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Abstract

Analyzing clickthrough log data is important for improving
search performance as well as understanding user behaviors.
In this paper, we propose a novel collaborative ranking model
to tackle two difficulties in analyzing clickthrough log. First,
previous studies have shown that users tend to click top-
ranked results even they are less relevant. Therefore, we use
pairwise ranking relation to avoid the position bias in clicks.
Second, since click data are extremely sparse with respect
to each query or user, we construct a collaboration model to
eliminate the sparseness problem. We also find that the pro-
posed model and previous popular used click-based models
address different aspects of clickthrough log data. We further
propose a hybrid model that can achieve significant improve-
ment compared to the baselines on a large-scale real world
dataset.

Introduction

Search Engines retrieve relevant information for a given
query and return the results in a ranked list. Users will ex-
amine the list and click on the “perceived” relevant results,
which generates click logs as implicit relevance feedback
to search engines. A popular search engine can collect a
huge amount of clickthrough log every day, which contains
a large amount of valuable information on relevance feed-
back. Analyzing such clickthrough log data is important for
improving search performance as well as understanding user
behaviors (Kelly and Teevan 2003).

However, we are facing two challenges for utilizing click-
through log effectively.

• Bias problem: As shown in (Joachims et al. 2007a), clicks
are informative yet biased. The ranked list representa-
tions of search results cause the bias towards top-ranked
results. It is better to use them as relative judgment rather
than absolute judgment. Most of previous work on mod-
eling clickthrough data (Craswell and Szummer 2007;
Xue et al. 2004) utilized co-click information directly.
As a result, they cannot avoid the bias contained in the
clicks. In this paper, we propose to exploit pairwise pref-
erence instead when analyzing clickthrough log.
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• Sparseness problem: Clickthrough log is very sparse at
the long tail. We cannot get click information for most
of the urls ranked behind the first page. Models treating
queries individually and independently would seriously
suffer from the sparseness problem. Therefore, we would
like to find the connection between queries and leverage
the information between similar queries.

In this paper, we develop a novel collaborative ranking
framework to tackle the above issues. The proposed model
unifies learning to rank models and latent factor models
seamlessly. On the one hand, we consider the pairwise
preference information rather than click information to re-
move the position bias in clickthrough log. On the other
hand, we utilize the idea from collaborative filtering (Liu
and Yang 2008) to solve the sparseness problem by lever-
aging information of similar queries. Following the consid-
eration of preference relation, the basic assumption is that
similar queries are the ones have many common preference
observations and they could share more preference informa-
tion of their own. We consider the preference observations
are affected by some latent factors of queries and urls and
we uncover the latent factors that generate the preference
observations using a matrix factorization model. The ma-
trix factorization model is optimized with respect to the ob-
served preference rather than classical click information as
in random walk models. Despite its powerful modeling ca-
pability, the computational complexity of our method is lin-
ear to the number of preference pairs in the clickthrough log
data rather than the size of the matrix formed by <query,
url> pairs, which guarantees that our method is applicable
on large-scale data sets. We test our proposed method us-
ing a huge set of real world data, which consists of more
than 1 million queries and 9 million urls. Experimental re-
sults validate the effectiveness of our method. From our ex-
periments, We find that our proposed collaborative ranking
model and the random walk models address different aspects
of the information contained in clickthrough log data. Our
model emphasizes the skip information and ranking relation
between urls while the random walk models stress the click
information. We further propose a hybrid model to combine
the power of both and achieve a significant improvement of
the performance.
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Related Work

Implicit Feedback

Efforts have been made to utilize clickthrough log to im-
prove search performance. Shen et al. in (Shen, Tan, and
Zhai 2005) utilize previous queries and clickthrough infor-
mation to reduce the ambiguity caused by sparseness and
use it to find the relevant documents. Craswell and Szummer
try to solve the sparseness problem of clickthrough by using
a random walk model on a bipartite graph constructed by
clicked <query, url> pairs (Craswell and Szummer 2007).
Similar co-click based models are also used in (Xue et al.
2004). However, such co-click based models are constructed
based on the click information which is usually noisy and bi-
ased. Besides that, co-click models only care about clicked
urls and discard the information implied by the skipped urls,
which is also very important for inferring relevance scores.

To reduce the noise and bias in clickthrough log, a class
of approaches utilize additional information such as dwell
time, users’ behaviors after clicks, etc (Agichtein, Brill, and
Dumais 2006). An alternative way is to use preference in-
formation contained in clicks (Joachims et al. 2005). We
adopt the latter approach in this paper.

Learning to Rank

Many learning to rank algorithms have been proposed re-
cently. Most of them try to solve the ranking problems
by constructing proper cost functions for ranking prob-
lems (Taylor et al. 2008; Xu et al. 2008) or adapting algo-
rithms from classification or regression problems (Xu and Li
2007). These algorithms obtain promising results on some
open test datasets. However, the need of heuristic feature
extraction and manually labeled training data hinders them
in many real world applications.

There are some previous work (Agichtein, Brill, and Du-
mais 2006; Joachims et al. 2007b) combining the implicit
feedback information extracted from the clickthrough log
data into the learning to rank framework to avoid data label-
ing. Agichtein et al. improve the performance of learning to
rank algorithms on the top rankings by utilizing many fea-
tures extracted from clickthrough log. They compare two al-
ternatives of incorporating implicit feedback into the search
process, namely reranking with implicit feedback and incor-
porating implicit feedback features directly to train ranking
functions. Joachims et al. use the extracted preference pairs
as training data to learn a ranking function (Joachims et al.
2007b), which shares the same spirit with our work. But
they rely on predefined features. In this paper, we consider
a problem of learning with latent features, which is similar
to the problem of collaborative filtering.

Collaborative Filtering/Ranking

Collaborative ranking (CR) has recently been exploited
in (Weimer et al. 2007) and (Liu and Yang 2008) to im-
prove the performance of collaborative filtering (CF). Liu
et al. in (Liu and Yang 2008) extend the traditional mem-
ory based methods while (Weimer et al. 2007) extends the
model based approach from rating based models to ranking

based models. In collaborative filtering problems, the rank-
ing list is easy to obtain by sorting the items according to
their ratings. Therefore the cost functions based on ranking
list are widely adopted (Weimer et al. 2007) and (Liu and
Yang 2008). However, for Web search, it is almost impossi-
ble to obtain such a ranking list since the users do not assign
scores to the returned Web pages explicitly. Therefore, we
can only infer the pairwise preference information based on
users’ clicks and develop collaborative ranking algorithms
with pairwise ranking cost functions.

Collaborative Ranking for Clickthrough Log

Analysis

In this section, we present our solution of using collaborative
ranking for clickthrough log analysis. We first introduce the
cost function based on pairwise preference information and
then present the model for discovering latent factors. After
that, we show how to integrate the ranking cost function and
the latent factor models into a unified objective function. Fi-
nally, we present the approach of optimizing the objective
function.

Pairwise Based Ranking Objective

In (Joachims 2002), Joachims proposes to generate pair-
wise preference from clickthrough log as training data for
learning to rank algorithms. In (Joachims et al. 2005;
Radlinski and Joachims 2005), they further investigate dif-
ferent ways to generate pairwise preference from click-
through log. The experiments show that as interpreted as
relative preference, clickthrough is consistent with explicit
judgment. In this paper, we use the rule in (Joachims 2002),
“clicked url � skipped url above” ( “�” mean “better than”,
or “more relevant than”), to extract pairwise preference and
leave the comparison of different extraction methods as our
future work.

In the literature of learning to rank, several different cost
functions have been proposed. In this paper, we adopt the
likelihood cost used in (Burges et al. 2005). Let rij be the
relevance score for url j to the query i. For the observed
pairwise preference that url j is better than url k, we use
the Bradley-Terry model (Burges et al. 2005) to define its
likelihood.

P (rij � rik) = ϕ(rij − rik) =
1

1 + e−(rij−rik)

where ϕ(x) = 1
1+e−x and rij � rik means that result j is

better than result k for the query i. For each query i, we may
have a set of pairwise preference < j, k >i.

Suppose we have obtained the relevant score matrix, we
are able to calculate the log likelihood of all preference ob-
servations.

l = log
∏

i,<j,k>i

P (rij � rik) =
∑

i

∑

<j,k>i

log(ϕ(rij − rik))

Let dj�k be a vector with element j being 1 and k being
−1, others being 0. Then we can rewrite the cost function as
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Figure 1: Graph representation of the latent factor model
with preference observation.

l =
∑

i

∑

<j,k>i

log(P (rij � rik)) =
∑

i

∑

<j,k>i

log ϕ(rid
T
j�k)

(1)
where ri is the vector of relevance scores of query i to the
urls.

It is hard to estimate the relevant scores by directly max-
imizing the likelihood due to its huge dimension. A gen-
eral solution is to reduce the number of variables we need to
learn. Learning to rank uses a function of predefined feature
set for this propose. Our method, from the other perspec-
tive, solves this problem by integrating latent factor models,
which can automatically extract implicit features from the
clickthrough log data.

Matrix Factorization Model

Latent factor models are able to uncover the underlying fac-
tors that determine the generation of observed data. For
example, the PLSA model could find the latent topics in
texts (Hofmann 1999).

When we are considering the ranking problem, what only
matters is the relative values of the scores rather than the
absolute values. Therefore, any scaling factor with respect to
each query does not change the ranking results. Therefore,
it is unnecessary to constrain the value of relevance score to
be a probability that is between zero and one. Hence, we
simplify the model by just considering the following matrix
factorization problem.

R = QUT (2)

where R is the relevance score matrix with rows represent-
ing queries and columns representing urls, Q is the latent
representation for queries and U is the latent representation
for urls. Usually, we will assume there are only a relative
small number of latent factors that are influencing the rele-
vance scores. So both Q and U are low-rank matrices.

Ranking Objective with Latent Factors

We would like to learn the latent factors that can best fit the
observations of preference. Therefore, our objective would
be the likelihood of

p({rij � rik}|R) (3)

where {rij � rik} is the set of preference observations.
Unifying the Bradley-Terry model and the matrix factoriza-
tion model, we can obtain the log-likelihood function by
plugging Eq. 2 into Eq. 1,

l =
∑

i

∑

<j,k>i

log ϕ(qiU
TdT

j�k)

where qi is the ith row of Q.
For the matrices Q and U, we also assign them prior dis-

tributions with Gaussian distributions,

p(qij) ∼ N (0, σ2
q ), p(uij) ∼ N (0, σ2

u)

where qij and uij are the elements of Q and U. σq and σu

are parameters controlling the confidence of prior. The prior
distributions have the same effect as regularization terms
in maximum margin learning (Weimer et al. 2007), which
could prevent overfitting. Then we obtain the posterior dis-
tribution as our objective function,

l =
∑

i

∑

<j,k>i

log ϕ(qiU
TdT

j�k) + log(p(Q)) + log(p(U))

(4)

where

log(p(Q)) = −
1

2

∑

i

qT
i qi/σ2

q + Cq

and

log(p(U)) = −
1

2
vec(U)Tvec(U)/σ2

u + Cu

vec(U) is the vectorization of the matrix U, and Cq and Cu

are constants irrelevant to Q and U respectively.
The above model is similar to the probabilistic matrix fac-

torization model (Salakhutdinov and Mnih 2008). However,
we consider a ranking loss instead of the square loss in our
problem.

Optimization Algorithm

Gradient based optimization algorithms can be used to opti-
mize the above objective function. The gradients of the cost
function with respect to Q and U are shown in Equation (5)
and (6).

∂l

∂qi

=
∑

<j,k>i

ϕ′(qiU
TdT

j�k)

ϕ(qiUTdT
j�k)

dj�kU − qi/σ2
q (5)

∂l

∂U
=

∑

i

∑

<j,k>i

ϕ′(qiU
TdT

j�k)

ϕ(qiUTdT
j�k)

dT
j�kqi − U/σ2

u (6)

where

ϕ′(x) =
e−x

(1 + e−x)2

In computation, when −x is so large that e−x overflows,
the result of above equation would be ∞/∞. To avoid the
numeric issue, the following equivalent equation is used.

ϕ′(x) =
1

(1 + ex)(1 + e−x)
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When |x| is large, ϕ′(x) would be equal to 0.

There are different gradient-based algorithms available
for such a non-constraint optimization problem. We use a
gradient descent algorithm to optimize the objective func-
tion, as shown in Algorithm 1. The complexity of calculat-
ing the gradient is in the order of number of preference pairs
in the training data rather than the size of queries urls matrix.
Therefore, our algorithm can handle large-scale dataset with
millions of queries and urls.

Algorithm 1 Calculating collaborative ranking model.

Require: Initializing learning rate α, iteration number T ,
query feature qi and url feature U.

Ensure: R = QU
for t = 0 to T do

for i = 1 to |Query| do

qi ← qi + α ∂l
∂qi

end for
U ← U + α ∂l

∂U
end for

Discussion

In this section, we discuss the relation between the proposed
collaborative ranking model and the popular used random
walk models. We refer to the matrix of click frequency from
queries to urls as a click matrix C. We denote the pref-
erence matrix of queries to preference pair by P . An ex-
ample is shown in Figure 2. In the figure, the above table
shows a click matrix C of four related queries (qa − qd) and
three urls(url 1-3). Assuming the returned url lists are all
(url 1, url 2, url 3), we can obtain the preference matrix P
as shown in the below figure. The question marks in the
preference matrix represent the unknown values. A simple
analysis is able to show the differences between the two ma-
trices. Considering the similarity between the queries using
the co-click information and co-preference information, the
most similar pairs in C would be < qa, qb >, < qa, qc >
, < qa, qd >, < qb, qd >, < qc, qd > since they all share
one common click. However, the most similar pairs in P
would be < qa, qc >, < qc, qd >, which both have shared
click on url 3. If two queries have co-click urls at the tail of
the list, they tend to have more co-preference pairs. There-
fore, the preference matrix put more emphasis on the clicks
in the tails. This would alleviate the position bias problem
in clickthrough data.

We further consider the random walk model in (Craswell
and Szummer 2007),

P0|t(k|j) = [
1

Z
A(. . . (A(Aqj)))]k (7)

where A is transition probability matrix from queries to urls
calculated by normalizing click matrix C, and qj is the click
probabilistic distribution of query j. Z is a normalization
factor to make the distribution valid.

On the one hand, the random walk models are essentially
the power method to compute the eigenvectors of the click

Figure 2: An example of the click matrix and preference
matrix.

matrix (Golub and Loan 1996). On the other hand, ma-
trix factorization is another way to compute the eigenvectors
of the matrix (Golub and Loan 1996). They are equivalent
in some sense. Therefore, random walk models can be re-
garded as approximating the click matrix using the eigenvec-
tors. While the collaborative ranking model aim at approx-
imating the preference matrix using the matrix factorization
model. They are similar in the approximation models but
different in the information addressed. Based on the analy-
sis, we can further propose a hybrid model to combine the
two types of information together.

A Hybrid Model

The collaborative ranking model has the advantage of utiliz-
ing the skip information. However, it ignores the fact that
most of the un-clicked urls are irrelevant, which is captured
by the random walk models. Therefore, it would be better to
unify them into a hybrid model for a full consideration. We
propose to use a simple linear combination to unify them to-
gether. We will show in the experiments that this method
works well.

rq,u = (1 − θ)rr
q,u + θrc

q,u

where the rr
q,u is the relevance score obtained by the col-

laborative ranking model and the rc
q,u is the relevance score

obtained by the random walk model. θ is a tradeoff value in
[0, 1].

Since the two models address different aspects of infor-
mation in clickthrough log. We will show in the experi-
ments part that the hybrid model could achieve significant
improvement.

Experiments

Datasets and Evaluation Metrics

We also use a search log dataset sampled from a major
commercial search engine for experiment. The dataset con-
tains 1,604,517 unique queries, 9,999,873 unique urls and
13,947,439 clicks. In terms of evaluation, we use accuracy
on predicted pairwise preference as our evaluation metric.
We first extract all the preference pairs from the data. Then
we randomly split it into two sets. We use one for training
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Figure 3: How the performance change with respect to the
number of latent factors k.

and the other for test. For the test data, we have the ground
truth of preference relation of the pairs (either i ≺ j or i � j
for the pair < i, j >) and we can define the accuracy by

acc =
Nacc

N
,

where Nacc is the number of correctly predicted preference
pairs in the test data. N is the number of all preference pairs
in the test data. This evaluation metric avoids the effort of
labeling data. Therefore, with such an unsupervised metric
we can evaluate our method on large-scale datasets.

Experimental Results

In the following, we want to show that our proposed method
can effectively leverage the pairwise preference information
in large-scale clickthrough log data. Therefore, we compare
our method with the co-click based models in (Craswell and
Szummer 2007) on the real world dataset. For the models
in (Craswell and Szummer 2007), we use the parameters
presented in the paper. The results of both backward and
forward random walk models in the paper are reported in
Table 1. From the results we can see, the backward model
outperforms the forward model, which is consistent with the
experiments in (Craswell and Szummer 2007).

For the co-click models, the underlying assumption is
“clicked url�un-clicked url”. Although it introduces bias in
clicks, it utilizes more information in general. For our cur-
rent model, since we only utilize the preference that “clicked
url�skipped urls above”, much of the information that un-
clicked urls are not relevant is not utilized. Nevertheless,
the performance of our model still slightly outperforms the
state-of-the-art algorithms.

In terms of parameters, the number of latent variables k
used in this experiment is 50 and the iteration number T is
50. Figure 3 shows the performance change with respect
to k, we can see that the trend is still increasing for k =
50. But for speed consideration, we choose k = 50 in the
experiment.

Figure 4 shows how the performance change with θ
varies. It is interesting to notice that the combined perfor-
mance is very robust to the selection of θ. The reason is

Figure 4: How the performance of combined method change
with respect to θ.

Table 1: Performance comparison with random walk mod-
els.

Forward Backward CoRank Hybrid

acc 0.87 0.88 0.89 0.94

that the random walk model ignores the information of be-
ing skipped. On the other hand, the collaborative ranking
model ignores the information of being un-clicked. These
two kinds of information are principally orthogonal so that
the simple combination works well. It is also an interesting
topic to directly combine these two types of information in a
unified model. We plan to investigate it in our future work.

Conclusion and Future Work

In this paper, we propose a novel collaborative ranking
model for improving Web search using clickthrough log.
Our model integrates the advantage of leveraging pairwise
preference information and mining latent factors both from
clickthrough log in a principled way. Experiments on real-
world data validate the effectiveness of the proposed model.

Theoretically, our model can be easily extended to con-
sider different ranking cost functions and latent factor mod-
els. In the future, we plan to investigate how different
combinations would influence the performance empirically.
Besides that, we will take the confidence of each prefer-
ence pair into consideration and see whether it can boot the
search performance. We also plan to investigate more ele-
gant model to combine the collaborative ranking model and
random walk model together. A direction is to use the rel-
evance values obtained by random walk model as prior for
the collaborative ranking model.

As we can see, a major problem of our current model is
that it cannot handle new queries, which have never shown
up in the clickthrough log data. To solve this problem, we
plan to put forward an online learning version for this model.
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