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Abstract—We tackle problems related to Web query formu-
lation: given the set of keywords from a search session, 1) we
find a maximum promising Web query, and, 2) we construct a
family of promising Web queries covering all keywords. A query
is promising if it fulfills user-defined constraints on the number
of returned hits. We assume a real-world setting where the user
is not given direct access to a search engine’s index, i.e., querying
is possible only through an interface. The goal to be optimized
is the overall number of submitted Web queries.

For both problems we develop search strategies based on
co-occurrence probabilities. The achieved performance gain is
substantial: compared to the uninformed baselines without co-
occurrence probabilities the expected savings are up to 50% in
the number of submitted queries, index accesses, and runtime.

Keywords-Web Search Session, Query Formulation, Query
Cost Optimization, Maximum Query, Query Cover

I. INTRODUCTION

The interactions between Web search users and search

engines follow a classic scheme. The user comes up with

a set of (in her opinion) appropriate keywords for a given

information need. She submits a query containing some of

these keywords and gets back a ranked result list. If the user

does not find a match for her information need among the

first results, she will hardly browse all the items but submit

different queries based on her keywords until she is satisfied

or decides to give up. This process forms a search session—

the set of consecutive Web queries a user submits to a search

engine in order to satisfy a given information need.

Experience shows that in many cases a user’s first try is

answered reasonably well, i.e., the first query brings up an ap-

propriate result. Such one-query-sessions are not the focus of

this paper; we consider longer sessions where the user did not

succeed with her first query. Search engines provide different

means to support unsuccessful users, e.g., query expansion for

queries returning lots of hits or spelling correction for queries

returning no hits due to typos. In this paper we present two

other approaches having a more combinatorial flavor, while

being easily combinable with existing technology:

1) The maximum query for a given set of keywords, i.e., a

query containing as many of the keywords as possible,

while returning a reasonable number of results.

2) The query cover for a given set of keywords, i.e., a

family of queries (each returning a reasonable number

of results) that contain as many keywords as possible.

The idea is to use the keywords submitted in a search

session up to the current query, and suggest a maximum query

or a query cover as the user’s next query. The requirement

to contain as many of the keywords as possible reflects the

following rationale. Taken together, the keywords of a search

session describe the user’s information need. Some of the

keywords might not be appropriate (e.g. typos) and should be

omitted, but the more keywords are contained in a maximum

query or a query cover the better is the descriptiveness of the

user’s information need.

The rationale for requiring a reasonable number of hits per

query also deserves closer consideration. Queries with empty

result pages are useless and the same often applies to queries

returning only a handful of hits. This gives a lower bound on

the number of desired results. But there is also an upper bound

since the number of results a user will consider for a single

query is usually constrained by a processing capacity lmax,

determined by the user’s reading time etc. If the user faces

a query with millions of hits, she can only check a fraction

of the results—typically the top-ranked ones. Relevant entries

below are missed. We argue that the best queries are the ones

that are sufficiently specific to not return millions of hits—but

also not just one or two. For such queries the user can check

the complete result list and will not miss any potential match

for her information need due to search engine ranking issues

that she cannot influence.

Hence, from the user’s perspective, maximum and covering

queries contain the best possible description of the information

need and offer the chance to check all the results. However,

finding a maximum query or a query cover “by hand” is not

that straightforward. Several queries have to be submitted to

identify appropriate keyword combinations. Hardly any user

will take the time for such a lengthy procedure. Therefore, we

give algorithms for both tasks. To be applicable at user site the

algorithms are of external nature, i.e., they only use standard

search engine interfaces. The Web search engine is handled

as a black box, acting like an oracle that answers queries.

There is no need to know the underlying retrieval model or

implementation details.

Since Web searches are not for free but entail costs—at the

very least some non-negligible amount of time is consumed,

and monetary charges come into play for larger contingents of

queries—we analyze the corresponding economic optimization

problem for finding maximum and covering queries. We ask:

Which strategy minimizes

the average number of submitted queries?

A. Related Work

A lot of research has been done on approaches for better

results on better queries. An example of a very promising
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idea is to estimate or to predict a given query’s perfor-

mance [5, 6, 7, 9, 10, 11, 12, 22]. Query quality estimators

have a “post-retrieval nature,” using knowledge on the already

processed query and the retrieved documents. But there is

also a lot of effort in analyzing pre-retrieval predictors, which

can be evaluated before processing the query. Especially these

pre-retrieval predictors could be interesting for avoiding the

submission of too many queries. However, the evaluation

of most predictors needs access to knowledge a standard

Web search interface does not provide. For example, the

simplified query clarity predictor [12] needs the total keyword

frequencies for the whole corpus, but Web search engines just

return an estimate of the number of documents in the corpus

that contain the keyword. The query scope predictor [12] needs

the number of documents in the index, but most Web search

providers stopped publishing it. The mutual information based

predictors [14, 17] need the frequency of two keywords in a

sliding window with given size over the whole corpus, but no

engine reports such values.

Nevertheless, two long query reduction methods success-

fully use query quality predictors [17, 19]—but with unre-

stricted access to a search engine’s index. The task of long

query reduction comprises handling queries with more than

4 keywords and processing verbose text queries (like the

description parts of TREC topics or queries to medical search

engines). The interest in the issue of how to handle long

queries is on the rise [2, 13, 14, 15, 16, 18], as a typical

Web query nowadays is becoming longer and longer or “more

verbose.” Our setting can be seen as an instance of long query

reduction since all the keywords from a search session can

be viewed as a single long query. Note, however, that the

existing research on long query reduction assumes full access

to a search engine’s index and that it is not user-oriented in the

sense that the costs for querying are not taken into account.

Two papers explicitly deal with the problem of formulating

queries from a given set of keywords respecting a bound on

the number of returned hits [20, 21]. Shapiro and Taksa [21]

suggest a rather simple open-end query formulation approach

for which it is straightforward to find situations where the

approach fails although appropriate queries exist. A more

involved method for query formulation is proposed by Pôssas

et al. [20], the so-called maximal termset query formulation.

However, neither Shapiro and Taksa nor Pôssas et al. analyze

the number of submitted queries.

B. Paper Organization

All previous results on problems related to finding maxi-

mum or covering queries can be characterized as being system-

oriented: they disregard the costs of problem solving at user

site. Therefore, in Section II, we carefully introduce formal

notions for user-oriented problem definitions and show the

effect in an example scenario.

From the baseline algorithms solving the problems (cf. Sec-

tion III) we develop informed search strategies, equipping the

algorithms with a co-occurrence probability graph (cf. Sec-

tion IV). The experimental analysis in Section V demonstrates

that substantial improvements with respect to the number of

submitted queries are possible. Depending on the problem,

our informed approaches with co-occurrence graph save up

to 50% of Web queries on average. Our investigations close

with concluding remarks and an outlook on future work in

Section VI.

II. NOTATION, BASIC DEFINITIONS, AND AN EXAMPLE

SCENARIO

We formally describe our query formulation framework

from the user perspective against a Web search engine S.
Starting point is a set W = {w1, . . . , wn} of keywords. Note

that it makes no difference to allow a “keyword” to be a

complete phrase. The keywords might be given by a human

user or might be automatically generated depending on the

use case, e.g., words from the user’s queries combined with

automatically derived query expansion terms. Subsets Q ⊆ W
can be submitted as Web queries (complete phrases would be

included in quotation marks). An engine’s reply to a query

Q consists of 1) a constant length head of a ranked list LQ

of snippets and URLs of documents containing the keywords

from Q, and 2) an estimation lQ for the real result list length

|LQ|. We adopt the usual AND notion for Web queries, i.e.,

every query keyword has to be contained in every result.

The task of the query cover problem is to find a family

Q = {Q1, . . . , Qm} of queries Qi ⊆ W having the following

properties. First, Q should be simple in the sense that Qi 6⊆ Qj

for any Qi, Qj ∈ Q, with i 6= j. This avoids redundancy in

the queries. Second, a query Q ∈ Q has to satisfy lmin ≤
lQ ≤ lmax for given constant lower and upper bounds lmin

and lmax. Usually, lmin is set to some small value like 1 or 10
and lmax will be set to the user’s capacity, which typically is at

most 100. Adopting the notation from [1] we say that for lQ <
lmin the query Q is underflowing, whereas for lQ > lmax it is

overflowing. Queries that are neither under- nor overflowing

are valid. A valid query Q is minimal iff leaving out any

keyword from Q would result in an overflowing query; it is

maximal iff adding any keyword from W \Q would result in

an underflowing query.

A query Q covers all the keywords in Q. Analogously,

a family Q of queries covers all the keywords contained in⋃
Q∈Q Q. Note that there are situations where it is not possible

to cover W with a family of valid queries, e.g., when a

single keyword itself is underflowing. A keyword w ∈ W
is coverable iff there is a valid query Q ⊆ W with w ∈ Q.

We can formally state the query cover problem as follows.

QUERY COVER

Given: 1) A set W of keywords.

2) A query interface for a Web search engine S.
3) An upper bound lmax on the result list length.

4) A lower bound lmin on the result list length.

Task: Find a simple family Q ⊆ 2W of valid queries

covering the coverable keywords from W .

In our process of finding the output Q on input W we

count the overall number cost of queries that are submitted
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Table I
KEYWORD DOCUMENT RELATIONSHIP IN THE EXAMPLE SCENARIO.

Keyword
Document

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

w1 • • • • •
w2 • • •
w3 • • • • • • • •
w4 • • • • • •
w5 • • • • • • •

to S. As for the analysis of the runtime of our system we are

interested in the time tWeb consumed by the Web queries and

the internal computation time tlocal for the query formulation

process excluding the Web query time. Our assumption is

that tWeb will clearly dominate tlocal, i.e., tWeb ≫ tlocal.

To further explain our setting, consider the following ex-

ample scenario. We have the indexed documents d1, . . . , d10

and the set W = {w1, . . . , w5} of keywords with the keyword

document relationship given in Table I. Note that, submitted

as a query, the set W itself will not result in any hit on the

ten document collection since none of the documents contain

all keywords. Let lmin = 3 and lmax = 4, i.e., we are looking

for subsets of the keywords that are contained in at least 3

and at most 4 documents. Figure 1 shows the hypercube of

the possible 25 queries; valid queries are shown highlighted.

An example of an overflowing query is {w3, w5} (six

hits), whereas {w1, w5} is underflowing (two hits). We have

|Q| ≤ 5 since we require Q to be simple. A family

reaching this bound is Qlo = {{w1, w3}, {w1, w4}, {w2},
{w3, w4}, {w4, w5}}—the with respect to set inclusion min-

imal valid queries—corresponding to the lower border in

Figure 1. The family of maximal valid queries Qup =
{{w1, w3}, {w1, w4}, {w2, w3}, {w3, w4, w5}} corresponding

to Figure 1’s upper border has size 4 only.

There are many possible solutions to QUERY COVER in

our example scenario, e.g., besides Qlo or Qup we could give

the family Q = {{w1, w3}, {w2}, {w3, w4, w5}}. However,
Q is a mix of queries from Qlo and Qup. A user that further

demands the solution to be close to Qup or close to Qlo in

order to get longer or shorter queries covering her keywords

(and thus expecting fewer or more results in the final result

lists) would not be satisfied with such a mixture.

We can show that Qlo and Qup always cover the coverable

keywords of W but first have to prove the following Lemma.

Lemma 1: Let Q be a family of valid queries covering the

coverable keywords from a set W . For every Q ∈ Q we have:

(i) there is a sub-family Q′
lo ⊆ Qlo such that Q =

⋃
Q′∈Q′

lo

Q′

and (ii) there is some Qup ∈ Qup such that Q ⊆ Qup.

Proof: (i) Assume we have Q ∈ Q but Q 6=
⋃

Q′∈Q′

lo

Q′

for any Q′
lo ⊆ Qlo. Since Q is a family of valid queries,

Q must be valid. Assume Q just contains coverable keywords

from W . Now consider the familyQ′ of the 2|Q|−1 subqueries

of Q excluding the empty query. Let Q′′ ⊆ Q′ be the sub-

family of valid queries. Note that Q′′ is not empty since it

contains Q. From Q′′ we remove all queries that are proper

supersets of queries in Q′′ and get the family Q̃ of minimal

valid subqueries of Q. Note that Q̃ is not empty since Q′′ is

not and that Q =
⋃

Q̃∈Q̃ Q̃. But since Q̃ contains minimal

valid queries only, we have Q̃ ⊆ Qlo; a contradiction to our

assumption. Hence, Q contains a non-coverable keyword w ∈
W . But since w is not coverable by a valid query, Q cannot

be valid. A contradiction again.

underflowing

overflowing

valid

{w2}

{w1, w3} {w1, w4} {w2, w3} {w4, w5}

{w3,w4,w5}

{ 

{w1} {w3} {w4} {w5}

{w1, w2} {w1, w5} {w2, w4} {w2, w5} {w3, w5}

{w1,w2,w3} {w1,w2,w4} {w1,w2,w5} {w1,w3,w4} {w1,w3,w5} {w1,w4,w5} {w2,w3,w4} {w2,w3,w5} {w2,w4,w5}

{w1, w2, w3, w4} {w1, w2, w3, w5} {w1, w2, w4, w5} {w1, w3, w4, w5} {w2, w3, w4, w5}

{w1, w2, w3, w4, w5}

}

{w3, w4}

Figure 1. Hypercube of possible queries in the example scenario.
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(ii) Assume we have Q ∈ Q but Q 6⊆ Qup for any Qup ∈
Qup. Since Q is a family of valid queries, Q must be valid.

Assume Q just contains coverable keywords from W . Then

there obviously is a maximal superset Q′ ⊇ Q being valid (it

can be found by adding as many of the keywords from W \Q
as possible). But since Q′ ∈ Qup we have a contradiction.

Hence, Q contains a non-coverable keyword w ∈ W . But

since w is not coverable by a valid query, Q cannot be valid.

A contradiction again.

A direct consequence of Lemma 1 and the definitions of

Qlo and Qup is the following “cover-ability” of Qlo and Qup.

Corollary 1: For a given set W of keywords, the families

Qlo and Qup cover the coverable keywords. Furthermore, Qlo

contains the with respect to set inclusion minimal queries

covering the coverable keywords, whereas Qup contains the

maximal queries.

However, note that usually not all queries from Qlo or all

from Qup are needed to cover the coverable keywords, e.g., in

our example scenario. Hence, we consider the following two

QUERY COVER variants that both favor query covers from

which no query can be left out without violating coverage of

the coverable keywords.

MINIMAL QUERY COVER

Given: A QUERY COVER instance.

Task: Find a family Q ⊆ Qlo containing as few queries

as possible that covers the coverable keywords

from W .

MAXIMAL QUERY COVER

Given: A QUERY COVER instance.

Task: Find a family Q ⊆ Qup containing as few queries

as possible that covers the coverable keywords

from W .

As for our example scenario from Table I, note that the

query family {{w1, w3}, {w2}, {w3, w4, w5}} solves the orig-

inal QUERY COVER problem but not MINIMAL nor MAXI-

MAL QUERY COVER. Instead, a possible solution for MINI-

MAL QUERY COVER is {{w1, w3}, {w2}, {w4, w5}} while the
family {{w1, w3}, {w2, w3}, {w3, w4, w5}} solves MAXIMAL

QUERY COVER. From Lemma 1 and the definition of Qup it

is straightforward to see that a solution to MAXIMAL QUERY

COVER always is a smallest possible QUERY COVER solution.

Besides a cover of her keywords, a user might also be

interested in the maximum valid query possible; the respective

problem is defined as follows.

MAXIMUM VALID QUERY

Given: A QUERY COVER instance.

Task: Find a valid query Q ⊆ W containing the most

keywords possible.

In our example scenario from Table I we have the unique

solution {w3, w4, w5} for MAXIMUM VALID QUERY.

Note that the decision versions of MINIMAL and MAXIMAL

QUERY COVER, as well as MAXIMUM VALID QUERY are

NP-complete problems (possible reductions from SET COVER

and MAXIMAL INDEPENDENT SET). However, the number of

keywords a real search engine accepts usually is bounded.

Thus, the problem instances found in practice can be solved by

our algorithms with reasonable runtime (cf. the next sections).

III. BASELINE ALGORITHMS

In this section we develop baseline algorithms for the above

defined problems MINIMAL and MAXIMAL QUERY COVER,

and MAXIMUM VALID QUERY. In these algorithms we use the

Web search engine’s estimations on the result list lengths (the

l -values in our setting), although current Web search engines

often overestimate the correct result list lengths in practice.

However, the engines’ estimations usually respect monotony

(queries containing additional keywords have smaller l -value),

and the shorter the result list, the better the estimations. Hence,

in the range of our user constraints—where we usually require

at most 100 hits—they are quite accurate.

A. Query cover computation

A straightforward approach for solving MINIMAL and

MAXIMAL QUERY COVER would be to compute Qlo and

Qup and then, in a brute-force manner, try to drop some

of the queries. However, our experimental pre-tests on our

testbed (cf. Section V) revealed that computation of Qlo and

Qup becomes very expensive: for |W | = 10, we need about

1400 Web queries on average for exactly computing Qlo and

more than 650 queries for an approximate solution. Thus,

we develop baseline algorithms for the covering problems

that avoid computing Qlo or Qup. These baselines can be

characterized as greedy backtracking algorithms. A respective

pseudo-code listing for the MINIMAL QUERY COVER problem

is given as Algorithm 1.

Lines 1 to 4 contain pre-checks to avoid unnecessary

computations, e.g., removing underflowing keywords as they

cannot be contained in any valid query. Afterwards, a first

valid query Q is tried to be constructed containing the

keyword w1 (line 7 of Algorithm 1). As long as the query

remains overflowing, the next keywords w2, w3, . . . are added

(procedure ENLARGE). Determining a query’s validity (lines

2, 4, 18, and 21) causes its submission to the Web search

engine S. If the intermediate query becomes underflowing,

the last added keyword is removed and the next one tried

in a backtracking manner. Backtracking stops whenever the

query becomes valid, which is the “greedy” part of the strategy.

The query is then added to the output Q (line 10; note that

in the listing of Algorithm 1 the family Q is intended to

be a global variable). The next query is constructed starting

from the keyword with the lowest index that is not already

covered (line 7). If for an intermediate query all of the not

yet covered keywords have been tried and the query still

overflows, the algorithm once tries to add keywords from the

set of already covered keywords (line 22). This might lead to

queries that are supersets of queries already contained in Q.

Hence, before outputting the final Q, the procedure SIMPLIFY

removes subqueries of larger queries.
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Algorithm 1 Greedy algorithm for MINIMAL QUERY COVER

Input: Set W = {w1, . . . , wn} of keywords, lmin, and lmax

Output: Family Q of minimal valid queries covering W

1: for all w ∈ W do

2: if {w} is underflowing or valid then W ←W \ {w}

3: if {w} is valid then Q ← Q∪ {{w}}

4: if W is underflowing then

5: Wuncov ←W

6: while Wuncov 6= ∅ do
7: w ← keyword with lowest index from Wuncov

8: Q← ENLARGE({w}, Wuncov \ {w}, true)
9: if Q is valid then

10: Q ← Q∪ {Q}
11: Wuncov ← Wuncov \Q

12: output SIMPLIFY(Q)
13: else output Q ∪ {W}

14: procedure ENLARGE(query Q, keywords W , Boolean cov )

15: while W 6= ∅ do
16: w ← keyword with lowest index from W

17: W ←W \ {w}
18: if Q ∪ {w} is valid then return Q ∪ {w}

19: if Q ∪ {w} is overflowing then

20: Q′ ← ENLARGE(Q∪ {w}, W , cov )

21: if Q′ is valid then return Q′

22: if cov then return ENLARGE(Q,
⋃

Q∈Q
Q, false)

23: procedure SIMPLIFY(query family Q)
24: for all Q ∈ Q do

25: for all Q′ ∈ Q,Q′ 6= Q do

26: if Q′ ⊆ Q then Q ← Q \ {Q′}

The greedy algorithm for MAXIMAL QUERY COVER works

analogously. The only difference is in the addition of found

valid queries to Q. The MAXIMAL QUERY COVER algorithm

does not stop when the current candidate becomes valid but

tries to add further uncovered keywords instead. Hence, the

procedure SIMPLIFY is not needed anymore.

Note that whenever a query Q becomes valid for the

first time in case of solving MINIMAL QUERY COVER, we

immediately add it to Q and do not try to find smaller valid

subqueries of Q. Analogously, in case of solving MAXIMAL

QUERY COVER, we immediately add a query to Q if it is

valid and cannot be enlarged by any uncovered keyword. This

is due to the greedy characteristic of our algorithms and it

is supported by the following facts: Let w be the currently

explored keyword (line 7 of Algorithm 1). For a given valid

query Q, finding a subset Q′ ⊂ Q from Qlo containing w
(otherwise we cannot guarantee to cover w) needs another

|Q|− 1 Web queries (for each of the keywords from Q \ {w},
try to exclude it and still have a valid query); finding a superset

Q′ ⊃ Q from Qup requires another |W \ Q| Web queries

(for each of the keywords from W \ Q, try to include it and

still have a valid query). We assume such a process to be

too costly for our algorithms. Thus, due to these practicability

reasons, we relax the constraints of the covering problems and

are satisfied by queries close to Qlo or close to Qup instead

of real membership. The output families Q will still cover the

coverable keywords but the contained queries do not have to

be contained in Qlo or Qup.

B. Maximum queries

As for the MAXIMUM VALID QUERY problem, we use a

depth-first search (similar to Algorithm 1) on a search tree

containing all possible queries. Again, revisiting nodes in the

tree is prohibited by processing the keywords in the order

of their indices. Hence, the algorithm starts trying to find

a maximum valid query containing the first keyword w1. It

adds keywords w2, w3, . . . as long as the query remains non-

underflowing. If the query becomes underflowing, the last

added keyword is removed and the next one tried. If all

keywords have been tried and the query is valid, this is the

current candidate to be a maximum query. And now, instead of

directly going for a completely new query starting with another

keyword (as Algorithm 1 does), the MAXIMUM VALID QUERY

algorithm backtracks to other possible queries containing w1.

Pruning is done whenever the algorithm excluded as many

keywords as are excluded from the currently stored maximum

query. In case of more than one query of maximum size

this pruning strategy ensures that the algorithm outputs the

lexicographically first maximum query with respect to the

initial keyword ordering. Thus, keywords with lower index

implicitly are more important. This is a reasonable assumption

as it reflects the idea that users in their queries first type the

words that are most descriptive of their information need.

If in the depth-first search a valid query is found that is

longer than the maximum query so far, it is stored as the new

maximum query. The described algorithm is guaranteed to find

a maximum query—if there is one at all—as it implements an

exhaustive search.

IV. IMPROVED INFORMED SEARCH STRATEGIES

To decrease the number of submitted Web queries, we

inform the baseline algorithms described in Section III with a

pre-processing step that initializes a vertex and edge weighted

directed co-occurrence graph GW , storing as weights the

l -values and co-occurrence probabilities of the keywords

from W . In our first experiments we also submitted Web

queries to derive the weights in the graph but did not count

them for the overall cost. The rationale is that in case of

substantial savings achievable by using the graph, a very

promising future research task is initializing the graph with

a local “sandbox” corpus at user site on which co-occurrence

probability computation can be done at zero cost (e.g., a local

index of Wikipedia documents). In case of implementation at

search engine site co-occurrence informations would also be

pre-processed and come without any cost. In this paper we

show the potential of the co-occurrence graph technique and,

thus, describe initializing GW using Web queries. The graph

contains a vertex vw for each keyword w ∈ W . The weight of

vw is set to l{w}. We have two edges connecting vertices vw

and vw′ . An edge e = vw → vw′ from vw to vw′ gets as weight

the yield factor γ(e) = l{w,w′}/l{w}. This factor multiplied

by the weight of vw gives the yield of Web hits when w′ is

added to w. Note that the yield factor is reminiscent of the co-

occurrence probability for the keywords w and w′. Like the

similarity measures in [3, 4] we obtain the yield factors by
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Figure 2. The co-occurrence graph of the example scenario from Table I.

Web queries. The graph GW itself is reminiscent of a mutual

information graph. In Figure 2 we show the co-occurrence

graph of our example scenario from Table I.

Using GW the algorithms can internally estimate a query

and only submit it to the engine if really necessary. Let

Qcand be the currently examined query and assume that

every query Q from a previous computation step has a stored

value estQ indicating an estimation of Q’s result list length.

Before submitting Qcand as a Web query, estQcand
is internally

derived as follows. Let w′ be the last added keyword. Hence,

the algorithm already knows estQ′ for Q′ = Qcand \ {w′}.
It now sets estQcand

= estQ′ · avg{γ(vw → vw′) : w ∈ Q′},
where avg denotes the mean value. Submitting Qcand as a Web

query is done iff estQcand
< 5 · lmax. The factor 5 in the last

inequality was determined experimentally. The experiments

revealed that lQ ≥ estQ for most queries Q and a factor of

5 showed to catch most of the cases where Q is valid but

lmax < estQ. Hence, if estQcand
< 5 · lmax the engine’s lQcand

“adjusts” the internal estimation and is stored as estQcand
.

If estQcand
≥ 5 · lmax, the algorithms do not submit a Web

query but store the internally derived estQcand
. In these cases

the internal estimation is large enough to ensure that the query

Qcand really overflows.

V. EXPERIMENTAL ANALYSIS

Our experiments use search sessions with two or more

queries from the AOL 2006 query log. The sessions are ob-

tained by two different detection methods. The first is a tempo-

ral method with a 10 minute cut-off (two consecutive queries

belong to a session iff they are submitted within 10 minutes)

and the second is the geometric method [8] that uses a mix

of cut-off time and keyword overlap between consecutive

queries. From the obtained sessions stopwords are removed

and for every i ∈ {4, 5, . . . , 10, 15} we randomly choose

1000 sessions containing exactly i keywords for each detection
method. Thus, we have 2000 sessions with 4 keywords, 2000
sessions with 5 keywords, etc. We set the bounds lmax = 100
and lmin = 10. For each session we consider runs of all

approaches for MAXIMUM VALID QUERY and the QUERY

COVER variants. The Microsoft Bing API is used as the Web

search engine S.

Table II
EXPERIMENTAL RESULTS FOR QUERY COVER.

Number of keywords

5 10 15

1 Processed sessions 2 000 2 000 2 000

2 No query cover possible 1 921 1 646 1 072

3 Cover found 79 354 928

4 Avg. cost informed MIN 11.95 133.14 175.74

5 Avg. cost baseline MIN 22.81 215.56 268.16

6 Cost ratio MIN 0.52 0.62 0.66

7 Avg. cost informed MAX 13.62 135.51 252.22

8 Avg. cost baseline MAX 23.72 222.21 402.83

9 Cost ratio MAX 0.57 0.61 0.63

10 Avg. tlocal informed MIN (ms) 2.23 24.15 57.21

11 Avg. tWeb informed MIN (s) 4.63 53.01 65.43

12 Avg. tlocal baseline MIN (ms) 3.68 29.45 40.16

13 Avg. tWeb baseline MIN (s) 8.84 85.82 99.84

14 Avg. tlocal informed MAX (ms) 2.41 23.29 62.16

15 Avg. tWeb informed MAX (s) 5.28 53.95 93.91

16 Avg. tlocal baseline MAX (ms) 2.97 29.11 61.83

17 Avg. tWeb baseline MAX (s) 9.20 88.47 149.98

18 Avg. Web query time (ms) 387.76 398.13 372.32

19 Avg. |Q| informed MIN 2.00 2.46 2.59

20 Avg. |Q| baseline MIN 2.06 2.56 2.66

21 Avg. query size informed MIN 2.58 5.52 8.83

22 Avg. query size baseline MIN 2.64 5.56 8.78

23 Avg. |Q| informed MAX 1.82 2.29 2.45

24 Avg. |Q| baseline MAX 1.86 2.35 2.45

25 Avg. query size informed MAX 2.66 6.29 10.28

26 Avg. query size baseline MAX 2.80 6.53 10.57

A. Query Cover

The results of our experiments for the QUERY COVER

variants can be found in Table II (due to space limits only for

sessions with 5, 10, and 15 keywords). The first row states the

number of processed sessions. Especially for sessions with few

keywords, even the complete query containing all words very

often overflows or one of the keywords could not be combined

with the others to form a valid query (cf. second row). We filter

out such sessions and derive the statistics (rows 4 to 26) just

for the remaining sessions (number given in third row). For all

these remaining sessions all approaches always find a query

cover. In rows 4 and 5 we state the average number cost of

Web queries needed to solve MINIMAL QUERY COVER with

and without co-occurrence information. The average ratio of

submitted queries is given in row 6 (row 4 divided by row 5).

Analogously, rows 7 and 8 contain the average number of

queries submitted to solve MAXIMAL QUERY COVER; the

ratio is given in row 9. A visualization of the ratios’ behavior is

given in Figure 3 (here the ratios for 4–10 and 15 keywords are

included). The possible savings compared to the baselines are

substantial for both QUERY COVER variants: 35–50% of the

queries with a slight decrease for larger sessions. A potential

cause for the decrease is the fact that for larger sessions the

absolute and relative number of non-overflowing intermediate

queries that have to be submitted to the engine to adjust the

internal estimations significantly increases.
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Figure 3. Ratio of queries submitted to solve the QUERY COVER variants
via baseline or co-occurrence informed approach.

Rows 10 to 18 comprise the statistics on the time consump-

tion of the algorithms. Note that, as expected, the internal

computation time tlocal (rows 10, 12, 14, and 16) is always

orders of magnitude lower than tWeb (rows 11, 13, 15, and 17).

The co-occurrence informed algorithms are faster than the

baselines since they submit significantly fewer queries. The

average time of a Web query is given in row 18.

Finally, in rows 19 to 26 we report statistics on the generated

query families. The average size of a query and the average

number of queries show that the co-occurrence informed

algorithms sometimes do not produce the same output as

the baselines. This is due to the possible but rare internal

overestimations, which hinder the informed approaches to find

some of the valid queries that the baselines find. However,

the differences are pretty small, and intensive spot checks

reveal that the informed algorithms typically produce the same

outputs as the baselines.

Altogether, using the co-occurrence graph for internal esti-

mations provides substantial savings in the number of submit-

ted queries; these savings do not harm the quality of Q in case

of the QUERY COVER variants. Compared to the baselines,

savings of 35–50% can be expected.

B. Maximum Query

The results of our experiments for MAXIMUM VALID

QUERY can be found in Table III (again only for sessions

with 5, 10, and 15 keywords). The table’s segmentation is

similar to that of Table II. The first row states the number

of processed sessions. Like in case of the covering variants,

sessions with few keywords often do not allow for a maximum

query because the complete query containing all words is

overflowing (cf. second row). Such sessions are filtered out

and the statistics (rows 4 to 13) are derived just for the

remaining sessions (number given in third row). For these

cases the baseline as well as the co-occurrence informed

approach always find a maximum query. In rows 4 and 5 we

state the average number cost of Web queries needed to solve

MAXIMUM VALID QUERY with and without co-occurrence

information. The average ratio of submitted queries is given

in row 6 (row 4 divided by row 5). A visualization of the

Table III
EXPERIMENTAL RESULTS FOR MAXIMUM QUERY.

Number of keywords

5 10 15

1 Processed sessions 2 000 2 000 2 000

2 No maximum query possible 1 913 1 599 953

3 Maximum query found 87 401 1 047

4 Avg. cost informed 10.90 48.15 394.41

5 Avg. cost baseline 13.38 70.29 516.46

6 Cost ratio 0.81 0.69 0.76

7 Avg. tlocal informed (ms) 1.20 5.50 76.49

8 Avg. tWeb informed (s) 3.91 17.72 132.70

9 Avg. tlocal baseline (ms) 2.25 7.42 73.34

10 Avg. tWeb baseline (s) 4.80 25.86 173.76

11 Avg. Web query time (ms) 359.05 367.94 336.45

12 Avg. size maximum query informed 3.09 7.47 11.93

13 Avg. size maximum query baseline 3.19 7.71 12.34

ratio’s behavior is given in Figure 4 (here the ratios for 4–

10 and 15 keywords are included). Interestingly, finding a

maximum valid query for sessions with 15 keywords causes

the submission of more queries than finding a cover with

maximal queries. Nevertheless, the possible savings of 15–

35% are substantial compared to the baseline. Again, as for

the QUERY COVER variants, the slight decrease of possible

savings for larger keyword sets is due to the increasing number

of non-overflowing queries examined during the search.

The rows 7 to 11 comprise the runtime statistics of the

algorithms. Again, the internal computation time tlocal is

orders of magnitude lower than tWeb for both approaches.

Since the informed approach needs more than 2 minutes

for sessions with 15 keywords, the algorithm in this case is

applicable only when the user does not need the maximum

query immediately after submitting her last query. But it is

reasonable to assume that the user also skims through some

results of her last query and finding a maximum query can

use these “idle” times.

Finally, in rows 12 and 13 we report statistics on the average

size of the generated queries. It can be observed that the

co-occurrence informed approach does not always produce

the same output as the baseline. As for the QUERY COVER

variants, this is due to the rare overestimations using the
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Figure 4. Ratio of queries submitted to solve MAXIMUM VALID QUERY via
baseline or co-occurrence informed approach.
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internal estimations but the differences are rather small; also

here, intensive spot checks reveal that the informed algorithm

usually produces the same outputs as the baseline.

We can conclude that using the co-occurrence graph for

internal estimations provides substantial savings of 15–35% in

the number of submitted queries; these savings do not harm

the quality of the found maximum queries.

VI. CONCLUSION AND OUTLOOK

We showed the need for a user-oriented query cost analysis

in the process of finding maximum or covering queries against

a Web search engine. In such situations the user “plays”

against the engine in order to satisfy her information need

by submitting Web queries. Our formalization forms the

ground for both to define the according problems and to de-

velop search strategies to solve user-cost-oriented optimization

versions of the problems. That the co-occurrence informed

approaches should be used instead of the uninformed baseline

methods is experimentally underpinned by the substantial

savings in the number of submitted queries.

Note that the approaches can also be used at search engine

site to find maximum or covering query suggestions for search

sessions. Such suggestions could have a potential of improving

user experience in unsuccessful sessions.

Our investigations leave room for future work. Most im-

portantly, the performance of maximum and covering queries

with respect to relevance of the results has to be evaluated.

Another interesting task is to use query expansion techniques

in order to extend the initial keyword set and thus having an

improved diversification of the desired valid queries: especially

in case of sessions with few keywords this may lead to a non-

overflowing “complete” query. And, finally, the use of poten-

tial “sandboxes” from which the co-occurrence probabilities

can be derived at zero cost should be analyzed.
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