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Abstract—An auction mechanism consists of an allocation
rule and a payment rule. There have been several studies
on characterizing strategy-proof allocation rules; if the allo-
cation rule satisfies a condition called weak-monotonicity, an
appropriate payment rule is guaranteed to exist. One desirable
property that an auction mechanism should satisfy is revenue
monotonicity; a seller’s revenue is guaranteed to weakly in-
crease as the number of bidders grows. In this paper, we first
identify a simple condition called summation-monotonicity for
characterizing strategy-proof and revenue monotone allocation
rules. To the best of our knowledge, this is the first attempt
to characterize revenue monotone allocation rules. Based on
this characterization, we also examine the connections between
revenue monotonicity and false-name-proofness, which means
a bidder cannot increase his utility by submitting multiple bids
under fictitious names. In a single-item auction, we show that
they are basically equivalent; a mechanism is false-name-proof
if and only if it is strategy-proof and revenue monotone. On
the other hand, we show these two conditions cannot coexist
in combinatorial auctions under some minor condition.

Keywords-Combinatorial auctions, game theory, revenue

I. INTRODUCTION

Mechanism design of combinatorial auctions has become
an integral part of Electronic Commerce and a promising
field for applying AI and agent technologies. Among various
studies related to Internet auctions, those on combinatorial
auctions have lately attracted considerable attention.

One desirable property of an auction mechanism is that it
is strategy-proof. A mechanism is strategy-proof if, for each
bidder, reporting his true valuation is a dominant strategy,
i.e., an optimal strategy regardless of the actions of other
bidders. In theory, the revelation principle states that in the
design of a mechanism, we can restrict our attention to
strategy-proof mechanisms without loss of generality [2].
In other words, if a certain property, e.g., Pareto efficiency
or high revenue, can be achieved using a mechanism in a
dominant strategy equilibrium, which is a combination of
dominant strategies of bidders, then the property can also
be achieved using a strategy-proof mechanism.

A combinatorial auction mechanism consists of an al-
location rule that defines the allocation of goods for each
bidder and a payment rule that defines the payment of each

An earlier version of this paper was published as [1] and presented at
the 12th International Workshop on Agent-Mediated Electronic Commerce
(AMEC). This version has rigorous proofs, illustrative examples, and results
on combinatorial auctions, which are not included in the earlier version.

winner. There have been many studies on characterizing
strategy-proof social choice functions (allocation rules in
auctions). This is also called the implementability of social
choice functions. In particular, a family of monotonicity
concepts have been identified to characterize implementable
social choice functions. For example, Bikhchandani et al. [3]
proposed weak-monotonicity and showed that it is a neces-
sary and sufficient condition for strategy-proof mechanisms.
These concepts are defined only on an allocation rule; if it
satisfies such a condition, it is guaranteed that there exists an
appropriate payment rule that achieves strategy-proofness.
Thus, a mechanism designer can concentrate on allocation
rules when developing/verifying a mechanism.

Besides these studies, maximizing a seller’s revenue has
also been a major research topic. For single-item auctions,
Myerson [2] introduced the idea of optimal auctions, which
maximize the expected revenue given a distribution of bid-
ders’ types. For combinatorial auctions, various mechanisms
have been developed to achieve approximately optimal rev-
enue in several different settings [4], [5].

On the other hand, revenue monotonicity is recognized as
one of desirable properties a mechanism should satisfy [6].
A mechanism is revenue monotone if the seller’s revenue
is guaranteed to weakly increase as the number of bidders
grows. This property is quite reasonable, since a growing
number of bidders increases competition. However, it is
shown that even the Vickrey-Clarke-Groves (VCG) mech-
anism does not achieve revenue monotonicity. Nevertheless,
there has been virtually no work on characterizing revenue
monotone mechanisms. One notable exception is Rastegari
et al. [7], who proved there exists no mechanism that is rev-
enue monotone, strategy-proof, and weakly maximal, where
weak maximality is a weaker notion of Pareto efficiency.
Furthermore, they mentioned a connection between revenue
monotonicity and false-name-proofness, which is known as
another desirable property of combinatorial auctions.

False-name-proofness generalizes strategy-proofness by
assuming a bidder can submit multiple bids under fictitious
identifiers, e.g., multiple e-mail addresses [8]. Several false-
name-proof mechanisms have been developed so far [9],
[10]. Also, Todo et al. [11] fully characterized false-name-
proof allocation rules by a condition called sub-additivity.

To the best of our knowledge, our paper is the first
attempt to characterize revenue monotone mechanisms. First,
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we identify a condition called summation-monotonicity and
prove that weak-monotonicity and summation-monotonicity
characterize strategy-proof and revenue monotone allocation
rules. Then we actually verified existing combinatorial auc-
tion mechanisms and found that, since the allocation rules
of many well-known mechanisms do not satisfy summation-
monotonicity, these mechanisms are not revenue monotone.

Second, our characterization successfully clarifies the
connections between revenue monotonicity and false-name-
proofness. Summation-monotonicity and sub-additivity look
quite similar, but they are different and interact in a rather
complicated way. In single-item auctions, we show that they
are basically equivalent; a mechanism is false-name-proof if
and only if it is strategy-proof and revenue monotone. On the
other hand, we show that these two conditions cannot coexist
in combinatorial auctions; under some minor conditions,
there exists no combinatorial auction mechanism that is
simultaneously revenue monotone and false-name-proof.

This paper is organized as follows. Section II de-
scribes our model. Section III introduces a condition called
summation-monotonicity and proves that it is necessary and
sufficient for revenue monotonicity. Section IV examines
whether summation-monotonicity holds in existing alloca-
tion rules. Section V provides theoretical considerations of
the connections between revenue monotonicity and false-
name-proofness. Section VI concludes this paper.

II. PRELIMINARIES

Assume there exists a set of potential bidders N =
{1, 2, . . . , n} and a set of goods G = {g1, g2, . . . , gm}.
Let us define N ⊆ N as the set of bidders participating
in an auction. Each bidder i ∈ N has his preferences for
each bundle or goods B ⊆ G. Formally, we model this by
supposing that bidder i privately observes a parameter (or
signal) θi that determines his preferences. We refer to θi as
the type of bidder i and assume it is drawn from a set Θi.

Let us denote the set of all possible type profiles as
ΘN = Θ1×. . .×Θn and a type profile as θ = (θ1, . . . , θn) ∈
ΘN. Observe that type profiles always have one entry for
every potential bidder, regardless of the set of participating
bidders N . We use a symbol 0 in the vector θ as a
placeholder for each non-participating bidder i ̸∈ N and
represent (θ1, . . . , θi−1,0, θi+1, . . . , θn) as θ−i, for θ =
(θ1, . . . , θi−1, θi, θi+1, . . . , θn). When a set of bidders N
participates in the auction, we denote the set of possible
type profiles as ΘN (⊆ ΘN). That is, ΘN is the set of all
type profiles θ for which θi = 0 if and only if i ̸∈ N .

We assume a quasi-linear, private value model with no
allocative externality. The utility of bidder i, when i obtains
a bundle, i.e., a subset of goods B ⊆ G and pays p, is
represented as v(θi, B) − p. We assume a valuation v is
normalized by v(θi, ∅) = 0 and satisfies free disposal, i.e.,
v(θi, B

′) ≥ v(θi, B) for all B′ ⊇ B. We call each Θi

that satisfies these conditions a rich domain [3]. In other

words, the domain of types Θi is rich enough to contain
all possible valuations. This assumption is required so that
weak-monotonicity characterizes strategy-proofness.

A combinatorial auction mechanism M consists of an
allocation rule X and a payment rule p. When a set of
bidders N participates, an allocation rule is defined as X :
ΘN → AN , where AN is a set of possible allocations over
N . Similarly, a payment rule is defined as p : ΘN → RN

+ .
Let Xi and pi respectively denote the bundle allocated to
bidder i and the amount bidder i must pay. We use notations
X(θi, θ−i) and p(θi, θ−i) to represent the allocation and
payment when the declared type of bidder i is θi and the
declared type profile of other bidders is θ−i.

For simplicity, we restrict our attention to deterministic
mechanisms and assume a mechanism is almost anonymous
across bidders and goods; obtained results are invariant
under the permutation of the identifiers of bidders/goods
except for the case of ties. We also assume a mechanism
satisfies consumer sovereignty [7]; there always exists a
type θi for bidder i, where bidder i can obtain bundle
B. In other words, if bidder i’s valuation for B is high
enough, then he can obtain B. Furthermore, we restrict our
attention to individually rational mechanisms. A mechanism
is individually rational if ∀N ⊆ N, ∀i ∈ N , ∀θi, ∀θ−i,
v(θi, Xi(θi, θ−i)) − pi(θi, θ−i) ≥ 0. This means that no
participant obtains negative utility by reporting his true type.

Let us introduce the notion called strategy-proofness.
Definition 1 (strategy-proofness): A combinatorial auc-

tion mechanism M(X, p) is strategy-proof if ∀N ⊆
N,∀i ∈ N, ∀θ−i,∀θi, ∀θ′i, v(θi, Xi(θi, θ−i))−pi(θi, θ−i) ≥
v(θi, Xi(θ′i, θ−i)) − pi(θ′i, θ−i).
A mechanism is strategy-proof if reporting true type θi is a
(weakly) dominant strategy for any bidder i with type θi and
any type profile θ−i; it maximizes his utility regardless of
the other bidders’ reports. A strategy-proof allocation rule
is fully characterized by a simple condition called weak-
monotonicity, assuming the type domain is rich [3].

Definition 2 (weak-monotonicity): An allocation rule
X satisfies weak-monotonicity if ∀N ⊆ N,∀i ∈
N, ∀θ−i,∀θi,∀θ′i, v(θi, Xi(θi, θ−i)) − v(θi, Xi(θ′i, θ−i)) ≥
v(θ′i, Xi(θi, θ−i)) − v(θ′i, Xi(θ′i, θ−i)).
Bikhchandani et al. [3] proved that if an allocation rule
is weakly monotone, we can always find an appropriate
payment rule to truthfully implement the allocation rule.

Next, let us introduce the notion of revenue monotonic-
ity [6], which is known as another desirable property of
combinatorial auctions.

Definition 3 (revenue monotonicity): A combinatorial
auction mechanism M(X, p) is revenue monotone if
∀N ⊆ N,∀θ ∈ ΘN ,∀j ∈ N,∑

i∈N
pi(θ) ≥

∑
i∈N\{j}

pi(θ−j). (1)
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A mechanism is revenue monotone if a seller’s revenue from
an auction is guaranteed to weakly increase as the number
of bidders grows. The left-hand side of Eq. 1 indicates the
seller’s revenue from the auction when the set of bidders N
participates in the auction. The right-hand side indicates the
seller’s revenue when bidder j drops out. In other words,
a combinatorial auction is revenue monotone if the seller’s
revenue does not increase by dropping a bidder.

Rastegari et al. [7], a seminal work on revenue mono-
tonicity, shows the impossibility result that there exists no
deterministic strategy-proof, weakly maximal combinatorial
auction mechanism that is revenue monotone. Roughly
speaking, a combinatorial auction mechanism is weakly
maximal if its allocation cannot be augmented to cause a
losing bidder to win without hurting winning bidders. It is
a weaker notion of Pareto efficiency.

Furthermore, Rastegari et al. [7] mentioned a connection
between revenue monotonicity and false-name-proofness. A
mechanism is false-name-proof if for each bidder, reporting
his true valuations using a single identifier (although the
bidder can use multiple identifiers) is a dominant strategy.

To introduce this property along with our model in this
paper, we add several notations. Let us consider a situation
where bidder i uses s false identifiers id1, . . . , ids and define
a mapping function ϕ such that ϕ(i) = {id1, . . . , ids};
i.e., ϕ(i) represents a set of identifiers owned by bid-
der i. Observe that |ϕ(i)| ≥ 1. Let us represent a type
profile as θ = (θid1 , . . . , θids , θs+1, . . . , θn), and similarly
represent a type profile reported by the set of bidders
ϕ(i) as θϕ(i) = (θid1 , . . . , θids). Here we use θid1 , . . . θids

instead of θ1, . . . , θs for convenience. On the other hand, let
(θi,0, . . . ,0) denote the type profile when bidder i reports
θi with only one identifier although he can use s identifiers.
That is, 0 means that the identifier is not used by bidder i.
Note that these notations can be introduced w.l.o.g., since
we assume almost anonymous mechanisms. Furthermore, to
consistently address false-name-proofness, we represent a
type profile reported by the set of participating bidders other
than ϕ(i) as θ−ϕ(i) = (0, . . . ,0, θs+1, . . . , θn).

Definition 4 (False-name-proofness): A combinatorial
auction mechanism M(X, p) is false-name-proof if
∀N ⊆ N,∀i ∈ N, ∀ϕ(i),∀θ−ϕ(i),∀θi,∀θϕ(i),

v(θi, Xi((θi,0, . . . ,0), θ−ϕ(i))) − pi((θi,0, . . . ,0), θ−ϕ(i))
≥ v(θi,

∪
l∈ϕ(i) Xl(θϕ(i), θ−ϕ(i))) −

∑
l∈ϕ(i) pl(θϕ(i), θ−ϕ(i)).

(2)

Note that when |ϕ(i)| = 1 the definition becomes equiva-
lent to strategy-proofness. It has been shown that VCG is
not false-name-proof and that there exists no false-name-
proof, Pareto efficient mechanism [8]. In addition, Todo et
al. [11] identified a condition called sub-additivity and fully
characterized false-name-proof allocation rules.

III. CHARACTERIZING REVENUE MONOTONICITY

This section introduces a simple condition called
summation-monotonicity that characterizes revenue mono-
tone allocation rules when coupled with weak-monotonicity.

Definition 5 (Summation-monotonicity): An allocation
rule X satisfies summation-monotonicity if ∀N ⊆ N,
∀θ ∈ ΘN , ∀j ∈ N,

∀θ′i s.t.
{

Xi(θ′i, θ−i) ⊇ Xi(θ) and
v(θ′i, Xi(θ′i, θ−i)) = v(θ′i, Xi(θ)),

∀θ′′i s.t. v(θ′′i , Xi(θ′′i , θ−{i,j})) = 0,∑
i∈N

v(θ′i, Xi(θ)) ≥
∑

i∈N\{j}

v(θ′′i , Xi(θ−j)). (3)

Note here that θ−{i,j} denotes a type profile that excludes
bidder i and j. This condition implies for any set of partici-
pating bidders and any type profile, the revenue, which is the
sum of the critical values of the bidders in an auction, weakly
decreases when any bidder drops out from the auction.

The following is an intuitive explanation why summation-
monotonicity holds for a strategy-proof, revenue monotone
mechanism. Let us consider a combinatorial auction with
two goods g1 and g2. Assume that it allocates g1 to bidder 1
and g2 to bidder 2 when a set of bidders N participates. On
the other hand, assume that it allocates g1 to bidder 3 and g2

to bidder 4 when bidder j drops out. The top two rectangles
of Fig. 1 represent the total payments for bidder 1 and 2 and
the bottoms for bidder 3 and 4. If the mechanism is revenue
monotone, p1(θ) + p2(θ) ≥ p3(θ−j) + p4(θ−j) holds.

The arrows at the top of Fig. 1 indicate the left-hand
side of Eq. 3. θ′1 means the minimal type where bidder
1 obtains g1 or any superset, fixing other bidders’ types
than bidder 1. Under the mechanism, v(θ′1, {g1}) must be
greater than p1(θ). Otherwise, bidder 1 has an incentive
not to participate in the auction and individual rationality is
violated. Similarly, θ′2 means the minimal type where bidder
2 obtains g2 or any superset, fixing other bidders’ types than
bidder 2 and v(θ′2, {g2}) must be greater than p2(θ).

The arrows at the bottom of Fig. 1 indicate the right-hand
side of Eq. 3. θ′′3 means the maximal type where bidder 3
cannot obtain g1; he obtains nothing, fixing other bidders’
types than bidder 3. Under the mechanism, v(θ′′3 , {g1}) must
be smaller than p3(θ−j). Otherwise, a bidder with θ′′3 as his
true type has an incentive to pretend that his type is θ3 to
obtain g1, and thus strategy-proofness is violated. Similarly,
θ′′4 means the maximal type where bidder 4 cannot obtain
g2, fixing other bidders’ types than bidder 4 and v(θ′′4 , {g2})
must be smaller than p4(θ−j).

From these facts, summation-monotonicity must hold for
strategy-proof, revenue monotone mechanisms (Lemma 1).
Lemma 2 shows that, as long as summation-monotonicity
and weak-monotonicity hold, we can find an appropriate
payment rule p so that p1(θ) + p2(θ) ≥ p3(θ−j) + p4(θ−j)
holds. Thus, we derive the following theorem:
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Figure 1. Summation-monotonicity

Theorem 1: There exists an appropriate payment rule p
such that a combinatorial auction mechanism M(X, p) is
strategy-proof and revenue monotone if and only if X
satisfies weak-monotonicity and summation-monotonicity.

Lemma 1: If a combinatorial auction mechanism
M(X, p) is strategy-proof and revenue monotone, then
the allocation rule X satisfies weak-monotonicity and
summation-monotonicity.

Proof: Bikhchandani et al. [3] proved that if M is
strategy-proof, X satisfies weak-monotonicity. To prove this
lemma, it suffices to show that if M is strategy-proof and
revenue monotone, X satisfies summation-monotonicity.

Let WN denote the set of winners when a set of bidders N
participates, and let WN\{j} denote the set of winners when
bidder j drops out. Since M(X, p) is revenue monotone,
from Eq. 1, we derive ∀N ⊆ N,∀θ ∈ ΘN ,∀j ∈ N,∑

i∈WN
pi(θ) ≥

∑
i∈WN\{j}

pi(θ−j). (4)

Each term pi(θ) of the left-hand side must be smaller
than the minimum bid in which bidder i(∈ N) still wins;
otherwise M violates individual rationality. Thus we obtain

∀i ∈ WN ,∀θ′i
s.t. Xi(θ′i, θ−i) ⊇ Xi(θ), v(θ′i, Xi(θ′i, θ−i)) = v(θ′i, Xi(θ)),

v(θ′i, Xi(θ)) ≥ pi(θ). (5)

On the other hand, each term pi(θ−j) of the right-hand
side must be greater than the maximum bid in which
bidder i(∈ N \ {j}) loses; otherwise bidder i with type θ′′i
has an incentive to pretend his type is θi. Thus we obtain

∀j,∀i ∈ WN\{j},∀θ′′i s.t. v(θ′′i , Xi(θ′′i , θ−{i,j})) = 0,

pi(θ−j) ≥ v(θ′′i , Xi(θ−j)). (6)

As a result, from Eqs. 4, 5, and 6, we obtain∑
i∈N v(θ′i, Xi(θ)) =

∑
i∈WN

v(θ′i, Xi(θ))
≥

∑
i∈WN

pi(θ)
≥

∑
i∈WN\{j}

pi(θ−j)
≥

∑
i∈WN\{j}

v(θ′′i , Xi(θ−j))
=

∑
i∈N\{j} v(θ′′i , Xi(θ−j))

and Eq. 3 holds.

Lemma 2: If an allocation rule X satisfies weak-
monotonicity and summation-monotonicity, there exists a
payment rule p such that a combinatorial auction mechanism
M(X, p) is strategy-proof and revenue monotone.

Proof: Bikhchandani et al. [3] proved that if X satisfies
weak-monotonicity, there exists a payment rule p such
that M(X, p) is strategy-proof. To prove this lemma, we
show that if X satisfies weak-monotonicity and summation-
monotonicity, we can choose p such that M(X, p) also
satisfies revenue monotonicity.

We are going to derive a contradiction by assuming Eq. 1
does not hold, although M(X, p) is strategy-proof and X
satisfies weak-monotonicity and summation-monotonicity.
More specifically, we assume that for any p with which
M(X, p) is strategy-proof, the following condition holds:

∀p,∃N ⊆ N,∃θ, ∃j,
∑
i∈N

pi(θ) <
∑

i∈N\{j}

pi(θ−j). (7)

Now let us choose γ(> 0) such that∑
i∈N

pi(θ) + γ =
∑

i∈N\{j}

pi(θ−j). (8)

Then, choose a small enough ϵ such that 0 < ϵ < γ
2|N |−1

holds. Also, let us define a type θ′i for each i ∈ N as

v(θ′i, Bi) =
{

pi(θ) + ϵ if Bi ⊇ Xi(θ),
0 otherwise.

These types satisfy the preconditions of Eq. 3: Xi(θ′i, θ−i) ⊇
Xi(θ) and v(θ′i, Xi(θ′i, θ−i)) = v(θ′i, Xi(θ)).

Furthermore, let us define θ′′i for each i ∈ N \{j} as

v(θ′′i , Bi) =
{

pi(θ−j) − ϵ if Bi ⊇ Xi(θ−j),
0 otherwise.

Similarly, these types satisfy the preconditions of Eq. 3:
v(θ′′i , Xi(θ′′i , θ−{j,i})) = 0.

As a result, from Eq. 3, the following inequality holds:∑
i∈N

pi(θ) + |N | · ϵ ≥
∑

i∈N\{j}

pi(θ−j) − (|N | − 1) · ϵ. (9)

By substituting Eq. 8 into Eq. 9, we obtain γ ≤ (2|N |−1)·ϵ.
This contradicts the assumption of ϵ < γ

2|N |−1 .

IV. VERIFYING EXISTING MECHANISMS

This section verifies whether summation-monotonicity is
satisfied in three allocation rules to show how our character-
ization works. First, we focus on a Pareto efficient allocation
rule and then examine two inefficient allocation rules.

Claim 1: A Pareto efficient allocation rule does not sat-
isfy summation-monotonicity.

Proof: Assume there are three bidders 1, 2, and 3
and two goods g1 and g2 for sale. Consider the following
situation where their reported types are given as follows:

386



{g1} {g2} {g1, g2}
bidder 1: 7 0 7
bidder 2: 0 0 8
bidder 3: 0 7 7

A Pareto efficient allocation rule allocates g1 to bidder 1
and g2 to bidder 3. In this case, it allocates g1 to bidder 1
with θ′1 such that v(θ′1, {g1}) = 1+ ϵ. Similarly, it allocates
g2 to bidder 3 with θ′3 such that v(θ′3, {g2}) = 1 + ϵ. Thus,
we obtain 2 · (1 + ϵ) as the left-hand side of Eq. 3.

On the other hand, let us consider the situation where
bidder 3 drops out from the auction. In the Pareto efficient
allocation rule, bidder 2 obtains {g1, g2} if he has a value
greater than 7 on {g1, g2}. If he has a type θ′′2 such that
v(θ′′2 , {g1, g2}) = 7 − ϵ and v(θ′′2 , {g1}) = v(θ′′2 , {g2}) = 0,
he obtains no good, i.e., X(θ′′2 ) = ∅. For bidder 1, since he
obtains no good under the Pareto efficient allocation rule,
v(θ′′1 , ∅) = 0 holds. Thus, the right-hand side of Eq. 3, which
is the maximum bid where bidder 2 loses, is 7 − ϵ.

Finally we obtain 2·(1+ϵ) < 7−ϵ and the Pareto efficient
allocation rule does not satisfy summation-monotonicity.
In fact, by bidder 3’s dropping out, the seller’s revenue
increases from 2 to 7, and revenue monotonicity fails.

The fact that there exists no revenue monotone, Pareto
efficient mechanism has already been proved [6]. However,
note that our proof is much simpler, since we can ignore the
payment rule and concentrate on the allocation rule.

Second, our characterization also reconfirms that the Set
(Set) mechanism, which is trivial and false-name-proof, is
revenue monotone. Set is a very simple mechanism that
allocates all goods to a single bidder with the highest
valuation for the grand bundle, i.e., a bundle of all goods.
Effectively, it sells the grand bundle as a single good using
the Vickrey/second-price auction. The allocation rule in Set
is described as follows:

Xi(θi, θ−i) =
{

G if v(θi, G) ≥ maxl∈N\{i} v(θl, G)
∅ otherwise.

Claim 2: The allocation rule in Set satisfies summation-
monotonicity.

Proof: Assume that bidder i wins when a set of bidders
N participates. Since there is only one winner i, the left-hand
side of Eq. 3 equals to v(θ′i, G), i.e., the valuation where
bidder i still wins. Clearly, v(θ′i, G) ≥ maxl∈N\{i} v(θl, G)
must hold.

Next, let us consider the situation where bidder j drops
out. When j ̸= i, bidder i remains the winner. Since there
is only one winner i, the right-hand side of Eq. 3 equals to
v(θ′′i , G), i.e., the valuation where bidder i becomes a loser.
Clearly, v(θ′′i , G) ≤ maxl∈N\{i,j} v(θl, G) holds. Thus, we
obtain v(θ′i, G) ≥ v(θ′′i , G) and Eq. 3 holds.

When j = i, winner i drops out. Let us denote the new
winner as k. Since there is only one winner k, the right-
hand side of Eq. 3 equals to v(θ′′k , G), i.e., the valuation

where bidder k becomes a loser. Clearly, v(θ′′k , G) ≤
maxl∈N\{i,k} v(θl, G) holds. Thus, we obtain v(θ′i, G) ≥
v(θ′′k , G) and Eq. 3 holds.

Finally, let us examine a non-trivial false-name-proof
mechanism called the Leveled Division Set (LDS) mech-
anism [9]. Rastegari et al. [6] claims that this mechanism is
revenue monotone. However, surprisingly, our characteriza-
tion reveals that it is not.

LDS intuitively predetermines a leveled division set and
reserve prices for each single good. This leveled division set
describes a possible way for dividing goods among different
bidders, e.g., at level 1, all goods are sold in one bundle
and divided into smaller bundles as the level increases. LDS
chooses the level based on the declared types and uses VCG
within the level to determine the allocation and payments.
For two goods, LDS is identical to Set if the reserve prices
are 0.

Claim 3: The allocation rule in LDS does not satisfy
summation-monotonicity.

Proof: Assume that there are two goods g1 and g2 for
sale and the reserve prices for each bundle are defined as
follows: r{g1} = 3, r{g2} = 3, r{g1,g2} = r{g1} + r{g2} = 6.
Also assume that there are five bidders 1-5, whose types are
given as follows:

{g1} {g2} {g1, g2}
bidder 1: 5 0 5
bidder 2: 4 0 4
bidder 3: 0 5 5
bidder 4: 0 4 4
bidder 5: 0 0 6 + ϵ

In this case, LDS allocates {g1, g2} to bidder 5. Since the
reserve price on {g1, g2} is 6, the minimum bid where
bidder 5 still wins is 6 + ϵ. Thus, the right-hand side of
Eq. 3 becomes 6 + ϵ.

On the other hand, let us consider the situation where
bidder 5 drops out. In this case, LDS allocates g1 and g2 to
bidders 1 and 3, respectively. The maximum bid for g1 (g2)
where bidder 1 (bidder 3) loses is 4− ϵ. Thus, the left-hand
side of Eq. 3 becomes 2 · (4 − ϵ).

Therefore, we obtain 2 · (4− ϵ) > 6+ ϵ and the allocation
rule in LDS does not satisfy summation-monotonicity. In
fact, by bidder 5’s dropping out, the seller’s revenue in-
creases from 6 to 8, and revenue monotonicity fails.

V. REVENUE MONOTONICITY AND
FALSE-NAME-PROOFNESS

As it was considered that there is a connection between
revenue monotonicity and false-name-proofness [6], [7], the
example in Claim 1 provides a common example where
VCG is neither revenue monotone nor false-name-proof. Let
us consider a situation where bidder 1′, who values 14 only
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on {g1, g2}, uses two identifiers 1 and 3. Since VCG allo-
cates g1 and g2 to identifiers 1 and 3, respectively, bidder 1′

obtains {g1, g2} and pays 2. On the other hand, when only
two bidders 1′ and 2 participate in the auction, i.e., when
bidder 1′ does not use false identifiers, bidder 1′ obtains
{g1, g2} and pays 8. As this example shows, increasing the
number of participating bidders by or not by false identifiers
can reduce the seller’s revenue.

Therefore, a sub-additive allocation rule apparently al-
ways coincides with a summation-monotone allocation
rule, and vice versa. However, this is not true, al-
though it is certain that sub-additivity looks quite simi-
lar to summation-monotonicity (Definition 5). Recall that
summation-monotonicity implies that the sum of the critical
values of bidders in an auction is guaranteed to weakly
decrease when some of the bidders drop out from the
auction. On the contrary, sub-additivity implies that the
critical value of a bidder when he uses a single identifier
is guaranteed to be smaller than or equal to that when he
uses multiple false identifiers. In fact, existing false-name-
proof mechanisms, such as LDS, are not revenue monotone.

A. Single-item Auctions

We stated that, in general, revenue monotonicity cannot
coexist with false-name-proofness. Nevertheless, in single-
item auctions, we show that they are equivalent under the
following condition.

Assumption 1: For any set of participating bidders N and
for any bidder j(∈ N), if a mechanism allocates a good to
a bidder when N \ {j} participates, it always allocates the
good to some bidder when N participates.

We believe that introducing Assumption 1 is quite natural.
From a seller’s viewpoint, it is undesirable that a good is no
longer allocated when more bidders join the auction. Under
this assumption, the following theorem holds.

Theorem 2: Under Assumption 1, a single-item auction
mechanism is false-name-proof if and only if it is strategy-
proof and revenue monotone.

To prove this theorem, let us separately prove Lemmas 4
and 5. Before proving Lemma 4, we introduce Lemma 3 for
strategy-proof and revenue monotone single-item auctions.

Lemma 3: Let us consider strategy-proof and revenue
monotone single-item auctions that sell good g. If bidder k
wins when the set of bidders N participates, bidder k also
wins when any bidder j(̸= k) ∈ N drops out.

Proof: First, since we assume almost anonymous and
strategy-proof mechanisms, a bidder can win a good only
when his bid is higher than those of other participants.
Formally, assume that bidder k wins when he reports θk.
Then the left-hand side v(θ′k, g) of Eq. 3 satisfies

v(θ′k, g) ≤ v(θk, g). (10)

This intuitively means that the critical value to obtain the
good is lower than v(θk, g).

Second, bidder k still has the largest valuation when
bidder j ̸= k drops out. Now, assume that bidder k doesn’t
win in this situation. The critical value cv

N\{j}
k for k to win

the good g is strictly greater than v(θk, g). Therefore, we
can choose γ such that

v(θk, g) = cv
N\{j}
k − γ (11)

holds. Let us also choose a small enough ϵ(0 < ϵ < γ)
and define a type θ′′k such that v(θ′′k , g) = cv

N\{j}
k − ϵ.

Bidder k loses when he reports θ′′k . Then, the type θ′′k satisfies
v(θ′′k , Xk((θ′′k ,0, . . . ,0), θ−{k,j})) = 0. Since ϵ < γ holds,
from Eq. 11, we obtain

v(θk, g) < v(θ′′k , g). (12)

Finally, from Eqs. 10 and 12, v(θ′′k , g) > v(θk, g) ≥
v(θ′k, g) holds and this violates summation-monotonicity.

Now, we are ready to prove Lemma 4.
Lemma 4: Any strategy-proof, revenue monotone single-

item auction mechanism satisfies false-name-proofness.
Proof: To prove this lemma, we are going to derive

a contradiction assuming that a single-item auction mech-
anism, which is strategy-proof and revenue monotone, is
not false-name-proof. Specifically, we assume that for some
θ−ϕ(i), there exists bidder i with type θi who can increase
his profit using false identifiers ϕ(i):

v(θi, Xi((θi,0, . . . ,0), θ−ϕ(i))) − pi((θi,0, . . . ,0), θ−ϕ(i))
< v(θi,

∪
l∈ϕ(i) Xl(θϕ(i), θ−ϕ(i))) −

∑
l∈ϕ(i) pl(θϕ(i), θ−ϕ(i)).

(13)
Since we consider the case where bidder i can increase his

utility, the winner k must be in ϕ(i) when a set of bidders
N participates. Let θk denote the type reported by bidder k.
From Lemma 3, bidder i wins when he reports θk with only
one identifier. We obtain

Xk(θϕ(i), θ−ϕ(i)) = Xi((θk,0, . . . ,0), θ−ϕ(i)). (14)

Next, from Eq. 1, we obtain

pi((θk,0, . . . ,0), θ−ϕ(i)) ≤ pk(θϕ(i), θ−ϕ(i)). (15)

Furthermore, from strategy-proofness, we obtain

v(θi, Xi((θi,0, . . . ,0), θ−ϕ(i))) − pi((θi,0, . . . ,0), θ−ϕ(i))
≥ v(θi, Xi((θk,0, . . . ,0), θ−ϕ(i))) − pi((θk,0, . . . ,0), θ−ϕ(i)).

(16)
As a result, from Eqs. 14, 15, and 16,

v(θi, Xi((θi,0, . . . ,0), θ−ϕ(i))) − pi((θi,0, . . . ,0), θ−ϕ(i))
≥ v(θi, Xk(θϕ(i), θ−ϕ(i))) − pk(θϕ(i), θ−ϕ(i))

holds. Thus, this contradicts Eq. 13.
Lemma 5: Under Assumption 1, any false-name-proof

single-item auction mechanism satisfies strategy-proofness
and revenue monotonicity.

Proof: If every bidder uses only one identifier, false-
name-proofness is equivalent to strategy-proofness. To prove
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this lemma, we show that if a mechanism is false-name-
proof, then it is also revenue monotone. The model of rev-
enue monotonicity assumes that the set of types of bidders
who always participate is fixed. Thus, we can concentrate
on the case where a bidder with θi uses s identifiers and
submits (θi, θid2 , . . . , θids), in which he still submits his true
type θi. Here, if there is no winner when a set of bidders
N \ ϕ(i) ∪ {i} participates, revenue monotonicity always
holds, regardless of the allocation when N participates.
Then, let us consider the case where the good is allocated
to some bidder i when N \ ϕ(i) ∪ {i} participates. From
Assumption 1, if a good is allocated to bidder i when
N \ ϕ(i) ∪ {i} participates, then the good is also allocated
to bidder k when N participates.

Let us consider that bidder k belongs to N \ ϕ(i). From
strategy-proofness, a bidder wins if he submits the highest
bid. For the winning bidder i when N\ϕ(i)∪{i} participates,

v(θi, g) ≥ max
l∈N\ϕ(i)

v(θl, g) ≥ v(θk, g). (17)

Since the winning bid θi still exists when N participates,
for the winning bidder k ∈ N \ ϕ(i) when N participates,
v(θk, g) ≥ v(θi, g) holds. Here, since Eq. 17 is violated if
v(θk, g) > v(θi, g) holds, v(θk, g) always equals to v(θi, g).
Accordingly, the payment when N \ ϕ(i) ∪ {i} participates
and i wins equals to that when N participates and k wins.
In fact, i’s payment pi((θi,0, . . . ,0), θ−ϕ(i)) is v(θk, g),
while k’s payment pk(θϕ(i), θ−ϕ(i)) is v(θi, g). Therefore,
the mechanism satisfies revenue monotonicity.

On the other hand, let us consider that bidder k be-
longs to ϕ(i). We obtain v(θi, Xi((θi,0, . . . ,0), θ−ϕ(i))) =
v(θi, Xk(θϕ(i), θ−ϕ(i))). By substituting this into Eq. 2,
pi((θi,0, . . . ,0), θ−ϕ(i)) ≤ pk(θϕ(i), θ−ϕ(i)) holds, so the
mechanism satisfies revenue monotonicity.

B. Combinatorial Auctions

This subsection reveals that false-name-proofness and rev-
enue monotonicity cannot coexist in combinatorial auctions.
To provide a clear proof, we introduce the following two
assumptions.

Assumption 2 (Independence of irrelevant good):
Assume bidder i is winning all goods. If we add an
additional good that is wanted only by bidder i, and his
valuation for all goods is larger than or equal to some
constant c, then he still wins all goods.

The independence of irrelevant good (IIG) condition [12]
is intuitively reasonable and is satisfied in almost all well-
known mechanisms, in particular, in all existing false-name-
proof mechanisms (to the best of our knowledge). This is
true for a mechanism that uses predefined reserve prices,
such as LDS, assuming that c is large enough compared to
the reserve price. Note that the IIG condition is different
from the typical Independence of Irrelevant Alternatives
(IIA) conditions, which are often quite strong and apply to

a wide variety of situations. Since the IIG condition applies
only to very specific situations, we consider it quite mild.

Assumption 3: In a combinatorial auction, if there exists
no bid on multiple goods, then for each good, a mechanism
allocates the good to its highest bidder, as long as the highest
bid is larger than or equal to some constant c.
This assumption is also quite natural and is satisfied in
almost all well-known mechanisms.

Theorem 3: Under Assumptions 2 and 3, there exists no
combinatorial auction mechanism M that simultaneously
satisfies revenue monotonicity and false-name-proofness.

Proof: Let us assume there exists a mechanism M that
satisfies Assumptions 2 and 3, revenue monotonicity, and
false-name-proofness and derive a contradiction.

First, let us consider the following situation:
Case 1:

{g1} {g2} {g1, g2}
bidder 1: 0 0 c
bidder 2: c − ϵ 0 c − ϵ

Bidder 1 must win in Case 1. If bidder 1 is interested in {g1}
rather than {g1, g2}, then bidder 1 wins from Assumption 3.
Then in Case 1, bidder 1 still wins from Assumption 2.

Next, we add another bidder 3:
Case 2:

{g1} {g2} {g1, g2}
bidder 1: 0 0 c
bidder 2: c − ϵ 0 c − ϵ
bidder 3: 0 c/2 − ϵ c/2 − ϵ

We show that bidder 1 still wins in Case 2. If no bidder
wins, then the revenue becomes 0 and revenue monotonicity
is violated. Also, if only bidder 3 wins, the revenue must be
at most c/2− ϵ and revenue monotonicity is violated. Thus,
let us assume bidder 2 and 3 win in Case 2. Then consider
the following situation:

Case 3:
{g1} {g2} {g1, g2}

bidder 1: 0 0 c
bidder 2: c − ϵ 0 c − ϵ
bidder 3: 0 c − ϵ c − ϵ

Bidder 3 must also win in Case 3, and the payment is at
most c/2−ϵ. Otherwise, bidder 3 has an incentive to under-
declare his valuation to c/2−ϵ so that the situation becomes
identical to Case 2. Also, since we assume the mechanism
is almost anonymous bidder 2 also wins and pays at most
c/2−ϵ. However, in Case 1, bidder 2 can submit false-name
bids and make the situation identical to Case 3 and obtain
{g1, g2} by paying c − 2ϵ. Thus, false-name-proofness is
violated. In Case 2, bidder 1 must win and pays c − ϵ.

Then, we add two more bidders 4 and 5:
Case 4:

{g1} {g2} {g1, g2}
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bidder 1: 0 0 c
bidder 2: c − ϵ 0 c − ϵ
bidder 3: 0 c/2 − ϵ c/2 − ϵ
bidder 4: c − 2ϵ 0 c − 2ϵ
bidder 5: 0 c/2 − 2ϵ c/2 − 2ϵ

Adding bidders 4 and 5 will not affect the outcome in
M. Otherwise, revenue monotonicity is violated. Thus, in
Case 4, bidder 1 still wins and pays c − ϵ for {g1, g2}.

Finally, let us consider the following situation:
Case 5:

{g1} {g2} {g1, g2}
bidder 2: c − ϵ 0 c − ϵ
bidder 3: 0 c/2 − ϵ c/2 − ϵ
bidder 4: c − 2ϵ 0 c − 2ϵ
bidder 5: 0 c/2 − 2ϵ c/2 − 2ϵ

In Case 5, from Assumption 3, bidder 2 and 3 obtain g1 and
g2, and pay c−2ϵ and c/2−2ϵ, respectively. If bidder 1 joins,
the situation becomes identical to Case 4. Then the revenue
decreases from 3c

2 −4ϵ to c− ϵ. Thus, revenue monotonicity
is violated and this contradicts the assumption.

Let us clarify the difference between our Theorem 3 and
Rastegari et al.’s results. They showed that there exists no
deterministic strategy-proof combinatorial auction mecha-
nism that is false-name-proof and weakly maximal. They
also proved that there exists no deterministic strategy-proof
combinatorial auction mechanism that is revenue monotone
and weakly maximal. Thus, revenue monotonicity and false-
name-proofness cannot coexist assuming the mechanism is
weakly maximal. On the other hand, we proved that rev-
enue monotonicity and false-name-proofness cannot coexist
assuming the mechanism satisfies Assumptions 2 and 3. 1

Weak maximality and these two conditions are indepen-
dent; weak maximality does not mean these two conditions
hold, and these conditions do not mean weak maximality
holds. We believe our assumptions are very mild, since
they apply only to very specific situations, while weak
maximality applies to a wide variety of situations. Thus,
it is more likely that a mechanism, which does not satisfy
weak maximality, satisfies these two conditions.

VI. CONCLUSIONS

This paper identified a simple condition called summation-
monotonicity for characterizing strategy-proof and revenue
monotone allocation rules. To the best of our knowledge,
this is the first attempt to characterize revenue monotone
allocation rules. Our characterization is useful for devel-
oping/verifying mechanisms. To demonstrate the power of
our characterization, we verified existing auction mecha-
nisms and found that several non-trivial mechanisms are not
revenue monotone. In addition, our characterization enables

1To be precise, we also assume a mechanism is almost anonymous.

us to examine the connections between revenue monotonic-
ity and false-name-proofness. In a single-item auction, we
showed that they are basically equivalent. Whereas, we also
showed that they cannot coexist in combinatorial auctions
under some minor conditions.

In future work, we hope to design a novel deterministic,
revenue monotone combinatorial auction mechanism, since
only a randomized mechanism has been proposed so far [13].
Furthermore, by utilizing our characterization, we hope to
examine several theoretical properties of revenue monotone
allocation rules, e.g., the upper bound on possible social
surplus for revenue monotone mechanisms.
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