e. the market depth,

D(p) =

∫ p

0

Q(p)dp ∼
(

1 +
p

3

) 3

2

.

This market depth implies that the change in price dp

dQ
as a

result of a market order of Q units is of the order of Q
2

3 , i.e.
the price impact dp

dQ
is concave in the order quantity.

3.2 Summary of inelastic markets
The following observations follow form the discussion above.

(a) Everything else being equal, price is higher in less con-
gested (low ρ) markets than in congested (high ρ) mar-
kets. This is because as ρ increases, the time to execu-
tion at each price level goes up; consequently, the com-
petition between sellers to obtain high prices becomes
more intense.

(b) The equilibrium selling prices distribution exhibits power
tails. This agrees with the empirical observations (see,
e.g. [7]) in limit-book markets where the market orders
are by definition not sensitive to prices. The market
depth D(p) and the price impact function prediction
from this simple model agrees with observations in [4,
9].

(c) From (22) it follows that as the market becomes con-
gested, i.e. ρ → 1, the equilibrium price distribution
scales according to ps = δ̄

µ
. Thus, when the patience

parameter δ̄ is held constant, the equilibrium prices are
high if µ is low, i.e. the market buy orders appear with
a very low frequency; and vice versa.

As µ → ∞, i.e. the frequency of market buy orders
increases, the price scaling ps → 0, i.e. the effective
price window is very small. This has two implications:
first, the sellers are not competing on price but on the
executing time, and second, the assumption that the
buyers are not price sensitive is not very serious.

(d) The distribution of the patience parameter Fδ has a sig-
nificant impact on equilibrium market behavior.

4. CONCLUSION AND EXTENSIONS
In our model a simple price vs waiting cost trade-off give
rise to interesting market dynamics. The equilibrium in our
model is numerically computable and can also be solved in
closed form in special cases. The model predicts reasonable

statistical behaviors of the online exchange market and also
agrees with empirical data.
We believe that the equilibrium definition proposed in this
paper can potentially be applied in other dynamic market
clearing mechanisms. We are exploring the following exten-
sion.

(a) The observable quality of the commodity is heteroge-
neously distributed among the seller population. This
results in multiple exchanges indexed by the quality
traded and the buyers choosing the exchange to trade
on based on their price-quality trade offs.

(b) Modeling order driven financial market where both sides
of the market are patient and both buyers and sellers
queue up.

(c) Service markets where buyer (sellers) are segmented based
on attributes other than price and sellers (buyers) strate-
gically assign resources to each segment.
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