
Bidding Algorithms for a Distributed Combinatorial Auction

Benito Mendoza
∗

and José M. Vidal
Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

mendoza2@engr.sc.edu, vidal@sc.edu

ABSTRACT
Distributed allocation and multiagent coordination prob-
lems can be solved through combinatorial auctions. How-
ever, most of the existing winner determination algorithms
for combinatorial auctions are centralized. The PAUSE auc-
tion is one of a few efforts to release the auctioneer from
having to do all the work (it might even be possible to get
rid of the auctioneer). It is an increasing price combinato-
rial auction that naturally distributes the problem of win-
ner determination amongst the bidders in such a way that
they have an incentive to perform the calculation. It can
be used when we wish to distribute the computational load
among the bidders or when the bidders do not wish to reveal
their true valuations unless necessary. PAUSE establishes
the rules the bidders must obey. However, it does not tell
us how the bidders should calculate their bids. We have
developed a couple of bidding algorithms for the bidders in
a PAUSE auction. Our algorithms always return the set of
bids that maximizes the bidder’s utility. Since the problem
is NP-Hard, run time remains exponential on the number
of items, but it is remarkably better than an exhaustive
search. In this paper we present our bidding algorithms,
discuss their virtues and drawbacks, and compare the solu-
tions obtained by them to the revenue-maximizing solution
found by a centralized winner determination algorithm.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Intelligent Agents, Multiagent Systems.

General Terms
Algorithms, Performance.

Keywords
Combinatorial Auctions, Coordination, Task and resource
allocation.
∗The first author is a student.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

1. INTRODUCTION
Both the research and practice of combinatorial auctions

have grown rapidly in the past ten years. In a combina-
torial auction bidders can place bids on combinations of
items, called packages or bidsets, rather than just individ-
ual items. Once the bidders place their bids, it is necessary
to find the allocation of items to bidders that maximizes
the auctioneer’s revenue. This problem, known as the win-
ner determination problem, is a combinatorial optimization
problem and is NP-Hard [10]. Nevertheless, several algo-
rithms that have a satisfactory performance for problem
sizes and structures occurring in practice have been devel-
oped. The practical applications of combinatorial auctions
include: allocation of airport takeoff and landing time slots,
procurement of freight transportation services, procurement
of public transport services, and industrial procurement [2].
Because of their wide applicability, one cannot hope for a
general-purpose winner determination algorithm that can
efficiently solve every instance of the problem. Thus, sev-
eral approaches and algorithms have been proposed to ad-
dress the winner determination problem. However, most of
the existing winner determination algorithms for combina-
torial auctions are centralized, meaning that they require
all agents to send their bids to a centralized auctioneer who
then determines the winners. Examples of these algorithms
are CASS [3], Bidtree [11] and CABOB [12]. We believe that
distributed solutions to the winner determination problem
should be studied as they offer a better fit for some appli-
cations as when, for example, agents do not want to reveal
their valuations to the auctioneer.

The PAUSE (Progressive Adaptive User Selection Envi-
ronment) auction [4, 5] is one of a few efforts to distribute
the problem of winner determination amongst the bidders.
PAUSE establishes the rules the participants have to adhere
to so that the work is distributed amongst them. However,
it is not concerned with how the bidders determine what
they should bid.

In this paper we present two algorithms, pausebid and
cachedpausebid, which enable agents in a PAUSE auc-
tion to find the bidset that maximizes their utility. Our
algorithms implement a myopic utility maximizing strategy
and are guaranteed to find the bidset that maximizes the
agent’s utility given the outstanding best bids at a given
time. pausebid performs a branch and bound search com-
pletely from scratch every time that it is called. cached-

pausebid is a caching-based algorithm which explores fewer
nodes, since it caches some solutions.

694

978-81-904262-7-5 (RPS) c©2007 IFAAMAS



2. THE PAUSE AUCTION
A PAUSE auction for m items has m stages. Stage 1 con-

sists of having simultaneous ascending price open-cry auc-
tions and during this stage the bidders can only place bids on
individual items. At the end of this state we will know what
the highest bid for each individual item is and who placed
that bid. Each successive stage k = 2, 3, . . . , m consists of
an ascending price auction where the bidders must submit
bidsets that cover all items but each one of the bids must be
for k items or less. The bidders are allowed to use bids that
other agents have placed in previous rounds when building
their bidsets, thus allowing them to find better solutions.
Also, any new bidset has to have a sum of bid prices which
is bigger than that of the currently winning bidset. At the
end of each stage k all agents know the best bid for every
subset of size k or less. Also, at any point in time after stage
1 has ended there is a standing bidset whose value increases
monotonically as new bidsets are submitted. Since in the
final round all agents consider all possible bidsets, we know
that the final winning bidset will be one such that no agent
can propose a better bidset. Note, however, that this bid-
set is not guaranteed to be the one that maximizes revenue
since we are using an ascending price auction so the win-
ning bid for each set will be only slightly bigger than the
second highest bid for the particular set of items. That is,
the final prices will not be the same as the prices in a tradi-
tional combinatorial auction where all the bidders bid their
true valuation. However, there remains the open question
of whether the final distribution of items to bidders found
in a PAUSE auction is the same as the revenue maximizing
solution. Our test results provide an answer to this question.

The PAUSE auction makes the job of the auctioneer very
easy. All it has to do is to make sure that each new bid-
set has a revenue bigger than the current winning bidset, as
well as make sure that every bid in an agent’s bidset that
is not his does indeed correspond to some other agents’ pre-
vious bid. The computational problem shifts from one of
winner determination to one of bid generation. Each agent
must search over the space of all bidsets which contain at
least one of its bids. The search is made easier by the fact
that the agent needs to consider only the current best bids
and only wants bidsets where its own utility is higher than
in the current winning bidset. Each agent also has a clear
incentive for performing this computation, namely, its util-
ity only increases with each bidset it proposes (of course, it
might decrease with the bidsets that others propose). Fi-
nally, the PAUSE auction has been shown to be envy-free in
that at the conclusion of the auction no bidder would prefer
to exchange his allocation with that of any other bidder [2].

We can even envision completely eliminating the auction-
eer and, instead, have every agent perform the task of the
auctioneer. That is, all bids are broadcast and when an
agent receives a bid from another agent it updates the set
of best bids and determines if the new bid is indeed better
than the current winning bid. The agents would have an in-
centive to perform their computation as it will increase their
expected utility. Also, any lies about other agents’ bids are
easily found out by keeping track of the bids sent out by ev-
ery agent (the set of best bids). Namely, the only one that
can increase an agent’s bid value is the agent itself. Any-
one claiming a higher value for some other agent is lying.
The only thing missing is an algorithm that calculates the
utility-maximizing bidset for each agent.

3. PROBLEM FORMULATION
A bid b is composed of three elements bitems (the set of

items the bid is over), bagent (the agent that placed the bid),
and bvalue (the value or price of the bid). The agents main-
tain a set B of the current best bids, one for each set of items
of size ≤ k, where k is the current stage. At any point in the
auction, after the first round, there will also be a set W ⊆ B

of currently winning bids. This is the set of bids that covers
all the items and currently maximizes the revenue, where
the revenue of W is given by

r(W ) =
b∈W

b
value

. (1)

Agent i’s value function is given by vi(S) ∈ � where S is a
set of items. Given an agent’s value function and the current
winning bidset W we can calculate the agent’s utility from
W as

ui(W ) =
b∈W | bagent=i

vi(b
items) − b

value
. (2)

That is, the agent’s utility for a bidset W is the value it
receives for the items it wins in W minus the price it must
pay for those items. If the agent is not winning any items
then its utility is zero.

The goal of the bidding agents in the PAUSE auction is to
maximize their utility, subject to the constraint that their
next set of bids must have a total revenue that is at least
ε bigger than the current revenue, where ε is the smallest
increment allowed in the auction. Formally, given that W is
the current winning bidset, agent i must find a g∗

i such that
r(g∗

i ) ≥ r(W ) + ε and

g
∗
i = arg max

g⊆2B

ui(g), (3)

where each g is a set of bids that covers all items and
∀b∈g (b ∈ B) or (bagent = i and bvalue > B(bitems) and
size(bitems) ≤ k), and where B(items) is the value of the
bid in B for the set items (if there is no bid for those items
it returns zero). That is, each bid b in g must satisfy at least
one of the two following conditions. 1) b is already in B, 2)
b is a bid of size ≤ k in which the agent i bids higher than
the price for the same items in B.

4. BIDDING ALGORITHMS
According to the PAUSE auction, during the first stage we

have only several English auctions, with the bidders submit-
ting bids on individual items. In this case, an agent’s domi-
nant strategy is to bid ε higher than the current winning bid
until it reaches its valuation for that particular item. Our
algorithms focus on the subsequent stages: k > 1. When
k > 1, agents have to find g∗

i . This can be done by per-
forming a complete search on B. However, this approach is
computationally expensive since it produces a large search
tree. Our algorithms represent alternative approaches to
overcome this expensive search.

4.1 The PAUSEBID Algorithm
In the pausebid algorithm (shown in Figure 1) we im-

plement some heuristics to prune the search tree. Given
that bidders want to maximize their utility and that at any
given point there are likely only a few bids within B which

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 695



pausebid(i, k)

1 my-bids ← ∅
2 their -bids ← ∅
3 for b ∈ B

4 do if bagent = i or vi(b
items) > bvalue

5 then my-bids ← my-bids
+new Bid(bitems, i, vi(b

items))
6 else their -bids ← their -bids +b

7 for S ∈ subsets of k or fewer items such that
vi(S) > 0 and ¬∃b∈Bbitems = S

8 do my-bids ← my-bids +new Bid(S, i, vi(S))
9 bids ← my-bids + their -bids

10 g∗ ← ∅ � Global variable
11 u∗ ← ui(W )� Global variable
12 pbsearch(bids, ∅)
13 surplus ←

b∈g∗ | bagent=i
bvalue −B(bitems)

14 if surplus = 0
15 then return g∗

16 my-payment ← vi(g
∗)− u∗

17 for b ∈ g∗ | bagent = i

18 do if my-payment ≤ 0
19 then bvalue ← B(bitems)
20 else bvalue ← B(bitems)

+my-payment · b
value−B(bitems)

surplus

21 return g∗

Figure 1: The pausebid algorithm which implements

a branch and bound search. i is the agent and k is

the current stage of the auction, for k ≥ 2.

the agent can dominate, we start by defining my-bids to be
the list of bids for which the agent’s valuation is higher than
the current best bid, as given in B. We set the value of
these bids to be the agent’s true valuation (but we won’t
necessarily be bidding true valuation, as we explain later).
Similarly, we set their -bids to be the rest of the bids from B.
Finally, the agent’s search list is simply the concatenation
of my-bids and their -bids. Note that the agent’s own bids
are placed first on the search list as this will enable us to do
more pruning (pausebid lines 3 to 9). The agent can now
perform a branch and bound search on the branch-on-bids
tree produced by these bids. This branch and bound search
is implemented by pbsearch (Figure 2). Our algorithm not
only implements the standard bound but it also implements
other pruning techniques in order to further reduce the size
of the search tree.

The bound we use is the maximum utility that the agent
can expect to receive from a given set of bids. We call it u∗.
Initially, u∗ is set to ui(W ) (pausebid line 11) since that
is the utility the agent currently receives and any solution
he proposes should give him more utility. If pbsearch ever
comes across a partial solution where the maximum utility
the agent can expect to receive is less than u∗ then that
subtree is pruned (pbsearch line 21). Note that we can
determine the maximum utility only after the algorithm has
searched over all of the agent’s own bids (which are first on
the list) because after that we know that the solution will
not include any more bids where the agent is the winner
thus the agent’s utility will no longer increase. For example,

pbsearch(bids, g)

1 if bids = ∅ then return

2 b← first(bids)
3 bids ← bids −b

4 g ← g + b

5 Īg ← items not in g

6 if g does not contain a bid from i

7 then return

8 if g includes all items
9 then min-payment ← max(0, r(W ) + ε− (r(g)− ri(g)),

b∈g | bagent=i
B(bitems))

10 max -utility ← vi(g)−min-payment

11 if r(g) > r(W ) and max -utility ≥ u∗

12 then g∗ ← g

13 u∗ ← max -utility

14 pbsearch(bids, g − b) � b is Out
15 else max -revenue ← r(g) + max(h(Īg), hi(Īg))
16 if max -revenue ≤ r(W )
17 then pbsearch(bids, g − b) � b is Out
18 elseif bagent �= i

19 then min-payment ← (r(W ) + ε)
−(r(g)− ri(g))− h(Īg)

20 max -utility ← vi(g)−min-payment

21 if max -utility > u∗

22 then pbsearch({x ∈ bids |
xitems ∩ bitems = ∅}, g) � b is In

23 pbsearch(bids, g − b) � b is Out
24 else

25 pbsearch({x ∈ bids |
xitems ∩ bitems = ∅}, g) � b is In

26 pbsearch(bids, g − b) � b is Out
27 return

Figure 2: The pbsearch recursive procedure where

bids is the set of available bids and g is the current

partial solution.

if an agent has only one bid in my-bids then the maximum
utility he can expect is equal to his value for the items in
that bid minus the minimum possible payment we can make
for those items and still come up with a set of bids that has
revenue greater than r(W ). The calculation of the minimum
payment is shown in line 19 for the partial solution case and
line 9 for the case where we have a complete solution in
pbsearch. Note that in order to calculate the min-payment

for the partial solution case we need an upper bound on the
payments that we must make for each item. This upper
bound is provided by

h(S) =
s∈S

max
b∈B | s∈bitems

bvalue

size(bitems)
. (4)

This function produces a bound identical to the one used by
the Bidtree algorithm—it merely assigns to each individual
item in S a value equal to the maximum bid in B divided
by the number of items in that bid.

To prune the branches that cannot lead to a solution with
revenue greater than the current W , the algorithm considers
both the values of the bids in B and the valuations of the

696 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)



agent. Similarly to (4) we define

hi(S, k) =
s∈S

max
S′| size(S′)≤k and s∈S′ and vi(S′)>0

vi(S
′)

size(S′)
(5)

which assigns to each individual item s in S the maximum
value produced by the valuation of S′ divided by the size
of S′, where S′ is a set for which the agent has a valuation
greater than zero, contains s, and its size is less or equal
than k. The algorithm uses the heuristics h and hi (lines 15
and 19 of pbsearch), to prune the just mentioned branches
in the same way an A∗ algorithm uses its heuristic. A final
pruning technique implemented by the algorithm is ignoring
any branches where the agent has no bids in the current
answer g and no more of the agent’s bids are in the list
(pbsearch lines 6 and 7).

The resulting g∗ found by pbsearch is thus the set of bids
that has revenue bigger than r(W ) and maximizes agent i’s
utility. However, agent i’s bids in g∗ are still set to his own
valuation and not to the lowest possible price. Lines 17 to 20
in pausebid are responsible for setting the agent’s payments
so that it can achieve its maximum utility u∗. If the agent
has only one bid in g∗ then it is simply a matter of reducing
the payment of that bid by u∗ from the current maximum of
the agent’s true valuation. However, if the agent has more
than one bid then we face the problem of how to distribute
the agent’s payments among these bids. There are many
ways of distributing the payments and there does not appear
to be a dominant strategy for performing this distribution.
We have chosen to distribute the payments in proportion to
the agent’s true valuation for each set of items.

pausebid assumes that the set of best bids B and the cur-
rent best winning bidset W remains constant during its exe-
cution, and it returns the agent’s myopic utility-maximizing
bidset (if there is one) using a branch and bound search.
However it repeats the whole search at every stage. We
can minimize this problem by caching the result of previous
searches.

4.2 The CACHEDPAUSEBID Algorithm
The cachedpausebid algorithm (shown in Figure 3) is

our second approach to solve the bidding problem in the
PAUSE auction. It is based in a cache table called C -Table

where we store some solutions to avoid doing a complete
search every time. The problem is the same; the agent i has
to find g∗

i . We note that g∗
i is a bidset that contains at least

one bid of the agent i. Let S be a set of items for which the
agent i has a valuation such that vi(S) ≥ B(S) > 0, let gS

i

be a bidset over S such that r(gS
i ) ≥ r(W ) + ε and

gS
i = arg max

g⊆2B

ui(g), (6)

where each g is a set of bids that covers all items and
∀b∈g (b ∈ B) or (bagent = i and bvalue > B(bitems)) and
(∃b∈gbitems = S and bagent = i). That is, gS

i is i’s best bid-
set for all items which includes a bid from i for all S items.
In the PAUSE auction we cannot bid for sets of items with
size greater than k. So, if we have for each set of items S for
which vi(S) > 0 and size(S) ≤ k its corresponding gS

i then
g∗

i is the gS
i that maximizes the agent’s utility. That is

g∗
i = arg max

{S | vi(S)>0∧size(S)≤k}
ui(g

S
i ). (7)

Each agent i implements a hash table C -Table such that
C -Table[S ] = gS for all S which vi(S) ≥ B(S) > 0. We can

cachedpausebid(i, k, k -changed)

1 for each S in C -Table

2 do if vi(S) < B(S)
3 then remove S from C -Table

4 else if k -changed and size(S) = k
5 then B′ ← B′ + new Bid(i, S, vi(S))
6 g∗ ← ∅
7 u∗ ← ui(W )
8 for each S with size(S) ≤ k in C -Table

9 do S̄ ← Items− S
10 gS ← C -Table[S ] � Global variable
11 min-payment ← max(r(W ) + ε,

b∈gS B(bitems))

12 uS ← r(gS)−min-payment � Global variable
13 if (k -changed and size(S) = k)

or (∃b∈B′bitems ⊆ S̄ and bagent 
= i)
14 then B′′ ← {b ∈ B′|bitems ⊆ S̄}
15 bids ← B′′

+{b ∈ B|bitems ⊆ S̄ and b /∈ B′′}
16 for b ∈ bids

17 do if vi(b
items) > bvalue

18 then bagent ← i
19 bvalue ← vi(b

items)
20 if k -changed and size(S) = k
21 then n← size(bids)
22 uS ← 0
23 else n← size(B′′)
24 g ← ∅+ new Bid(S, i, vi(S))
25 cpbsearch(bids, g, n)
26 C -Table[S ]← gS

27 if uS > u∗ and r(gS) ≥ r(W ) + ε
28 then surplus ←

b∈gS | bagent=i
bvalue −B(bitems)

29 if surplus > 0
30 then my-payment ← vi(g

S)− ui(g
S)

31 for b ∈ gS | bagent = i
32 do if my-payment ≤ 0
33 then bvalue ← B(bitems)
34 else bvalue ← B(bitems)+

my-payment · b
value−B(bitems)

surplus

35 u∗ ← ui(g
S)

36 g∗ ← gS

37 else if uS ≤ 0 and vi(S) < B(S)
38 then remove S from C -Table

39 return g∗

Figure 3: The cachedpausebid algorithm that imple-
ments a caching based search to find a bidset that
maximizes the utility for the agent i. k is the cur-
rent stage of the auction (for k ≥ 2), and k -changed is
a boolean that is true right after the auction moved
to the next stage.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 697



cpbsearch(bids, g, n)

1 if bids = ∅ or n ≤ 0 then return

2 b← first(bids)
3 bids ← bids −b

4 g ← g + b

5 Īg ← items not in g

6 if g includes all items
7 then min-payment ← max(0, r(W ) + ε− (r(g)− ri(g)),

b∈g | bagent=i
B(bitems))

8 max -utility ← vi(g)−min-payment

9 if r(g) > r(W ) and max -utility ≥ uS

10 then gS ← g

11 uS ← max -utility

12 cpbsearch(bids, g − b, n− 1) � b is Out
13 else max -revenue ← r(g) + max(h(Īg), hi(Īg))
14 if max -revenue ≤ r(W )
15 then cpbsearch(bids, g − b, n− 1) � b is Out
16 elseif bagent �= i

17 then min-payment ← (r(W ) + ε)
−(r(g)− ri(g))− h(Īg)

18 max -utility ← vi(g)−min-payment

19 if max -utility > uS

20 then cpbsearch({x ∈ bids |
xitems ∩ bitems = ∅}, g, n + 1) � b is In

21 cpbsearch(bids, g − b, n− 1) � b is Out
22 else

23 cpbsearch({x ∈ bids |
xitems ∩ bitems = ∅}, g, n + 1) � b is In

24 cpbsearch(bids, g − b, n− 1) � b is Out
25 return

Figure 4: The cpbsearch recursive procedure where

bids is the set of available bids, g is the current par-

tial solution and n is a value that indicates how deep

in the list bids the algorithm has to search.

then find g∗ by searching for the gS , stored in C -Table[S ],
that maximizes the agent’s utility, considering only the set
of items S with size(S) ≤ k. The problem remains in main-
taining the C -Table updated and avoiding to search every
gS every time. cachedpausebid deals with this and other
details.

Let B′ be the set of bids that contains the new best bids,
that is, B′ contains the bids recently added to B and the bids
that have changed price (always higher), bidder, or both and
were already in B. Let S̄ = Items − S be the complement
of S (the set of items not included in S). cachedpausebid

takes three parameters: i the agent, k the current stage of
the auction, and k -changed a boolean that is true right after
the auction moved to the next stage. Initially C -Table has
one row or entry for each set S for which vi(S) > 0. We
start by eliminating the entries corresponding to each set S

for which vi(S) < B(S) from C -Table (line 3). Then, in the
case that k -changed is true, for each set S with size(S) = k,
we add to B′ a bid for that set with value equal to vi(S)
and bidder agent i (line 5); this a bid that the agent is now
allowed to consider. We then search for g∗ amongst the gS

stored in C -Table, for this we only need to consider the sets
with size(S) ≤ k (line 8). But how do we know that the gS

in C -Table[S ] is still the best solution for S? There are only

two cases when we are not sure about that and we need
to do a search to update C -Table[S ]. These cases are: i)
When k -changed is true and size(S) ≤ k, since there was
no gS stored in C -Table for this S. ii) When there exists at
least one bid in B′ for the set of items S̄ or a subset of it
submitted by an agent different than i, since it is probable
that this new bid can produce a solution better than the one
stored in C -Table[S ].

We handle the two cases mentioned above in lines 13 to 26
of cachedpausebid. In both of these cases, since gS must
contain a bid for S we need to find a bidset that cover the
missing items, that is S̄. Thus, our search space consists
of all the bids on B for the set of items S̄ or for a subset
of it. We build the list bids that contains only those bids.
However, we put the bids from B′ at the beginning of bids

(line 14) since they are the ones that have changed. Then,
we replace the bids in bids that have a price lower than the
valuation the agent i has for those same items with a bid
from agent i for those items and value equal to the agent’s
valuation (lines 16–19).

The recursive procedure cpbsearch, called in line 25 of
cachedpausebid and shown in Figure 4, is the one that
finds the new gS . cpbsearch is a slightly modified version
of our branch and bound search implemented in pbsearch.
The first modification is that it has a third parameter n that
indicates how deep on the list bids we want to search, since
it stops searching when n less or equal to zero and not only
when the list bids is empty (line 1). Each time that there is
a recursive call of cpbsearch n is decreased by one when a
bid from bids is discarded or out (lines 12, 15, 21, and 24)
and n remains the same otherwise (lines 20 and 23). We set
the value of n before calling cpbsearch, to be the size of the
list bids (cachedpausebid line 21) in case i), since we want
cpbsearch to search over all bids; and we set n to be the
number of bids from B′ included in bids (cachedpausebid

line 23) in case ii), since we know that only the those first n

bids in bids changed and can affect our current gS .
Another difference with pbsearch is that the bound in

cpbsearch is uS which we set to be 0 (cachedpausebid line
22) when in case i) and r(gS)−min-payment (cachedpausebid

line 12) when in case ii). We call cpbsearch with g already
containing a bid for S. After cpbsearch is executed we
are sure that we have the right gS , so we store it in the
corresponding C -Table[S ] (cachedpausebid line 26).

When we reach line 27 in cachedpausebid, we are sure
that we have the right gS . However, agent i’s bids in gS are
still set to his own valuation and not to the lowest possible
price. If uS is greater than the current u∗, lines 31 to 34
in cachedpausebid are responsible for setting the agent’s
payments so that it can achieve its maximum utility uS .
As in pausebid, we have chosen to distribute the payments
in proportion to the agent’s true valuation for each set of
items. In the case that uS less than or equal to zero and
the valuation that the agent i has for the set of items S is
lower than the current value of the bid in B for the same
set of items, we remove the corresponding C -Table[S ] since
we know that is not worthwhile to keep it in the cache table
(cachedpausebid line 38).

The cachedpausebid function is called when k > 1 and
returns the agent’s myopic utility-maximizing bidset, if there
is one. It assumes that W and B remains constant during
its execution.

698 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)



generatevalues(i, items)

1 for x ∈ items

2 do vi(x) = expd(.01)
3 for n← 1 . . . (num-bids − items)
4 do s1, s2 ←Two random sets of items with values.
5 vi(s1 ∪ s2) = vi(s1) + vi(s2) + expd(.01)

Figure 5: Algorithm for the generation of random
value functions. expd(x) returns a random number
taken from an exponential distribution with mean
1/x.

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

Number of Items

CachedPauseBid

� � � �
�

�
� �

�

�

PauseBid

+ + + + +
+ + +

+

+

Figure 6: Average percentage of convergence
(y-axis), which is the percentage of times that our
algorithms converge to the revenue-maximizing so-
lution, as function of the number of items in the
auction.

5. TEST AND COMPARISON
We have implemented both algorithms and performed a

series of experiments in order to determine how their solu-
tion compares to the revenue-maximizing solution and how
their times compare with each other. In order to do our
tests we had to generate value functions for the agents1.
The algorithm we used is shown in Figure 5. The type of
valuations it generates correspond to domains where a set
of agents must perform a set of tasks but there are cost sav-
ings for particular agents if they can bundle together certain
subsets of tasks. For example, imagine a set of robots which
must pick up and deliver items to different locations. Since
each robot is at a different location and has different abil-
ities, each one will have different preferences over how to
bundle. Their costs for the item bundles are subadditive,
which means that their preferences are superadditive. The
first experiment we performed simply ensured the proper

1Note that we could not use CATS [6] because it generates
sets of bids for an indeterminate number of agents. It is as
if you were told the set of bids placed in a combinatorial
auction but not who placed each bid or even how many
people placed bids, and then asked to determine the value
function of every participant in the auction.

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

Number of Items

CachedPauseBid

�

�

� �
�

� � �
�

�

PauseBid

+ +
+ +

+
+ + +

+

+

Figure 7: Average percentage of revenue from our
algorithms relative to maximum revenue (y-axis) as
function of the number of items in the auction.

functioning of our algorithms. We then compared the so-
lutions found by both of them to the revenue-maximizing
solution as found by CASS when given a set of bids that
corresponds to the agents’ true valuation. That is, for each
agent i and each set of items S for which vi(S) > 0 we gen-
erated a bid. This set of bids was fed to CASS which imple-
ments a centralized winner determination algorithm to find
the solution which maximizes revenue. Note, however, that
the revenue from the PAUSE auction on all the auctions is
always smaller than the revenue of the revenue-maximizing
solution when the agents bid their true valuations. Since
PAUSE uses English auctions the final prices (roughly) rep-
resent the second-highest valuation, plus ε, for that set of
items.

We fixed the number of agents to be 5 and we experi-
mented with different number of items, namely from 2 to
10. We ran both algorithms 100 times for each combina-
tion. When we compared the solutions of our algorithms
to the revenue-maximizing solution, we realized that they
do not always find the same distribution of items as the
revenue-maximizing solution (as shown in Figure 6). The
cases where our algorithms failed to arrive at the distri-
bution of the revenue-maximizing solution are those where
there was a large gap between the first and second valua-
tion for a set (or sets) of items. If the revenue-maximizing
solution contains the bid (or bids) using these higher valua-
tion then it is impossible for the PAUSE auction to find this
solution because that bid (those bids) is never placed. For
example, if agent i has vi(1) = 1000 and the second highest
valuation for (1) is only 10 then i only needs to place a bid
of 11 in order to win that item. If the revenue-maximizing
solution requires that 1 be sold for 1000 then that solution
will never be found because that bid will never be placed.
We also found that average percentage of times that our al-
gorithms converges to the revenue-maximizing solution de-
creases as the number of items increases. For 2 items is
almost 100% but decreases a little bit less than 1 percent as
the items increase, so that this average percentage of con-
vergence is around 90% for 10 items. In a few instances our
algorithms find different solutions this is due to the different

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 699



1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

Number of Items

CachedPauseBid

�

�

�

�

�

�

�

�

�

PauseBid

+

+

+

+

+

+
+

+

+
+

Figure 8: Average number of expanded nodes
(y-axis) as function of items in the auction.

ordering of the bids in the bids list which makes them search
in different order.

We know that the revenue generated by the PAUSE auc-
tion is generally lower than the revenue of the revenue-
maximizing solution, but how much lower? To answer this
question we calculated percentage representing the propor-
tion of the revenue given by our algorithms relative to the
revenue given by CASS. We found that the percentage of
revenue of our algorithms increases in average 2.7% as the
number of items increases, as shown in Figure 7. However,
we found that cachedpausebid generates a higher revenue
than pausebid (4.3% higher in average) except for auctions
with 2 items where both have about the same percentage.
Again, this difference is produced by the order of the search.
In the case of 2 items both algorithms produce in average
a revenue proportion of 67.4%, while in the other extreme
(10 items), cachedpausebid produced in average a revenue
proportion of 91.5% while pausebid produced in average a
revenue proportion of 87.7%.

The scalability of our algorithms can be determined by
counting the number of nodes expanded in the search tree.
For this we count the number of times that pbsearch gets
invoked for each time that pausebid is called and the num-
ber of times that fastpausebidsearch gets invoked for each
time that cachedpausebid, respectively for each of our al-
gorithms. As expected since this is an NP-Hard problem,
the number of expanded nodes does grow exponentially with
the number of items (as shown in Figure 8). However, we
found that cachedpausebid outperforms pausebid, since
it expands in average less than half the number of nodes.
For example, the average number of nodes expanded when
2 items is zero for cachedpausebid while for pausebid is
2; and in the other extreme (10 items) cachedpausebid ex-
pands in average only 633 nodes while pausebid expands in
average 1672 nodes, a difference of more than 1000 nodes.
Although the number of nodes expanded by our algorithms
increases as function of the number of items, the actual num-
ber of nodes is a much smaller than the worst-case scenario
of n

n where n is the number of items. For example, for 10
items we expand slightly more than 103 nodes for the case of
pausebid and less than that for the case of cachedpause-

0.1

1

10

100

1000

2 3 4 5 6 7 8 9 10

Number of Items

CachedPauseBid

�

�

�

�
�

�

�

�

�

�

PauseBid

+

+

+

+

+

+

+

+

+

+

Figure 9: Average time in seconds that takes to fin-
ish an auction (y-axis) as function of the number of
items in the auction.

bid which are much smaller numbers than 1010. Notice also
that our value generation algorithm (Figure 5) generates a
number of bids that is exponential on the number of items,
as might be expected in many situations. As such, these
results do not support the conclusion that time grows ex-
ponentially with the number of items when the number of
bids is independent of the number of items. We expect that
both algorithms will grow exponentially as a function the
number of bids, but stay roughly constant as the number of
items grows.

We wanted to make sure that less expanded nodes does
indeed correspond to faster execution, especially since our
algorithms execute different operations. We thus ran the
same experiment with all the agents in the same machine,
an Intel Centrino 2.0 GHz laptop PC with 1 GB of RAM and
a 7200 RMP 60 GB hard drive, and calculated the average
time that takes to finish an auction for each algorithm. As
shown in Figure 9, cachedpausebid is faster than pause-

bid, the difference in execution speed is even more clear as
the number of items increases.

6. RELATED WORK
A lot of research has been done on various aspects of com-

binatorial auctions. We recommend [2] for a good review.
However, the study of distributed winner determination al-
gorithms for combinatorial auctions is still relatively new.
One approach is given by the algorithms for distributing
the winner determination problem in combinatorial auctions
presented in [7], but these algorithms assume the compu-
tational entities are the items being sold and thus end up
with a different type of distribution. The VSA algorithm
[3] is another way of performing distributed winner deter-
mination in combinatorial auction but it assumes the bids
themselves perform the computation. This algorithm also
fails to converge to a solution for most cases. In [9] the au-
thors present a distributed mechanism for calculating VCG
payments in a mechanism design problem. Their mecha-
nism roughly amounts to having each agent calculate the
payments for two other agents and give these to a secure

700 The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07)



central server which then checks to make sure results from
all pairs agree, otherwise a re-calculation is ordered. This
general idea, which they call the redundancy principle, could
also be applied to our problem but it requires the existence
of a secure center agent that everyone trusts. Another in-
teresting approach is given in [8] where the bidding agents
prioritize their bids, thus reducing the set of bids that the
centralized winner determination algorithm must consider,
making that problem easier. Finally, in the computation
procuring clock auction [1] the agents are given an ever-
increasing percentage of the surplus achieved by their pro-
posed solution over the current best. As such, it assumes
the agents are impartial computational entities, not the set
of possible buyers as assumed by the PAUSE auction.

7. CONCLUSIONS
We believe that distributed solutions to the winner deter-

mination problem should be studied as they offer a better fit
for some applications as when, for example, agents do not
want to reveal their valuations to the auctioneer or when
we wish to distribute the computational load among the
bidders. The PAUSE auction is one of a few approaches
to decentralize the winner determination problem in combi-
natorial auctions. With this auction, we can even envision
completely eliminating the auctioneer and, instead, have ev-
ery agent performe the task of the auctioneer. However,
while PAUSE establishes the rules the bidders must obey, it
does not tell us how the bidders should calculate their bids.

We have presented two algorithms, pausebid and cached-

pausebid, that bidder agents can use to engage in a PAUSE
auction. Both algorithms implement a myopic utility max-
imizing strategy that is guaranteed to find the bidset that
maximizes the agent’s utility given the set of outstanding
best bids at any given time, without considering possible
future bids. Both algorithms find, most of the time, the
same distribution of items as the revenue-maximizing solu-
tion. The cases where our algorithms failed to arrive at that
distribution are those where there was a large gap between
the first and second valuation for a set (or sets) of items.
As it is an NP-Hard problem, the running time of our algo-
rithms remains exponential but it is significantly better than
a full search. pausebid performs a branch and bound search
completely from scratch each time it is invoked. cached-

pausebid caches partial solutions and performs a branch
and bound search only on the few portions affected by the
changes on the bids between consecutive times. cached-

pausebid has a better performance since it explores fewer
nodes (less than half) and it is faster. As expected the
revenue generated by a PAUSE auction is lower than the
revenue of a revenue-maximizing solution found by a cen-
tralized winner determination algorithm, however we found
that cachedpausebid generates in average 4.7% higher rev-
enue than pausebid. We also found that the revenue gener-
ated by our algorithms increases as function of the number
of items in the auction.

Our algorithms have shown that it is feasible to implement
the complex coordination constraints supported by combi-
natorial auctions without having to resort to a centralized
winner determination algorithm. Moreover, because of the
design of the PAUSE auction, the agents in the auction also
have an incentive to perform the required computation. Our
bidding algorithms can be used by any multiagent system
that would use combinatorial auctions for coordination but
would rather not implement a centralized auctioneer.

8. REFERENCES
[1] P. J. Brewer. Decentralized computation procurement

and computational robustness in a smart market.
Economic Theory, 13(1):41–92, January 1999.

[2] P. Cramton, Y. Shoham, and R. Steinberg, editors.
Combinatorial Auctions. MIT Press, 2006.

[3] Y. Fujishima, K. Leyton-Brown, and Y. Shoham.
Taming the computational complexity of
combinatorial auctions: Optimal and approximate
approaches. In Proceedings of the Sixteenth
International Joint Conference on Artificial
Intelligence, pages 548–553. Morgan Kaufmann
Publishers Inc., 1999.

[4] F. Kelly and R. Stenberg. A combinatorial auction
with multiple winners for universal service.
Management Science, 46(4):586–596, 2000.

[5] A. Land, S. Powell, and R. Steinberg. PAUSE: A
computationally tractable combinatorial auction. In
Cramton et al. [2], chapter 6, pages 139–157.

[6] K. Leyton-Brown, M. Pearson, and Y. Shoham.
Towards a universal test suite for combinatorial
auction algorithms. In Proceedings of the 2nd ACM
conference on Electronic commerce, pages 66–76.
ACM Press, 2000. http://cats.stanford.edu.

[7] M. V. Narumanchi and J. M. Vidal. Algorithms for
distributed winner determination in combinatorial
auctions. In LNAI volume of AMEC/TADA. Springer,
2006.

[8] S. Park and M. H. Rothkopf. Auctions with
endogenously determined allowable combinations.
Technical report, Rutgets Center for Operations
Research, January 2001. RRR 3-2001.

[9] D. C. Parkes and J. Shneidman. Distributed
implementations of vickrey-clarke-groves auctions. In
Proceedings of the Third International Joint
Conference on Autonomous Agents and MultiAgent
Systems, pages 261–268. ACM, 2004.

[10] M. H. Rothkopf, A. Pekec, and R. M. Harstad.
Computationally manageable combinational auctions.
Management Science, 44(8):1131–1147, 1998.

[11] T. Sandholm. An algorithm for winner determination
in combinatorial auctions. Artificial Intelligence,
135(1-2):1–54, February 2002.

[12] T. Sandholm, S. Suri, A. Gilpin, and D. Levine.
CABOB: a fast optimal algorithm for winner
determination in combinatorial auctions. Management
Science, 51(3):374–391, 2005.

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 701


