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Abstract

This paper examines an extended double auction
model where market clearing is restricted by tem-
poral constraints. It is found that the allocation
problem in this model can be effectively trans-
formed into a weighted bipartite matching in graph
theory. By using the augmentation technique, we
propose a Vickrey-Clarke-Groves (VCG) mecha-
nism in this model and demonstrate the advantages
of the payment compared with the classical VCG
payment (the Clarke pivot payment). We also show
that the algorithms for both allocation and payment
calculation run in polynomial time. It is expected
that the method and results provided in this paper
can be applied to the design and analysis of dy-
namic double auctions and futures markets.

1 Introduction

A double auction market allows multiple buyers and sellers
to trade commodities simultaneously. Most modern exchange
markets, e.g. the New York Stock Exchange, use double auc-
tion mechanisms. In a typical double auction market, buyers
submit bids (buy orders) to the auctioneer (the market maker)
offering the highest prices they are willing to pay for a cer-
tain commodity, and sellers submit asks (sell orders) to set the
lowest prices they can accept for selling the commodity. The
auctioneer collects the orders and tries to match them using
certain market clearing policies in order to make transactions.

Although price is the major concern of market clearing in
most double auction markets, other factors, such as quan-
tity, quality and temporal constraints, are equally important
in some market situations. For instance, a futures contract
normally specifics not only the price of the underlying com-
modity but also quantity, quality and settlement date. Never-
theless, most real-world exchange markets are purely price-
driven and most studies on double auctions are limited to a
single-valued domain [Wilson, 1985; McAfee, 1992]. One
reason is that some factors, e.g. quantity and quality, can
be eliminated by standardising exchange commodities. How-
ever, those attributes with a continuous range or large number
of varieties, are hard to standardise.

∗This research was supported by the Australian Research Coun-
cil through Discovery Project DP0988750.

This paper considers an extension of the single-valued dou-
ble auction model that allows traders to specify temporal con-
straints in their orders. Roughly speaking, an order is written
in the form (p, t′, t′′), where p stands for the order price and
[t′, t′′] represents the time period when the commodity can be
exchanged (not for the order itself). In this extension, a bid
and an ask is matchable if and only if the bid price is no lower
than the ask price and the intersection of their time constraints
is non-empty. We found that the market clearing problem
under this extension can be transformed into a weighted bi-
partite matching. This allows us to use some standard tech-
niques in graph theory, such as augmentation, for the design
and analysis of the mechanisms. We prove that an allocation
for the double auction is efficient if and only if it corresponds
to a maximum weighted bipartite matching of the graph en-
coding the incoming orders. Based on that, we develop an
efficient and dominant-strategy incentive-compatible double
auction mechanism, i.e. a VCG mechanism [Groves, 1973].
Remarkably, our payment can be implemented much faster
than the classical VCG payment, known as Clarke pivot pay-
ment, while resulting in the same payments, because it di-
rectly uses the abridging and replacing paths generated dur-
ing the allocation process rather than recall the allocation al-
gorithm as Clarke pivot payment does.

It is worth mentioning that during the last decade many
researchers started to look at the mechanism design prob-
lem for dynamic environments where traders are arriving and
departing dynamically, referred to as online mechanism de-
sign [Parkes, 2007]. To model the dynamics, temporal in-
formation is also used. Although the meaning of the tem-
poral information of a trader’s type in the online setting is
different from that in our setting, a trader’s type is mod-
elled in the same way in both settings [Blum et al., 2006;
Bredin et al., 2007]. Therefore, the mechanism in our model
also provides an optimal (offline) solution for a correspond-
ing dynamic market. Such an optimal solution can be directly
used for calculating the competitive ratio of an online market-
clearing algorithm. Moreover, although orders arrive dynam-
ically, the alternating paths are relatively stable and therefore
can be used, for example, to identify potential good orders to
find more efficient allocations in an online setting.

This paper is organised as follows. In Section 2 we briefly
introduce our market model and related concepts. In Sec-
tion 3, we introduce a graphic representation for market situa-
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tions and transfer the market clearing problem into a weighted
bipartite matching. In Section 4, we concentrate on the de-
sign of an allocation algorithm and a payment algorithm, and
prove their desirable properties. We conclude in Section 5
with a brief discussion for the future work.

2 The Model

Consider a double auction market, in which a set B of buyers
and a set S of sellers trade one commodity simultaneously.
Buyers and sellers are traders. Let T = B ∪ S and assume
that the traders are independent and B ∩ S = ∅. We also
assume that each seller and each buyer supplies and demands
a single unit of the commodity.

Each trader i ∈ T has a privately observed type θi =
(vi, si, ei), where vi, si and ei are non-negative real numbers,
vi is the trader’s valuation of a single unit of the commodity,
and si and ei are the starting point and the ending point of
the time constraint [si, ei]. If trader i is a buyer, i obtains
utility vi − p if i receives a unit of the commodity within the
time interval [si, ei] and pays p; i obtains zero utility if i pays
nothing and does not receive the commodity within the time
period. Similarly, if i is a seller, i obtains utility p − vi if
i successfully sells a unit of the commodity within the time
period [si, ei] and receives payment p; i obtains zero utility
if i fails to sell the commodity within the time period and no
payment is made.

Let θ = (θi)i∈T denote the type profile where θi is the type
of trader i. θ−i means the type profile of all traders except
trader i. Note that we treat a type profile as a vector of types
rather than a set of types. Let Θi be the set of all possible
types of trader i, and we write Θ = (Θi)i∈T .

Since we will focus on direct-revelation mechanisms, we
assume that traders directly report their types to the auction-
eer as their orders [Myerson, 2008]. Traders do not necessar-
ily truthfully report their types but no early-start and no late-
end misreports are permitted. Formally, let θi = (vi, si, ei)

be trader i’s type and θ̂i = (v̂i, ŝi, êi) be the trader’s report.
We assume that [ŝi, êi] ⊆ [si, ei]. The intuition behind the
assumption is that no trader would report a temporal con-
straint that might give him negative utility. Let R(θi) be the
set of all permitted reports from trader i given his type θi,
R(Θi) =

⋃
θi∈Θi

R(θi) be the set of all possible reports from
i, and R(Θ) = (R(Θi))i∈T .

Given traders’ reports θ ∈ R(Θ), an ask θi = (vi, si, ei)
(means i ∈ S) and a bid θj = (vj , sj , ej) (means i ∈ B) are
matchable if and only if vi ≤ vj and [si, ei] ∩ [sj , ej ] �= ∅.
That is, the bid’s valuation is no less than the ask’s valuation,
and the intersection of their time constraints is not empty.

An allocation policy π = (πi)i∈T is a function that as-
signs 0 or 1 to each trader, given traders’ reports θ̂ ∈ R(Θ).
For a trader i, if πi(θ̂) = 1 we say i wins; otherwise i loses.
An allocation determines whose order is granted for a trans-
action.

A payment policy x = (xi)i∈T is a function that assigns
a real number to each trader given an input of traders’ reports
θ̂ ∈ R(Θ), i.e. xi(θ̂) ∈ R for all i ∈ T .

Definition 1. A double auction mechanism on Θ is a pair

(π, x), where π is an allocation policy and x is a payment
policy.

Following the standard definition, we say that an auction
mechanism (π, x) is efficient if π maximizes∑

i∈B&πi(θ)=1

vi +
∑

i∈S&πi(θ)=0

vi.

for any type profile θ = ((vi, si, ei))i∈T .
We say that an auction mechanism is dominant-strategy

incentive-compatible, i.e. truthful, if for each trader, report-
ing his true type is his dominant strategy.

There are a number of alternatives to characterise truthful-
ness in an auction mechanism. We will use one of them in this
paper based on [Parkes, 2007; Nisan, 2007]. To describe it,
we need the following two auxiliary concepts [Parkes, 2007].

For each trader i, we define a partial order 	i on R(Θi):

θ̂′i 	i θ̂
′′
i iff

{
v′i ≥ v′′i & [s′i, e

′
i] ⊆ [s′′i , e

′′
i ], if i ∈ S

v′i ≤ v′′i & [s′i, e
′
i] ⊆ [s′′i , e

′′
i ], if i ∈ B

where θ̂′i = (v′i, s
′
i, e

′
i) and θ̂′′i = (v′′i , s

′′
i , e

′′
i ) ∈ R(Θi).

We say that an allocation policy π is monotonic if, for each
i ∈ T , πi(θ̂i, θ̂−i) = 1 implies πi(θ̂

′
i, θ̂−i) = 1 whenever

θ̂i 	i θ̂
′
i.

Definition 2. Given a monotonic policy π and traders’ re-
ports θ̂ ∈ R(Θ), the critical value of trader i of type θi =
(vi, si, ei) is defined as

c(θi, θ̂−i) =

⎧⎪⎨
⎪⎩

sup{v′i : (v′i, si, ei) ∈ R(θi)∧
πi((v

′
i, si, ei), θ̂−i) = 1}, if i ∈ S

inf{v′i : (v′i, si, ei) ∈ R(θi)∧
πi((v

′
i, si, ei), θ̂−i) = 1}, if i ∈ B

It is undefined if no such v′i exists.
Now we are ready to describe a characterisation of truth-

fulness, which will be used in Section 4. Theorem 1 is based
on Theorem 9.36 in [Nisan, 2007] for a single-valued domain
and on [Parkes, 2007] for a single-valued online domain. The
proof is omitted here as it is similar to the above mentioned
theorems.
Theorem 1. A double auction mechanism (π, x) is dominant-
strategy incentive-compatible if and only if:

• π is monotonic.
• every winning seller (buyer) is paid (pays) his critical

value, and the payment is 0 for losing traders.

3 Graph Representation

As assumed in the previous section, each trader has only one
unit of a commodity to sell or buy. Transaction must be made
in pairs: a seller can only sell his good to a unique buyer,
assuming their orders are matchable. This means that to al-
locate the goods in a double auction is to find matchings be-
tween buy orders and sell orders. In such a case we can trans-
form the allocation problem into a matching problem in graph
theory. As a result an efficient allocation corresponds to a
maximum-weighted bipartite matching. We will first review
some concepts related to bipartite matching [West, 2000],
encode incoming orders in a bipartite graph, and then show
some special properties related to the encoding.
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Definition 3. A graph G = (V,E) is a bipartite graph if the
vertex set V consists of two disjoint subsets X and Y , and no
edge has both end points in the same subset. For explicitness,
we denote the graph as G = ((X,Y ), E).

Definition 4. Given a traders’ report θ ∈ R(Θ), we call
Gθ = ((Sθ,Bθ),E) a bipartite graph generated from θ if

• Sθ = {θi : i ∈ S} and Bθ = {θi : i ∈ B},

• E = {(θi, θj) : θi and θj is matchable}.

Definition 5. Given a graph G, a matching M in G is a set
of pair-wise non-adjacent edges, i.e. no two edges share a
common vertex. The size of M is denoted by |M |. A vertex is
matched if it is incident to an edge in the matching. Otherwise
the vertex is free.

Given a matching M ,

• an M -alternating path is a path in which the edges be-
long alternatively to M and not to M .

• an M -augmenting path is an M -alternating path whose
endpoints are free.

• an M -abridging path is an M -alternating path whose
first edge and last edge are in M .

• an M -replacement path is an M -alternating path where
one of the endpoints is free and one of the ending edges
is in M .

A path is simple if it has no repeated vertices. In the rest of
this paper, we will only consider simple paths.

Figure 1 shows an example of bipartite representation of
eight different type reports. Lines and dashed lines indicate
matched edges and free edges respectively, and dots and cir-
cles denote matched vertices and free vertices respectively.
The value beside each vertex is its valuation. Temporal in-
formation is not shown in the graph. It is clear that path
(3,10,2,9) is an augmenting path, path (2,10,4,7)
is an abridging path, and path (2,10,4,7,5) is a replace-
ment path.

Figure 1: Example of Alternating Paths

Given a matching M , we can use an M -augmenting path
p to augment M by changing all matched edges in p to be
free and all the free edges to be matched. By contrast an M -
abridging path can be used in the same way to abridge M .
Consequently, |M | will increase (decrease) by one with one
augmenting (abridging) process. An M -replacement path can
be used to replace a bid or an ask in M without changing the
status of the other vertices.

Definition 6. An allocation policy π is feasible if for any
traders’ reports θ ∈ R(Θ), there is a matching M in the
bipartite graph generated from θ such that M exactly covers
{θi : πi(θ) = 1}.

It follows that any matching in a bipartite graph generated
from traders’ reports uniquely determines a feasible alloca-
tion. In the rest of this paper, we will only consider feasible
allocation policies.
Definition 7. Given bipartite graph Gθ, an edge e between
θi = (vi, si, ei) and θj = (vj , sj , ej), where i ∈ S and
j ∈ B, we define the weight of e as w(e) = vj − vi. For any
set of edges E′ ⊆ E, the weight of E′ is defined as

w(E′) =
∑

e∈E′ w(e).

The weight increase of an M -alternating path p is the total
weight of free edges in p minus that of matched edges in p:

Δ(p) = w(P −M)− w(P ∩M),

where P is the set of all edges in p.

If p is an M -augmenting, M -abridging, or M -replacement
path, then Δ(p) is the net change in the weight of the match-
ing after augmenting, abridging, or replacing by p:
w(M ⊕ p) = w(M) + Δ(p), where M ⊕ p ≡ M ⊕ P , P is
the set of all edges in p, and ⊕ is the symmetric difference
operator on sets: A⊕B = (A ∪B) \ (A ∩B).
Lemma 1. Given Gθ, a matching M in Gθ, and an M -
alternating path p, Δ(p) is equal to

• the valuation of the bid minus that of the ask of the end-
points of p, if p is an augmenting path.

• the valuation of the ask minus that of the bid of the end-
points of p, if p is an abridging path.

• the valuation of the free (matched) endpoint minus that
of the matched (free) endpoint of p when the endpoints
are bids (asks), if p is a replacement path.

We will not provide the proof of Lemma 1 which follows
the weight definition of the edges.

4 Efficient and Truthful Policy Design

In order to design a double auction that is both efficient and
truthful, by Theorem 1, we need to find an efficient and mono-
tonic allocation policy, and a payment policy that calculates
the critical value of each winning trader. Inspired by the
similarity between this allocation problem and the weighted
matching in a bipartite graph, we first transform the model
into a bipartite graph. Within this graph, we show how to
efficiently use the well established methods from bipartite
matching in the allocation policy, and how to calculate critical
payment without running the allocation policy again.

4.1 Efficient & Monotonic Allocation Policy

With the above graph encoding of traders’ reports, we
designed an efficient allocation policy by adopting the
maximum-weighted bipartite matching that constructs a
maximum-weighted matching by beginning with the empty
matching and repeatedly performing augmentations using
augmenting paths of maximum weight increase until a
maximum-weighted matching is achieved [Tarjan, 1983;
Kozen, 1991]. The resulting allocation policy is called
Maximum-weighted Bipartite Matching Allocation (MBM
Allocation), which seeks an allocation that maximises social
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welfare of any reports θ, by first representing θ in a bipartite
graph Gθ, and then applying modified maximum-weighted bi-
partite matching to get a maximum-weighted matching M
which determines all winning reports.

We added a more detailed path selection rule in the
maximum-weighted bipartite matching in order to achieve the
monotonicity property. The rule is based on the order �p

defined for augmenting paths. Let a sequence of vertices
θ1 ◦ ... ◦ θn denote an augmenting path of length n, which
starts from ask θ1 and ends in bid θn. We define �p on all
augmenting paths based on their endpoints:

θ1 ◦ ... ◦ θn �p θ′1 ◦ ... ◦ θ′m iff
(v′1, vn, s

′
1, e1, s

′
m, en) �s (v1, v

′
m, s1, e

′
1, sn, e

′
m),

where �s is the lexicographic order of two equal length
sequences of real numbers: (r11, ..., r

1
n) �s (r21, ..., r

2
n) iff

∃1≤j≤n(r
1
j ≤ r2j ∧ ∀1≤k<j(r

1
k = r2k)). We will use �p in

MBM Allocation to distinguish augmenting paths that have
the same weight increases.

Maximum-weighted Bipartite Matching Allocation:

Initialization:

• Encode reports θ in bipartite graph Gθ.
• Set the result matching M = ∅ for Gθ.

Recursion:

• AugPath = {p : Δ(p) > 0 and p is an M -
augmenting path}.

• MaxAugPath = argmaxp∈AugPath Δ(p).
• If MaxAugPath = ∅, stop recursion.
• Otherwise, let p̂ ∈ MaxAugPath s.t. p �p p̂ for

any p ∈ MaxAugPath, and M = M ⊕ p̂.
Output:

• All reports covered by M win and all the rest lose.

Theorem 2. Maximum-weighted Bipartite Matching Alloca-
tion is efficient.

We prove Theorem 2 in the Appendix. Here we show one
essential lemma used in the proof. In the rest of this paper, π
denotes MBM Allocation.

Lemma 2. Maximum-weighted Bipartite Matching Alloca-
tion is efficient if and only if the maximum-weighted bipartite
matching maximizes the weight of the matching.

Proof. The weight of the matching is∑
πi(θ)=1∧i∈B vi − ∑

πi(θ)=1∧i∈S vi, which is equal

to
(∑

πi(θ)=1∧i∈B vi +
∑

πi(θ)=0∧i∈S vi

)
− ∑

i∈S vi.∑
i∈S vi is fixed, so if the weight of the matching is max-

imised, then
∑

πi(θ)=1∧i∈B vi +
∑

πi(θ)=0∧i∈S vi is also
maximized, and vice versa.

Theorem 3. Maximum-weighted Bipartite Matching Alloca-
tion is monotonic.

Although we added a specific path selection rule based on
�p to avoid randomisation of MBM Allocation in most cases,
there is still one situation where �p cannot help. When two
types are the same and two augmenting paths of maximum
positive weight increase start from them and end in the same
vertex, then �p cannot separate these two paths clearly, i.e.
both of them have a chance of being selected but none of
them are guaranteed. Thus we assume that all type reports of
sellers (buyers) are different. Note that there might be more
than one augmenting path with the same endpoints, but this
does not affect the deterministic property of MBM Allocation.
The proofs of all the theorems are given in the Appendix.

4.2 Truthful Payment Policy

We have found an efficient allocation policy, MBM Alloca-
tion, and proved its monotonicity property which is one of
the two iff conditions to satisfy truthfulness. What is left is to
calculate the critical value for each winning trader.

Obviously, it is not practical to calculate the critical value
as it’s defined in Definition 2. Here we propose another ap-
proach which is inspired by the reverse of MBM Allocation.
A type θi is matched because there is an augmenting path of
maximum positive weight increase ending with θi in some
round of the matching procedure. Therefore, if a type does
not satisfy the above condition, it will not be matched. This
is the basis of our payment policy which is seeking the least
violation condition for each winning type, i.e. the edge con-
dition between winning and losing.

Given traders’ reports θ, if πi(θ) = 1, the payment for
trader i, xi(θ), is defined in terms of abridging and replace-
ment paths starting from θi in the following, which is called
Min-Max Payment (MM Payment). xi(θ) = 0 if πi(θ) = 0.

Min-Max Payment:

xi(θ) =

{
minp∈D∪R v(ending(p)), if i ∈ S
maxp∈D∪R v(ending(p)), if i ∈ B

where
• D is a set of all abridging paths starting from θi,
• R is a set of all replacement paths starting from θi,
• and v(ending(p)) is the valuation of the ending

vertex, the endpoint other than θi, of path p.

For each winning ask, MM Payment gives the minimum
valuation such that, if the ask’s valuation were greater than
or equal to that minimum, it can be removed from the match-
ing to (weakly) increase the weight of the matching, while
for each winning bid, the payment is the corresponding max-
imum. The set D gives all possible ways to remove θi by
abridging, while the set R gives all possible ways to substi-
tute a free vertex for θi. Note that set D does not necessarily
contain the path that was used to match θi, as the path can be
changed with other augmentations after adding θi.
Theorem 4. Given bipartite graph Gθ and a winning type
θi = (vi, si, ei) determined by MBM Allocation, Min-Max
Payment xi(θ) is equal to critical value c(θi, θ−i).
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Another appealing property of Min-Max payment is its
independence from the allocation algorithm. We show that
Min-Max payment results in the same payments as the most
desirable VCG payment (Clarke pivot payment), but it does
not require the recall of the allocation algorithm. Clarke pivot
payment is defined as xi(θ) = V π(θ−i) − V π

−i(θ), where
V π(θ) is the social value given traders’ report profile θ and
the allocation policy π, and V π

−i(θ) is the social value without
counting trader i.
Lemma 3. Given traders’ report θ and efficient and mono-
tonic allocation policy π, for each trader i, Min-Max payment
xMM
i (θ) is equal to Clarke pivot payment xC

i (θ).

Proof sketch. We need to prove that for each winning type θi
if we remove θi from the maximum-weighted matching M
of bipartite graph Gθ by using the path p that gives xMM

i (θ),
the result matching M ′ is also maximum-weighted in Gθ−i

.
By contradiction, assume that M ′ is not maximum-weighted,
we will conclude either M is not maximum-weighted or path
p contradicts the definition of Min-Max payment.

Corollary 1. Double auction mechanism
(MBM Allocation,MM Payment) is efficient, dominant-
strategy incentive-compatible and individual-rational, i.e.
traders never get negative utility.

Figure 2 shows an example of the double auction we have
defined, where the number beside each vertex is the valuation
of the vertex and the value inside parentheses is the payment.

Figure 2: MBM Allocation and MM Payment

4.3 Computational Complexity

We further show that both our allocation policy and payment
policy can be implemented in polynomial time and, more im-
portantly, our payment can be implemented much faster than
Clarke pivot payment.
Theorem 5. Let n be the number of traders’ reports. MBM
Allocation can be implemented in time O(n3), and Min-Max
Payment can be implemented in time O(n3).

This result is significant because, to the best of our knowl-
edge, the implementations of Clarke pivot payment cannot
avoid the recall of the allocation algorithm [Nisan and Ronen,
1999; Sandholm, 2003]. In other words, for each winning re-
port θi, π needs to search another allocation on the remaining
reports θ−i. Therefore, it will take O(n) times of the alloca-
tion time in this model, i.e. O(n4) with MBM Allocation.

5 Conclusion

We have developed an efficient and truthful double auction
mechanism (i.e. a VCG mechanism) in a model where each
trader’s type consists of a valuation of a commodity and a

time period that constrains when the commodity can be ex-
changed. This mechanism is characterised by an allocation
policy and a payment policy. By encoding the model in a bi-
partite graph, we efficiently adapted the maximum-weighted
bipartite matching to get an efficient and monotonic alloca-
tion policy. We also developed a truthful payment policy that
can be implemented faster than Clarke pivot payment while
resulting in the same payments as Clarke pivot payment.

Myerson et al. [1983] proved that there is no efficient,
incentive-compatible and individual-rational bilateral trade
without outside subsidies, i.e. a market with our mechanism
will run in deficit. To avoid this deficit, we need to com-
promise between efficiency and truthfulness. There are two
possible remedies: either relaxing efficiency, or giving up in-
centive compatibility, as investigated by McAfee [1992] and
Wurman et al. [1998] in single-valued domains. Finding how
these compromises can lead to a realistic mechanism under
our model is worth further investigation.

Appendix: Proofs of Theorems

Proof of Theorem 2: In order to prove Theorem 2, by Lemma 2,
we shall prove that the maximum-weighted bipartite matching in-
deed gives a maximum-weighted matching. To do that, we need the
two verified properties of the maximum-weighted bipartite matching
given in Claim 1 and 2 [Tarjan, 1983]. This is one of the advantages
we gained by encoding the model in a graph. We will skip the proofs
of the following two claims.

Claim 1. Given graph G, let M be a matching of size k of maximum
weight among all matchings of size k in G. If we augment M by
an augmenting path of maximal weight increase, then we obtain a
matching of size k + 1 of maximum weight among all matchings of
size k + 1 in G.

Claim 2. The maximum-weighted bipartite matching will augment
along augmenting paths of successively nonincreasing weight in-
crease.

By Claim 1, the maximum-weighted bipartite matching will give
a matching Mk of size k of maximum weight among all matchings
of size k after k augmentations. By Claim 2, Mk is also maximum-
weighted among all matchings of size at most k if the weight in-
crease at the k-th augmentation is positive. Therefore, the matching
it gives until there is no augmenting path of positive weight increase
is maximum-weighted among all matchings.

Proof of Theorem 3: By contradiction, without loss of generality,
assume that πi(θ) = 1 and πi(θ

′
i, θ−i) = 0 for some bids θi �i θ

′
i.

Let θi be matched in round k of π(θ), i.e some augmenting path
ending with θi is of maximal weight increase in round k. Since θ
and θ′i are both not matched before round k, so the matchings are
the same in both π(θ) and π(θ′i, θ−i) after any round < k. Let θm ◦
... ◦ θi be the augmenting path of maximal weight increase selected
in round k of π(θ). Since θi �i θ′i, θm ◦ ... ◦ θ′i is an augmenting
path in round k of π(θ′i, θ−i) and θm ◦ ... ◦ θi �p θm ◦ ... ◦ θ′i.
Moreover, in round k, all augmenting paths in π(θ′i, θ−i), except
those that end with θ′i, are also augmenting paths in π(θ). Thus, in
round k of π(θ′i, θ−i), for any augmenting path p that does not end
with θ′i, p �p θm ◦ ... ◦ θ′i, and all the rest end with θ′i. Therefore,
an augmenting path ending with θ′i should be selected in round k of
π(θ′i, θ−i), which contradicts the assumption.

Proof of Theorem 4: The proof needs the following two claims
which can be found in [Kozen, 1991; Blum et al., 2006].
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Claim 3. Given two matchings M and M ′, M ⊕ M ′ consists of
a collection of vertex-disjoint alternating paths and even length cy-
cles.

Claim 4. Given two matchings M and M ′, a vertex v is an endpoint
of a path in M ⊕M ′ if and only if it is matched in either M or M ′

but not both.

Now we are ready to prove Theorem 4. Without loss of generality,
assume θi = (vi, si, ei) is a winning ask, and let xi = xi(θ) and
ci = c(θi, θ−i). To prove xi = ci, by the definition of ci, we need
to show that for any θ′i = (v′i, si, ei):

1. ∀θ′i:πi(θ
′
i,θ−i)=1(v

′
i ≤ xi).

2. ∃xi−δ<v′
i<xi(πi(θ

′
i, θ−i) = 1) for any δ > 0.

Let M be the matching of π(θ) and M ′ be that of π(θ′i, θ−i). We
will prove these two conditions one by one blow.

Part I: By contradiction, assume that πi(θ
′
i, θ−i) = 1 and

v′i > xi. Let AM (BM ) be all the matched asks (bids) in M ,
and AM′ (BM′ ) be all the matched asks (bids) in M ′. Since π
is monotonic and M and M ′ are maximum-weighted, it follows
that all matched asks in M except for θi must be matched in M ′,
i.e. AM \ {θi} ⊂ AM′ , and all the matched bids in M ′ must be
matched in M , i.e. BM′ ⊆ BM . Thus inequalities |AM | − 1 <
|AM′ | and |BM′ | ≤ |BM | hold. Moreover, |AM | = |BM | and
|AM′ | = |BM′ |, so we get |M | = |M ′|, BM = BM′ , and
AM \{θi} = AM′ \{θ′i}. Therefore, by Claim 3 and 4, there is only
one alternating path ponly = θi ◦ ... ◦ θ′i in M ⊕M ′, and all the rest
are cycles. If all vertices reachable from θi through M -abridging
or M -replacement paths are also reachable from θ′i through M ′-
abridging or M ′-replacement paths, then, since v′i > xi, there is at
least one M ′-abridging or M ′-replacement path of positive weight
increase by which we can remove θ′i to increase the weight of the
matching, which contradicts the choice of M ′.

Let us prove that the above reachability condition holds. (1). For
any vertex v except for θi (θ′i) in ponly , the path between θi (θ′i)
and v is either an abridging or a replacement path with respect to
M (M ′). (2). Any vertex v′ not in ponly that is reachable from
θi by an abridging or replacement path p is also reachable from θ′i
through the same type of path p′. Since p must be connected with
ponly and for any edge e ∈ p and e �∈ ponly , if e ∈ M and e �∈ M ′,
there must be an even length cycle that contains e in M ⊕M ′, and
vice versa, i.e. if e connects vertices v1 and v2 in p, there is always a
corresponding edge or path connecting v1 and v2 in p′. For instance,
Figure 3 shows one alternating path (a,b,c,d,e) and a cycle
(h,i,j,k) of M ⊕ M ′: thin lines and thick lines belong to M
and M ′ respectively, while the double line between f and g is in both
matchings and dashed lines are free. It is easy to see that all vertices
reachable from a through a M -augmenting or M -replacement path
is also reachable from e by a corresponding path with respect to M ′.

Part II: To prove the second condition, we will prove
πi(θ

′
i, θ−i) = 1 for any v′i < xi. By contradiction, assume

that v′i < xi and πi(θ
′
i, θ−i) = 0. By Claim 4 there is a path

pθi ∈ M ⊕ M ′ starting from θi and ending with θn in either M
or M ′. Since xi ≤ vn by the definition of xi and v′i < xi as we
assumed, we can substitute θ′i for θi in pθi to get an M ′-alternating
path pθ′i . If θn is matched in M , then pθ′i is an M ′-augmenting path
and by Lemma 1 Δ(pθ′i) = vn − v′i > 0, which contradicts the
choice of M ′. Thus θn is a matched ask in M ′, and pθ′i is an M ′-
replacement path. Since M ′ is a maximum-weighted, by Lemma 1
Δ(pθ′i) = vn−v′i ≤ 0. Put all results together, we get contradiction
vn ≤ v′i < xi ≤ vn.

Figure 3: Reachability Example

Proof of Theorem 5: Bipartite graph representation of the reports
takes at most n2/4 time by checking each pair of ask and bid,
so there will be at most m = n2/4 edges. According to [Galil,
1986], finding an augmenting path of maximal weight increase can
be solved by Dijkstra’s algorithm taking O(m+n log n) time. There
are at most n/2 rounds, so MBM Allocation can be implemented
in time O(n3). For each winning type, MM Payment can be done
by depth-first or breadth-first search which takes O(n + m) time.
There are at most n winning types, so MM Payment can also be
implemented in time O(n3).
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