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Abstract
We report on results from experiments where hu-
man traders interact with software-agent traders in
a real-time asynchronous continuous double auc-
tion (CDA) experimental economics system. Our
experiments are inspired by the seminal work
reported by IBM at IJCAI 2001 [Das et al.,
2001], where it was demonstrated that software-
agent traders could consistently outperform human
traders in real-time CDA markets. IBM tested two
trading-agent strategies, ZIP and a modified version
of GD, and in a subsequent paper they reported on
a new strategy called GDX that was demonstrated
to outperform GD and ZIP in agent vs. agent CDA
competitions, on which basis it was claimed that
GDX “...may offer the best performance of any
published CDA bidding strategy.” [Tesauro and
Bredin, 2002]. In this paper, we employ experi-
ment methods similar to those pioneered by IBM
to test the performance of “Adaptive Aggressive”
(AA) algorithmic traders [Vytelingum, 2006]. The
results presented here confirm Vytelingum’s claim
that AA outperforms ZIP, GD, and GDX in agent
vs. agent experiments. We then present the first re-
sults from testing AA against human traders in hu-
man vs. agent CDA experiments, and demonstrate
that AA’s performance against human traders is su-
perior to that of ZIP, GD, and GDX. We therefore
claim that, on the basis of the available evidence,
AA may offer the best performance of any pub-
lished bidding strategy.

1 Introduction
At the 2001 International Joint Conference on Artificial Intel-
ligence (IJCAI), a team of researchers from IBM reported re-
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sults from a series of experiments where human traders were
pitted against software-agent traders in an experimental ver-
sion of the continuous double auction (CDA) market mecha-
nism, the mechanism that underlies electronic trading in most
of the world’s financial markets. In this context, the CDA
is a set of rules in which traders (buyers and sellers) may
asynchronously post quotes (bids and offers) to an electronic
system that provides a real-time display back to all traders,
showing an indication of the current outstanding bids and of-
fers. In some cases the traders may see only the current best
bid and offer; in other cases they may see more “depth” in
the market, showing price-ordered lists of the top n, or per-
haps all, of the outstanding quotes. Exactly this mechanism
is familiar to traders in the global financial markets for eq-
uities, commodities, currencies, and derivatives. The stun-
ning result published by IBM [Das et al., 2001], which made
news headlines around the world, was that they found that two
types of software agents (employing strategies known as ZIP
and GD) consistently and robustly outperformed the human
traders. The IBM team concluded their paper with:

“...the successful demonstration of machine su-
periority in the CDA and other common auctions
could have ... direct and powerful impact – one that
might be measured in billions of dollars annually.”

Almost a decade has passed since then, and yet, to the best
of our knowledge, the IBM experiment has never been repli-
cated1. We set up a similar facility to that used by IBM by
spending only a few thousand dollars on cheap “netbook”
PCs which can act as the trader-terminals for human subjects
in the experiments, and a mid-spec home server that runs the
software trading agents and acts as the “exchange”. Thus, in
this paper, we describe results that replicate IBM’s 2001 hu-
man vs. agent experiments on a network of netbooks. Also,
we present the first results from testing a strategy called GDX

1The most noteworthy study we found is [Grossklags and
Schmidt, 2006], where human subjects and software agents trade
on a simulated futures market. Although some of the experimental
conditions described in their work are similar to ours & IBM’s, the
majority of them are substantially different. To name a few: traders
act both as buyers and sellers; orders for multiple units are allowed;
limit prices change every round; no spread improvement rule is ap-
plied; both private and public information are distributed; and the
trading agents employed are simple strategies. Their results are thus
hardly comparable with those of IBM.
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against human traders: IBM reported on GDX in [Tesauro
and Bredin, 2002], and demonstrated that GDX outperforms
both GD and ZIP in agent vs. agent CDA competitions. We
then go on compare the performance of a new, fourth, agent
strategy designed by Vytelingum [Vytelingum, 2006], called
“Adaptive Aggressive” or AA. We find that AA outperforms
ZIP, GD, and GDX in both human vs. agent and agent vs.
agent contexts, and we therefore claim that AA may offer the
best performance of any published bidding strategy.

2 Background
In his Nobel-prize-winning work [Smith, 1962], Vernon
Smith ran several experiments with human traders to study
the dynamics of CDA-based markets. In his experiments,
Smith assigned one unit to sell(buy) at no less(more) than a
specific price to each of the traders. The price of the unit,
known as a limit price for a buyer, or a cost price for a
seller, represents the maximum amount of money l a buyer
can spend to buy the unit, or the minimum value c for which
a seller can sell the unit. As a consequence, buyers make a
profit l − p if they buy at a price p that is less than their limit
price, whereas sellers make a profit p − c if they sell for a
price p higher than their limit price. The limit prices are pri-
vate, each trader knowing only her limit. The traders interact
by quoting the price at which they are willing to trade their
units. In Smith’s early experiments this happened by speak-
ing the number out loud, thus the public quotes in a CDA are
often referred to as shouts. A random player is selected every
turn to make a shout, and the game finishes after a fixed num-
ber of turns. Following the rules of the CDA, a trade occurs
when the outstanding bid is greater than or equal to the out-
standing ask. Smith measured the performance of a trader in
terms of allocative efficiency, which is the total profit earned
by the trader divided by the maximum theoretical profit of that
trader, expressed as a percentage. The maximum theoretical
profit of a trader is the profit that trader could have made if
all the market participants would have traded their units at the
theoretical competitive market equilibrium price p∗.

Formally, let I be the set of buyers and J the set of sell-
ers in the market. Let Li = {li,1, li,2, . . . , li,Ni

} be the set
of limit prices of the units owned by buyer i, and Ci =
{cj,1, cj,2, . . . , cj,Mj} the set of cost prices of the units owned
by seller j. The market equilibrium price is given by:

p∗ = argmax
p

{∑
i∈I

Ni∑
n=1

max(0, li,n − p)

+
∑
j∈J

Mj∑
m=1

max(0, p− cj,m)

} (1)

The maximum theoretical profit Π∗
i of buyer bi is given by:

Π∗
i =

Ni∑
n=1

max(0, li,n − p∗) (2)

Denoting with pi,n the price at which buyer i actually
trades the unit with limit price li,n, the actual profit Πi earned

by buyer i is Πi =
Ni∑
n=1

max(0, li,n− pi,n). Therefore, the al-

locative efficiency Ei of buyer i is:

Ei =
Πi

Π∗
i

(3)

The calculations above also apply to sellers, replacing limit
prices with cost prices. A further measure of the performance
of a market is the profit dispersion: this is defined as the
cross-sectional root mean squared difference between the ac-
tual profits and the maximum theoretical profits of individual
traders. Using the notation introduced above, for a group of
T traders the profit dispersion is given by:√√√√ 1

T

T∑
k=1

(Πi −Π∗
i )

2 (4)

Smith demonstrated that markets governed by the CDA can
reach close-to-optimal efficiency. Also, he proved that trans-
action prices converge to the market’s theoretical competi-
tive equilibrium price. Furthermore, he found that if the sup-
ply and demand of markets suddenly changed, the transaction
prices would rapidly converge to the new equilibrium price.
[Gode and Sunder, 1993] introduced “zero intelligence” (ZI)
automated trading agents that submit random bids and offers,
and found that they exhibit similar (although slightly lower
on average) levels of allocative efficiency to those achieved
by humans in Smith’s experiments: indeed, they concluded
that allocative efficiency is almost entirely a product of mar-
ket structure, rather than an indication of the traders’ negoti-
ation skills.

This was proven to be wrong by [Cliff and Bruten, 1997],
who demonstrated that ZI agents converged to equilibrium
price only in certain special cases, and introduced a slightly
more intelligent trading agent that they named Zero Intelli-
gence Plus (ZIP). ZIP agents, which employed simple adap-
tive mechanisms, showed convergence independently from
the supply and demand curves, and generated better results
than ZI agents in terms of both allocative efficiency and profit
dispersion. Several studies on automated trading agents fol-
lowed: more details can be found in the sections below.

2.1 ZIP
In 1996, Cliff created the Zero-Intelligence Plus (ZIP) al-
gorithm to investigate the minimum level of intelligence re-
quired to achieve convergence to market equilibrium price
[Cliff and Bruten, 1997]. ZIP has been used in several sub-
sequent studies ([Das et al., 2001], [Tesauro and Das, 2001],
[Tesauro and Bredin, 2002], [Vytelingum et al., 2008]) as a
benchmark for evaluation of strategy efficiency.

Each ZIP trader agent maintains a real-valued profit mar-
gin and employs simple heuristic mechanisms to adjust their
margin using market data. In this context, the profit margin
represents the difference between the agent’s limit price and
the shout price, that is the price that the agent sends to the
market to buy or sell the commodity. By observing market
events, ZIP buyers increase their profit margin, and therefore
make cheaper bids, when a trade at a lower price than their
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current shout price occurs. Conversely, ZIP buyers that ob-
serve an accepted offer at a price higher than the one they
have put on the market move towards that price by lowering
their profit margin (that is, bidding a higher price). The same
applies to buyers that witness a rejected bid at a higher price
than the one they are advertising. Symmetrically similar rules
are followed by ZIP sellers.

The profit-margin adaptation rule used in the ZIP algorithm
to dynamically respond to the market conditions is based
on the Widrow-Hoff “delta rule” with an additional noise-
smoothing “momentum” term. The profit margin of the ZIP
traders is adjusted by a small random quantity, proportional
to the learning rate of the individual agent.

2.2 GD/MGD/GDX
At about the same time as Cliff and Bruten, but working in-
dependently of them, Gjerstad and Dickhaut [Gjerstad and
Dickhaut, 1998] introduced a bidding algorithm, which we
shall refer to as GD, centred on “belief” functions that agents
form on the basis of observed market data. GD agents collect
the orders (rejected shouts) and trades (accepted shouts) oc-
curred during the last M trades, and store them in a history
H . When a GD agent prices an order, from the history H it
builds the belief function f(p), which represents the probabil-
ity that an order at price p will result in a trade. For example,
the belief function for a GD buyer is:

f(p) =
TBL(p) +AL(p)

TBL(p) +AL(p) +RBG(p)
(5)

where TBL(p) =
∑

d≤p TB(d) represents the number of
accepted bids found in H at price ≤ p, AL(p) =

∑
d≤p A(d)

is the number of asks in H with price ≤ p, and RBG(p) =∑
d≥p RB(d) is the number of rejected bids in H at price

≥ p. Here, TB(d), A(d) and RB(d) are the taken bids, the
offers, and the rejected bids at price d respectively. Note that
f(p) depends on H , and therefore it can potentially change
every time a market participant sends an order to the mar-
ket. Because f(p) is defined only for some values of p, the
function is interpolated to provide values over the domain of
all the valid prices. Finally, the price p that maximises the
product of the interpolated f(p) and the profit function of the
agent (equal to l−p for buyers and p− l for sellers) is chosen
as the order price.

The original GD algorithm was modified by Das, Hanson,
Kephart and Tesauro to fit in MAGENTA, the real-time asyn-
chronous framework they described in [Das et al., 2001]. Un-
like the CDA mechanism Gjerstad and Dickhaut adopted to
develop GD, the CDA implemented in MAGENTA allows
persistent orders, and therefore the concept of “rejected or-
der” becomes unclear. This problem was addressed by not
adding unmatched orders to the history H as soon they are
entered, but only after a time equal to a “grace period” τp
has expired. Also, the parameter M was increased to a much
larger value and the simple count terms in Equation 1 were
replaced by exponentially weighted sums that emphasise the
most recent terms and dim the old ones. Finally, the modified
GD agent could handle multiple units to trade sequentially

during the auction period, by maintaining their limit prices in
a vector.

Different changes to GD are described by Tesauro and Das
in their work [Tesauro and Das, 2001]. Their version of GD,
which they named “MGD”, maintains the highest and lowest
prices of the last trading period in order to them as constraints
for the belief function: MGD buyers (sellers) assume that the
probability that an order is accepted at a price greater than the
highest price in the last period is 1 (0), and that the probability
that an order is accepted at a price less than the lowest price in
the last period is 0 (1). These constraints are added to the be-
lief function after interpolation, together with the constraints
deriving from the current bid-ask spread. MGD agents can
also deal with multiple tradable units, and are allowed to trade
the least valuable unit if there is more than one unit available.

Yet another set of changes were made to GD by Tesauro
and Bredin in [Tesauro and Bredin, 2002], that resulted in
their GDX algorithm. GDX substantially differs from GD in
that it makes use of Dynamic Programming (DP) to price or-
ders. The pricing function takes into account both the effect
of trading the current unit immediately, and the effect of trad-
ing it in the future, discounting the latter by a parameter γ.
As a result, GDX agents do not just maximise the immedi-
ate profit, but instead optimise the pricing process in order to
achieve overall higher returns over the entire trading period:

V (m,n) = maxp{
...if I trade now...

f(p)sm(p)︸ ︷︷ ︸
money I make now

+ γf(p)V (m− 1, n− 1)︸ ︷︷ ︸
money I will make later

+

...if I do NOT trade now...

γ[1− f(p)]V (m,n− 1)︸ ︷︷ ︸
same units, 1 less time unit

}

(6)

2.3 AA
The Adaptive Aggressiveness (AA) trading algorithm was de-
veloped by Vytelingum for his 2007 PhD thesis [Vytelingum,
2006], and it is the most recent automated trading strategy
explored here. In Vytelingum’s work, aggressiveness rep-
resents the agent’s tendency to trade off profit in favour of
higher chances of transacting: the more (less) aggressive the
agent, the better (worse) the offers it submits are than what
the competitive equilibrium price the agent believes to be.
Similarly to Cliff’s ZIP automated traders, AA agents also
monitor market signals and adjust internal parameters using a
learning mechanism. The innovation introduced with the lat-
ter consists of updating two individual components, a short-
term and a long-term one. The short-term learning mecha-
nism updates the aggressiveness of the agent on the basis of
the market data observed, in order to react promptly to the
market fluctuations. The long-term learning process, on the
other hand, captures the slower market trends that develop
through the time so that agents can take those into account
when making their bidding decisions.

The heuristics employed as learning rules are analogous to
those used in ZIP, except they control the aggressiveness of
an agent instead of regulating its profit margin. Each time
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a trade occurs, an AA agent adjusts its aggressiveness ac-
cording to the transaction price and its own current target
price. A buyer will become more aggressive (and there-
fore it will shout higher prices) if the transaction price is
higher than its current target price, whereas it will become
less aggressive (by submitting cheaper bids) if the transac-
tion price is lower than its target price. Equivalently, a seller
will become less aggressive (and therefore it will shout higher
prices) if the transaction price is higher than its current target
price, whereas it will become more aggressive (by submitting
cheaper offers) if the transaction price is lower than its target
price. An AA buyer (seller) also increases its aggressiveness
when a bid (an offer) is rejected at a price higher (lower) than
its current target price. The aggressiveness is updated accord-
ing to the Widrow-Hoff rule, that is backprojecting a fraction
of the error between the desired and the current degree onto
the new degree of aggressiveness.

3 Experimental Setup
We ran our experiments on Open Exchange (OpEx), an exper-
imental algorithmic trading platform developed by De Luca
[De Luca and Cliff, 2011]. OpEx was designed to resemble
closely the structure and the behaviour of modern commercial
financial-market electronic trading systems, and to be generic
enough to support experimental economics simulations of ar-
bitrary complexity. All of our human vs. robot experiments
involved 6 human traders and 6 robot traders, both equally
split into 3 buyers and 3 sellers, the structure described by
IBM in their original work [Das et al., 2001]. Before each
experiment, the human subjects were briefed about the rules,
and were given some time to familiarise with the Sales Trad-
ing GUI (briefing and tutorial typically took less than 30 min-
utes). Figure 1 shows a screenshot of the OpEx Sales Trading
GUI.

The subjects had no previous professional experience in
electronic trading, and they were only allowed to participate
in one experiment. We motivated all 6 participants by giv-
ing each of them a token worth £20, plus a bonus of £40 and
£20 to the first and the second best trader, respectively. An
experiment consisted of 10 consecutive “rounds” 3 minutes
long. At the beginning of a round, each of the 12 players re-
ceived a fresh supply of 13 units to buy or to sell during that
round, according to their role. At the end of the round the
unused units were discarded, without any profit or loss for
the traders. Players had to trade their units sequentially, and
the sequence of their limit prices was arranged in an arith-
metic progression. Only 3 “generator” sequences were actu-
ally used to produce the prices for all the players: a human
and his/her robot counterparty had the same limit prices; and
buyers and sellers share the same values except for the order,
that is increasing for sellers and decreasing for buyers. The
progressions had the same slope, and they were chosen so that
each player had approximately the same maximum theoreti-
cal surplus in a given round. In line with [Das et al., 2001],
we introduced market shocks, which periodically altered the
limit prices adding or subtracting a constant to them every
2 rounds. Thus, a 30 minute simulation was constituted by
5 consecutive trading periods at different equilibrium prices.

Figure 1: OpEx Sales Trading GUI. In the top section, from left
to right: the order panel, where orders are entered by the traders;
the market orderbook; the info panel, displaying market open/close
time, PNL, and remaining/executed orders. In the mid and bottom
section, the order blotter and the trade blotter, showing the status of
the trader’s orders and the details of her trades, respectively.

Table 1 presents 3 sample sequences that we used in the ex-
periments described here.

Unit no. (B) Unit no. (S) Seq. 1 Seq. 2 Seq. 3
1 13 381 383 385
2 12 371 373 375
3 11 361 363 365
4 10 351 353 355
5 9 341 343 345
6 8 331 333 335
7 7 321 323 325
8 6 311 313 315
9 5 301 303 305
10 4 291 293 295
11 3 281 283 285
12 2 271 273 275
13 1 261 263 265

Table 1: Generator sequences used in our experiments. The limit
prices of the units assigned to the first human buyer (HB1) are those
of Sequence 1, in the order shown in the leftmost column. The first
robot buyer (AB1) is assigned identical limit prices. The cost price
of the units assigned to the first human seller (HS1) and the first
robot seller (AS1) are also those of sequence 1, but in the order pre-
sented in the second column from the left. This logic applies seam-
lessly to the remaining players: HB2, AB2, HS2 and AB2 follow
sequence 2, and HB3, AB3, HS3 and AB3 follow sequence 3.

4 Experimental Results
4.1 Agents vs. Humans
We ran a total of nine human vs. agent experiments, three for
each of ZIP, GDX and AA. Table 2 presents the mean values
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Experiment Trades Performance Market
Strategy A-A A-H H-H Eff(A) Eff(H) Δ Profit(A-H) Eff Profit Disp
AA 41% 32% 27% 1.078 0.867 27% 0.978 793
GDX 33% 42% 25% 1.040 0.866 23% 0.954 568
ZIP 39% 30% 31% 1.014 0.941 9% 0.978 418

Table 2: Summary of the nine human vs. agent experiments. For each strategy, the table displays: the strategy employed by all six agents;
the percentage of trades made between two Agents, an Agent and a Human, and two Humans; the average efficiency of Agents and Humans;
the percentage difference between Agent surplus and Human surplus; the market efficiency and the profit dispersion. The mean maximum
theoretical profit per trader per simulation is 2107. Lower profit dispersion and higher mean efficiency values are better. All numerical values
are mean values over three experiments.

of the results we obtained for all the strategies2.
The first noteworthy finding is that the agents performed

better than the humans as a group: the mean percentage dif-
ference between the profit made by the agents and the hu-
mans is 20% over the nine experiments. In addition to that,
the allocative efficiency achieved by the agents is greater than
100% for every strategy, which proves that all of the strate-
gies were successful in exploiting human errors. Second, the
trades between agents and humans were, on average, 35% of
the trades made in an experiment: despite the fact that the
automated traders were faster, our subjects were very well in-
tegrated in the market.

Moreover, we analysed the timing of trades and found that
they are more likely to happen in the first minute of the trad-
ing period. Because of the distribution of the limit prices
we employed, buyers have higher values and sellers have
lower costs for their first units, resulting in a wider spec-
trum of acceptable prices by buyers and sellers. Such price
spectrum narrows as time passes, as a consequence of both
more demanding limit prices and the New York Stock Ex-
change (NYSE) spread-improvement rule3, leading to barely
any trading activity towards the end of the trading period. We
narrowed down our timing analysis to distinguish, for each
strategy, among the three groups of trades: between agents
(A-A); between humans (H-H); and between humans and
agents (A-H).

Figure 2 presents a chart of the probability distribution
function of the trade time of the three groups of trades for ev-
ery strategy. The decreasing trend just described is displayed
more evidently by the A-A series, confirming that the agents
were faster than our subjects in taking advantage of the early
very profitable trading opportunities. The shape of the A-H
series is similar although smoother. The trading activity be-
tween humans, on the other hand, is distributed more evenly
over the time and generally exhibits more significant values
during the first minute.

Furthermore, analysing the rankings of the players’ effi-
ciency, we discovered that the best 6 players were either
mostly buyers or mostly sellers, consistently throughout the
9 experiments. In more detail: in 4 experiments the best 6

2To 6 decimals, AA-human= 0.977797, ZIP-human=0.977814.
3The NYSE spread-improvement rule is typically found in CDA

studies such as those cited in this paper, and requires that new bids
(or asks) must be higher (or lower) than the current best bid (or ask)
in the market.

Figure 2: Empirical probability distribution function of the time of
the trades between two agents (A-A), between two humans (H-H)
and between one human and one agent (A-H) for the three strategies.
Data are aggregated in 5 seconds bins.

players were a homogeneous group of either buyers or sell-
ers; in 4 experiments, 5 out of the best 6 players were on the
same side; and in the remaining one 4 sellers were in the best
6. Interestingly, this pattern was not found in the numerous
robot vs. robot experiments we ran, nor is there mention of
it in previous agent vs. agent work related to this. Thus, in
line with [Das et al., 2001], we speculate that this asymmetry
is due to the heterogeneous nature of our market: the agents
follow a rigorous algorithm to price their offers, while the hu-
man players form a belief about the market that includes an
irrational psychological component. The data from the ex-
periments that favoured buyers show that the human sellers,
observing low (although increasing) trade prices at the start of
the trading period, offered cheaper and cheaper deals to their
counterpart until they matched their bids. This behaviour was
followed by the robots, which sensed that trades happened
at low prices and adjusted accordingly. Although unable to
make passive (i.e. more expensive than the best price) of-
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Figure 3: Trade price time series for a human vs. AA experiment. The vertical lines represent the start of a new round. The 10 rounds of 3
minutes each were divided into 5 phases, each of which with its own set of limit prices. The theoretical equilibrium price p∗ for each phase is
indicated by the horizontal dashed lines. Trades between two humans are marked with open squares, between two agents with open circles,
and between an agent and a human with solid circles. Mean efficiency per phase (vertical bars) and per rounds are shown for Agent Buyers
(AB), Agent Sellers (AS), Human Buyers (HB) and Human Sellers (HS).

fers because of the NYSE rule, the humans could nevertheless
have waited until the market settled on a price, and then they
could have started offering: this way, the agent sellers would
have crossed the narrow spread to beat the human prices and
they would have soon exhausted their intramarginal units,
giving the human sellers control over the price. We inter-
viewed one of our subjects that we noticed was playing this
strategy during an experiment that displayed similar dynam-
ics to those just described, and he confirmed that he was ac-
tually following that strategy. However, because he was the
only human seller to do so, the tactic turned in his disfavour:
every other human (and agent) seller kept underselling while
he was waiting, thus when he started trading most of the intra-
marginal buyers’ units had been already traded, and he could
only make few underpriced deals.

AA Agents vs. Humans (AA-v-H)
The trade price time series of a typical AA-v-H experiment is
shown in Figure 3. We will refer to this specific experiment,
although the observations we made on the other AA-v-H ex-
periments are very similar. The dashed vertical lines sepa-
rate the trading periods, whereas the dashed horizontal lines
mark the theoretical equilibrium price p∗. The shape of the
time series indicates robust and recurrent convergence to p∗.
Every trading period begins with a fast trading phase where
the market price settles, thanks to both the NYSE spread im-
provement rule and the particular sequence of limit prices we

employed. During this phase, the most profitable units are
consumed while the spread between intramarginal sellers and
buyers decreases. As a consequence, the amplitude of the os-
cillations drops, and prices move neatly towards p∗. As soon
as a new period starts, because new profitable units are avail-
able, the buyers start over bidding low prices, and so forth.

Also, it is worth noticing that the efficiency achieved by
the buyers in each trading period is consistently higher than
that of sellers, as evidence of the unbalance introduced by the
human component.

GDX Agents vs. Humans (GDX-v-H)
Four trading periods of the trade price time series of the
GDX-v-H experiment ran on 3rd September 2010 are shown
in Figure 4. We will refer to this specific sample, as it is
quite representative of the data we gathered from the three
GDX-v-H experiments. The time series exhibits a recurring
pattern of convergence towards a price that is often somewhat
lower than p∗. Most of the trades were made at lower prices
than p∗, since buyers closed deals at reasonably lower prices
than their limit prices, and therefore kept higher profit mar-
gins than their seller counterparts. This is confirmed by the
fact that, in this experiment, the five best traders in terms of
mean allocative efficiency are buyers: this is in line with the
above mentioned asymmetry we detected throughout the ex-
periments.

A more detailed analysis of the efficiency per trading pe-
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Figure 4: Four periods of a human vs. GDX experiment, compared
to four periods of a human vs. ZIP experiment.

riod reveals that the discrepancy between buyers and sellers
is accentuated by the raising of the equilibrium price (e.g. be-
tween trading periods 6 and 7), and attenuated by the drop
(e.g. between trading periods 4 and 5). We explained this
by looking at the first few trades made in the trading period
following the market shock: their prices tend to remain close
to the previous value of p∗, resulting in better opportunities
for buyers or for sellers, if there was a raise or a drop of p∗
respectively. This confirms that the GDX strategy requires a
few samples before it can adapt to the new market condition.

Furthermore, the DP approach employed in GDX is re-
vealed by the small tail of the distribution in Figure 2: when
they wake up during the last few seconds, due to the iterative
nature of the algorithm, the GDX agents estimate the proba-
bility of making a deal immediately to be higher than that of
profiting from a postponed order. As a result, GDX degener-
ates into GD and the agents price the final units by maximis-
ing the product of profit and belief function, rather than by
holding them in the hope of higher future returns.

ZIP Agents vs. Humans (ZIP-v-H)
Figure 4 also illustrates the first four trading periods of a typ-
ical ZIP-v-H experiment. By visual inspection, it can be veri-
fied that human-ZIP markets display excellent capabilities of
tracking the equilibrium price, as convergence to p∗ is more
pronounced than in human-GDX markets.

It can be noted that, qualitatively, the shape of the time se-
ries is reasonably consistent across the trading periods, and
that the curve presents a higher price excursion in a shorter
time than GDX before converging to p∗. Indeed, our time
analysis confirms that the mean trade time relative to the trad-
ing period is 45s for ZIP-human and 69s for GDX-human
markets.

By isolating the trades between two agents (A-A), between
two humans (H-H), and between a human and an agent (A-
H), we found that the mean trade time of the three types of
trades is consistently higher in GDX than in ZIP: this is qual-

Figure 5: Shout price series of one AA and one ZIP vs. human ex-
periment.

itatively confirmed by Figure 2. Also, the mean trade time
of A-A trades is the smallest and that of H-H trades is the
largest consistently across trading periods in the experiments
involving ZIP, while this relationship does not hold for some
trading periods of the GDX-v-H experiments.

Although the trade price series of the AA-human and the
ZIP-human markets look similar, AA agents managed to ex-
tract substantially more profit from the market than what ZIP
agents did. To explain this, we analysed the shout price time
series, that is the series of prices submitted by buyers and
sellers over the time, including both accepted and rejected or-
ders. Figure 5 represents one trading period of a ZIP-human
market as compared to one trading period of an AA-human
market. The chart outlines how some AA agents are reluc-
tant to trade the first units during the initial “price settling”
period, as they rather increase their aggressiveness gradually.
As a consequence, a number of underpriced sales and over-
priced purchases are made by the human players, and while
this happens AA buyers keep their positions having bought
most of the units during the initial phase, whereas AA sell-
ers trade at the now higher price. Similar observations can be
made for AA markets that favour buyers. On the other hand,
the shout prices of the ZIP sample period are clustered quite
closely around the trade price trajectory, with the exception
of an initial exploration of decreasingly high prices by agent
buyers. Thus, although ZIP-human markets exhibit a lower
profit dispersion, the group efficiency for ZIP agents against
humans is lower than for AA agents.

4.2 Agents vs. Agents
We ran further experiments to investigate the performance of
AA, ZIP and GDX in pure agent vs. agent markets. The sim-
ulations were performed using OpEx Discrete Event Simula-
tor (DES), and the supply and demand curves employed are
identical to those we used for the human vs. robot markets.
The results of five sets of experiments are presented in Table
3. The second column of the table displays the percentage
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Agents Experiments Rounds
GDX (γ = 0) vs. ZIP 98% 9.015(±0.123)
GDX (γ = 0.9) vs. ZIP 100% 9.001(±0.029)
AA vs. GDX (γ = 0.9) 94% 9.941(±0.235)
AA vs. GDX (γ = 0) 92% 9.924(±0.265)
AA vs. ZIP 95% 9.046(±0.209)

Table 3: Summary of five agent vs. agent experiments, each one
repeated over 1000 times. For each set of experiments, the table
shows: the agents involved (the winner first), the percentage of ex-
periments won, and the mean number of rounds per experiment won.

of experiments in which the first group of agents made more
profit than the second one. The third column shows the mean
number of rounds won, again in terms of profit extracted. The
data clearly indicate that each of the competitions resulted in
the undisputed supremacy of one of the strategies.

Qualitatively in line with [Tesauro and Bredin, 2002],
GDX visibly outperforms ZIP, both when run in optimal
mode (γ = 0.9) and when degenerated to GD (γ = 0); in par-
ticular, the performance of GDX in terms of profit extracted
improves slightly for γ = 0.9, although the mean number
of rounds won by GD is mildly higher. Similar observations
can be made on the AA-GDX markets. AA beat both GDX
and GD by far, GDX being a slightly better opponent. Also,
the profit extracted per round by AA is much higher than
that by GD/GDX, as shown by the number of rounds won,
which is very close to 10. AA defeated ZIP by far as well,
although interestingly its victory was not as overwhelming as
one may naively expect from the results just described for AA
vs. GDX and GDX vs. ZIP. These findings are consistent with
[Vytelingum et al., 2008].

5 Conclusions
The competition between algorithmic trading strategies has
been of interest to researchers for over a decade. Three main
adaptive strategies have been studied and led to substantial
literature: namely ZIP, the GD class, and AA.

ZIP had been shown to perform worse than GD, MGD and
GDX in agent vs. agent markets, and also Das et al., in their
seminal human vs. agent study, showed that their variant of
GD, and also ZIP, both outperformed human traders. More
recently, Vytelingum designed AA and proved that its perfor-
mance is better than both ZIP and the GD class in agent vs.
agent contests only: he ran no tests against humans.

We have designed and implemented, for a total cost of a
few thousand dollars, an experimental economics laboratory
network trading system, where “trader terminal” netbooks
communicate with a central “exchange” server, with the po-
tential for multiple instruments to be traded simultaneously in
varying quantities, and with every quote in the marketplace,
and details of all transactions, written to a database as a sin-
gle “consolidated tape” record of the trading events (to sub-
second timestamp accuracy) over the course of a trading ex-
periment. We employed this trading system, called OpEx, to
investigate the behaviour of these strategies in agent vs. agent
markets, and to pit human subjects against ZIP and, for the

first time ever, GDX and AA traders.
AA proved to outperform every other strategy to a great de-

gree when competing against each other, and to perform sen-
sibly better than the other ones in mixed agent-human mar-
kets. We therefore claim that AA may offer the best perfor-
mance of any published strategy.

Finally, it would be interesting to test our algorithmic
traders in an additional scenario: one where the “reaction
times” of the agents are restricted to be comparable to those
of the human traders. This would reveal in what measure the
superiority of the agents is due to their speed. We intend to
explore this, and other issues, in our future work.
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