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Abstract 
 

This paper presents a model for integrative, one-to-one 
negotiation in which the values across multiple attributes 
are negotiated simultaneously. We model a mechanism in 
which agents are able to use any amount of incomplete 
preference information revealed by the negotiation partner 
in order to improve the efficiency of the reached 
agreements. Moreover, we show that the outcome of such a 
negotiation can be further improved by incorporating a 
"guessing" heuristic, by which an agent uses the history of 
the opponent's bids to predict his preferences. Experimental 
evaluation shows that the combination of these two 
strategies leads to agreement points close to or on the 
Pareto-efficient frontier. The main original contribution of 
this paper is that it shows that it is possible for parties in a 
cooperative negotiation to reveal only a limited amount of 
preference information to each other, but still obtain 
significant joint gains in the outcome. 

  
 

1. INTRODUCTION 
 
Recent years have seen a surge of interest in negotiation 

technologies, seen as a key coordination mechanism for the 
interaction of providers and consumers in future electronic 
markets that transcend the selling of uniform goods [16].  
Suggested applications range from modeling interactions 
between customers and merchants in retail electronic 
commerce [10], to the online sale of information goods [17], 
or reducing operational procurement costs of large 
companies [2]. 

Such technologies could prove especially useful in the 
case of multi-attribute negotiations, where the agents have 
an incentive to cooperate in order to search for an outcome 
that brings joint gains for both parties. As shown by [15], 
such negotiations represent a non-zero sum game, where “as 

values shift along multiple directions it is possible for both 
parties to be better off”. In such cases, agents often care 
about equity and social welfare, and not only about their 
own individual utility [6]. Examples where such cases may 
arise are: business process management involving agents 
within the same organisation [6] or e-commerce negotiations 
where the seller is interested in having a satisfied buyer [10]. 
As argued in [10], such an interaction between buyer and 
seller should no longer be modeled as a “tug-of-war”, but as 
an exploration of the joint utility space. 

The main problem that arises is that cooperative game 
theory generally assumes complete information of both 
parties is available in order to compute optimal outcomes. 
This does not hold for many applications, where only a 
limited degree of trust exists between parties in sharing 
preference information. The reasons for this may be 
endogenous to the negotiation (e.g., fear the other may 
abuse this information to get a better deal) or exogenous 
(e.g., privacy concerns).  

In classical multi-attribute-utility theory ([12], [13]), the 
solution proposed is the use of an independent mediator, 
which both parties can trust to reveal their preferences. The 
problem with this approach in an electronic or open system 
setting is that it can be difficult to establish whether a 
mediator is indeed impartial or more trustworthy than the 
negotiation partner himself. For example, an agent may have 
no way of knowing if the solutions proposed by the 
mediator are not biased towards the other or that his 
preference information will not be stored and used for other 
purposes. By contrast, our approach is to use a distributed 
design, in which each agent computes its own bids, using 
the information available about the preferences of the 
opponent. We take into account two different types of 
(incomplete) information:  

• Partial profile information which is communicated by 
the negotiation partner himself in the beginning of the 
negotiation.  

• Profile information which can be deduced (learned) 
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from successive bids during the negotiation itself. Here we 
start from the assumption that the way the negotiation 
partner is bidding may reveal something about his 
preferences. For this mechanism we use the term “guessing” 
to clearly show it is a heuristic. 

In our current work we preferred the heuristic approach 
to designing automated negotiation, since we feel this allows 
more flexibility. This position is supported, among others, 
by [6] who clearly show that “what is required are agent 
architectures that implement different search mechanisms, 
capable of exploring the set of possible outcomes under both 
limited information and computation assumptions”. 
However, this does not mean we ignore the results from 
game theory: they are present in both measuring the 
efficiency of reached agreements (e.g. Pareto-efficiency) 
and in analyzing some properties of our mechanism. 

In this paper, in Section 2 we present our multi-attribute 
negotiation model, in Section 3 we present our experimental 
set-up and the empirical results obtained, while Section 4 
concludes the paper with a discussion. 
 

2.THE MULTI-ATTRIBUTE NEGOTIATION 
MODEL 

 
Our negotiation follows an alternating-offers protocol. A 

bid in such a negotiation has the form of values assigned to 
a number of attributes. If the negotiation is about the sale of 
a car, the relevant attributes considered are, for example: CD 
player, extra speakers, airco, tow hedge, price and then a bid 
consists of an indication of which CD player is meant, 
which extra speakers, airco and tow hedge, and what the 
price of the offer is.  

Although the examples given in Section 3 are based on 
this domain, our negotiation model is a generic one and this 
Section provides a generic formal description of the model. 
Instantiations in other domains are possible and have been 
considered – for example an employer and employee 
negotiating about work shifts and overtime pay (work 
performed in collaboration with Almende B.V., Rotterdam).  

The current model represents an extension of the 
negotiation model presented in [5]. This paper presents two 
main directions in which the model was adapted (c.f. [14]), 
after the publication of the original research: 

• A mechanism where the agents are allowed to exchange 
and take into account partial preference information from 
the negotiation partner was modeled. 

• A novel “guessing” heuristic by which an agent can 
estimate the preferences of the other using his past bids was 
proposed and tested. 

Both for the original work and the extension, the DESIRE 
design method and software environment [1] were used to 
design the agents. Although we also cover some elements of 
the existing model, we only do so very briefly, to allow 
more extensive explanations for the parts that were added or 
adapted from the original research. For further details 

readers are asked to consult [5] and [14]. 
Our negotiation model works by performing 

computations on two levels: the overall bid level and the 
attribute level. This involves first evaluating the utility 
opponent’s previous bid, and then planning the target utility 
for the own next bid. Finally, the configuration of the next 
bid will be selected such that it fits this target value. In the 
design of our agent, these steps are modeled as separate 
components and our presentation follows this structure. 

 
2.1  Bid Utility Determination and Planning 

 
The evaluation for each attribute is computed based on an 

evaluation function, specified by the agent owner (user) in 
the beginning of the negotiation. This function takes the 
generic form eval: VS -> E, where VS is either a finite set of 
discrete values or an infinite set of discrete or continuous 
values, while E = [0,1]. For example, in our domain 
accessories have discrete values (quality levels, assigned an 
evaluation by the user), while attributes such as mileage or 
price are continuous, and their utility is computed by a 
continuous function. Next, the utility of the opponent’s 
previous bid is computed. The overall utility UB of a bid B is 
taken as a weighted sum of the attribute evaluation values 
EB,j for the different  attributes (issues) j:  UB = Σj  w j  E B, j. 

Here all weights w j are normalized importance factors 
based on the raw importance factors pk for the different 
attributes (provided by the user through an interface in the 
beginning of the negotiation): w j = p j / Σk p k 

Finally a target evaluation is computed for the agent’s 
next bid.  For determination of the next bid’s target utility 
TU the following  formula is used: TU  = UBS +  CS, with 
UBS the utility of the agent’s  own last bid, and the 
concession step CS determined as:  CS  =  β (1 - µ / UBS)* 
(UBO - UBS), where UBO is the utility of the opponent’s last 
bid, with respect to the agent’s own utility function. Factor β 
stands for negotiation speed, while factor (1 - µ /UBS) 
expresses that the concession step will decrease to 0 if the 
UBS approximates a minimal utility µ. The minimal utility is 
a measure of how far concessions can be made. 

 
2.2 Attribute Planning 

 
This component (whose internal decomposition is shown 

in Figure 1) determines the attribute values for the next bid, 
in such a way that the next bid will always have the target 
utility as its utility. This is done in two steps: first a target 
evaluation is computed per attribute, based on the target 
evaluation planned for the whole bid. Next,  attribute values 
are chosen with the evaluation closest to the target 
evaluations (for all attributes except price). The 
configuration of the next bid is then completed by selecting 
a value for price, such that the utility of the final bid fits 
exactly its target. 

In order to make better directed concessions, in planning 
the target evaluation for each attribute we take into account 
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not only the own preference weight of the agent, but also the 
weight of the opponent. If the opponent is not willing to 
reveal her preference weight for some (or maybe all) 
attributes, an estimation of these weights is computed in 
“Estimation of Opponent’s Parameters” component. The 
role of the “Guess Coefficients” component is to analyze the 
way the opponent is bidding and to provide some extra 
information to be used for estimating these private 
preference weights. In the following  we discuss these 
components in a separate sections. 

 
 

  Configuration 
  Planning 

Attribute Planning  

Target  Evaluation  
Planning 

Guess 
Coefficients 

Provision of 
Initial Guess 
Information 

Estimation of  
Opponent’s Parameters 

Figure 1: Internal composition of Attribute Planning   
 

2.3 Target Evaluation Planning 
 
This component outputs a target evaluation for each 

attribute in the next bid, based on the bid target value. 
The target attribute evaluation is determined in two steps. 

First a basic target attribute evaluation for each attribute is 
computed as:  

BTE j  =  EBS, j +  (αj / N) (TU  - UBS) 
In the above formula EBS, j represents the evaluation for 

attribute j in the agent’s own previous bid, UBS the overall 
evaluation of the agent’s previous bid, while TU represents 
the target utility for the next bid (as shown in Section 2.1). 
The parameter αj  is chosen as αj = (1 - w j) (1 - EBS, j), where 
the first parameter expresses the influence of the user’s own 
importance factor, while the second factor assures that the 
target evaluation values remain scaled in the interval 
between 0 and 1. Parameter N is a normalization factor, 
defined as: N   = Σj w j αj. By this choice we ensure that the 
following relation always holds: Σj w j BTEj = TU (for a full 
proof of this property we refer the reader to [5]). 

The Basic Target Evaluation, however only takes into 
accounts the own preference weights of the agent. Using 
only this value would work, but it may lead to sub-optimal 
results, since the preferences of the other are not considered 
in any way when making concessions. To improve on this, 
the following solution was implemented. For each attribute j 
∈ A (where A denotes the set of all attributes) a Preference 
Difference Coefficient δj is computed as: 

δ j  = (W other, j  - Wown,j ) / (W other, j  + Wown,j ) 

This coefficient (scaled between -1 and 1) expresses how 
different the preferences of the two parties for each attribute 
are. Positive values for δj denote a stronger preference of the 
negotiation partner for attribute j, while negative values 
denote a stronger own preference for this attribute.  

The concession to be made in each attribute j ∈ A 
depends on a parameter called configuration tolerance, 
denoted as τj ∈ [-1,1]. The tolerance parameter is chosen to be 
attribute-specific, in order to better differentiate the amount 
of concessions between attributes. Therefore, for each 
attribute j∈A, the configuration tolerance depends on the 
preference difference coefficient of that attribute, according 
to the following formula: τj  =   τgen * (1 + δj) 

Here the parameter τgen represents the general tolerance, 
used by the agent for all attributes j. The general tolerance is 
always chosen between 0 and 0.5 and also gives a measure 
of how fast the agent is willing to make concessions. Values 
closer to 0 will denote an agent who is less willing to make 
concessions, while values closer to 0.5 will denote an agent 
who is interested to reach a deal quickly.  Since δj ∈ [-1,1] the 
tolerance for any attribute j is scaled between 0 and 2*τgen. 

Finally, the target evaluation for each attribute j is 
computed. This is done by taking into account both the basic 
target attribute evaluation (as described above) and a 
concession to the attribute evaluation from the previous bid 
of negotiation partner, as follows: 

TEj  =  (1 - τj) BTE j +   τj EBO, j 
Here BTE j is the basic attribute evaluation for attribute j 

and EBO,j is the evaluation for attribute j from the opponent’s 
previous bid. From the above formula, one can see that 
values of the configuration tolerance τj close to 0 signify 
that mostly the user’s own importance factors are taken into 
account, while values close to 1 shows that maximum 
possible concession is made towards the other’s value. And 
since τj depends directly on δj, it is the difference in 
preference for each attribute that determines how much 
concession should be made. Because, in our model both the 
sum of the agent’s own weights and sum of the opponent’s 
weights are always scaled to 1, the above mechanism leads 
to a situation where greater concessions in some attributes 
(more important to the opponent) will always be balanced 
by smaller concessions in other attributes (more important to 
me). Such an asymmetric concession system allows both 
negotiating parties to reach greater utility quicker. 

In this component we have assumed that the opponent’s 
preference weights for an attribute are known. However, if 
the other is not willing to share his weights for some (or all) 
attributes, then they will need to be estimated. 

 
2.4 Estimation of Opponent’s Parameters 

 
This component determines, for those attributes for which 

the opponent was not willing to reveal his preference 
weights, an estimation of those weights.  

We denote by Aknown the set of attributes for which the 
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opponent was willing to reveal his importance weights in the 
beginning of the negotiation and by Aunknown the attributes 
whose preference weights are kept private. Since all 
preference weights are normalised (see Section 2.1), the sum 
of weights for the private attributes is computed as: 

Σj∈Aunknown W j =  1 - Σk∈Aknown W k 

For attributes with private weights, the remaining weight 
Σj∈AunknownWj has to be divided between them. For this 
purpose we assign a parameter called the Remaining Weight 
Distribution Coefficient Rj to each attribute j ∈ Aunknown. 

These attributes can be further classified into two subsets: 
• Attributes for which a reliable guess about the 

preference of the opponent can be made based on her 
previous bids (we denote this class by A(G)). These 
attributes will be assigned a coefficient Rj in the “Guess 
Coefficients” component (as described in Section 2.5). 

• Attributes for which no reliable information about the 
preference weights of the opponent can be made from his 
previous bids (denoted by  A(NG)). These attributes are 
assigned a default value Rj = 2, which is empirically chosen 
between the values for attributes for which there is an 
indication they are important to the opponent (from her past 
bids) and those attributes which are less important to her 
(see Table 1). After establishing the value of this parameter, 
the estimation of the actual weight is computed as follows: 

Wj = (Rj / Σk∈Aunkown Rk )* Σk∈Aknown W k 

It is also possible that no reliable information can be 
obtained from the opponent's past bids for any of the 
attributes. Then all distribution coefficients will be equal 
and applying the above formula results in equal distribution 
of the remaining weight between private attributes, formally 
expressed as:  Aunknown = A(NG) => ∀ j, k ∈ Aunknown, Wj = Wk. 

   
2.5 Guess Coefficients  

 
This component analyses the opponent’s bids and, for 

those attributes for which a trend is reliable detected, returns 
a value for the remaining weigh distribution coefficient. 

In the current model the explicit assumption used in 
guessing (for the Seller's side only) is that, everything else 
being equal, a human Buyer would prefer a better quality 
item to a poorer quality one. Otherwise stated there exists a 
(partial) ordering of the attribute values such as: 
evaluation(good) > evaluation(fairly good) > evaluation( 
standard) > evaluation(meager) > evaluation(none).  We 
define the Attribute Value Distance AVTj for each attribute 
j∈A as the distance between values for an attribute in two 
successive bids, on an ordinal scale. For example, given the 
above ordering, the distance between good and fairly good 
is 1, while the difference between good and standard is 2. It 
is important to show that this attribute value distance does 
NOT depend on the exact values the opponent assigns to 
these labels – since in the current model this information is 
private (not disclosed to the other). After running a 
considerable number of experiments we observed that such 

a simple ordering information can lead to a reasonably good 
heuristic. Partial ordering information is usually sufficient to 
make a good prediction about the opponent's preferences in 
the negotiation (i.e. if this distance is known only for some 
labels, this is enough).  

Next we need a mapping of the detected concession 
distances to the remaining weight distribution coefficients 
introduced in Section 2.4 (see Table 1). The values for the 
above coefficients were determined experimentally as 
follows: first between each two different labels (representing 
quality levels) an initial value was computed by subtracting 
their distance value from 4 (the maximum distance). Then 
the parameters were adjusted to provide a best linear fit for 
the results over a large number of tests. This mapping is 
domain-specific, meaning it lead to good results in the tests 
we performed, but it may need to be adapted in other 
domains. 

  
Table 1: Remaining Weight Distribution Coefficients 

assigned to  Attribute Value Distances for attrib. j ∈∈∈∈ A(G) 
 

Attribute Value Distance(j) R (j) 
0 6 

1 4 

2 3 

3 1 

4 0.5 
 

 
Another issue to be discussed is how many successive 

bids in the negotiation trace need to be analyzed in order to 
make a prediction for Rj. From our empirical tests we 
observed that in most cases it is sufficient to adjust the Rj 
parameter based only on the first 3 bids. This can be 
explained by the fact that our model, being cooperative, 
agreement over the attributes with discrete values occurs in 
the first rounds of the negotiation –  and usually the last 
rounds can be characterized as “haggling” over the only 
continuous attribute, the price.  

 
3. EXPERIMENTAL RESULTS 

 
In this section, we first discuss the experimental set-up 

used in testing the proposed model. Then, we illustrate the 
mathematical model presented in section 2 by means of an 
example, and summarize the full results from our tests. 

 
3.1 Experimental set-up 

 
In order to test the robustness of the above model, we  

considered the following dimensions: 
•  The number of attribute weights revealed 
•  Whether guessing is used or not 
•  The choice for the attribute importance factors 
•  The evaluations for the attribute value levels 
Since the test space is very large, we considered 3 cases 

of asymmetry in preference. The importance factors used are 
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presented in Table 2. Note that these are raw importance 
factors, which are then normalised to add up to 1, using the 
formula presented in Section 2.1. 

The importance factor for price is kept constant in these 
tests. The reason for this is that price is the only continuous 
attribute in the current model (i.e. has a continuous function 
evaluation) and it is difficult to objectively examine the 
trade-offs between the other 4 attributes with discrete value 
labels unless the importance factor of the price is the same.  

 
Table 2:  Importance factors used for Buyer/Seller, for 

different levels of preference asymmetry  
 

 Tow 
hedge 

Airco Extra 
speakers 

CD 
player 

Price 

Fully 
asymmetric 

90/15 90/15 15/90 15/90 300/300 

Partially 
asymmetric 

53/53 90/15 15/90 53/53 300/300 

Fully 
symmetric 

53/33 53/53 53/53 53/53 300/300 

 
Furthermore, we must check that these results hold for 

different possible value configurations. Again the search 
space here is very large, so we must restrict our attention to 
a few profiles combinations, which are shown in Table 3.  

We assume a business model in which the Seller prefers 
to sell the car for a standard price – and not have to install 
extra accessories, but he is willing to do so in order to sell it.  
Other choices are possible, but in order to properly test the 
model the choice for the values must be asymmetrical –  
meaning the two parties would like different values for each 
attribute. Otherwise the parties quickly agree on the 
configuration (since their interests are convergent) and the 
negotiation reduces  to haggling about the price. 

 
Table 3: Value levels Good / Fairly Good/ Standard /  

Meager / None for each of the 4 attributes 
 

 Profile 1 Profile 2 
BUYER 100 / 85 / 70 / 30 / 0 100 / 70 / 50 / 35 / 0 

SELLER 30 / 65 / 80 / 65 / 100 30 / 50 / 70 / 85 / 100 

 
 

3.2  An example negotiation trace 
 
In this section, we illustrate the model presented in 

Section 2 through an example. Here we take the negotiation 
between a Buyer and Seller with totally asymmetric 
preferences (see Table 2), where the only information 
revealed between parties is the normalised weight of 1 
attribute (Tow hedge). For accessories, for both Buyer and 
Seller, profile 1 is used (see Table 3). For this example, we 
use the perspective of the Seller, which in our case is the 
party using guessing. For reasons of space, we can illustrate 

only a small part of the full mathematical model, but we 
hope it is enough for the reader to understand the rationale 
behind some of our design choices. 

The attribute Tow Hedge has the following normalised 
preference weights (see Table 2): 

W BUYER, TowHedge = 90 /  (90+90+15+15+300) = 0.1764 
WSELLER, TowHedge = 15 / (90+90+15+15+300) = 0.0294 
From the perspective of the Seller the preference 

Difference Coefficient for Tow Hedge will be: 
δ TowHedge = (W Buyer,TH  - WSeller,TH) / (W Buyer, TH + WSeller,TH) 
= (0.1764-0.0294) / (0.1764+0.0294) = 0.714.  

A positive value close to 1 (as shown in 2.3), indicates 
this the attribute is more important to the other party (the 
Buyer). As the general tolerance (for the Seller side) in this 
case is  τgen = 0.3, the attribute specific tolerance will be 
τTowHedge = τgen * (1 + δTowHedge) = 0.3 * (1+0.714) = 0.514. 
Since τTowHedge > τgen, a larger concession than average will 
be made towards the Buyer’s requested value in this 
attribute. This can be seen in Table 5 as a large concession, 
in the first round from “none” to “fairly good”. 

Next we exemplify the guessing of the opponent’s 
weights discussed in Sections 2.4 and 2.5. We do this only 
after the first two rounds from the opponent’s bids, though 
the mechanism is the same for subsequent rounds. 

The Value Distances and Remaining Weight Distribution 
Coefficients for the unknown attributes are (see Table 4 for 
the Buyer’s first 2 bids and 1 for the coefficient mapping): 
VD(Airco) = VD(good, standard) = 2 =>  RAirco = 3  
VD(CD_player) = VD(Speakers) = VD(good,meager) = 3  
=>  RCD_player = RSpeakers = 1.  
Since Σj∈Aunknown Wj =1–(15+300)/510=0.235, the estimated 
weights are:   

WAIRCO = 3 / (1+1+3) * 0.235 = 0.141  
WCD_PLAYER = 1 / (1+1+3) * 0.235 = 0.047  

In this case, the estimations produced by the guessing are 
not far from the true (non-revealed) values of the Buyer: 
0.176 for Airco and 0.0294 for CD player. 

Tables 4 provides the complete trace of this negotiation 
from the perspective of the Buyer, while Table 5 does the 
same from that of the Seller. The vertical columns show the 
bids made by the two parties in successive rounds.  

 
Table 4: The negotiation trace: BUYER’s perspective 

BUYER  1 2 3 4 5 Closing 

bids       

price 18000 17450 17968 18047 18083 18083 

Tow 
hedge 

good fairly 
good 

fairly 
good 

fairly 
good 

fairly 
good 

fairly good 

airco good standard standard standard standard standard 

speakers good meager none none none none 

CD player good meager none none none none 

utilities        

Own bid 1 0.9203 0.9130 0.9094 0.9068 0.9068 

Seller’s bid 0.7407 0.8782 0.8830 0.8864 0.8889 0.8889 
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Table 5: The negotiation trace: SELLER’s perspective 

SELLER  round 
1 

2 3 4 5 accept:5 

bids       

price 16900 18468 18404 18359 18325 18083 

Tow 
hedge 

none fairly 
good 

fairly 
good 

fairly 
good 

fairly 
good 

fairly good 

airco none standard standard standard standard Standard 

speakers none none none none none None 

CD player none none none none none None 

utilities       

Own bid 1 0.9378 0.9296 0.9238 0.9195 0.8884 

Buyer’s 
bid 

0.3167 0.5932 0.8737 0.8838 0.8884 0.8884 

 
Fig. 2 provides a visualization of the negotiation progress 

in the joint utility space (as automatically produced by the 
implementation in our software environment). For clarity, 
only the first 3 bids of the Buyer and the first 2 of the Seller 
are shown. The rest lie in the straight line between these 2 
points. An interesting effect is that, in this example, after 
establishing mutually agreeable values for the discrete-value 
attributes, the agents seem to “walk” the Pareto-efficient 
frontier towards each other’s bid. This corresponds to the 
haggling about the price from rounds 3-5 in Tables 4 and 5. 

 

2 

1 

1 

3 

0.3

0.7

1

0.8

0.9

0.4 0.5 0.6 0.7 0.8 0.9 1 

BUYER 

SELLER 

Pareto-efficient 
frontier 

Final agreement 
point 

 Figure 2: Utility space corresponding to the example 
trace from Tables 4 and 5  

 
3.3 Comparing traces from the same test set 

 
We define a test set as the set of all negotiation traces 

which share the same Pareto-efficient frontier and therefore 
whose outcomes are directly comparable. Between the 
negotiations in the same set the preferences of the two 
parties are the same: the only difference is the amount of 
information shared and their willingness to use guessing.  
In Fig. 3 the final outcomes of negotiations involving a 
Buyer and Seller with asymmetric preferences and value 
profile 1 are plotted. The notation is: 1..3 denotes the 
number of attributes shared and  NG/G denotes whether 
guessing  is used or not. The Pareto frontier in Fig. 3 is the 
same as in fig. 2, just scaled between different values. In 
fact, the outcome reached in Fig. 2 appears as point 1G in 
Fig. 3. The irregular, non-convex shape of the Pareto-

efficient frontier (computed according to [13]) is typical for 
real-life domains, where some attributes take discrete values 
and only some are continuous. Furthermore the frontier does 
not reach the points (0, 1) and (1, 0). This is because in the 
evaluation of attribute price cut-off intervals are used. For 
example the Seller expects to make a maximum profit of 
20% over the basic price of the car, and assigns a maximum 
utility of 1 to any value above that (see [5] for a full 
discussion of this issue).  
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SELLER 

1 0.9 0.8 0.85 

1 

0.9 

0.8 

0.85 
0 G/NG 

1NG 
3NG 

2NG 

1-2G 
Pareto-optimal 

frontier 

Equal Proportion of 
Potential line 

Figure 3: Outcomes for negotiations between a Buyer 
and Seller with profile 1 and  totally asymmetric 

preference weights  
 
From the above test set we can already draw some 

conclusions. First, more attribute weights shared improves 
the outcome, so the mechanism is able to make efficient use 
of incomplete preference information. Second, the guessing 
heuristic may considerably improve the outcome. In the 
trace presented for 1 or 2 attribute weights shared guessing 
helps bring the outcome very close to the Pareto-efficient 
frontier. For 0 attribute weights shared (i.e. perfectly closed 
negotiation), in this particular test set guessing does not 
help much (however there are test sets where it does). In the 
3 attribute weights shared case the outcome without 
guessing is already Pareto-efficient. Note however that this 
case is not equivalent to fully open negotiation, because the 
evaluations for the values assigned to each quality level are 
still not revealed between parties.   

 
3.4 Comparing results from all test sets 

 
As we showed in Section 3.1, 96 negotiation traces were 

generated in order to test the validity of our model. Due to 
space limitation we cannot present in this paper all our 
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experimental results (the interested reader is asked to 
consult [14]). In Figure 4 we show the average utilities 
across all tested profiles, grouped by the level of asymmetry 
in preference weight between parties. Within each group, 
from left to right the level of openess is varied from no 
attributes revealed and no guessing used to 3 attribute 
weights revealed.  
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Figure 4: Average utilities for all profiles tested, for 

different cases of preference asymmetry and openess 
 
Based on Figure 4, we can see that our observations from 

section 3.3 generalize across profiles: both sharing more 
information and guessing improves the utility (on average). 
However we found that the more asymmetrical the 
preferences of the two parties are, the greater the scope for 
potential gains that can be obtained either by sharing more 
information or using the guessing heuristic (which can also 
be seen as the differences between preference configuration 
groups in Figure 4). For example, for all profile 
combinations tested in the perfectly symmetrical preferences 
case, the outcome always had a 0% improvement, either 
from sharing more preference weight information or by 
using the guessing heuristic. By contrast in the partially 
symmetric preferences improvements were of the order of 3-
4%, which went up to around 10% for asymmetric 
preference weights. This effect can be explained by the fact 
that our mechanism exploits precisely this preference 
asymmetry in order to increase the efficiency of the joint 
outcome for both parties. 

Another important conclusion is that, if the negotiation 
speed (see Section 2.1) is set the same for both parties, the 
outcomes will always lie relatively close to the equal 
proportion of potential line, regardless of the 
guessing/openness model used. Otherwise stated, the overall 
concession for the bid level are similar, even though for 

each attribute may differ widely. This ensures that, if the 
negotiation outcome lies on, or close to, the Pareto-efficient 
frontier, it will also be relatively close to the Kalai-
Smorodinsky bargaining outcome. This may be important, 
since some sources (e.g. [13]) consider closeness to this 
point as a measure of “fairness” of the negotiation outcome. 

 
4. DISCUSSION  

 
In this section we provide an overview existing work on 

negotiation, and, by comparison, we discuss different 
aspects from our own model.  

In [7], a model for bilateral multi-attribute negotiation is 
presented, where attributes are negotiated sequentially. The 
issue studied is the optimal agenda for such a negotiation 
under both incomplete information and time constraints. 
However a central mediator is used and the issues all have 
continuous values. The effect of time on the negotiation 
equilibrium is the main feature studied, from both a game-
theoretic and empirical perspective. In earlier research [8] a 
slightly different model is proposed, but the focus of the 
research is still on time constraints and the effect of 
deadlines on the agents’ strategies. This contrast with our 
model, where efficiency of the outcome and not time is the 
main issue studied. This is because we found that, due to our 
cooperative assumption, a deal is usually reached in 
maximum 10-15 steps, if the negotiation speed and tolerance 
parameters are suitably calibrated (see 2.1 & 2.3). 

The argumentation approach to negotiation (see for e.g. 
[11] for an overview) allows the agents to exchange not only 
bids, but also arguments that influence other agents’ beliefs 
and goals, which, it is claimed, allows more flexibility. 
Some issues which are usually left open in such approaches 
are: how do the agents’ mental states relate to their utilities 
and if (or how) can the efficiency of such negotiations be 
measured from game-theoretic perspective. 

In [3] a negotiation model is proposed which uses a 
compensation matrix to specify the compensation of a 
concession in each attribute by another attribute.  The level 
of the compensations is then approximated during the 
negotiation using a neural (Hopfield) network. By contrast, 
our model allows us the specification of concessions both at 
the overall bid level and the attribute level, which, we argue, 
makes the negotiation more flexible and transparent. 

Another important direction in multi-attribute 
negotiations is presented by [9] and [17], which propose 
models that overcome the linear independence assumption 
between attribute evaluations. We acknowledge that this is a 
limitation of the present model, which will be addressed in 
future work. On the other hand, our model is more flexible 
in specifying attribute values and better explainable (which 
may be important for deployment in real domains). A 
simulated annealing approach, such as the one used in [9], 
although efficient, is computationally rather complex and its 
results may be difficult to understand intuitively. We also 
feel that negotiation models which assume independence 
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between attribute evaluations may prove to have other 
advantages which make them suitable for real e-commerce 
applications. To make a parallel with machine learning, a 
simple method such as Naïve Bayes (which also makes an 
attribute independence assumption) continues to be very 
widely used in practical applications, despite the advent of 
more complex approaches such as neural networks, which 
avoid this assumption (and theoretically more “general”). 

We feel that the most related work to ours is represented 
by [6]. Like [6] we start from the perspective of distributed 
negotiation, which eliminates the need of a central planner. 
As in [6], we also take the heuristic approach and we model 
agents that are able to jointly explore the space of possible 
outcomes with a limited (incomplete) information 
assumption. In [6], this is done through a trade-off 
mechanism, in which the agent selects the value of its next 
offer based on a similarity degree with previous bids of the 
opponent. In our design, we do no explicitly model trade-
offs, yet the same effect is achieved through the asymmetric 
concessions mechanism. An advantage of our model over 
[6] is that we allow agents to take into account not only their 
own weights, but also those of the opponent in order to 
compute the next bid.  In this way agents may exchange 
partial preference information for those attributes for which 
their owners feel this does not violate their privacy. Also the 
initial domain information for the attributes with discrete 
(“qualitative”) evaluation is different. In [6], this consists of 
fuzzy value labels, while in our model it is a partial ordering 
of attribute weights. 

Our mechanism was designed to prevent obvious ways of 
cheating, like over-stating attribute preference weights. This 
is because each agent scales the sum of the preference 
weights declared by the opponent to 1.  So an agent has no 
incentive to over-state his preferences for any attribute, 
since this may lead to the opponent making smaller or no 
concessions in other attributes. Furthermore, a system was 
added by which an agent stops negotiating when it detects 
insufficient concessions from the other in several successive 
bids, which should prevent situations where one party makes 
all the concessions. However, in designing any distributed 
mechanism, the problem of proving its incentive 
compatibility remains a challenging one ([4]). A formal 
proof of the truth-revelation properties of the proposed 
negotiation protocol was outside the scope of this work.  

A practical alternative to formal proofs for such designs 
may be the experimental economics approach (also put 
forward in [2]). This involves testing the system with a large 
number of humans (in our case 74 students), negotiating 
both against software agents and against each other. This 
part of our research is under submission and still ongoing, 
but so far we found no obvious ways in which humans can 
exploit the system in one run.  
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