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Abstract

This paper studies adaptive bilateral negotiation between
software agents in e-commerce environments. Specifically,
we assume that the agents are self-interested, the environ-
ment is dynamic, and both agents have deadlines. Such
dynamism means that the agents’ negotiation parameters
(such as deadlines and reservation prices) are functions of
both the state of the encounter and the environment. Given
this, we develop an algorithm that the negotiating agents
can use to adapt their strategies to changes in the environ-
ment in order to reach an agreement within their specific
deadlines and before the resources available for negotia-
tion are exhausted. In more detail, we formally define an
adaptive negotiation model and cast it as a Markov Deci-
sion Process. Using a value iteration algorithm, we then in-
dicate a novel solution technique for determining optimal
policies for the negotiation problem without explicit knowl-
edge of the dynamics of the system. We also solve a repre-
sentative negotiation decision problem using this technique
and show that it is a promising approach for analyzing ne-
gotiations in dynamic settings. Finally, through empirical
evaluation, we show that the agents using our algorithm
learn a negotiation strategy that adapts to the environment
and enables them to reach agreements in a timely manner.

1. Introduction

Automated negotiation is a key issue for e-commerce be-
cause it provides the de facto means of interaction between
stakeholders with different aims and objectives [4]. Given
this, many different models with many different properties
have been developed (covering a wide variety of auction
types and the direct negotiation and bargaining mechanisms
we focus on in this paper). However, a key challenge that
appears in many real world applications, but that is often
neglected in such work, is that of negotiating effectively in
dynamic environments. Here, by dynamism, we mean that

the very structure of these systems is subject to change with
new agents being added and removed constantly, that the
computational and monetary resources available for carry-
ing out the negotiation are limited and can fluctuate, and that
the deadline by which the negotiations must be completed
might change. To rectify this, we develop a new model for
automated negotiation (between pairs of agents) in which
agents can adapt their negotiation strategy as such changes
occur. In particular, we have developed a novel negotiation
algorithm using which the agents can learn to react appro-
priately to such situations.

By means of an illustration, consider, a typical business-
to-consumer (B2C) scenario, in which an agent (which
forms a part of a large network of agents), acting on be-
half of a retailer, negotiates online with a specific con-
sumer for the price of a certain product. As the retailer
has many such agents acting on its behalf, they share re-
sources like bandwidth for communication and computa-
tional power with one another and they reside in the same
computational space. Now, in such situations an agent might
suddenly find that its messages take longer to reach its op-
ponent because of increased network activity or that it has
to wait longer for CPU time since one of the other agents
is using a large number of CPU cycles. This means the re-
sources available to carry out the negotiation change, ei-
ther increasing or decreasing, depending on the nature of
the environmental changes. In yet other cases, an agent’s al-
located budget for acquiring the desired service might be
cut. For instance, in a large supply chain (implemented as
a multi-agent system), where several agents pursue inde-
pendent goals, the budget spent in one part of the supply
chain may well impact the budget further down the line (be-
cause the agent is suddenly given more money as a result of
savings or because it is given a lower budget as a result of
overspending). In this case, in negotiation terms, the agent’s
reservation price changes. Finally, in view of the goal of the
entire supply chain system, the agents may need to shorten
or lengthen the time available for them to complete their ne-
gotiation because earlier activities take a shorter or longer



time to procure than was initially expected. In this case the
agent’s deadline changes. Now in all these cases, the agents
need to adapt their negotiation strategies if they are to be ef-
fective in their changed environment. Failure to adapt, may
lead to poor outcomes and may leave the owner less satis-
fied.

Against this background, in this paper we concentrate
on single issue negotiation, between a buyer and a seller,
each of which is trying to maximize their return and each of
which have their own private deadlines. In this setting, we
need a mechanism by which the agent can learn to negotiate
without significant prior knowledge of the system or its op-
ponent (because this is the nature of many e-commerce ne-
gotiations). To this end, reinforcement learning enables an
agent to learn the preferences of its opponent and the state
of the environment without the aid of a model [9]. In this
vein, [5] uses the framework of two player zero sum Markov
games to describe interactions between adaptive agents with
opposing goals that share an environment. They also de-
velop a Q-learning algorithm to determine optimal policies
in this context. Then, in [3], an extension of this approach is
given to general sum games. Here the agents first determine
a mixed-strategy Nash equilibrium profile for the game and
then use this profile in the Q-learning algorithm to deter-
mine an optimal policy. Moreover, speaking more gener-
ally, both these approaches share the following key assump-
tions: (i) both agents share the same environment, (ii) both
agents can observe the entire state space and the payoffs re-
ceived, the state space, action space, reward function and
the optimal policy are all stationary and (iii) the agents op-
timize for an infinite time horizon. However, in our case, the
agents need to make decisions based on deadlines and reser-
vation prices that are private information, therefore these
parameters cannot be part of a common state space. Again,
in [2], a finite horizon Q-learning algorithm is described for
non-stationary processes which is suitable for the negotia-
tion process, but this algorithm assumes that only a single
agent has to adapt to changes in the environment (which is
clearly not the case in our scenario). Moreover, in general,
these game theoretic models assume that the agent’s deci-
sion is solely based on its opponent’s action and ignores
changes in the environment which is unreasonable for the
e-commerce settings we wish to tackle.

Therefore we need a model in which the agents choose
strategies at each step of the negotiation based on the cur-
rent state of the environment and that will result in achiev-
ing its long term objectives (e.g. reaching an agreement be-
fore its deadline). Given this background, we have modelled
the negotiation as a set of two non-stationary Markov De-
cision Processes (MDPs). There are two processes because
each agent has its own view of the state space and the dy-
namics of the environment. The process is non-stationary
because the probabilities of transition from one state to an-

other vary over time as a consequence of the environmen-
tal dynamics. In typical e-commerce domains, however, not
only does the state of the system change (e.g. resource avail-
ability), but also the agents in these domains are unaware of
the pattern of variability. We model this by assuming that
the agents have probabilistic knowledge of the transition
function. Specifically, we view the negotiation as Marko-
vian since we believe that effective strategies can be cho-
sen based only on the current state of the system and inde-
pendently of the history of the negotiation process 1. Given
this, we have then developed a negotiation mechanism us-
ing a value iteration algorithm we have devised for this pro-
cess where the response of the agent depends on factors
like resource availability, time availability and the attitude
(conceding or stubborn) that it adopts during the negotia-
tion. Our work advances the state of the art in the following
ways:

1. it develops a mathematical framework for adaptive ne-
gotiations in the e-commerce domain using Markov
Decision theory.

2. it develops a novel automated mechanism to negotiate
adaptively in these domains.

3. it also shows, by means of empirical evaluation, that
the algorithm performs better in dynamic environ-
ments than a non-adaptive algorithm.

The remainder of the paper is organized as follows. Section
2 describes the requirements, assumptions and the compo-
nents of our negotiation model. Section 3 describes the so-
lution procedure and the algorithm used. Section 4 presents
our empirical results and Section 5 concludes.

2. Modelling Adaptive Negotiation

Our overarching aim in this work is to design a negotiation
mechanism for agents operating in dynamic e-commerce
environments. To do so, we first characterize the environ-
ment in which the agents function:

1. The agents negotiate in an environment whose dynam-
ics are unknown. That is, the resource and the time
available for negotiations can change.

2. The negotiation outcome depends on the resources
available for negotiation, the negotiation parameters
(e.g. deadlines and reservation prices), and the nego-
tiation strategies of the agents. These are all subject to
change (as exemplified in Section 1).

3. The agents are unaware of their opponent’s parameters
(e.g. deadlines or utility functions).

1 This is clearly an assumption that needs to be evaluated in future work.



4. The agents cannot directly observe changes in their op-
ponent’s parameters or their payoffs. They can only
observe the changes indirectly through the negotiation
actions of their opponent.

We can now turn to the underlying assumptions of our
negotiation model:

• We consider two agents (designated as buyer b and
seller s), bargaining over a single issue (i.e., the price
of a service.)

• Agents are aware of their own negotiation parameters;
namely, their own deadline, T adeadline, and their reser-
vation price RP a which is the maximum (minimum)
price that the buyer b (seller s) can offer. But they
are unaware of their opponents’ parameters (i.e., the
agents have incomplete information).

• The interval [RP s − RP b] is called the the zone of
agreement. For an agreement to be reached this zone
must be non-empty. In our case, the agents do not know
this zone (or even whether it is non-empty) and more-
over it can change during the course of the encounter.

• The agents alternate in making offers and these of-
fers are made at discrete time points in the set {T =
0, 1, ..., T adeadline}.

• The agents seek to reach an agreement before their
deadline is reached. Failure to conclude the negotia-
tion before this time is the worst possible outcome.

• The agents cannot opt out of the negotiation process
and so the negotiation terminates either when an agree-
ment is reached or when one of the deadlines passes.

Having studied the assumptions, we can now characterize
the main components of our model [6]:

• The Negotiation Protocol: Formally specifies the rules
of the negotiation process — who can participate, the
states of the negotiation process and some of the events
that change the state of the negotiation process. In our
case, the agents alternate in making offers until an
agreement is reached, (hence the use of the alternat-
ing offers protocol [1]).

• The Negotiation Objects: Represent the issues over
which the agents are negotiating. In our model the
agents negotiate over a single issue (i.e., the price of
a good or service).

• The Participants’ Negotiation Preferences: These rep-
resent the objectives of the agents participating in the
negotiation process. In our model, the agents’ broad
objectives are to reach an agreement on the price of
the service that maximizes their return before their
deadlines are reached or before their resources are ex-
hausted.

• The Participants’ Negotiation Strategies: These spec-
ify how an agent should respond to a given situation.
In our case these strategies enable the agent to negoti-
ate effectively by adapting to their environment.

• The Participants’ Negotiation Parameters: These rep-
resent the deadlines of the agents and their reservation
prices.

In our setting of incomplete information and variable pa-
rameters, the agents have to devise strategies for reaching an
agreement. As argued previously, the agent has to decide on
the best course of action given the current state of the sys-
tem. Now, since the state space is discrete and has the mem-
oryless property we cast the negotiation as a MDP and use a
value iteration algorithm for determining a strategy for dy-
namic negotiations.

3. The Adaptive Negotiation Model

This section outlines our adaptive negotiation model. We
first recap some basic definitions of MDPs and value based
iteration methods for solving MDPs that form the founda-
tion of our model (section 3.1). We then describe the struc-
ture of our model (section 3.2), before going onto the nego-
tiation algorithm itself (section 3.3).

3.1. Basic Definitions

3.1.1. The Markov Property. The negotiation pro-
cess analyzed in this paper is assumed to be a Markov pro-
cess. Intuitively, a process is Markovian if and only if the
state transitions depend only on the current state of the sys-
tem and are independent of all preceding states. Formally,
the sequence of random variables {Xn, n = 0, 1, 2, ...} is
defined to be a Markov process iff their conditional prob-
ability density function, P, satisfies the following relation-
ship [8]:

P{Xn|X1,X2, ...,Xn−1} = P{Xn|Xn−1} (1)

Then a process that uses this property of the state space to
analyze all decisions, based on a reward scheme, that need
to be made within this space is called a Markov Decision
Process. Now, the specific problem that we wish to consider
is set in non-stationary environments where the dynamics of
the system vary with time (as argued in section 1). Thus the
associated decision process is also non-stationary and we
are in the realm of non-stationary MDPs.

3.1.2. Non-Stationary MDPs. A non-stationary MDP for
each time-step, n, is defined as [2]:

• a discrete state space Sn

• a set of discrete actions An



• a reward function Rn : Sn × An → �
• a probabilistic state transition function, Tn : Sn ×
An → [0, 1], Tn(s, a, s′) is defined as the probabil-
ity of making a transition from state sn to state sn+1

using action an.

In a standard MDP, an agent tries to find a policy
π : S → A that maps an action, a, to a state, s, and max-
imizes its expected sum of discounted rewards over an
infinite period of time. However, in our negotiation con-
text, the agents have finite deadlines and, therefore, we de-
fine the corresponding notion of maximizing expected
rewards for a finite time horizon. In this case, the pol-
icy π can be decomposed into a set π1, π2, ..., πN where
πn : Sn → An. As the first step towards determin-
ing the optimal policy we introduce the notion of the value
of a state. Formally, a value of a state s ∈ Sn, under a pol-
icy πn, during the nth time-step, is defined as:

V πn (s) =
N∑

t=n

E(Rt(st, πt(st))|sn = s) (2)

where sn is the state of the system at time-step
n, Rn is the reward obtained at time step n, and
E(Rt(st, πt(st))|sn = s) is the expected value of the
reward under policy πn and state sn = s. The opti-
mal policy is denoted by π∗ and the associated value func-
tion is given by:

V ∗
n (s) = maxa[Rn(s, a)+

∑

s′∈ Sn+1

Tn(s′, a, s)×V ∗
n+1(s

′)]

(3)

for all s ∈ Sn, n ∈ 1, ..., N and V ∗
N+1 = 0. The op-

timal policy is specified by π∗
n(s) = a where a is the ac-

tion at which a maximum is attained in equation 3. Now,
when the dynamics of the system are known, the opti-
mal value function can be solved by standard dynamic
programming techniques [9]. However, in the our ne-
gotiation problem, the probability of state transitions
(changes in the dynamics of the system) are not known ex-
actly but are themselves specified by another non-stationary
probability function Pn called the estimate function. We de-
fine this function as:

Pn(s, a, s′) : Tn(s, a, s′) → [0, 1] (4)

Given this, we have developed value iteration algo-
rithm based on the average or expected Tn(s, a, s′) val-
ues given by:

En(Tn(s, a, s′)) =
∑

s′
(Pn(s, a, s′))×(Tn(s, a, s′)) (5)

3.1.3. Average Value Iteration. Here we describe the key
notions used in developing an adaptive negotiation model
based on an average value iteration method. Towards this
end, we first define the average value function and the Q-
values for the states of the system [9]:

V ∗
n (s) = maxa[Rn(s, a)+

∑

s′∈ Sn+1

En(Tn(s′, a, s))×V ∗
n+1(s

′)]

(6)

Qπn(s, a) = {Rn(s, a)+
∑

s′ ∈ Sn+1

En(Tn(s, a, s′))×V πn+1(s
′)}

(7)
The corresponding optimal Q-function is given by:

Q∗
n(s, a) = {Rn(s, a)+

∑

s′ ∈ Sn+1

En(Tn(s, a, s′))×V ∗
n+1(s

′)}

(8)
for all s ∈ Sn and a ∈ An.

Now from equations (6) and (8) we have:

V ∗
n (s) = maxa[Q∗(s, a)] (9)

Then once the Q-value for each state, s, is determined
using the average value iteration algorithm, the agent will
deterministically choose the action, a, that maximizes the
Q-value (i.e., assign π∗(s, a) = 1).

3.2. The Structure of the Dynamic Negotia-
tion Model

For reasons outlined earlier, we base our negotiation
model on MDPs. We formally define the Markov ne-
gotiation set as composed of two Markov decision pro-
cesses: (S1

n, A
1
n, P

1
n , R

1
n) and (S2

n, A
2
n, P

2
n , R

2
n) where San

is the non-stationary discrete finite state space for agent
a, Aan is the discrete finite action space for agent a, P an
is the estimate function for agent a, and Ran is the re-
ward function for agent a, at time instant n. Now the
state space must include all the factors that have an im-
pact on the decision-making of the agents. In our case this
includes:

1. environmental considerations like resource availability



2. the agent’s reservation price (RP ) and deadline
(Tdeadline)

3. the opponent’s offer.

The agent makes an offer based on its state space and using
the opponent’s action as an input to make decisions.

In more detail, the agents use negotiation decision func-
tions (NDFs) [7] to generate offers (since these have been
developed specifically for negotiations in incomplete and
time constrained environments). Formally, these are math-
ematical functions that generate values between the initial
offer and the RP of the agent. These functions were chosen
in our model because they enable us to control the rate at
which the agent’s offers approach its RP depending on the
currently available resources, the current reservation price
and the other identified factors. Using this model, the offer
of the agent a to its opponent â, pta→â, is defined in terms
of the NDF as:

pta→â = IP b + f b(t)(RP b − IP b)for buyer b
= RP s + (1 − fs(t))(IP s −RP s)for seller s.

Here IP b, RP b, IP s and RP s are the initial and reser-
vation prices of the buyer and seller respectively and fa(t)
represents the NDF of agent a. These functions are such that
0 ≤ fa(t) ≤ 1, fa(0) = ka (a pre-defined constant which
determines the initial offer of agent, a), and fa(T a) = 1.

Keeping these requirements in mind, the NDF for agent
a is defined as:

fa(t) = ka + (1 − ka)(min(t, T a)/T a)1/ψ (10)

In fact, this represents a family of NDFs defined by the
parameter ψ. From this, it can be seen that pta→ â tends
to RP b as t tends to T and that pta→ â tends to RP s as
t tends to T . In both cases, the parameter ψ controls the
rate at which the NDF approaches the value 1, which, in ef-
fect, controls the rate at which the offer of the buyer and
seller reach their respective reservation prices. A more de-
tailed description of the variation of the behaviour of agents
with the parameter ψ is given below:

1. Conceder: When ψ > 1: The agent quickly reaches
its reservation value. The agent employs this strategy
when time or resources for negotiation are limited.

2. Boulware (Stubborn): When ψ < 1: The agent main-
tains its initial offer until the deadline is almost reached
and then concedes quickly.

Thus the agent has two broad classes of strategy that it
can adopt during the negotiation process. The key strate-
gic decision is which of them has to be adopted and at

what time. Using our algorithm (detailed in section 3.3), the
agent will endeavour to appropriately map its negotiation
actions to situations so that an agreement is reached before
the deadline and before the resources available for negotia-
tion are exhausted. Intuitively this is achieved by rewarding
the agent when it adopts a stubborn approach when there
are adequate resources for the negotiation process and, cor-
respondingly, rewarding the agent for adopting a conceding
approach when the available resources are low. The selec-
tion of the appropriate action is based not simply on the im-
mediate reward that the agent will obtain, but takes into con-
sideration all possible future rewards.

3.3. The Adaptive Negotiation Algorithm

In this section we outline the steps of the average value
based iteration algorithm based on observations of the state
space, actions of the agents and the reward signals (see Al-
gorithm 1). In more detail, the agent must decide what pol-
icy to adopt depending on the state of the system. To do so, it
first observes its opponent’s offer. The agent then specifies
V ∗(s) for the final states (i.e., states representing the fact
that the deadline is reached, that resources are exhausted or
that an agreement is reached). Then at each time instant it
iteratively computes V ∗

n (s) using equation (6) for all other
states. It determines the current state s of the system and
chooses the action a (i.e., Conceder or Boulware) that max-
imizes equation (9) and appropriately chooses the parame-
ter ψ. Using this value of ψ in equation (10), it determines
an offer according to definition in section 3.2. The oppo-
nent observes this offer and determines a counter-offer us-
ing the same algorithm and based on its state space and
reward definitions. The process terminates when an agree-
ment is reached or when either deadline is reached.

4. Solving the Negotiation

In this section we will illustrate this algorithm using an ex-
ample negotiation scenario. To do so, however, we first de-
scribe the state and action spaces for the agent.

4.1. State and Action Spaces

The finite discrete state space of each agent in the negotia-
tion process is defined by

1. Resource Availability: This denotes the computa-
tional resources that are available for the negotia-
tion. Here we assume this can take two values (high
and low). Thus the agent adapts its behaviour accord-
ing to changes in its resource availability.

2. Deadlines: The agent has a finite discrete set of dead-
lines. This represents the fact that its deadline can



Algorithm 1 Adaptive Negotiation Algorithm
Observe

1. the offer of the opponent ptâ→a.

2. the current state sn of the system.

Specify the current estimation function Pn(Tn(s′, a, s))
based on the partial knowledge of the system for each
state s and instant n.
Specify the reward function Rn(s, a) for each (s, a), s ∈
Sn and a ∈ An.
Specify V ∗

n (s) for terminal states (i.e., agreement
reached, deadline reached).
Compute iteratively V ∗

n (s) = maxa[Rn(s, a) +∑
s′∈ Sn+1

En(Tn(s′, a, s)) × V ∗
n+1(s

′) for all other
states.
Choose action a that maximizes V ∗

n (s)
if a = Boulware then

Set parameter ψ < 1
else {a = Conceder}

Set parameter ψ > 1
end if
Use parameter ψ to determine the NDF fs(n) and gener-
ate offer p(n).
Terminate when terminal states are reached.

change. For our example negotiation problem, we as-
sume that state space consists of two deadlines: T 1, T 2

time units.

3. Reservation Price: The agent has a discrete, finite set
of reservation prices. This again means that the reser-
vation prices of an agent can vary. In the example prob-
lem we will assume that the agent has two reservation
prices: R1, R2.

Now, depending on the state of the system and the in-
put (offer) that the agent receives from its opponent, the
agent chooses between a stubborn and a conceding strat-
egy. It also has the option of doing nothing (i.e, making no
response) since the negotiation is a process of alternating of-
fers, at alternate time-steps when it is the opponents’s turn
to make an offer the agent does nothing.

4.2. Estimation and Reward Functions

The agent should be rewarded for choosing a stubborn strat-
egy when the resources are high and when the agent has suf-
ficient time to continue with the negotiation process (as ar-
gued for in section 3.2). Similarly, it should be rewarded
when it adopts a conceding approach when the resources for
negotiation are low. Also the agent should adapt to changes
in its RP .

There are a total of 8 (2 Deadlines × 2 Reservation Prices
× 2 states of Resource Availability) states and 64 state tran-
sitions for each action a. There is an estimation function

P (s′, a, s, ) and a reward function Rass′ associated with ev-
ery state transition and action. We have specified estimation
probabilities and the reward scheme for a few such transi-
tions in table 1. In a similar fashion they can be described
for all the remaining state transitions.

s s′ a P (s′, a, s, ) Rass′
(low,T 1,R1) (low,T 1,R1) C PC RC

low,T 1,R1) (high,T 1,R1) C PC RC

(low,T 2,R1) (high,T 2,R1) B PB RB

(low,T 2,R1) (high,T 2,R2) B PB RB

Table 1. Reward Scheme

4.3. Results

Having detailed the model’s instantiation, we now consider
its effectiveness. To do this, for a specific set of negotia-
tion parameters (T a, RP a, IP a) we allowed a buyer and
a seller to negotiate and measured the value at which an
agreement was reached and the time taken to get there. In
particular, we consider negotiation in the face of varying
resource availability, two different RPs and two different
Ts (since, as outlined in section 1, these two factors are
the key drivers in e-commerce settings). Using the adaptive
algorithm, the agent, at each state of the negotiation pro-
cess, autonomously determines the optimal action (the one
that yields the maximum future reward). This translates into
choosing the parameter, ψ, that governs the offer, p, that the
agent makes.

To provide a benchmark for our algorithm we compare
it against an agent that uses NDFs to determine the negotia-
tion strategy, but that does not adapt its strategy in response
to changing resource availability, deadlines or reserva-
tion prices during the course of the encounter. The par-
ticular strategy we compare it against involves the agent
adopting either a Boulware strategy or a Conceder strat-
egy throughout the negotiation process irrespective of
changes in resource availability. We experimented with dif-
ferent values of negotiation parameters and determined
that our adaptive strategy consistently performed bet-
ter than the non-adaptive strategy. On an average the
time taken to reach an agreement using the adaptive strat-
egy was 54% less than the time taken by the non-adaptive
strategy. This improvement is a direct result of choos-
ing a strategy in response to changes in the environment
(Conceding when resources and time availability as speci-
fied by the deadlines are low and Stubborn otherwise). To
illustrate this, we have plotted the course of the negotia-
tion process in figure 1 for a specific set of negotiation pa-
rameters given in table 2. The results of the comparison are
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given in table 3. As can be seen, the value of the agree-
ment is about the same in both the adaptive and the
non-adaptive cases. This is because while specifying the re-
ward scheme we have assumed that it is more important
to reach an agreement before the deadline than the ac-
tual value at which the deadline is reached (this could
easily be changed to give more importance to the ac-
tual outcome attained simply by specifying an alternate re-
ward scheme).

Agent Buyer Seller
Initial Price 100 500

Reservation Price 300 or 250 250 or 200
Deadline 600 500

Table 2. Negotiation Parameters

Strategy Adaptive Non-Adaptive
Time of Agreement 29 327
Value of Agreement 260 260

Table 3. Comparison Results

5. Conclusions and Future Work

In this paper we have developed a model for adaptive bi-
lateral negotiation that is suitable for dynamic e-commerce
environments. Specifically, we have used a non-stationary
value iteration algorithm to determine non-stationary nego-
tiation strategies when the dynamics of the system are only
probabilistically known. This negotiation model can adapt
the agent’s strategy in response to resources availability and
variation in negotiation parameters (deadlines and reserva-
tion prices). We believe that this represents an important
step forward in the field of bilateral negotiations in that our
mechanism gives the agents a method by which they can ne-
gotiate effectively in a variety of situations in which the dy-
namics of the system are not completely known. In partic-
ular, this helps the agent to function in dynamic environ-
ments, where it is impossible to know at the start of the ne-
gotiations all the states that the agent might encounter. We
have illustrated this approach by solving a representative
negotiation problem. Initial results show that the time taken
to reach an agreement can be significantly reduced com-
pared to a non-adaptive strategy.

In future work we will extend the algorithm to deal with
situations in which there is complete ignorance about the
system dynamics (as opposed to the present probabilistic
assumption) where the agent learns an optimal policy by re-
peatedly negotiating with its opponent. We will extend the
algorithm to cover the convergence aspects of our learning
algorithm and will evaluate its suitability and effectiveness
for online learning.
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