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Abstract ing are founded on the notion of agents as utility optimiz-
ers in the presence of complete and incomplete information
A negotiating agent engages in multi-issue bilateral ne- about their opponents [9].

gotiation in a dynamic information-rich environment. The Two probability distributions form the foundation of
agent strives to make informed decisions. The agent mayhoth the offer evaluation and the offer making processes.
assume that the integrity of some of its information decaysThey are both over the set of all deals and are based on all
with time, and that a negotiation may break down under cer- jnformation available to the agent. The first distribution is
tain conditions. The agent makes no assumptions about thehe probability that any deal is acceptableQ®. The sec-
internals of its opponent — it focuses only on the signals ond distribution is the probability that any deal will prove to

that it receives. It constructs two probability distributions pe acceptable thiA— this distribution generalizes the no-
over the set of all deals. First the probability that its oppo-  tion of utility.

nent will accept a deal, and second that a deal will prove to

L NA may not have a von Neumann-Morgerstern utility
be acceptable to it in time.

function. NA makes no assumptions about the internals of
OP in particular whether it has a utility functioNA does
make assumptions about: the way in which the integrity of
1. Introduction information will decay, preferences that its opponent may
have for some deals over others, and conditions that may
A Negotiating AgentNA, engages in bilateral bargain- lead to breakdown. It also assumes that unknown probabil-
ing with an opponentOP. It strives to make informed de- ities can be inferred usingpaximum entropy probabilistic
cisions in an information-rich environment that includes in- 10gic [8] that is based on random worlds [5]. The maximum
formation drawn from the Internet by bots. Its design was €ntropy probability distribution is “the least biased estimate
provoked by the observation that agents are not always util-Possible on the given information; i.e. it is maximally non-
ity optimizers.NA attempts to fuse the negotiation with the committal with regard to missing information” [6]. In the
information generated both by and because of it. It reactsabsence of knowledge abaDf's decision-making appara-
to information derived from its opponent and from the en- tus,NAassumes that the “maximally noncommittal” model
vironment, and proactively seeks missing information that iS the correct model on which to base its reasoning.
may be of value. A preference relations an assumption thaiA makes
This work is based on the notion that when an intelli- aboutOP's preferences for some deals over others. For ex-
gent agent buys a hat, a car, a house or a company she doesnple, that she prefers to pay a lower price to a higher price.
so because she feels comfortable with the general terms oA\ single-issue preference relati@ssumes that she prefers
the deal. This “feeling of comfort” is achieved as a result deals on the basis of one issue alone, independent of the
of information acquisition and validation. Negotiation is as values of the other issues. A preference relation may be as-
much of an information acquisition and exchange processsumed prior to the negotiation, or during it based on the of-
as it is an offer exchange process — one feeds off the otherfers made. For example, the opponent may display a prefer-
NA draws on ideas from information theory. Game the- ence for items of a certain color; [4] describes a basis for or-
ory tells us what to do, and what outcome to expect, in many dering colors. The preference relations illustrated here are
well-known negotiation situations, but these strategies andsingle-issue orderings, but the agent’'s reasoning operates
expectations are derived from assumptions about the interequally well with any preference relation as long as it may
nals of the opponent. Game theoretic analyses of bargainbe expressed in Horn clause logic.
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Under some circumstances bilateral bargaining has ques- 2. A sequence of alternating offers, and
tionable value as a trading mechanism. Bilateral bargaining 3. An agent quits and walks away from the negotiation.
is known to be inherently inefficient [10]. [1] shows that a The negotiation ceaseitherin the second round if one of
seller is better off with an auction that attraets+ 1 buy- the agents accepts a standing offerin the final round if
ers than bargaining with individuals,no matter whathe one agent quits and the negotiation breaks down.
bargaining protocol is. [11] shows that the weaker bargain-  In the first stage the agents simultaneously g8ffdr(.)
ing types will fare better in exchanges leading to a gradual messages to each other. These initial offers are taken as lim-
migration. These results hold for agents who aim to opti- its on the range of values that are considered possible. This

mize their utility and do limit the work described here. is crucial to the method described in Sec. 3 where there
are domains that would otherwise be unbounded. The ex-
2. The Negotiating Agent:NA change of initial offers “stakes out the turf” on which the

subsequent negotiation will take place. In the second stage
NA operates in an information-rich environment. The in- an Offer(.) message is interpreted as an implicit rejection,
tegrity of its information, including information extracted Reject.), of the opponent’s offer on the table.
from the Internet, will decay in time. The way in which
this decay occurs will depend on the type of information, 2 2 Agent Architecture
and on the source from which it is drawn. Little appears to
be known about how the Integrlty of information, such as |ncoming messages from all sources are time-stamped
news-feeds, decays. and placed in an “In Box",X, as they arriveNA has a
One source oNAs information is the signals received knowledge baséC and a belief sef3. Each of these two
from OP. These include offers tNA, and the acceptance or = sets contains statements 4h K contains statements that
rejection ofNA's offers. If OP rejected\A's offer of $8 two are generally true, such & (Accepfr) «— —Rejectz))
days ago then what isiA's belief now in the proposition _je. an agent does one thing or the other. The belief set
that OP will accept another offer of $8 now? Perhaps itis 5 — {3;} contains statements that are each qualified with a
around 0.1. A linear model is used to model the integrity de- given sentence probabi“’tB(ﬂi)’ that represents an agent’s
cay of these beliefs, and when the probability of a decaying pelief in the truth of the statement. These sentence probabil-
belief approaches 0t3he belief is discarded. This choice ities may decay in time.
of a linear model is independent of the bargaining method.  The distinction between the knowledge bagend the
The model of decay could be exponential, quadratic or whatpelief sets is simply thatkC contains unqualified statements

ever. and B contains statements that are qualified with sentence
probabilities JC andB play different roles in the method de-
2.1. Interaction Protocol scribed in Sec. 3.

NA's actions are determined by its “strategy”. sirat-
The agents communicate using sentences in a first-ordeggyis a functionS : X x B — A where A is the set of
languageC. This includes the exchange, acceptance and re-actions. At certain distinct times the functiénis applied

jection of offers.L contains the following predicate®f- o K and B and the agent does something. The set of ac-
fer(6), Acceptd), Rejects) and Quit(), whereOffer(d)  tions, 4, includes sendin@ffer(.), Accept.), Reject.) and
means “the sender is offering you a de&] Accepts) Quit(.) messages t®P. The way in whichS works is de-

means “the sender accepts your d&alRejectd) means  scribed in Sec. 5. Momentarily before tBefunction is ac-
“the sender rejects your deaf and Quit(.) means “the tivated, a “revision functionR is activated:
sender quits — the negotiation ends”. R: (X xKxB)— (KxB)
Two negotiation protocols are described. First, negotia- R clears the “In Box”, and stores the messagitiserin 1
tion without decayin which all offers stand for the the en-  jith a given sentence probability in K.
tire negotiation. Second, witvith decayin which offers A deal 5, is a commitment for the sender to do some-
stand only if accepted by return NArepresentOPs of-  thing,  (the sender’s “terms”), subject to the receiver com-
fers as beliefs with sentence probabilities that decay in time. mjtting to do somethingyw (the receiver’s “terms”)s =
NA and OP each exchange offers alternately at succes- (7 ;). NAmay have a real-valuadtility function:U : 7 —
SiVe discrete times [7] They enter intO a Commitment if §R’ where7 is the set of terms. If SO, then for any deal
one of them accepts a standing offer. The protocol has three; — (7. ) the expressiofU(w) — U(7) is called thesur-
stages: plusof §. An agent may be unable to specify a utility func-
1. Simultaneous, initial, binding offers from both agents; tion either precisely or with certainfySec. 4 describes a

i u ”
1 Asentence probability of 0.5 represents “maybe, maybe not”. 2 The often-quoted oxymoron “I paid too much for it, but its worth it.”
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predicateNAAc(g.) that represents the “acceptability” of a
deal.

offers may only be based on past experience or circumstan-
tial information? So the opening offers are simply taken as

NA uses three things to make offers: an estimate of thegiven.

likelihood thatOP will accept any offer [Sec. 3], an estimate
of the likelihood thatNA will, in hindsight, feel comfort-

In the four sub-sections followingNA is attempting sell
something taOP. In Secs. 3.1 and 3.RAs termst are to

able accepting any particular offer [Sec. 4], and an estimatesupply a particular good, an@P's termsw are money —

of whenOP may quit and leave the negotiation [Sec. 5.2]. in those examples the amount of monejys the subject of
the negotiation. In Secs. 3.3 and 3A's terms are to sup-
ply a particular good together with some negotiated war-
ranty period, andDP’s terms are money — in those exam-

Let G be the set of all positive ground literals that can ples the amount of monayand the period of the warranty
be constructed using the predicate, function and constanperiodw are the subject of the negotiation.
symbols in£. A possible worldis a valuation function
v: G — {T, L}. V denotes the set of all possible worlds, i
and V¢ denotes the set of possible worlds that are consis-3-1. One Issue — Without Decay
tent with a knowledge bagé [5].

A random world for K is a probability distribu- The unary predicat©PAcgz) means “the amount of
tion Wx = {p;} over Vi = {v;}, where Wi ex- money$x is acceptable t®OP’. NAis interested in whether
presses an agent's degree of belief that each of the possibléhe unary predicat®PAcdz) is true for various values of
worlds is the actual world. Theerived sentence proba- $z. NA assumes the following preference relation on the
bility of anyo € £, with respect toa random worldW OPAccpredicate:
is: k1 2V, y((z > y) — (OPAcqz) — OPAcqy)))

Suppose thatlA's opening offer iss, andOP's opening of-
fer isw wherew < @. ThenC now contains two further
sentencesss : “OPAcdw) andxs : OPAcdw). There are
noww — w possible worlds, and the maximum entropy dis-

2.3. Random worlds

Pw,(0) 2 Z{pn coisTinvy, } Q)
A random worldW  is consistenwith the agent’s beliefs
Bif: (VG € B)(B(8) = Pw,(0)). Thatis, for each belief OWw = PO
its derived sentence probability as calculated using Eqgn. 1tribution is uniform.

is equa| to its given sentence probab”ny Suppose thalA knows its true valuation for the gOOd,

The entropyof a discrete random variabl§ with prob-  una, and thatNA has decided to make an “expected-utility-
ability mass functior{p, } is [8]: optimizing” offer: x = % This offer is calculated on
H(X) = -, pnlogp, where:p, > 0andy p, = 1. the basis of the preference orderingand the two signals
Let Wk 5y be the “maximum entropy probability distri- thatNA has recgived fron®OP. The response is in't(.err.ns of
bution overV ¢ that is consistent wit#”. Given an agent  only NA's valuationun, and the signaRejectw) — it is in-
with K and 3, its derived sentence probabilifgr any sen-  dependent of the sign@lffer(w) which implies thatv is ac-
tenceo € L, is: ceptable.

In the standard game theoretic analysis of bargaining [9],
NAassumes thd@P has a utility,uep, that it lies in some in-
terval[u, u], and that the expected valuewj, is uniformly
distributed on that interval. On the basis of these assump-
tionsNA then derives the expected-utility-optimizing offer:
% These two offers differ by in the game-theoretic re-
sult andw in the maximum entropy result. The game theo-
retic approach relies on estimates foandu:

E( [u.7] | Rejectw) A Acceptw) )

If OP has a utility, and it may not, then ©P is rational:

u < w < w. The inherent inefficiency of bilateral bargain-
ing [10] shows for an economically ration@lP that wgp,

@)

Using Eqgn. 2, the derived sentence probability for any be-
lief, 3;, is equal to its given sentence probability. So the term
sentence probabilitis used without ambiguity.

(Vo € L)P(0) = PW{)C,B}(U)

3. Estimating P(OPAc(.))

NA does two different things. First, it reacts to offers re-
ceived fromOP — that is described in Sec. 4. Second, it
sends offers tdP. This section describes the estimation
of P(OPAcd0)) where the predicat®PAcgd) means “the
deald is acceptable tOQP".

When a negotiation commencli$\ may have no infor- 3 Inrather dire circumstances King Richard IIl of England is reported to
mation abouOP or about prior deals. If so then the initial have initiated a negotiation with remarkably high stakes: “A horse! a
horse! my kingdom for a horse!” [William Shakespeare]. Fortunately
for Richard, a person named Catesby was nearby, and advised Richard
attributed to Samuel Goldwyn, movie producer, illustrates that intelli- to retract this rash offer “Withdraw, my lord”, and so Richard’s inten-
gent agents may choose to negotiate with uncertain utility. tion to honor his commitments was not put to the test.
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and so consequently, may be greater thab. There is no
reason to suspect thatandw will be equal.

3.2. One Issue — With Decay

As in the previous example, suppose that the opening of-
fers at timet, are taken as given and ateandw. Then/C
containsx1, k2 andks. SUppPOSEC containsn consecutive,
integer constants in the intenal, @], wheren = w—w+1,
that represent various amounts of money.induces a to-
tal ordering on the sentence probabilities @PAcdx) on
the intervalw, @], where the probabilities are 0 atw, and
~ 1 atw.

Suppose that at timg NA makes an offet,,, which
is rejected byOP, who has replied at timé, with an of-
fer of wy, Wherew < wy, < wpe < @. At time ¢35 B
containsf; : OPAcqw,,) and 3y : OPAcqw,p). Sup-
pose that there is some level of integrity decay on these
two beliefs:0 < B(#;1) < 0.5 < B(f2) < 1. ThenV
containsn + 1 possible worlds ranging from “all false” to
“all true” each containing: literals. So a random world for
K will consist ofn + 1 probabilities{p; }, where, sayp;
is the probability of “all true”, and, .1 is the probabil-
ity of “all false”. P, sy will be the distribution that max-
imizes— )", py log p,, subject to the constraintg;, > 0,
> pn =1L py = B(6y) and Yoy
B(f2).

The optimization of entropy/Z, subject to linear con-
straints is described in Sec. 3.2.1 bel®yy 5, is:

Pn

B(81) i =
m |f1§n§w_wna+].

Dn = 7]3(57?3:]3551) if0—wne+1<n<W—wep+2
o o —wop+2<n<wW—w+2

Using Eqgn. 2, fotv,, < < wpa:

P(OPAcdz)) = B(f1) + —“—2(B(8,) — B(61))

Wna — Wop
©)

two new beliefs due to the total ordering of sentence prob-
abilities onfw, @] induced byx,. This inconsistency is re-
solved by the revision functioR. that here discards incon-
sistent older beliefs3, and (., in favor of more recent be-
liefs. If the agents continue in this way then the sentence
probabilities for theOPAccpredicate are given simply by
Eqgn. 3 using the most recent values gy, andw,,,.

The analysis given above requires that values be speci-
fied for the opening offersy and@. The only part of the
probability distribution that depends on the values chosen
for w andw are the two “tails” of the distribution. So the
choice of values for these two opening offers is unlikely to
effect the estimates. The two tails are necessary to “soak
up” the otherwise unallocated probability.

3.2.1. Maximizing Entropy with Linear Constraints. |If

X is a discrete random variable taking a finite humber of
possible valueqz;} with probabilities{p;} then theen-
tropyis the average uncertainty removed by discovering the
true value ofX, and is given byH = —>"  p,logps,.
The direct optimization off subject to a numbe#, of lin-

ear constraints of the forfy_, p,gr(x,) = g, for given
constantsy,,, wherek = 1,...,0, is a difficult problem.
Fortunately this problem has the same unique solution as
the maximum likelihood problerfor the Gibbs distribution
[13]. The solution to both problems is given by:

exp(= Yy Megi (%))
ZnL eXp(i Zzzl /\kgk (Sﬂm))

forn = 1,2,---, where the constants\;} may be calcu-
lated using Eqn. 4 together with the three sets of constraints:
Pn>0,>, pn=1andd’ pngr(z,) = g,. The distribu-
tion in Egn. 4 is known a&ibbs distribution

Calculating the expressions for the valueqpf } given
in the example above in Sec. 3.2 does not require the full
evaluation of the expressions in Egn. 4. That equation shows
that there are just three different values for fpg }. Apply-
ing simple algebra to that fact together with the constraints

(4)

n

These probability estimates are used in Sec. 5 to calculateyields the expressions given.

NA's next offer.

The values folP(OPAcqz)) in the regionw,, < z <
wne are derived from only two pieces of information that are
the two signalRejecfw,,,) and Offer(w,,) each qualified
with the time at which they arrived, and the decay rate on
their integrity. The assumptions in the analysis given above
are: the choice of values for andw — which do not ap-
pear in Egn. 3 in any case — and the choice of the “maxi-
mally noncommittal” distribution.

If the agents continue to exchange offers then new beliefs
will be acquired and the integrity of old beliefs will decay. If
the next pair of offers lies within the intervab,,, w,,] and
if the integrity of 3, and 3, decays then the sentence prob-
abilities of 3; and 3, will be inconsistent with those of the

3.3. Two Issues — Without Decay

The above approach to single-issue bargaining general-
izes without modification to multi-issue bargaining, it is il-
lustrated with two issues only for ease of presentation. The
problem considered is the sale of an item with. . , 4 years
of warranty. The terms being negotiated specify an amount
of moneyp and the number of years warranty The pred-
icateOPAcdqw, p) now means OP will accept the offer to
purchase the good witte years warranty for '

NA assumes the following two preference order-
ings, andC contains:
k11 : Vz,y, z((x > y) — (OPAcdy, z) — OPAcdz, 2)))
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K12 : Vz,y, z((x > y) — (OPAcdz, z) — OPAcCz,y))) Suppose thaB3 contains:3;; : OPAcd2,16), fi2 :

As in Sec. 3.1, these sentences conveniently reduceOPAcd2,14), 813 : OPAcc1,11) and (4 : OPAcE3, 13)

the number of possible worlds. The number of possi- — this is the same offer sequence as considered in Sec. 3.3
ble worlds will be finite as long a&” contains two state- — and with a 10% decay in integrity for each time step:
ments of the form:-OPAcd4, a) andOPAcd0, b) forsome  P(311) = 0.4, P(812) = 0.2, P($13) = 0.7 andP(514) =

a andb. Suppose thalAs initial offer was “4 years war-  0.9. Belief 8;; is inconsistent withC U {512} as together
ranty for $21” andOP's initial offer was “no warranty for  they violate the sentence probability ordering induced by

$10". K now contains: k11 andkis. Resolving this issue is a job for the belief re-
k13 : "OPAcd4,21) k14 : OPACKO, 10) vision functionR which discards the older, and weaker, be-
These two statements, together with the restriction to in- lief ;4.

tegers only, limit the possible values af and p in Eqn. 4 is used to calculate the distributioN (i 5,
OPAcqw, p) to ab x 10 matrix. which has just five different probabilities in it. The resulting

Suppose thalA knows its utility function for the good  values for the threa’s are: A5 = 2.8063, A\13 = —2.0573
with 0,...,4 years warranty and that its values are: $11.00,and ), = —2.5763. P(OPAcdw, p)) now is:
$11.50, $12.00, $13.00 and $14.50 respectively. Sup-
pose thatNA uses the strateg$(™ which is described w=0 w=1 w=2 w=3 w=4
in Sec. 5.2 — the details of that strategy are not impor- p =20 0.0134 0.0269 0.0286 0.0570 0.0591
tant now. If NA uses that strategy with = 2, thenNA p=19 0.0269 0.0537 0.0571 0.1139 0.1183
offers Offer(2,$16) which supposeOP rejects and coun- p=18 0.0403 0.0806 0.0857 0.1709 0.1774
ters with Offer(1,$11). Then withn = 2 again, NA p=17 0.0537 0.1074 0.1143 0.2279 0.2365
offers Offer(2, $14) which supposeéOP rejects and coun-  p =16 0.0671 0.1343 0.1429 0.2849 0.2957

ters withOffer(3, $13). P(OPAcqw, p)) now is: p=15 0.0806 0.1611 0.1714 0.3418 0.3548
p=14 0.0940 0.1880 0.2000 0.3988 0.4139
w=0 w=1 w=2 w=3 w=4 p=13 0.3162 0.6324 0.6728 0.9000 0.9173
p=20 0.0000 0.0000 0.0000 0.0455 0.0909 p=12 0.3331 0.6662 0.7088 0.9381 0.9576
p=19 0.0000 0.0000 0.0000 0.0909 0.1818 p=11 0.3500 0.7000 0.7447 0.9762 0.9978
p =18 0.0000 0.0000 0.0000 0.1364 0.2727
p=17 0.0000 0.0000 0.0000 0.1818 0.3636 In this array, the derived sentence probabilities for the three
p=16 0.0000 0.0000 0.0000 0.2273 0.4545 sentences if8 are shown in bold type; they are exactly their
p =15 0.0000 0.0000 0.0000 0.2727 0.5454 given values.

p=14 00000 0.0000 0.0000 0.3182 0.6364
p=13 0.0455 0.0909 0.1364 1.0000 1.0000 o
p=12 0.0909 0.1818 0.2727 1.0000 1.0000 4. Estimating P(NAAcc(.))

p=11 0.1364 1.0000 1.0000 1.0000 1.0000 - _
The propositionNAAcdd) means: § is acceptable to

and the expected-utility-optimizing offer i©ffer(4, $18). NA’. This section describes holNA attaches a conditional

If NA makes that offer then the expected surplus is $0.95.probability to the propositior? (NAAcd?) | Z;) in the light

The matrix above contains the “maximally non-committal” of informationZ;. The meaning of “acceptable A’ is de-
values forP(OPAcqw, p)); those values are recalculated scribed below. This is intended to pMA in the position
each time a signal arrives. The example demonstrates howlooking back on it, | made the right decision at the time” —
the NA is able to conduct multi-issue bargaining in a fo- thisis a vague notion but makes sense to the author. The idea

cussed way without making assumptions aboR!s inter- is for NAto accept a dea@ whenP (NAAcd0) | Z) > « for

nals, in particular, whethédP is aware of a utility function ~ some threshold value that is one oNA's mental states.

[12]. P(NAAcd0) | Z;) is derived from conditional probabili-
ties attached to four other propositions:

3.4. Two Issues — With Decay P (Suited(w) | Tb),

P(Good(OP) | It),
Following from the previous section, suppose that  P(Fair(d) | Z; U {Suited(w), Good(OP)}) and

containski1, K12, k13 andki4. The two preference order- P (Me(6) | Z; U {Suited(w), Good(OP)}).

ings k11 andky5 induce a partial ordering on the sentence meaning respectively: “terms are perfectly suited to my
probabilities in theP(OPAcqw, p)) array [as in Sec. 3.3] needs”, OP will be a good agent for me to be doing busi-
from the top-left where the probabilities are 0, to the ness with”, 9 is generally considered to be a good deal for
bottom-right where the probabilities are 1. There are NA’, and “on strictly subjective grounds, is acceptable
fifty-one possible worlds that are consistent with to NA". The last two of these four probabilities factor out
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both the suitability ofv and the appropriateness of the op- NA) are:
ponentOP. The difference between the third and fourth is P(NAAcc| Me, Suited, Good, Fair) = 1.0
that the third captures the concept of “a good market deal” P(NAAcc| Me, Suited, -Good, Fair) = 0.1

and the fourth a strictly subjective “whatis worth toNA". P(NAAcc| Me, Suited, Good, —=Fair) = 0.4
The “Me(.)" proposition is related to the concept of a pri- P(NAAcc| Me, Suited, -Good, —Fair) = 0.05
vate valuation in game theory. then, with probabilities of 0.9 on each of the four evidence

To determinéP (Suited(w) | ;). If there are sufficiently ~ nodes, the probabilitf(NAAc9 = 0.75. It then remains to
strong preference relations to establish extrema for this dis-manage the acquisition of informati@afrom the available
tribution then they may be assigned extreme vahie®.0 sources to, if necessary, incred3@NAAcd) | Z;) so that
or 1.0. NAis repeatedly asked to provide probability esti- ¢ is acceptable. The conditional probabilities on the net rep-
mates for the offet that yields the greatest reduction in resent an agent's priorities for a deal, and so they are speci-
entropy for the resulting distribution [8]. This continues un- fied for each class of deal.
til NA considers the distribution to be “satisfactory”. Thisis ~ The NAAccpredicate generalizes the notion of utility.
tedious but the “preference acquisition bottleneck” appearsSuppose thalNA knows its utility functionU. If the con-
to be an inherently costly business [2]. ditionals on the Bayesian net are as in the previous para-

To determinP (Good(OP) | Z) involves an assessment  graph and if eithei?(Me(.)) or P(Suited.)) are zero then
of the reliability of OP. For some retailers (sellers), infor- P(NAAcg.)) will be zero. If the conditional probabilities
mation — of varying reliability — may be extracted from 0N the Bayesian net are 1.0 whigle is true and are 0.0 oth-

sites that rate them. For individuals, this may be done ei- erwise therP(NAAcq = P(Me?. Then define:

ther through assessing their reputation established during?(Me(r,w)) = § x (1 + %) for U(w) > U(7)

prior trades [14], or by the inclusion of some third-party es- and zero otherwise, whete= max,, U(w).* A bargaining

crow service that is then rated for “reliability” instead. thresholda > 0.5 will then accept offers for which the sur-
P(Fair(§) | Zy U {Suited(w),Good(OP)}) is deter- plus is positive. In this wayNAAccrepresents utility-based

mined by market data. As for dealing wiBuited if the bargaining with a private valuation.

preference relations establish extrema for this distribution ~ NAAccalso is intended to be able to represent apparently

then extreme values may be assigned. Independently of thisirrational bargaining situations (eg: “I've jugiot to have

real market data, qualified with given sentence probabilities, that hat”), as well as tricky multi-issue problems such as

is fed into the distribution. The revision functidd identi- those typical in eProcurement. It enables an agent to bal-
fies and removes inconsistencies, and missing values are esince the degree of suitability of the terms offered with the
timated using the maximum entropy distribution. reliability of the opponent and with the fairness of the deal.

DeterminingP (Me(6) | Z; U {Suited(w), Good(OP)})
is a subjective matter. It is specified using the same device ad. Negotiation Strategies
used forFair except that the data is fed in by hand “until the
distribution appears satisfactory”. To start this process first Sec. 3 estimated the probability distributid(OPAc9,
identify those’ that “NAwould be never accept’ —they are  thatOP will accept an offer, and Sec. 4 estimated the prob-
given a probability of~ 0.0, and second thos&that “NA ability distribution,P(NAAcQ, thatNA should be prepared
would be delighted to accept” — they are given a proba- t0 accept an offer. These two probability distributions rep-
bility of ~ 1.0. The Me proposition links the information- ~ resent the opposing interests of the two agéifsindOP.
theory approach with “private valuations” in game-theory. P(OPAcq will change every time an offer is made, rejected

There is no causal relationship between the four proba-°r acceptedP(NAAcq will change as the background in-
bility distributions as they have been defined, with the pos- formation changes. This section discussiés strategys.
sible exception of the third and fourth. To link the proba- S€C- 5.2 considers the risk of breakdown. _
bilities associated with the five propositions, the probabil- ~ Bargaining can be a game of bluff and counter-bluff in
ities are treated as epistemic probabilities and the nodegVhich an agent may even not intend to close the deal if
form a simple Bayesian net. The weights on the four arcs ©N€ should be reached. A basic conundrum in any offer-
of the Bayesian net are a subjective representation of whaxchange bargaining is: itis impossible to force your oppo-
“acceptable” means tdA The resulting net divides the Nnent to reveal information about their position without re-
problem of estimatingP(NAAcg into four simpler sub-
problems. 4 The introducl:tion ofs may be avoided by definin®(Me(r, w)) £

. . L for U > U d therwise,
The conditionals on the Bayesian network are subjective  1+exp(=8x(U(«)—U(7)) or .(w) ~ (T.) and 2ero oIeMise, -
h t ifv b twel fth whereg is some constant. This is the sigmoid transfer function used in
— they are easy to specify because twelve of them are zero  gome neural networks. This function is near-lineaitiies) ~ U(7),

—that is, for the cases in whidlA believes that eithevle and is concave, or “risk averse”, outside that region. The transition be-
or Suitedis “false”. For example, if the conditionals (set by tween these two behaviors is determined by the choige of
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vealing information about your own position. Further, by 5.2. With Breakdown

revealing information about your own position you may

change your opponents position — and sd dtis infinite A negotiation may break down because one agent is not
regress, of speculation and counter-speculation, is avoidegyrepared to continue for some reasepn is the probabil-
here by ignoring the internals of the opponent and by fo- ity that the opponent will quit the negotiation in the next

cussing on what is known for certain — that ighat in- round. There are three ways in whibtA models the risk
formatlc_)n is contgmed in the signals received arbndid of breakdown. Firstpg is a constant determined exoge-
those signals arrive. nously to the negotiation, in which case at any stage in a

A fundamental principle of competitive bargaining is continuing negotiation the expected number of rounds un-
“never reveal your best price”, and another is “never reveal til breakdown occurs isl-. Secondp  is a monotonic in-
your deadline — if you have one” [15]. It is not possible creasing function of timé — this attempts to model an impa-
to be prescriptive about what an agefiouldreveal. Al tient opponent. Thirdpp is a monotonic increasing func-
that can be achieved is to provide strategies that an agention of (1 — OPAcd¢)) — this attempts to model an oppo-
may choose to employ. The following are examples of such nent who will react to unattractive offers.

strategies. At any stage in a negotiatioNA may be prepared to
) gamble on the expectation th@P will remain in the game
5.1. Without Breakdown for the nextn rounds. This would occur if there is a con-

) ) ] stant probability of breakdowpz = . LetZ, denote the

An agent's strategyS is a function of the informa-  information stored ilNA's K and B at time'. S is NA's
tion Z, the_lt is has at time. That information will be rep- strategy. IfNA offered to trade wittOP at S(Z;) thenOP
resented in the agents and B, and will have been used 5y accept this offer, but may have also been prepared to
to calculate P(OPACQ and P(NAAcg. Simple strate-  geie for terms more favorable than thisNé If NA of-
gies choose an offer only on the basis B{OPAc9, fered to trade aB(Z; U {AcceptS(Z,))}) thenOP will ei-
P(NAAcg and a. The greedy strategyS™ chooses e accept this offer or reject it. In the former case trade
arg max; {P(NAAcq9)) | P(OPACgd)) > O}, itis ap-  gecyrs at more favorable terms the(Z, ), and in the lat-
propriate for an agent that believésP is desperate 10 tor case a useful piece of information has been acquired:
trade. Theexpected-acceptability-to-NA-optimizing strat- RejectS(Z;)) which is added td; before calculating the
egyS* choosesirg max; {P(OPACa?)) x P(NAACGY)) | pext offer. This process can be applied twice to generate
P(NAACG{(S)) > a}, itis appropriate for a confident agent o offerS(Z; U {~AcceptS(Z; U {-AcceptS(Z,))}))}),
that is not desperate to trade. The stratéy chooses o any number of times, optimistically working backwards
arg maxs {P(OPAcqd)) | P(NAACGd)) > a}, it 0P~ o the assumption thaP will remain in the game for
timizes the likelihood of trade — it is a good strategy rounds. The strateg§™), whereS(!) = S* the expected-
for an agent that is keen to trade without COMPromis- 4cceptability-toNA-optimizing strategy defined in Sec. 5.1.
ing its own standards of acceptability. o S() is the strategy of working back fro8f') (n—1) times.

An approach to issue-tradeoffs is described in [4]. The at each stag® ™ will benefit also from the information in

bargaining strategy de_scribed there gttempts to make an acg,e intervening counter offers presentedy. The strategy
ceptable offer by “walking round” the iso-curvelAs pre-  g(n) js reasonable for a risk-taking, expected-acceptability-

vious offer (that has, say, an acceptabilitycof, > «) to- optimizing agent. This strategy was used to generate the of-
wardsOP's subsequent counter offer. In terms of the ma- ¢, sequence in the example in Sec. 3.3.

chinery described here, an analogue is to use the strategy
S—:argmaxs{ P(OPAcdd)) | P(NAACKY) | Z;) 2 ane }

for o = a,,. This is reasonable for an agent that is attempt-
ing to be accommodating without compromising its own in-
terests. Presumably such an agent will have a policy for re-

ducing the valuev,,, if her deals fail to be accepted. The - -~
complexity of the strategy in [4] is linear with the number of (1 P(OPAfC(S(L)))) X (1-ps) E(T(_Of_'fer(S(_IHl))))
issues. The strategy described here does not have that pro whereZuy = Ii U {2ACCep(S(Z))}. This is of litte help
Iertu b .t it benef'tsgf);om s!n OPACG that conta\'/ns footp in finding the “best’S, but two approximations are interest-

rix,ts LcJ)f Ithe riolr offer sL(i, IueBn(ce o gee Sec. 3 AI, ~in that ing. Either replace th8 in the final term by a simple strat-
gistribution rr?ore recent o?fers have stron erWéi hts egy such a$-. Or assume thali(T(Offer(S(Zw1)))) =

9 gnis. 6 x E(T(Offer(S(Z,)))) — for somed < 1 — then:
_P(OPACAS(T1))) x P(NAACAS(Th)))

5 This a reminiscent of Werner Heisenberg’s indeterminacy relation, or E(T(Offer(S(It)))) - 17(17P(OPA::c(S>(<I‘))))X(lfpe,t)x(i
unbestimmtheitsrelationefiyou can’t measure one feature of an ob-  in either case the expression can be optimized numerically,

ject without changing another” — with apologies. even ifpg is a function ofP(OPAcES (Zy))).

Define the value of making an offeédffer(¢) to be:
T (Offer(d)) = P(NAAcd0)) if § is accepted, and zero
otherwise. Theexpected valuef making an offer is then:
E(Y(Offer(S(%1)))) =

P(OPACGS(T1))) x P(NAACES(T:)))+
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The preceding considers the possibility@P quitting. Much has not been described here including: the data and
NA may choose to quit and cause the negotiation to breaktext mining software, the use of the Bayesian netto prompt a
down if the negotiation appears to be leading nowhere. search for information that may leadNi&\ raising — or per-
One measure of convergence is to monitor the sequencehaps lowering — its acceptability threshold, and the way in
maxs(P(OPAcdd)) | P(NAAcd))) > ) —ie: the great-  which the incoming information is structured to enable its
est likelihood of acceptable trade. If this sequence is notorderly acquisition [3].
increasing in time to a “reasonable” value thiA may The following issues are presently being investigated.
choose to quit. The random worlds computations are performed each time
the knowledgelC, or beliefs,B, alter — there is scope for
using approximate updating techniques interspersed with
the exact calculations. The offer accepting machinery op-
erates independently from the offer making machinery —

6. Conclusions

The negotiating agent achieves its goal of reaching in- but not vice versa — this may mean that better deals could
formed decisions whilst making no assumptions about the "ave been struck under some circumstances.

internals of its opponent. Ms Minghui Li, a PhD student,
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ing the belief revision and the identification of those ran-
dom worlds that are consistent wit. Existing text and
data mining bots have been used to feed informationhiAto

in experiments including a negotiation between two agents
in an attempt to swap a mobile phone for a digital camera
with no cash involved.

NA has five ways of leading a negotiation towards a posi-
tive outcome. First, by making more attractive offer€e.
Second, by reducing its threshald Third, by acquiring in-
formation to hopefully increase the acceptability of offers
received. Fourth, by encouragif@P to submit more at-
tractive offers. Fifth, by encouragin@P to accepiNA's of-
fers. The first two of these have been described. The third
has been implemented but is not described here. The re-
maining two are the realm of argumentation-based negoti-
ation which is the next step in this project. The integrated
way in whichNA manages both the negotiation and the in-
formation acquisition should provide a sound basis for an
argumentation-based negotiator.

[5] discusses problems with the random-worlds ap-
proach, and notes particularly representation and learning.

Representation is particularly significant here — for exam- 11]

ple, the logical constants in the price domains could have
been given other values, and, as long as they remained or-

[10

[1] J. Bulow and P. Klemperer. Auctions versus negotiations.
American Economic Revie®6(1):180-194, March 1996.

[2] J. Castro-Schez, N. Jennings, X. Luo, and N. Shadbolt. Ac-
quiring domain knowledge for negotiating agents: a case
study. Int. J. of Human-Computer Studies (to appe&f04.

[3] J. Debenham. An enegotiation framework. Applications

and Innovations in Intelligent Systems. @pringer Verlag,

December 2003.

P. Faratin, C. Sierra, and N. Jennings. Using similarity crite-

ria to make issue trade-offs in automated negotiatitour-

nal of Artificial Intelligence 142(2):205-237, 2003.

[5] J. Halpern.Reasoning about UncertaintIT Press, 2003.

[6] E.Jaynes. Information theory and statistical mechanics: Part

i. Physical Revienl106:620-630, 1957.

S. Kraus.Strategic Negotiation in Multiagent Environments

MIT Press, 2001.

D. MacKay. Information Theory, Inference and Learning Al-

gorithms Cambridge University Press, 2003.

[9] A. Muthoo. Bargaining Theory with Applications Cam-

bridge UP, 1999.

R. Myerson and M. Satterthwaite. Efficient mechanisms

for bilateral trading.Journal of Economic Theoy29:1-21,

1983.

Z. Neeman and N. Vulkan. Markets versus negotiations.

Technical report, Center for Rationality and Interactive De-

cision Theory, Hebrew University, Jerusalem, 2000.

(4]

(7]
(8]

|

dered, and as long as the input values remained unchangeqi2] M. J. Osborne and A. Rubinsteiargaining and Markets

the probability distributions would be unaltered. Learn-

Academic Press, 1990.

ing is not an issue now as the distributions are kept as sim-[13] S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing features

ple as possible and are re-computed each time step. The
assumptions of maximum entropy probabilistic logic ex-

ploit the agent’s limited rationality by attempting to assume [14]

“precisely no more than is known”. But, the computa-
tions involved will be substantial if the domains in the
language”£ are large, and will be infeasible if the do-

mains are unbounded. If the domains are large thenl?

preference relations such as can simplify the computa-
tions substantially.

of random fields|IEEE Transactions on Pattern Analysis and
Machine Intelligencel9(2):380-393, 1997.

S. Ramchurn, N. Jennings, C. Sierra, and L. Godo. A com-
putational trust model for multi-agent interactions based on
confidence and reputation. Rroceedings 5th Int. Workshop
on Deception, Fraud and Trust in Agent Societ2303.

T. Sandholm and N. Vulkan. Bargaining with deadlines. In
Proceedings of the National Conference on Artificial Intelli-
gence (AAAL)1999.

5]

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
AAMAS'04, July 19-23, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

670



