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ABSTRACT

Internet search companies sell advertisement slots based on
users’ search queries via an auction. While there has been
previous work on the auction process and its game-theoretic
aspects, most of it focuses on the Internet company. In this
work, we focus on the advertisers, who must solve a complex
optimization problem to decide how to place bids on key-
words to maximize their return (the number of user clicks on
their ads) for a given budget. We model the entire process
and study this budget optimization problem. While most
variants are NP-hard, we show, perhaps surprisingly, that
simply randomizing between two uniform strategies that bid
equally on all the keywords works well. More precisely, this
strategy gets at least a 1 — 1/e fraction of the maximum
clicks possible. As our preliminary experiments show, such
uniform strategies are likely to be practical. We also present
inapproximability results, and optimal algorithms for vari-
ants of the budget optimization problem.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences —Economics

General Terms
Algorithms, Economics, Theory.
Keywords

Sponsored Search, Optimization, Auctions, Bidding.

1. INTRODUCTION

Online search is now ubiquitous and Internet search com-
panies such as Google, Yahoo! and MSN let companies and
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individuals advertise based on search queries posed by users.
Conventional media outlets, such as TV stations or news-
papers, price their ad slots individually, and the advertisers
buy the ones they can afford. In contrast, Internet search
companies find it difficult to set a price explicitly for the
advertisements they place in response to user queries. This
difficulty arises because supply (and demand) varies widely
and unpredictably across the user queries, and they must
price slots for billions of such queries in real time. Thus,
they rely on the market to determine suitable prices by us-
ing auctions amongst the advertisers. It is a challenging
problem to set up the auction in order to effect a stable
market in which all the parties (the advertisers, users as
well as the Internet search company) are adequately satis-
fied. Recently there has been systematic study of the issues
involved in the game theory of the auctions [5, 1, 2], revenue
maximization [10], etc.

The perspective in this paper is not of the Internet search
company that displays the advertisements, but rather of the
advertisers. The challenge from an advertiser’s point of view
is to understand and interact with the auction mechanism.
The advertiser determines a set of keywords of their interest
and then must create ads, set the bids for each keyword,
and provide a total (often daily) budget. When a user poses
a search query, the Internet search company determines the
advertisers whose keywords match the query and who still
have budget left over, runs an auction amongst them, and
presents the set of ads corresponding to the advertisers who
“win” the auction. The advertiser whose ad appears pays
the Internet search company if the user clicks on the ad.

The focus in this paper is on how the advertisers bid.
For the particular choice of keywords of their interest!, an
advertiser wants to optimize the overall effect of the ad-
vertising campaign. While the effect of an ad campaign in
any medium is a complicated phenomenon to quantify, one
commonly accepted (and easily quantified) notion in search-
based advertising on the Internet is to maximize the number
of clicks. The Internet search companies are supportive to-

The choice of keywords is related to the domain-knowledge
of the advertiser, user behavior and strategic considerations.
Internet search companies provide the advertisers with sum-
maries of the query traffic which is useful for them to opti-
mize their keyword choices interactively. We do not directly
address the choice of keywords in this paper, which is ad-
dressed elsewhere [13].



wards advertisers and provide statistics about the history of
click volumes and prediction about the future performance
of various keywords. Still, this is a complex problem for the
following reasons (among others):

e Individual keywords have significantly different char-
acteristics from each other; e.g., while “fishing” is a
broad keyword that matches many user queries and
has many competing advertisers, “humane fishing bait”
is a niche keyword that matches only a few queries, but
might have less competition.

e There are complex interactions between keywords be-
cause a user query may match two or more keywords,
since the advertiser is trying to cover all the possible
keywords in some domain. In effect the advertiser ends
up competing with herself.

As a result, the advertisers face a challenging optimization
problem. The focus of this paper is to solve this optimization
problem.

1.1 The Budget Optimization Problem

We present a short discussion and formulation of the op-
timization problem faced by advertisers; a more detailed
description is in Section 2.

A given advertiser sees the state of the auctions for search-
based advertising as follows. There is a set K of keywords
of interest; in practice, even small advertisers typically have
a large set K. There is a set @@ of queries posed by the
users. For each query q € @, there are functions giving the
clicksq(b) and costq(b) that result from bidding a particular
amount b in the auction for that query, which we model more
formally in the next section. There is a bipartite graph G
on the two vertex sets representing K and Q). For any query
q € @, the neighbors of ¢ in K are the keywords that are
said to “match” the query g¢.2

The budget optimization problem is as follows. Given
graph G together with the functions clicksq(-) and costq(-)
on the queries, as well as a budget U, determine the bids
bi. for each keyword k € K such that 3 clicksg(bg) is max-
imized subject to > costq(bg) < U, where the “effective
bid” b, on a query is some function of the keyword bids in
the neighborhood of gq.

While we can cast this problem as a traditional optimiza-
tion problem, there are different challenges in practice de-
pending on the advertiser’s access to the query and graph
information, and indeed the reliability of this information
(e.g., it could be based on unstable historical data). Thus
it is important to find solutions to this problem that not
only get many clicks, but are also simple, robust and less re-
liant on the information. In this paper we define the notion
of a “uniform” strategy which is essentially a strategy that
bids uniformly on all keywords. Since this type of strategy
obviates the need to know anything about the particulars
of the graph, and effectively aggregates the click and cost
functions on the queries, it is quite robust, and thus desir-
able in practice. What is surprising is that uniform strategy
actually performs well, which we will prove.

2The particulars of the matching rule are determined by
the Internet search company; here we treat the function as
arbitrary.
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1.2 Our Main Results and Technical Overview

We present positive and negative results for the budget
optimization problem. In particular, we show:

e Nearly all formulations of the problem are NP-Hard. In
cases slightly more general than the formulation above, where
the clicks have weights, the problem is inapproximable bet-
ter than a factor of 1 — é, unless P=NP.

e We give a (1—1/e)-approximation algorithm for the budget
optimization problem. The strategy found by the algorithm
is a two-bid uniform strategy, which means that it random-
izes between bidding some value b; on all keywords, and bid-
ding some other value b2 on all keywords until the budget is
exhausted®. We show that this approximation ratio is tight
for uniform strategies. We also give a (1/2)-approximation
algorithm that offers a single-bid uniform strategy, only us-
ing one value b1. (This is tight for single-bid uniform strate-
gies.) These strategies can be computed in time nearly linear
in |Q| + | K], the input size.

Uniform strategies may appear to be naive in first con-
sideration because the keywords vary significantly in their
click and cost functions, and there may be complex interac-
tion between them when multiple keywords are relevant to
a query. After all, the optimum can configure arbitrary bids
on each of the keywords. Even for the simple case when the
graph is a matching, the optimal algorithm involves plac-
ing different bids on different keywords via a knapsack-like
packing (Section 2). So, it might be surprising that a simple
two-bid uniform strategy is 63% or more effective compared
to the optimum. In fact, our proof is stronger, showing that
this strategy is 63% effective against a strictly more power-
ful adversary who can bid independently on the individual
queries, i.e., not be constrained by the interaction imposed
by the graph G.

Our proof of the 1 — 1/e approximation ratio relies on an
adversarial analysis. We define a factor-revealing LP (Sec-
tion 4) where primal solutions correspond to possible in-
stances, and dual solutions correspond to distributions over
bidding strategies. By deriving the optimal solution to this
LP, we obtain both the proof of the approximation ratio,
and a tight worst-case instance.

We have conducted simulations using real auction data
from Google. The results of these simulations, which are
highlighted at the end of Section 4, suggest that uniform
bidding strategies could be useful in practice. However, im-
portant questions remain about (among other things) alter-
nate bidding goals, on-line or stochastic bidding models [11],
and game-theoretic concerns [3], which we briefly discuss in
Section 8.

2. MODELING A KEYWORD AUCTION

We describe an auction from an advertiser’s point of view.
An advertiser bids on a keyword, which we can think of as
a word or set of words. Users of the search engine submit
queries. If the query “matches” a keyword that has been
bid on by an advertiser, then the advertiser is entered into
an auction for the available ad slots on the results page.
What constitutes a “match” varies depending on the search
engine.

3This type of strategy can also be interpreted as bidding one
value (on all keywords) for part of the day, and a different
value for the rest of the day.



An advertiser makes a single bid for a keyword that re-
mains in effect for a period of time, say one day. The key-
word could match many different user queries throughout
the day. Each user query might have a different set of ad-
vertisers competing for clicks. The advertiser could also bid
different amounts on multiple keywords, each matching a
(possibly overlapping) set of user queries.

The ultimate goal of an advertiser is to maximize traffic
to their website, given a certain advertising budget. We
now formalize a model of keyword bidding and define an
optimization problem that captures this goal.

2.1 Landscapes

We begin by considering the case of a single keyword that
matches a single user query. In this section we define the
notion of a “query landscape” that describes the relationship
between the advertiser’s bid and what will happen on this
query as a result of this bid[9]. This definition will be central
to the discussion as we continue to more general cases.

2.1.1 Positions, bids and click-through rate

The search results page for a query contains p possible
positions in which our ad can appear. We denote the highest
(most favorable) position by 1 and lowest by p.

Associated with each position i is a value «a[i] that denotes
the click-through rate (ctr) of the ad in position 7. The ctr is
a measure of how likely it is that our ad will receive a click
if placed in position i. The ctr can be measured empirically
using past history. We assume throughout this work that
that «fi] < afj] if 7 < 4, that is, higher positions receive at
least as many clicks as lower positions.

In order to place an ad on this page, we must enter the
auction that is carried out among all advertisers that have
submitted a bid on a keyword that matches the user’s query.
We will refer to such an auction as a query auction, to em-
phasize that there is an auction for each query rather than
for each keyword. We assume that the auction is a gen-
eralized second price (GSP) auction [5, 7]: the advertisers
are ranked in decreasing order of bid, and each advertiser is
assigned a price equal to the amount bid by the advertiser
below them in the ranking.® In sponsored search auctions,
this advertiser pays only if the user actually clicks on the ad.
Let (b[1],...,b[p]) denote the bids of the top p advertisers in
this query auction. For notational convenience, we assume
that b[0] = oo and b[p] = afp] = 0. Since the auction is
a generalized second price auction, higher bids win higher
positions; i.e. b[i] > b[i + 1]. Suppose that we bid b on some
keyword that matches the user’s query, then our position is
defined by the largest b[i] that is at most b, that is,

pos(b) = arg gnax(b[i] :b[i] <b). (1)

Since we only pay if the user clicks (and that happens with
probability «[i]), our expected cost for winning position %

4Google, Yahoo! and MSN all use some variant of the GSP
auction. In the Google auction, the advertisers’ bids are
multiplied by a quality score before they are ranked; our re-
sults carry over to this case as well, which we omit from this
paper for clarity. Also, other auctions besides GSP have
been considered; e.g., the Vickrey Clark Groves (VCG) auc-
tion [14, 4, 7]. Each auction mechanism will result in a
different sort of optimization problem. In the conclusion we
point out that for the VCG auction, the bidding optimiza-
tion problem becomes quite easy.
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would be cost[i] = afi] - b[i], where i = pos(b). We use
costq(b) and clicksq(b) to denote the expected cost and clicks
that result from having a bid b that qualifies for a query auc-
tion ¢, and thus

costq(b) = afi] - b[i]] where ¢ = pos(b),

(2)
®3)

The following observations about cost and clicks follow im-
mediately from the definitions and equations (1), (2) and (3).
We use R4 to denote the nonnegative reals.

clicksq(b) = afi] where ¢ = pos(b).

OBSERVATION 1. Forbe R,

1. (costq(b), clicksq (b)) can only take on one of a finite
set of values Vg = {(cost[1], a[1]), ..., (cost[p], a[p])}.

2. Both costq(b) and clicksq(b) are non-decreasing func-
tions of b. Also, cost-per-click (cpc) costq(b)/clicksq(b)
is mon-decreasing in b.

3. costq(b)/clicksq(b) < b.

For bids (b[1],...,b[p]) that correspond to the bids of
other advertisers, we have: costq(b[i])/clicksq(b[i]) = b[d],
i € [p]. When the context is clear, we drop the subscript g.

2.1.2 Query Landscapes

We can summarize the data contained in the functions
cost(b) and clicks(b) as a collection of points in a plot of cost
vs. clicks, which we refer to as a landscape. For example, for
a query with four slots, a landscape might look like Table 1.

bid range | cost per click | cost | clicks

[$2.60,00) $2.60 | $1.30 5
$2.00,$2.60) $2.00 | $0.90 | .45
[$1.60,$2.00) $1.60 | $0.40 | .25
$0.50,$1.60) $0.50 | $0.10 2

[$0,$0.50) $0 $0 0

Table 1: A landscape for a query

It is convenient to represent this data graphically as in
Figure 1 (ignore the dashed line for now). Here we graph
clicks as a function of cost. Observe that in this graph, the
cpe (cost(b)/clicks(b)) of each point is the reciprocal of the
slope of the line from the origin to the point. Since cost(b),
clicks(b) and cost(b)/clicks(b) are non-decreasing, the slope
of the line from the origin to successive points on the plot
decreases. This condition is slightly weaker than concavity.

Suppose we would like to solve the budget optimization
problem for a single query landscape.® As we increase our
bid from zero, our cost increases and our expected number
of clicks increases, and so we simply submit the highest bid
such that we remain within our budget.

One problem we see right away is that since there are
only a finite set of points in this landscape, we may not be
able to target arbitrary budgets efficiently. Suppose in the
example from Table 1 and Figure 1 that we had a budget

50Of course it is a bit unrealistic to imagine that an advertiser
would have to worry about a budget if only one user query
was being considered; however one could imagine multiple
instances of the same query and the problem scales.
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Figure 1: A bid landscape.

of $1.00. Bidding between $2.00 and $2.60 uses only $0.90,
and so we are under-spending. Bidding more than $2.60 is
not an option, since we would then incur a cost of $1.30 and
overspend our budget.

2.1.3 Randomized strategies

To rectify this problem and better utilize our available
budget, we allow randomized bidding strategies. Let B be
a distribution on bids b € Ri. Now we define cost(B) =
Ey~g[cost(b)] and clicks(B) = En~p[clicks(b)]. Graphically,
the possible values of (cost(B), clicks(B3)) lie in the convex
hull of the landscape points. This is represented in Figure 1
by the dashed line.

To find a bid distribution B that maximizes clicks subject
to a budget, we simply draw a vertical line on the plot where
the cost is equal to the budget, and find the highest point
on this line in the convex hull. This point will always be the
convex combination of at most two original landscape points
which themselves lie on the convex hull. Thus, given the
point on the convex hull, it is easy to compute a distribution
on two bids which led to this point. Summarizing,

LEMMA 1. If an advertiser is bidding on one keyword,
subject to a budget U, then the optimal strategy is to pick a
convex combination of (at most) two bids which are at the
endpoints of the line on the convex hull at the highest point
for cost U.

There is one subtlety in this formulation. Given any bid-
ding strategy, randomized or otherwise, the resulting cost
is itself a random variable representing the expected cost.
Thus if our budget constraint is a hard budget, we have to
deal with the difficulties that arise if our strategy would be
over budget. Therefore, we think of our budget constraint as
soft, that is, we only require that our expected cost be less
than the budget. In practice, the budget is often an average
daily budget, and thus we don’t worry if we exceed it one
day, as long as we are meeting the budget in expectation.
Further, either the advertiser or the search engine (possibly
both), monitor the cost incurred over the day; hence, the
advertiser’s bid can be changed to zero for part of the day,
so that the budget is not overspent.® Thus in the remain-

See https://adwords.google.com/support/bin/answer.
py?answer=22183, for example.

der of this paper, we will formulate a budget constraint that
only needs to be respected in expectation.

2.1.4 Multiple Queries: a Knapsack Problem

As a warm-up, we will consider next the case when we
have a set of queries, each which its own landscape. We want
to bid on each query independently subject to our budget:
the resulting optimization problem is a small generalization
of the fractional knapsack problem, and was solved in [9].

The first step of the algorithm is to take the convex hull
of each landscape, as in Figure 1, and remove any land-
scape points not on the convex hull. Each piecewise linear
section of the curve represents the incremental number of
clicks and cost incurred by moving one’s bid from one par-
ticular value to another. We regard these “pieces” as items
in an instance of fractional knapsack with value equal to
the incremental number of clicks and size equal to the in-
cremental cost. More precisely, for each piece connecting
two consecutive bids b and b” on the convex hull, we cre-
ate a knapsack item with value [clicks(b”) — clicks(?’)] and
size [cost(b”) — cost(b')]. We then emulate the greedy al-
gorithm for knapsack, sorting by value/size (cost-per-click),
and choosing greedily until the budget is exhausted.

In this reduction to knapsack we have ignored the fact
that some of the pieces come from the same landscape and
cannot be treated independently. However, since each curve
is concave, the pieces that come from a particular query
curve are in increasing order of cost-per-click; thus from
each landscape we have chosen for our “knapsack” a set of
pieces that form a prefix of the curve.

2.2 Keyword Interaction

In reality, search advertisers can bid on a large set of key-
words, each of them qualifying for a different (possibly over-
lapping) set of queries, but most search engines do not al-
low an advertiser to appear twice in the same search results
page.” Thus, if an advertiser has a bid on two different
keywords that match the same query, this conflict must be
resolved somehow. For example, if an advertiser has a bid
out on the keywords “shoes” and “high-heel,” then if a user
issues the query “high-heel shoes,” it will match on two dif-
ferent keywords. The search engine specifies, in advance, a
rule for resolution based on the query the keyword and the
bid. A natural rule is to take the keyword with the highest
bid, which we adopt here, but our results apply to other
resolution rules.

We model the keyword interaction problem using an undi-
rected bipartite graph G = (K U Q, E) where K is a set of
keywords and @ is a set of queries. Each ¢ € @ has an asso-
ciated landscape, as defined by costq(b) and clicksq(b). An
edge (k,q) € E means that keyword k matches query gq.

The advertiser can control their individual keyword bid
vector a € R‘f‘ specifying a bid aj for each keyword k € K.
(For now, we do not consider randomized bids, but we will
introduce that shortly.) Given a particular bid vector a
on the keywords, we use the resolution rule of taking the
maximum to define the “effective bid” on query q as

by(a) = .
qa(a) popax ay

By submitting a bid vector a, the advertiser receives some

"See https://adwords.google.com/support/bin/answer.
py?answer=14179, for example.



number of clicks and pays some cost on each keyword. We
use the term spend to denote the total cost; similarly, we use
the term traffic to denote the total number of clicks:

spend(a) = Z costq(bg(a)); traffic(a)= Z clicksq(bg(a))
q€Q q€Q

We also allow randomized strategies, where an advertiser

gives a distribution A over bid vectors a € ]R‘f‘. The re-
sulting spend and traffic are given by

spend(A) = Ea~a[spend(a)]; traffic(A) = Fa~altraffic(a)]

We can now state the problem in its full generality:

BUDGET OPTIMIZATION

Input: a budget U, a keyword-query graph G = (K U
Q, E), and landscapes (costq(+), clicksq(+)) for each g € Q.
Find: a distribution A over bid vectors a € ]R‘f‘ such
that spend(A) < U and traffic(A) is maximized.

We conclude this section with a small example to illustrate
some feature of the budget optimization problem. Suppose
you have two keywords K = {u,v} and two queries @ =
{z,y} and edges E = {(u,x), (u,y), (v,y)}. Suppose query
z has one position with ctr a®[1] = 1.0, and there is one
bid b = $1. Query y has two positions with ctrs aY[1] =
a?[2] = 1.0, and bids by = $¢ and by = $1 To get any clicks
from x, an advertiser must bid at least $1 on u. However,
because of the structure of the graph, if the advertiser sets
by, to $1, then his effective bid is $1 on both z and y. Thus he
must trade-off between getting the clicks from z and getting
the bargain of a click for $e that would be possible otherwise.

3. UNIFORM BIDDING STRATEGIES

As we will show in Section 5, solving the BUDGET OPTI-
MIZATION problem in its full generality is difficult. In ad-
dition, it may be difficult to reason about strategies that
involve arbitrary distributions over arbitrary bid vectors.
Advertisers generally prefer strategies that are easy to un-
derstand, evaluate and use within their larger goals. With
this motivation, we look at restricted classes of strategies
that we can easily compute, explain and analyze.

We define a uniform bidding strategy to be a distribution
A over bid vectors a € R‘f‘ where each bid vector in the
distribution is of the form (b,b,...,b) for some real-valued
bid b. In other words, each vector in the distribution bids
the same value on every keyword.

Uniform strategies have several advantages. First, they
do not depend on the edges of the interaction graph, since
all effective bids on queries are the same. Thus, they are
effective in the face of limited or noisy information about
the keyword interaction graph. Second, uniform strategies
are also independent of the priority rule being used. Third,
any algorithm that gives an approximation guarantee will
then be valid for any interaction graph over those keywords
and queries.

We now show that we can compute the best uniform strat-
egy efficiently.

Suppose we have a set of queries ), where the landscape
V, for each query ¢ is defined by the set of points V; =
{(costq[1], ag[l]), - - -, (costq[p], aq[p])}. We define the set of
interesting bids Iq = {costq[1]/aq[l], ..., coste[p]/aq[p]}, let

T = Uqeqly, and let N = |Z|]. We can index the points
in Z as b1,...,by in increasing order. The ith point in
our aggregate landscape V is found by summing, over the
queries, the cost and clicks associated with bid b;, that is,
V= UlNZl(ZqEQ costq(bi), D, clicksq(bi)).

For any possible bid b, if we use the aggregate landscape
just as we would a regular landscape, we exactly represent
the cost and clicks associated with making that bid simul-
taneously on all queries associated with the aggregate land-
scape. Therefore, all the definitions and results of Section 2
about landscapes can be extended to aggregate landscapes,
and we can apply Lemma 1 to compute the best uniform
strategy (using the convex hull of the points in this aggre-
gate landscape). The running time is dominated by the time
to compute the convex hull, which is O(N log N)[12].

The resulting strategy is the convex combination of two
points on the aggregate landscape. Define a two-bid strategy
to be a uniform strategy which puts non-zero weight on at
most two bid vectors. We have shown

LEMMA 2. Given an instance of BUDGET OPTIMIZATION
in which there are a total of N points in all the landscapes,
we can find the best uniform strategy in O(N log N) time.
Furthermore, this strategy will always be a two-bid strategy.

Putting these ideas together, we get an O(N log N)-time
algorithm for BUDGET OPTIMIZATION, where N is the total
number of landscape points (we later show that this is a
(1 — 1)-approximation algorithm):

1. Aggregate all the points from the individual query land-
scapes into a single aggregate landscape.

2. Find the convex hull of the points in the aggregate
landscape.

3. Compute the point on the convex hull for the given
budget, which is the convex combination of two points «
and (.

4. Output the strategy which is the appropriate convex
combination of the uniform bid vectors corresponding to
a and .

We will also consider a special case of two-bid strategies.
A single-bid strategy is a uniform strategy which puts non-
zero weight on at most one non-zero vector, i.e. advertiser
randomizes between bidding a certain amount b* on all key-
words, and not bidding at all. A single-bid strategy is even
easier to implement in practice than a two-bid strategy. For
example, the search engines often allow advertisers to set a
maximum daily budget. In this case, the advertiser would
simply bid b* until her budget runs out, and the ad serving
system would remove her from all subsequent auctions until
the end of the day. One could also use an “ad scheduling”
tool offered by some search companies® to implement this
strategy. The best single-bid strategy can also be computed
easily from the aggregate landscape. The optimal strategy
for a budget U will either be the point z s.t. cost(z) is as
large as possible without exceeding U, or a convex combi-
nation of zero and the point y, where cost(y) is as small as
possible while larger than U.

8See https://adwords.google.com/support/bin/answer.
py?answer=33227, for example.
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Figure 2: Four queries and their click-price curve.

4. APPROXIMATION ALGORITHMS

In the previous section we proposed using uniform strate-
gies and gave an efficient algorithm to compute the best
such strategy. In section we prove that there is always a
good uniform strategy:

THEOREM 3. There always exists a uniform bidding strat-
egy that is (1 — 1)-optimal. Furthermore, for any e > 0,
there exists an instance for which all uniform strategies are
at most (1 — L + ¢)-optimal.

We introduce the notion of a click-price curve, which is
central to our analysis. This definition makes it simple to
show that there is always a single-bid strategy that is a 3-
approximation (and this is tight); we then build on this to
prove Theorem 3.

4.1 Click-price curves

Consider a set of queries @@, and for each query ¢ € Q,
let (clicksq(-), costq(+)) be the corresponding bid landscape.
Consider an adversarial bidder 2 with the power to bid in-
dependently on each query. Note that this bidder is more
powerful than an optimal bidder, which has to bid on the
keywords. Suppose this strategy bids b; for each query q.
Thus, Q achieves traffic Cq = ), clicks(b;), and incurs total
spend Uq = >, cost(b).

Without loss of generality we can assume that 2 bids so
that for each query ¢, the cost per click is equal to by, i.e.
costq(by)/clicksq(by) = b;. We may assume this because for
some query g, if costq(b;)/clicks,(b;) < b;, we can always
lower b; and without changing the cost and clicks.

To aid our discussion, we introduce the notion of a click-
price curve (an example of which is shown in Figure 2),
which describes the cpc distribution obtained by Q. For-
mally the curve is a non-decreasing function h : [0, Cq] —
Ry defined as h(r) = min{c | Zq:b;<c clicks,(by) > 7}. An-
other way to construct this curve is to sort the queries in
increasing order by b; = costy(b;)/clicks, (b7), then make a
step function where the gth step has height b7 and width
clicksq(by) (see Figure 2). Note that the area of each step is
costy(by). The following claim follows immediately:

Cram 1. Ug = [ h(r)dr.

Suppose we wanted to buy some fraction r'/Cq of the
traffic that  is getting. The click-price curve says that if
we bid h(r’) on every keyword (and therefore every query),
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we get at least ' traffic, since this bid would ensure that for
all g such that b; < h(r") we win as many clicks as Q. Note
that by bidding h(7’) on every keyword, we may actually get
even more than ' traffic, since for queries ¢ where b}, is much
less than h(r’) we may win more clicks than Q. However,
all of these extra clicks still cost at most h(r’) per click.

Thus we see that for any 7’ € [0, Cq], if we bid h(r’) on
every keyword, we receive at least 7’ traffic at a total spend
of at most h(r’) per click. Note that by randomizing between
bidding zero and bidding h(r'), we can receive ezactly r’
traffic at a total spend of at most r’ - h(r’). We summarize
this discussion in the following lemma:

LEMMA 4. For any r € [0,Cq), there exists a single-bid
strategy that randomizes between bidding h(r) and bidding
zero, and this strategy receives exactly r traffic with total
spend at most r - h(r).

Lemma 4 describes a landscape as a continuous function.
For our lower bounds, we will need to show that given any
continuous function, there exists a discrete landscape that
approximates it arbitrarily well.

LEMMA 5. For any C,U > 0 and non-decreasing func-
tion f : [0,C] — Ry such that foc f(rydr = U, and any
small € > 0, there exists an instance of BUDGET OPTIMIZA-
TION with budget U + €', where the optimal solution achieves
C clicks at cost U + €', and all uniform bidding strategies
are convex combinations of single-bid strategies that achieve
ezactly v clicks at cost exactly vf(r) by bidding f(r) on all
keywords.

ProoFr. Construct an instance as follows. Let € > 0 be a
small number that we will later define in terms of €. Define
ro = 0,71,72,...,7m = C such that ri_1 < r; < ri_1 + ¢,
f(rie1) < f(ri) < f(ri1)+€ and m < (C+ F(C))/e. (This
is possible by choosing r;’s spaced by min(e, f(r;)— f(ri—1)))
Now make a query ¢; for all ¢ € [m] with bidders bidding
h(ri), h(rit1),...,h(rm), and ctrs o[l] = a[2] = --- = a[m—
i+1] = r;—7r;—1. The graph is a matching with one keyword
per query, and so we can imagine the optimal solution as
bidding on queries. The optimal solution will always bid
exactly h(r;) on query ¢;, and if it did so on all queries,
it would spend U’ := Y_7"  (ri — ri—1)h(r;). Define € small
enough so that U’ = U + ¢, which is always possible since

C m
U< /0 f(r)dr + Z(m —ri1)(h(ri) — h(ri—1))

< U+Em<U+eC+ f(O)).

Note that the only possible bids (i.e., all others have the
same results as one of these) are f(rg),..., f(rm), and bid-
ding uniformly with f(r;) results in Z;=1 T — Till = T
clicks at cost h(r;)r;. O

4.2 A }-approximation algorithm

Using Lemma 4 we can now show that there is a uniform
single-bid strategy that is %—optimal. In addition to being an
interesting result in its own right, it also serves as a warm-up
for our main result.

THEOREM 6. There always exists a uniform single-bid strat-
eqy that is %—optimal. Furthermore, for any ¢ > 0 there
exists an instance for which all single-bid strategies are at
most (3 + €)-optimal.



PROOF. Applying Lemma 4 with »r = Cq/2, we see that
there is a strategy that achieves traffic Co/2 with spend
Cqa/2-h(Cq/2). Now, using the fact that h is a non-decreasing
function combined with Claim 1, we have

Ca Ca
(Ca/2)h(Ca/2) < / h(r)dr < / h(r)dr = Uq, (4)
Cq /2 0
which shows that we spend at most Un. We conclude that
there is a %—optimal single-bid strategy randomizing between
bidding Cq/2 and zero.

For the second part of the theorem, we construct a tight
example using two queries @ = {z,y}, two keywords K =
{u, v}, and edges F = {(u,x), (v,y)}.

Fix some a where 0 < a < 1, and fix some very small
e > 0. Query z has two positions, with bids of b7 = 1/«
and b5 = ¢, and with identical click-through rates o”[1] =
a”[2] = a. Query y has one position, with a bid of Y =1/«
and a click-through rate of a¥[1] = a. The budget is U =
1+ ea. The optimal solution is to bid € on u (and therefore
z) and bid 1/« on v (and therefore y), both with probability
1. This achieves a total of 2« clicks and spends the budget
exactly. The only useful bids are 0, € and 1/, since for
both queries all other bids are identical in terms of cost and
clicks to one of those three. Any single-bid solution that uses
€ as its non-zero bid gets at most o clicks. Bidding 1/c on
both keywords results in 2« clicks and total cost 2. Thus,
since the budget is U = 1 + eax < 2, a single-bid solution
using 1/« can put weight at most (1+ea)/2 on the 1/« bid.
This results in at most (1 + ea) clicks. This can be made
arbitrarily close to a by lowering e. [J

4.3 A (1-1)-approximation algorithm

The key to the proof of Theorem 3 is to show that there
is a distribution over single-bid strategies from Lemma 4
that obtains at least (1 — 1)Coq clicks. In order to figure
out the best distribution, we wrote a linear program that
models the behavior of a player who is trying to maximize
clicks and an adversary who is trying to create an input
that is hard for the player. Then using linear programming
duality, we were able to derive both an optimal strategy
and a tight instance. After solving the LP numerically, we
were also able to see that there is a uniform strategy for
the player that always obtains (1 — %)CQ clicks; and then
from the solution were easily able to “guess” the optimal
distribution. This methodology is similar to that used in
work on factor-revealing LPs [8, 10].

4.3.1 An LP for the worst-case click-price curve.

Consider the adversary’s problem of finding a click-price
curve for which no uniform bidding strategy can achieve
aCgq clicks. Recall that by Lemma 1 we can assume that a
uniform strategy randomizes between two bids u and v. We
also assume that the uniform strategy uses a convex combi-
nation of strategies from Lemma 4, which we can assume by
Lemma 5. Thus, to achieve aCq clicks, a uniform strategy
must randomize between bids h(u) and h(v) where u < aCgq
and v > aCq. Call the set of such strategies S. Given a
(u,v) € S, the necessary probabilities in order to achieve
aCq clicks are easily determined, and we denote them by
p1(u,v) and p2(u,v) respectively. Note further that the ad-
vertiser is trying to figure out which of these strategies to
use, and ultimately wants to compute a distribution over
uniform strategies. In the LP, she is actually going to com-
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pute a distribution over pairs of strategies in S, which we
will then interpret as a distribution over strategies.

Using this set of uniform strategies as constraints, we can
characterize a set of worst-case click-price curves by the con-
straints

Ca
/ h(r)dr <U
0

V(u,v) €S p1(u,v)uh(u) + p2(u,v)vh(v) > U

A curve h that satisfies these constraints has the property
that all uniform strategies that obtain aCq clicks spend
more than U. Discretizing this set of inequalities, and push-
ing the first constraint into the objective function, we get
the following LP over variables h, representing the curve:

min Z €-h, s.t.
re{0,¢,2¢,...,Cq}
V(u,v) € S, p1(u, v)uhy + p2(u, v)vh, > U

In this LP, S is defined in the discrete domain as S =
{(u,v) €{0,¢,2¢,...,Ca}? : 0<u < aCq < v < Col.

Solving this LP for a particular «, if we get an objective
less than U, we know (up to some discretization) that an
instance of BUDGET OPTIMIZATION exists that cannot be
approximated better than «. (The instance is constructed
as in the proof of Lemma 5.) A binary search yields the
smallest such a where the objective is exactly U.

To obtain a strategy for the advertiser, we look at the
dual, constraining the objective to be equal to U in order to
get the polytope of optimum solutions:

Z Wy, =1

(u,v)eS

>

v/ (u,v)ES

>

u’:(u’,v)ES

Y(u,v) € S, p1(u,v') - u-wy, <€ and

pQ(ul7U) TV Wyl <e

It is straightforward to show that the second set of con-
straints is equivalent to the following:

Vh € RO/, Zehr

T

S (pr(,0) - bt pa(v) v hy) <
(u,v)€S

U,

U.

Here the variables can be interpreted as weights on strategies
in S. A point in this polytope represents a convex combi-
nation over strategies in S, with the property that for any
click-price curve h, the cost of the mixed strategy is at most
U. Since all strategies in S get at least aCq clicks, we
have a strategy that achieves an a-approximation. Interest-
ingly, the equivalence between this polytope and the LP dual
above shows that there is a mixture over values r € [0, C]
that achieves an a-approximation for any curve h.

After a search for the appropriate o (which turned out to
be 1 — %), we solved these two LPs and came up with the
plots in Figure 3, which reveal not only the right approxima-
tion ratio, but also a picture of the worst-case distribution
and the approximation-achieving strategy.’ From the pic-

9The parameters U and Cq can be set arbitrarily using scal-
ing arguments.
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Figure 3: The worst-case click-price curve and (1 —
1/e)-approximate uniform bidding strategy, as found
by linear programming.

tures, we were able to quickly “guess” the optimal strategy
and worst case example.

4.3.2  Proof of Theorem 3

By Lemma 4, we know that for each r < Ugq, there is a
strategy that can obtain traffic r at cost r - h(r). By mixing
strategies for multiple values of r, we construct a uniform
strategy that is guaranteed to achieve at least 1—e™" = 0.63
fraction of 2’s traffic and remain within budget. Note that
the “final” resulting bid distribution will have some weight
on the zero bid, since the single-bid strategies from Lemma 4
put some weight on bidding zero.

Consider the following probability density function over
such strategies (also depicted in Figure 3):

s ={ ),

Note that fOC” g(r)dr = f(:cs/e idr =1, i.e. g is a probabil-

ity density function. The traffic achieved by our strategy is

equal to
Co 1 1
/ —-rdr = (1——)09.
Ca/e ¢

The expected total spend of this strategy is at most

for r < Cqle,
for r > Cq/e.

Ca
traffic = / g(r)-rdr =
0

spend =

/OCS2 g(r) - rh(r)dr

Cq Cq
/ h(r)dr < / h(r)dr = Ugq.
Cqle 0

Thus we have shown that there exists a uniform bidding
strategy that is (1 — 1)-optimal.

We now show that no uniform strategy can do better. We
will prove that for all € > 0 there exists an instance for which
all uniform strategies are at most (1 — £ + ¢)-optimal.

First we define the following click-price curve over the
domain [0, 1]:

0 for r < e~ !

<e— l) for r > et
T

Note that h is non-decreasing and non-negative. Since the
curve is over the domain [0, 1] it corresponds to an instance
where Co = 1. Note also that fol h(r)ydr = -5 fll/ee -
% dr = 1. Thus, this curve corresponds to an instance where
Uqo = 1. Using Lemma 5, we construct an actual instance
where the best uniform strategies are convex combinations

h(r) = 1
e—2
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of strategies that bid h(u) and achieve u clicks and u - h(u)
cost.

Suppose for the sake of contradiction that there exists a
uniform bidding strategy that achieves @ > 1—e ™! traffic on
this instance. By Lemma 1 there is always a two-bid optimal
uniform bidding strategy and so we may assume that the
strategy achieving « clicks randomizes over two bids. To
achieve a clicks, the two bids must be on values h(u) and
h(v) with probabilities p, and p, such that p, + p, = 1,
0<u<a<wvand pyu+ p,v = Q.

To calculate the spend of this strategy consider two cases:
if u = 0 then we are bidding h(v) with probability p, = a/v.
The spend in this case is:

ae—afv

spend = py - v - h(v) = ah(v) = p—

Using v > o and then o > 1 — é we get

spend > ae—1 N (171/6)2671 _
e —

1
e—2 ’

contradicting the assumption.

We turn to the case u > 0. Here we have p, = =
and p, = <=2. Note that for r € (0,1] we have h(r) >
L(e—21). Thus

e—2

v

spend > py - uh(u) + py - vA(V)
(v—a)(ue—1)+ (. — u)(ve — 1)

(v—u)(e—2)

ae—1
= 1.
e—2 >

The final inequality follows from a > 1 — % Thus in both
cases the spend of our strategy is over the budget of 1. [

4.4 Experimental Results

We ran simulations using the data available at Google
which we briefly summarize here. We took a large advertis-
ing campaign, and, using the set of keywords in the cam-
paign, computed three different curves (see Figure 4) for
three different bidding strategies. The x-axis is the bud-
get (units removed), and the y-axis is the number of clicks
obtained (again without units) by the optimal bid(s) under
each respective strategy. “Query bidding” represents our
(unachievable) upper bound 2, bidding on each query in-
dependently. The “uniform bidding” curves represent the
results of applying our algorithm: “deterministic” uses a
single bid level, while “randomized” uses a distribution. For
reference, we include the lower bound of a (e — 1) /e fraction
of the top curve.

The data clearly demonstrate that the best single uni-
form bid obtains almost all the possible clicks in practice.
Of course in a more realistic environment without full knowl-
edge, it is not always possible to find the best such bid, so
further investigation is required to make this approach use-
ful. However, just knowing that there is such a bid available
should make the on-line versions of the problem simpler.

S. HARDNESS RESULTS

By a reduction from vertex cover we can show the follow-
ing (proof omitted):

THEOREM 7. BUDGET OPTIMIZATION is strongly NP-hard.
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Figure 4: An example with real data.

Now suppose we introduce weights on the queries that
indicate the relative value of a click from the various search
users. Formally, we have weights wq for all ¢ €  and our
goal is maximize the total weighted traffic given a budget.
Call this the WEIGHTED KEYWORD BIDDING problem.

With this additional generalization we can show hardness
of approximation via a simple reduction from the MAXIMUM
COVERAGE problem, which is known to be (1 —1/e)-hard [6]
(proof omitted).

THEOREM 8. The WEIGHTED KEYWORD BIDDING prob-
lem is hard to approximate to within (1 — 1/e).

6. EXACT ALGORITHMS FOR LAMINAR
GRAPHS

If a graph has special structure, we can sometimes solve
the budget optimization problem exactly. Note that the
knapsack algorithm in Section 2 solves the problem for the
case when the graph is a simple matching. Here we general-
ize this to the case when the graph has a laminar structure,
which will allow us to impose a (partial) ordering on the
possible bid values, and thereby give a pseudopolynomial
algorithm via dynamic programming.

We first show that to solve the BUDGET OPTIMIZATION
problem (for general graphs) optimally in pseudopolynomial
time, it suffices to provide an algorithm that solves the de-
terministic case. The proof (omitted) uses ideas similar to
Observation 1 and Lemma 1.

LEMMA 9. Let I be an input to the BUDGET OPTIMIZA-
TION problem and suppose that we find the optimal deter-
mianistic solution for every possible budget U’ < U. Then we
can find the optimal solution in time O(UlogU).

A collection S of n sets Si,...,S2 is laminar if, for any
two sets S; and Sj, if S; NS; # 0 then either S; C S; or
S; C S;.

Given a keyword interaction graph G, we associate a set
of neighboring queries Qx = {q : (k,q) € E} with each key-
word k. If this collection of sets if laminar, we say that the
graph has the laminar property. Note that a laminar inter-
action graph would naturally fall out as a consequence of
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designing a “hierarchical” keyword set (e.g., “shoes,” “high-
heel shoes,” “athletic shoes”).

We call a solution deterministic if it consists of one bid
vector, rather than a general distribution over bid vectors.
The following lemma will be useful for giving a structure to
the optimal solution, and will allow dynamic programming.

LEMMA 10. For keywords i,j € K, if Qi C Q; then there
exists an optimal deterministic solution to the BUDGET OP-
TIMIZATION problem with a; > a;.

We can view the laminar order as a tree with keyword j as
a parent of keyword i if Q; is the minimal set containing Q;.
In this case we say that j is a child of ¢. Given a keyword j
with ¢ children i1, ... ,%., we now need to enumerate over all
ways to allocate the budget among the children and also over
all possible minimum bids for the children. A complication
is that a node may have many children and thus a term of
U* would not even be pseudopolynomial. We can solve this
problem by showing that given any laminar ordering, there
is an equivalent one in which each keyword has at most 2
children.

LEMMA 11. Let G be a graph with the laminar property.
There exists another graph G’ with the same optimal solution
to the BUDGET OPTIMIZATION problem, where each node has
at most two children in the laminar ordering. Furthermore,
G’ has at most twice as many nodes as G.

Given a graph with at most two children per node, we de-
fine F[i, b, U] to be the maximum number of clicks achievable
by bidding at least b on each of keywords j s.t. Q; C @
(and exactly b on keyword 4) while spending at most U. For
this definition, we use Z(b, U) to denote set of allowable bids
and budgets over children:

Z(b,U) = {b VU U0 >b,U <U,
b// > b, U// < U, U/ + U// < U}
Given a keyword ¢ and a bid a;, compute an incremental

spend and traffic associated with bidding a; on keyword 4,
that is

t(i,a;) = Z clicksq(a;), and
q€Qi\Qi—1

5(i,a5) = Z costq(a;).
q€Qi\Qi—1

Now we define F'[i,b, U] as

max
b,’b//,U/,U,I
€Z(b,U)
if (3(4,b) < U —-U" —U" and i > 0), and F[i,b,U] = 0
otherwise.

Flj' 0, U+ Fl3" 0", U] + (i, b)} (5)

LEMMA 12. If the graph G has the laminar property, then,
after applying Lemma 11, the dynamic programming recur-
rence in (5) finds an optimal deterministic solution to the
BUDGET OPTIMIZATION problem exactly in O(B3U3n) time.

In addition, we can apply Lemma 9 to compute the op-
timal (randomized) solution. Observe that in the dynamic
program, we have already solved the instance for every bud-
get U’ < U, so we can find the randomized solution with no
additional asymptotic overhead.



LEMMA 13. Ifthe graph G has the laminar property, then,
by applying Lemma 11, the dynamic programming recurrence
wmn (5), and Lemma 9, we can find an optimal solution to the
BUDGET OPTIMIZATION problem in O(B3U®n) time.

The bounds in this section make pessimistic assumptions
about having to try every budget and every level. For many
problems, you only need to choose from a discrete set of
bid levels (e.g., multiples of one cent). Doing so yields the
obvious improvement in the bounds.

7. BID OPTIMIZATION UNDER VCG

The GSP auction is not the only possible auction one
could use for sponsored search. Indeed the VCG auction
and variants [14, 4, 7, 1] offer alternatives with compelling
game-theoretic properties. In this section we argue that
the budget optimization problem is easy under the VCG
auction.

For a full definition of VCG and its application to spon-
sored search we refer the reader to [1, 2, 5]. For the sake
of the budget optimization problem we can define VCG by
just redefining costq(b) (replacing Equation (2)):

costq(b) = > (afj] — alj +1]) - b[j]  where i = pos(b).

j=i

Observation 1 still holds, and we can construct a landscape
as before, where each landscape point corresponds to a par-
ticular bid b[i].

We claim that in the VCG auction, the landscapes are con-
vex. To see this, consider two consecutive positions 4,i + 1.
The slope of line segment between the points corresponding
to those two positions is

cost(b[i]) — cost(b[i + 1])
clicks(b[¢]) — clicks(b[i + 1])

_ (ol —afi+1]) -0 _ .
T ali] —afi +1] = bl

Since b[i] > b[i + 1], the slopes of the “pieces” of the land-
scape decrease, and we get that the curve is convex.

Now consider running the algorithm described in Sec-
tion 2.1.4 for finding the optimal bids for a set of queries.
In this algorithm we took all the pieces from the landscape
curves, sorted them by incremental cpc, then took a prefix
of those pieces, giving us bids for each of the queries. But,
the equation above shows that each piece has its incremen-
tal cpc equal to the bid that achieves it; thus in the case of
VCG the pieces are also sorted by bid. Hence we can obtain
any prefix of the pieces via a uniform bid on all the key-
words. We conclude that the best uniform bid is an optimal
solution to the budget optimization problem.

8. CONCLUDING REMARKS

Our algorithmic result presents an intriguing heuristic in
practice: bid a single value b on all keywords; at the end of
the day, if the budget is under-spent, adjust b to be higher;
if budget is overspent, adjust b to be lower; else, maintain
b. If the scenario does not change from day to day, this
simple strategy will have the same theoretical properties as
our one-bid strategy, and in practice, is likely to be much
better. Of course the scenario does change, however, and so
coming up with a “stochastic” bidding strategy remains an
important open direction, explored somewhat by [11, 13].
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Another interesting generalization is to consider weights
on the clicks, which is a way to model conversions. (A con-
version corresponds to an action on the part of the user who
clicked through to the advertiser site; e.g., a sale or an ac-
count sign-up.) Finally, we have looked at this system as a
black box returning clicks as a function of bid, whereas in
reality it is a complex repeated game involving multiple ad-
vertisers. In [3], it was shown that when a set of advertisers
use a strategy similar to the one we suggest here, under a
slightly modified first-price auction, the prices approach a
well-understood market equilibrium.
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