
Choreography of Web Services based on Natural
Language Storybooks

Kurt Englmeier
LemonLabs GmbH
Ickstattstrasse 16

80469 Munich, Germany
+49 89 2020 8240

KurtEnglmeier@computer.org

Javier Pereira
Universidad Diego Portales, Escuela

de Informática
Avenida Ejercito 441, Santiago, Chile

+56 2 6768135

javier.pereira@udp.cl

Josiane Mothe
Université Paul Sabatier, IRIT Lab.

118 Route de Narbonne
F-31062 Toulouse, France

+33 5 61 55 67 65

mothe@irit.fr

ABSTRACT
Universally available services, which communicate in a
standardized way, can provide a new generation of middleware.
Harnessing the advantages of this promising middleware
technology, however, means to be capable to understand and to
handle its design language which emerges from standards like
SOAP, WSDL, BPEL, etc. These languages are necessary for
finding, composing and orchestrating web services. If at all,
only IT experts are familiar with these languages.

The key actors, the domain experts of business processes,
however, are not IT experts, and thus do not become the main
designers. WS-Talk is a research project that encourages the co-
existence of Natural Language and Web service technology. It
reinforces the role of domain experts in designing business
processes without having to resort to their IT colleagues. In our
approach business process experts write storybooks in their own
language. Their instructions are matched with semantics that
represent application logic that, in turn, supports the automatic
composition of software components. The WS-Talk products
currently support organizations in managing their own and
individual information, i.e. to set up their own enterprise search
engine.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Information Filtering, Search Process.
H.3.5 [Online Information Services]: Web-based Services
I.2.7 [Natural Language Processing]: Language parsing and
understanding, text analysis.

General Terms
Management, Design, Human Factors, Languages.

Keywords
Semantic Web standards, Enterprise Search Systems, Web
Service Orchestration, Web Service Choreography, End-user
programming

1. INTRODUCTION
Business processes supported by IT usually manifest themselves
in applications comprising a number of software components.
Web Services promise the possibility to develop new
applications in a dynamic way. The universal availability of
services, which communicate in a standardized way, opens new
horizons for middleware technology. The standardized and
universal middleware layer supported by Web service
technology can reduce the integration headaches which are still
prevailing in many companies.
Web Services can add a new chapter to the success story of
Semantic Web Standards. Open standards like XML foster the
universal exchange of information over the Internet. Web
Service technology now adds universal interchangeability and
thus universal availability of application logic. This availability
raises the potential to develop more applications, or more facets
of applications, for broader quantity and variety of business
processes (business logic). However, this availability does not
mean an automatic pathway to new horizons in designing IT-
based business processes. Real applications emerge from a
complex and dynamic composition of a number of software
components or Web Services. A raising availability of
application logic also raises the effort to integrate its
components.
What organizations expect from Web Services is first of all a
reduction of “integration headaches” [11]. A survey – recently
published on WebServices.Org – shows that a majority of
companies take up Web Service technology in order “to
integrate disparate systems”. A further motivation for take-up
addresses ”tangible benefits in terms of reuse, developer
productivity, and cost savings“ [11]. Web Services, once
conceived to facilitate more seamless e-commerce transactions
beyond the firewall, get a role that is clearly focused on internal
integration. The motivation for take-up emerges from a quest for
a standardized platform- and vendor-independent middleware-
layer as well as for reusability of existing application logic. Web
Services standards and Web Service orchestration languages
enable an essential move towards this middleware-layer [5].
Using Web Services, an application is rather a coalition of
standardized and almost ubiquitous software modules than the
typical monolithic block as we know it since decades. This
coalition can be composed as well as adapted on-the-fly. WSDL
(Web Service Definition Language), SOAP (Simple Object

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

ICEC’06, August 14–16, 2006, Fredericton, Canada.

Copyright 2006 ACM 1-59593-392-1.

Access Protocol) and UDDI (Universal Description, Discovery
and Integration) are proven standards to define coalitions of
highly interoperable components and to propagate them in a
distributed environment [1, 7]. To form dynamic coalitions, they
need to be found, composed and orchestrated. [9]
However, there is still some doubt that Web service technology
together with web service orchestration standards suffice to
unleash the full potential of software components that enable
rapid development of versatile and highly adaptable
applications. In this paper we investigate how natural language
can enhance Web service technology in order to bring the
human expert of business processes and the IT expert closer
together in the design of IT-based business processes.
Natural language (NL) can provide us with semantics to write
storybooks in our language, i.e. to name, to compose, and
orchestrate software modules in the way humans think about
their everyday work. This rationale is the focus point of the WS-
Talk project. The objective of this project is to develop an
instrument that enables the experts in business processes rather
than the IT expert to define business processes. And the expert
uses just natural language for the definition or description of
processes. WS-Talk’s focus on natural language processing
extends towards information retrieval applications or features,
by nature. The vision of WS-Talk is to provide companies with
natural language interfaces for the management of their own
information and to tune their information retrieval systems.
The natural language descriptions are matched with semantic
representations of software components and their incoming and
outgoing parameters. These representations help to identify the
relevant software components or services and to address
correctly the information required by these services as well as
the information produced by them. The matching process resorts
to meta-information which is designed by the IT experts. In the
vision of semantic Web services [4], our meta-data focus on
generic descriptions of processes as well as on specific ones that
fit the application area of the respective company or department.
This paper thus focuses primarily on coexistence of natural
language and semantic web standards in a layered architecture
for applications based on Web Services: in section 2 we present
the framework of the layered architecture. The bottom layer
comprises the Web Service stack. In the middle resides the
choreography stack and on top of that the NL storybook serving
the role of the NL modeling layer. Section 3 outlines and
illustrates the rationale and advantages of extending service
semantics by natural language. It demonstrates how WS-Talk
can support enterprise search applications, for instance. Section
4 concludes the paper.

2. THREE-LAYER INTEGRATION
ARCHITECTURE
From the cooperation with first users of WS-Talk we have
learned that the universal access to services is almost useless if
there is no comprehensive view on both, the universally
available (and thus more generic) services a company needs and
on peculiarities emerging from their specific business objects
and processes. And in addition, this comprehensive view must
be sharable among business experts and IT experts. Making
services available for business purposes (with or without
resorting to web service technology) is extremely intertwined
with Business Process Management [2, 6]. The WS-Talk
approach is thus inclined to Business Process Management

where definition and management of business processes rests on
two shoulders: the ones of the domain expert and of the IT
expert.
This rationale has to be reflected by the architecture for business
integration that follows a three-layered approach (see figure 1):
the NL storybook at its top layer resides on the orchestration
layer which in turn resides on a Web Service stack. Our
approach is inclined to the three-layer stack developed by W3C
[10]. It considers the top level as the one that still needs to be
developed. Standards are available for the middle and bottom
layer. Web Service orchestration and Web Service
choreography are concepts addressing the middle layer. BPEL
(Business Process Execution Language) and WS-CDL (Web
Service Choreography Definition Language) are representatives
for such a standard language used for Web Service
orchestration. In WS-Talk we investigate to what extend natural
language can be used to develop the top layer of this
architecture and which impact this has on the orchestration
layer. Our objective is to make top layer’s semantics human-
understandable.
To achieve this goal we propose a number of sub-layers for the
top layer:

1) Grammatical analysis. Natural Language instructions are
analyzed in order to figure out which roles and actors are
represented in a single statement. For instance, the user’s travel
agent takes the user’s chosen flight, sends it to the reservation
system and awaits its response. The actor in this case is the
user’s travel agent which can conduct a number of actions
(functions) which are usually represented by actions like “send”
and “await”. This means actors are usually identified by subject
nouns and actions by verbs (predicates). The information
required by the actor as well as the one produced by the actor
are represented as object nouns.
2) Matching with generic process descriptions. We introduce
a generic thesaurus on processes that are addressed by the
actors of the storybook instructions. The corresponding
thesaurus entry provides the natural language instruction with a
first possible service representation of the instruction.
3) Service annotation. Services need to be annotated. This
means we link the service to a number of descriptive terms as
contained in the generic thesaurus for processes. The result of
annotation is the most relevant branch of the thesaurus for the
service under consideration.
4) Matching with environment specific parameter
descriptions. A thesaurus for environment specific information
captures the characteristics of the environment where the
universal (generic) processes are implemented. Universally
applicable processes require information about the environment
in which they are applied. For instance, the service for the
statistical analysis of time series needs to know about the
database where it can retrieve time series.
At the second layer (orchestration) we concentrate on the
observable behavior of Web Services in the context of message
exchange between them. BPEL or WS-CDL are be used to
describe the interdependencies among Web Service operations;
they do not define the process driving the message exchange nor
the internal behavior of each service. In WS-Talk we do not
apply those standards, but developed a simple choreography
layer which inclines to their principles. The choreography of
storybook statements is the implicit task of the WS-Talk Process

Engine. This includes also error handling and compensation
actions as well as the conditional execution of storybook
statements. Again, the main focus of the WS-Talk project is on
the use of natural language on the top layer of this architecture.
The Web Service Stack defines a set of Web Services as atomic
and generic entities. It does not define a choreography language

or any other language that helps to coordinate atomic
operations. It contains their protocols and message
characteristics. The messages themselves may be wrapped in
SOAP envelopes.

Figure 1: Three layers for a service-oriented architecture (left) including the sub-layers (right) necessary for the coexistence

with natural language.

3. BUSINESS PROCESS STORYBOOK
AND THE SERVICE EXECUTION
ENVIRONMENT
In this paper we concentrate on the storybook that reflects a
business process and organizes the workflow across services or
software components. In WS-Talk, the Service Execution
Environment (similar to a business process engine) finally
associates each instruction of the storybook with its
corresponding services, executes them, and handles
communication and data transfer between them. Thesaurus data
and annotations are provided to this engine by the WS-Talk
Service Designer.

3.1 Use case
The following example shows a storybook used for a helpdesk
application. It refers to a WS-Talk pilot application – an
enterprise search system for the Chilean insurance company
“Cruz del Sur”. The search system uses product descriptions as
database, retrieves appropriate documents and extracts text
passages from these documents in order to produce tailored
retrieval results. The domain expert uses a storybook to describe
the application logic – composition of and transactions over
software components (or web services) – for a specific retrieval

situation (retrieving information from product descriptions, for
instance). In this case the helpdesk manager, for instance,
describes how incoming user queries have to be handled: First,
the user is prompted by the system to enter his query. The query
is then processed, i.e. the type of the query is determined and
stopwords are eliminated (words with only minor information
value for the system’s “understanding” of the user’s query).
Text analysis as applied in retrieval depends on the type of the
query (see figure 2). And finally the system prints the result
which should be a small number of text passages.

Figure 2: Example of a storybook. With this storybook the

domain expert describes the required behavior of a text
retrieval system.

In this example the retrieval system includes the text’s structure
in its text analysis process. It can indicate the type of
information unit that matches the user’s query. This is important
when we want to restrict retrieval on specific parts of a text like
paragraphs, titles, figure captions etc. If the search statement
would contain “returns titles and subtitles” instead of “returns
paragraphs” the user obtains different retrieval results, for
instance.
It should also be pointed out here that an instruction may have a
condition under which it is executed. The search feature is
carried out if the preceding analysis of the type of query
indicates that the user stated a regular query. Otherwise it stops
the execution at this stage and returns a message that the
storybook could not be executed completely because of this
condition.
While analyzing a storybook the WS-Talk process engine treats
each natural language statement as a single instruction and
considers the whole set of instructions as necessary to complete
a particular process (handling a user request, in this case). The
process may have different facets (alternative instructions are
selected according to the results produced in course of the
execution of its instructions). However, for each facet the
ACID1 rationale known from database technology is applied.

3.2 Semantic Coordinates
The Execution Environment is equipped with text interpretation
capabilities. Storybooks are analyzed by the engine using a
controlled vocabulary reflecting generic processes and specific
characteristics addressing the respective business domain where
generic processes are applied. We use this vocabulary to
describe operations, business objects, collaborations, etc.
Before explaining in more detail how storybook instructions are
processed we outline briefly the role of the controlled
vocabulary for text analysis. We improve the accuracy of text
analysis by classification and taxonomy features resorting to this
vocabulary. In WS-Talk, classification is used to set up
taxonomies which provide a way to see information around
thematic categories. WS-Talk uses taxonomies and inverted
term lists to annotate an information unit, whatever it may be.
The same process can be used for annotating services by
resorting to a) the service description section within its WSDL
file, b) the documentation associated to a particular software
component or service (like the JavaDoc, for instance), c) the
programmer’s comments, or d) directly to the source code.
Semantic co-ordinates – i.e. controlled vocabularies derived
from taxonomies and structured according to concept
hierarchies – enable us to develop a context map for the

1 The ACID model is one of the oldest and most important

concepts of database theory. It sets forward four goals that
every database management system must strive to achieve:
atomicity, consistency, isolation and durability. No database
that fails to meet any of these four goals can be considered
reliable. The same holds in a similar way for service
orchestration. Even though it is important to note that in
service orchestration compensation takes over the importance
of roll-back [2]: Instead of rolling back a transaction,
orchestration tries to find services which can replace the
service which failed. A process spanning over a long period of
time is quite often impossible to be rolled back.

respective domain where the services are applied (the support
centre of an insurance company, for instance) or, more general,
for the application domain like “text retrieval” or “time series
retrieval”. These hierarchies can be considered as accepted
description standards, at least within the boundaries of a
company. Like other language standards they can also be
mapped into different natural languages in parallel [3] which
support multi-linguality. The process of annotation is thus
identifying the adequate semantic co-ordinates for a service, its
methods to be applied, and the parameters required and
produced by this service. And because of its hierarchical
structure the controlled vocabularies are represented in XML
format

Figure 3. Part of a concept hierarchy as used in the domain

“human-computer interaction” to describe a dialog
component as part of a generic service supporting different

dialog features.

3.3 Setting the scene
The task of the WS-Talk Execution Environment is setting the
scene according to the underlying storybook. The process has
been described already in chapter 2.
A particular service is available under its title (like “How to
handle a user request”). It can be selected and executed by the
user (or by other services) like any other application. The
process engine operates like a program interpreter. This process
starts with a simple analysis of the statement’s grammatical
structure. In general, the schema subject-predicate-object is
applied to identify what actor (user or service) uses a function
(represented by the predicate) to operate on a certain object.
While a predicate verb is always required, subject nouns and
object nouns are optional. Each statement may contain more
than just one predicate as well as one predicate-object pairs. The
application of a sentence may depend on a condition to be
fulfilled.
The grammatical structure of a statement can be represented by
(an asterisk indicates that the element may occur iteratively)

[condition] [[subject] [[predicate] [object]]*]

The condition itself can be represented by a simple relationship
of “[object] predicate [value]” where “predicate” simply has the
quality such as a relationship identifier “is_a”. Subjects refer to
system components (actors) that reside within a certain
application. The statement “The email system sends the results
to the user” indicates that the remote mailing system is in charge
with passing the retrieved information to the user. Or “The user

enters a request” addresses the subject “user” which in fact
refers to the user interface of the system. A statement thus
indicates a process represented by a predicate owned by a
subject and producing an object, a query for instance, as in our
example.

Figure 4. Monitor window showing the results of the
grammatical analysis of our example storybook

While processing each statement the Execution Environment
looks first for a branch in the concept hierarchy (see figure 3)
matching the statement’s subject and predicate (eventually
including the object). If a corresponding description exists, the
engine takes the terms of the generic process representation as
synonyms for the natural language expressions. Thus “user –
enters – query” is expanded by “user interface – dialog –
entering information”. The engine registers in this case that
“information” and “query” can be treated synonymously in this
particular context. The subject “user” is expanded by “user
interface” and “dialog”. Subjects and predicates represent thus
functional semantics, whereas data semantics are represented by
objects.
At this moment we assume that there is a software component or
service available that matches the same branch of the
(hierarchical) representation of the generic process. After
successfully matching the generic description (“entering
information”) with the NL storybook instruction and finally
with the annotations of the service the Execution Environment
can execute the first instruction.
Things look a bit different at the next instruction “determine
type of query”, because the engine needs an idea about how to
identify different types of a query. This is achieved by providing
the engine with information coming from the characteristics
from the environment in which it is operating. These
environmental variables are made available in the same way like
services themselves are made available (see figure 5).

Figure 5. Representation of query types in Spanish

Figure 6. Representation of the access points to different

data collections.

If the required environment parameter is available the engine
sends the parameters to the process performing the
characterization of the query. “Determine type of query” takes
the query as input and produces a further object which reflects
the nature of the query as stated by the user.2 The service itself
makes this information available on request, for subsequent
instructions such as search, for instance. The new object
produced is used further down to resolve the conditions “in case
of a yes/no-query” and “in case of a regular query”.
Let us come back to our scenario which demonstrates the
application as it results from the storybook presented. The user
describes the requested service using natural language. This
request, in turn, may also be considered as the description of a
particular service that needs to be developed. In WS-Talk,
controlled vocabularies are available in different languages in
parallel. Even if a particular storybook is written in English, for
instance, the retrieval feature as triggered by the storybook
mentioned above can handle queries and texts in Spanish.

2 Nature of a query means: is the answer to that particular query

simply yes or no or a more comprehensive reply like a certain
paragraph of a document.

Figure 7. The first instruction prompts the user to state a

query, in this case: what offers the car insurance called
“Cruz Auto”?

Prompting the user to state a query is the first statement of the
storybook as mentioned above. From all available product
descriptions the system retrieves the most appropriate
paragraphs from product descriptions concerning the car
insurance “Cruz Auto” (see storybook, figure 2). The annotation
process using concept hierarchies is also used to support
retrieval of the most suitable information unit. A more detailed
description of the corresponding text analysis features is given

by Sauvagnat et al. [8]. Printing itself is taken over by the last
instruction of the storybook.

3.4 The protocol
The WS-Talk Execution Environment has its own mechanism to
handle service orchestration. Every instruction is assigned to a
separate, autonomous process which is called agent (inclined to
software agent technology). A facilitator serves as the agent
manager which monitors the community of agents assigned to a
particular storybook. It performs the initial matching process (as
described above) which leads to the assignment of software
components or services to storybook instructions. In fact, the
agent manager transfers the corresponding piece of software to
an agent which will execute it in its shell. The agent itself
handles the communication between the agents and thus the
exchange of input and output parameters between them. Please
note that the protocol necessary to execute a service or software
components is inclined to that used in Web service technology:
each process accepts a number of incoming messages containing
the required or applicable input parameters and returns a number
of outgoing messages. An agent thus adapts this communication
behavior and has in addition a shell for executing the assigned
process.

Figure 8. Orchestration protocol as manifested by autonomous processes that execute our example storybook (not all

instructions are shown).

The service itself tells the agent about names and types of input
and output parameters. By matching these names with the entries
of the respective thesaurus the agent can map different names and
finds thus corresponding parameters as provided by the facilitator
or the other agents. The facilitator is thus also in charge with the
environmental parameters which provide external data coming
from the application context and required by the application.
In order to get the required input parameters for a service the
agent sends a broadcast to all agents and the facilitator asking
them if they have variables with certain names available. If an
agent has the respective parameter it replies to the agent’s request
with the corresponding Parameter object. If the processing agent
collects all its parameters from the broadcast it starts executing its
assigned service. If there are one or more variables missing it asks
the preceding agent (i.e. the agent in charge with the preceding
instruction) if it has the required variable. And if the preceding
one does not have the required information its predecessor is
asked and so forth. In this bilateral communication name
matching is treated a bit more relaxed. The advantage is that
parameter name matching can be almost reduced to type
matching. The final instruction in our storybook, for instance,
discovers the text to be printed only through this recursive
communication along the execution sequence of the agents. No
agent provides a variable that is called “result”. However, while
talking to the “search”-agent both find out, that “paragraphs” and
“result” are the things that obviously match here. The complete
protocol is shown in figure 9.
Each storybook represents a complete transaction that can be
performed only as a whole and must be rolled back completely if
an error occurs. In that case the engine can trigger in addition a
compensation process that consists at least in a message to the
users informing them why the transaction could not be completed
and if it will be completed in the future.
The facilitator of the Execution Environment creates an execution
stub for each storybook. It lists the sequence of operations to be
executed and can thus control the flow of execution and manage
error handling.

4. CONCLUSIONS
In the past, Service-oriented Architectures and Web Services had
seen a number of successful approaches to integrate application
logic and businesses. However, the practice clearly showed that
we are far from unleashing their full potential for businesses.
There is many a company not using these technologies because
they are simple not affordable. Thus, unleashing the full potential
means new business opportunities for companies producing and
selling new generations of distributed systems and for those using
these systems.
Positioned under this thematic umbrella, WS-Talk helps
technology end-users, technology designers, and technology
providers to perceive and to understand pathways and avenues
that lead from current practices to new application areas, to new
functionalities.
In WS-Talk we opt for the co-existence of natural language and
Web Service technology. Semantic Web representations of
objects as well as processes are extended by natural language

descriptions. They let users directly interact with web services,
business logic representations, or other such objects that are
rendered by or operating on Semantic Web standards. The best
way for humans to develop their applications is to use their own
language. In the vision of WS-Talk, business process experts
write storybooks in their own language which are transformed
automatically into semantics that can be handled by applications.

5. ACKNOWLEDGEMENT
Research outlined in this paper is part of the project WS-Talk that
is supported by the European Commission under the Sixth
Framework Programme (COOP-006026). However views
expressed herein are ours and do not necessarily correspond to the
WS-Talk consortium.

6. REFERENCES
[1] Alonso, G., Casati, F., Kuno, H., Machiraju, V. Web

Services, Springer (NY), USA 2004
[2] Casati, F., Shan, E., Dayal, U. and Shan, M.-C. Service-

oriented computing: Business-oriented management of Web
services, Communications of the ACM 46 (10), 2004, pp. 55-
60.

[3] Englmeier, K. and Mothe, J. Natural language meets
semantic web. Retrieved July 16, 2003 from ktweb.org
website: http://www.ktweb.org/doc/Englmeier-NLP-SW.pdf.

[4] Huhns, M.N. and Singh, M.P. Service-Oriented Computing:
Key Concepts and Principles, IEEE Internet Computing 9
(1), 2005, pp. 75-81.

[5] Mahmoud, Q.H., Service-Oriented Architecture (SOA) and
Web Services: The Road to Enterprise Application
Integration (EAI). Retrieved November 16, 2005, from Sun
Microsystems website: http:// java.sun.com/developer/
technical/Articles/WebServices/soa/

[6] Milanovic, N. and Malek, M. Current Solutions for Web
Service Composition, IEEE Internet Computing 8 (6), 2004,
pp. 51-59.

[7] Peltz, C. Web Services Orchestration and Choreography,
IEEE Computer, (10) 36, 2003, p. 46.

[8] Sauvagnat, K., Hubert, G., Boughanem, M., and Mothe, J.
IRIT at INEX 2003 INitiative for the Evaluation of XML
Retrieval (INEX 2003), pp 142-148, 2003.

[9] Shi, X. Sharing Service Semantics using SOAP-Based and
REST Web Services, IT Professional 8 (2), 2006, pp. 18-24.

[10] W3C, Web Service Choreography Interface 1.0. August
2002, Retrieved November 4, 2005, from W3 Consortium
website: http://www.w3c.org/ TR/wsci

[11] WebServices.Org, From Web Services to SOA and
Everything in Between: The Journey Begin. Retrieved June
14, 2005, from WebServices.Org website: http://www.
webservices.org/index.php/ws/content/view/full/63404

