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Abstract. With the growing importance of XML in data exchange, much re-
search has been done in proving flexible query mechanisms to extract data from 
structured XML documents. The semi-structured nature of XML data and the 
requirements on query flexibility pose unique challenges to database indexing 
methods. Recently, ViST that uses suffix tree and B+Tree was proposed to re-
duce the search time of the documents. However, it can cause a lot of unneces-
sary computation and I/O when processing structural join queries because the 
numbering scheme of ViST is not optimized. In this paper, we propose a novel 
index structure to solve the problems of ViST. Our index structure provides the 
bottom-up query processing method to efficiently process structural queries. 
Our experiments show that the proposed index structure is efficient in  
processing both single-path and branching queries with various wild-cards (‘*’ 
and ‘//’). 
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1   Introduction 

XML provides a flexible way to define semi-structured data with the hierarchical 
structure. Because of such features of XML, XML is represented by a tree structure to 
process XML data [1]. Several query languages, including XPath, Quilt, XML-QL, 
and XQuery, have been proposed for semi-structured XML data. Also, path index 
methods that construct a graphical index on XML data to reduce query costs have 
been worked [2, 3]. 

Recently, many research papers on the structural join methods to efficiently proc-
ess the XML queries involving the ancestor-descendant relationship have been done 
[4, 5, 6]. The structural join methods can answer simple queries efficiently. However, 
queries involving branching structures usually have to be disassembled into multiple 
subqueries. The results of these subqueries are then combined by expensive join op-
erations to produce final answer. 

To improve existing structural join methods, ViST that combines suffix tree and 
B+Tree was proposed [7]. The suffix tree with sequence matching matches structured 
queries against structured data to avoid many unnecessary structural join operations. 
B+Tree avoids a traversal of the whole XML document tree. However, the numbering 
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scheme used in suffix tree is not optimized because it regards element y that does not 
have ancestor-descendant relation with element x in XML data as the descendent of 
the element x. For the same reason, ViST can cause a lot of unnecessary computation 
and I/O when processing the queries. 

In this paper, we propose an efficient index structure to solve problems of ViST 
and a novel query processing method suitable for proposed index structure. To verify 
the efficiency of our index structure, we compare the performance of our index struc-
ture with that of ViST. 

The rest of this paper is organized as follows. In section 2, we review related works 
and describe the problems of ViST. In section 3, we present our proposed indexing 
technique. In section 4, we present the experimental results that compare our tech-
nique with ViST. Finally, conclusions and future works are discussed in section 5. 

2   Related Work 

2.1   Query Processing Methods Using Suffix Tree 

Recently, query processing methods using suffix tree were proposed [8]. This meth-
ods use a sequential representation of both XML data and XML queries. Querying 
XML is equivalent to finding subsequence matches. Sequence matching matches 
structured queries against structured data as a whole without breaking down the que-
ries into subqueries of paths or nodes and relying on join operations to combine their 
results. The purpose of modeling XML queries through sequence matching is to avoid 
as many unnecessary join operations as possible in query processing. 

After both XML data and XML queries are converted to structure-encoded se-
quences in the suffix tree, it is straightforward to devise the naive algorithm to per-
form sequence matching. However, there are several difficulties. First, searching for 
the satisfied nodes is extremely costly since we need to traverse a large portion of the 
subtree for each match. Finally, suffix tree is main memory structure that is seldom 
used for disk resident data, and most commercial DBMSs do not have support for 
such structures [7]. 

2.2   The Problems of ViST 

ViST improves the naive algorithm by eliminating costly suffix tree traversal. It uses 
a virtual suffix tree to organize structure-encoded sequences to speed up the matching 
process. ViST labels each suffix tree node x by a pair <nx, sizex>, where nx and sizex 
are the prefix traversal order of x and the total number of descendants of x in suffix 
tree, respectively. Figure 1 shows the index structure of ViST. ViST consists of three 
parts such as the D-Ancestor B+Tree, the S-Ancestor B+Tree and the DocID B+Tree. 
To construct the B+Trees of ViST, it first inserts all suffix tree nodes into the  
D-Ancestor B+Tree using their (symbol, prefix) as keys. For all nodes x inserted with 
the same (symbol, prefix), ViST indexes them by an S-Ancestor B+Tree, using the nx 
values of their labels as keys. In addition, ViST also builds a DocId B+Tree, which 
stores for each node x (using nx as key), the document IDs of those XML sequences 
that end up at node x when they are inserted into the suffix tree [7]. ViST simply 
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determines the ancestor-descendant relationship between two elements by the  
D-Ancestor B+Tree and the S-Ancestor B+Tree. If x and y are labeled < nx, sizex > and 
< ny, sizey > respectively, node x is the ancestor of node y iff ny∈(nx, nx+sizex]. As a 
result, ViST no longer need to search the descendent of x to find such y. 

 

(a) The suffix tree for Doc1 and Doc2                          (b) The structure of ViST 

Fig. 1. The ViST index structure  

Figure 2 shows the query processing method in ViST of Figure 1. If the query for 
“/P/S/L/v1” is requested, a structure-encoded sequence about this query is con-
structed. And it obtains the nx and sizex of the (P, ε) that is the first (symbol, prefix) of 
above structure-encoded paths by searching the D-Ancestor B+Tree and the S-
Ancestor B+Tree of Figure 1. 

 

Fig. 2. The query processing in ViST 
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These values are used for range queries about the (symbol, prefix) of (S, P) in-
volved in the (nx, nx+sizex) of the (P, ε). Then the range query about the (symbol, pre-
fix) of the (L, PS) involved in the <nx, nx+sizex> of the (S, P) and the (symbol, prefix) 
of the (v1, PSL) involved in the <nx, nx+sizex> of the (L, PS) are executed with the set 
of above range query results, respectively. Finally, to obtain the documents corre-
sponded to the query, the range query about the [nx, nx+sizex] of the last (symbol, 
prefix) is executed in the DocID B+Tree. 

As shown in Figure 2, the child node of the (S, P) with nx=2 is only the (L, PS) 
with nx=3 in the Doc1 of Figure 1. However, when the range query about the (symbol, 
prefix) of the (L, PS) involved in above (S, P) is executed, the (L, PS) with nx=6 is 
represented as the child of above (S, P). Moreover, because the characteristic that 
prefix of an element represents the path from the root element to itself is not used, the 
unnecessary nodes are accessed as shown in Figure 2. For example, with the PSL of 
the (v1, PSL), we estimate that the (v1, PSL) has the (L, PS) as its parent node, and the 
(P, ε) and (S, P) as its ancestor nodes. Therefore the range queries about the (P, ε), (S, 
P), and (L, PS) involving the (v1, PSL) are unnecessary. Also, because of noncontigu-
ous subsequence matches, the branching query processing method of ViST triggers 
false alarms [9]. 

3   Our Proposed Index Structure 

3.1   Our Proposed Index Structure 

We use the durable numbering scheme [4] to solve the numbering scheme problem of 
ViST. Figure 3 shows our proposed index structure about the XML documents of 
Figure 1. The D-Ancestor B+Tree and the S-Ancestor B+Tree of our index structure 
are same as those of ViST. But our index structure inserts a pair <order, size> of the 
durable numbering scheme into the S-Ancestor B+Tree. 

 

Fig. 3. Our proposed index structure 
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To directly find the documents involving the <nx, sizex> of the last node by the 
range query, we use the DocID R-Tree instead of the DocID B+Tree. The key of Do-
cID R-Tree is assigned with a pair of numbers <start, end>. Element start is the min-
imum order and end is the maximum order in an XML document except for the root 
element. 

3.2   Our Proposed Bottom-Up Query Processing Algorithm 

Each prefix of nodes represents the path from the root node to each node. Therefore, 
when a query is executed, if we use the characteristic of the prefix, the query per-
formance is significantly improved. We propose the bottom-up query processing 
method. Figure 4 shows the query processing methods in ViST and the proposed 
index structure. If the query of Figure 4(a) is executed by the top-down query process-
ing method of ViST, ViST performs a range query to match (L, P*) of the query se-
quence in the D-Ancestor B+Tree of Figure 1 after the search for the (P, ε). The search 
then continues on the S-Ancestor B+Tree with the results returned by the range query 
so the searches for the (L, PB) and the (L, PS) are executed. However, if the query is 
executed by our bottom-up processing method, our proposed index structure performs 
only a range query to match last element (v1, P*L) of the query sequence in the D-
Ancestor B+Tree of Figure 3. 

 

(a) By the top-down query processing in ViST 

 

(b) By the bottom-up query processing in our index structure 

Fig. 4. The bottom-up wild-card query processing 
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As a result, in a single path query case, our method only executes the range query 
about last element of a query sequence. Moreover, as shown in Figure 4, our bottom-
up query processing method is very efficient for wild-cards (‘*’ and ‘//’) queries be-
cause node accesses for wild-cards in our bottom-up query processing method are 
smaller than that in ViST. 

Figure 5 shows the branching query processing method in proposed index struc-
ture. First, to find (v2, PSL), our index structure performs the search in the D-
Ancestor B+Tree and the S-Ancestor B+Tree of Figure 3. The search then continues 
on the D-Ancestor B+Tree and the S-Ancestor B+Tree to find (L, PS) involving <nx, 
sizex> of (v2, PSL). The search then finds (S, P) involving <nx, sizex> of (L, PS) re-
turned by the search for (L, PS). Then our index structure performs the search to find 
(v1, PSL) that is involved in <nx, sizex> of (S, P) and isn’t involved in <nx, sizex> of 
(L, PS) that is the parent node of (v2, PSL). This processing method avoids unneces-
sary computation and I/O of the search to find (P, ε) and (L, PS) that are the parent 
nodes of (v1, PSL). In addition, our bottom-up query processing method for the 
branching query has no false alarm because it processes the branching query with a 
pair <order, size> of the durable numbering scheme. In Figure 5, our bottom-up 
query processing executes the range queries about (S, P) and (L, PS) to avoid false 
alarms. 

 

Fig. 5. The bottom-up branching query processing 

4   Performance Evaluation 

4.1   Experimental Setup 

To determine the effectiveness of our index structure, we compare the performance of 
our index structure with that of ViST. Our results indicate that our index structure 
outperforms ViST. We implemented our XML indexing in C++. The implementation 
uses the B+Tree API provided by the Berkeley DB library [10]. All the experiments 
are carried out on a 3GHz Pentium � processor with 512 MB of RAM and Windows 
XP. We use the same set of queries for NIAGARA [11] with some slight changes on 
value predicates as shown in Table 1. 
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Table 1. Sample queries for the performance evaluation 

No Description 
Q1 /W4F_DOC/Actor/Name/FirstName/Robert 
Q2 /W4F_DOC/Actor/Name/*/Rebert 
Q3 //Name/*/Robert 
Q4 /W4F_DOC/Actor/Name[FirstName/Claudio]/LastName/Alfonsi 
Q5 //*/Name[FirstName/Claudio]/LastName/Alfonsi 

4.2   Performance Evaluation Results 

The query processing performances of our index structure and ViST are illustrated in 
Figure 6. 

  

  (a) The average query processing time            (b) The average number of node accesses 

Fig. 6. The query processing performance about ViST and the proposed index structure 

Figure 6(a) shows the average query processing time to process queries. Q1 repre-
sents a single path query. Q1 is evaluated with changing the depth of a query path. Q2 
represents the query with the wild-card ‘*’ and Q3 represents the query with wild-
card ‘//’. Q2 and Q3 are evaluated with changing the appearance position and the 
number of wild-cards. Q4 represents a multiple path query. Q4 is evaluated with 
changing the number of the branches of queries. Q5 represents a complex query that 
combines wild-cards ‘*’ and ‘//’. Our index structure takes the same time in all cases 
because our bottom-up query processing method searches only last element of a query 
sequence. But, if the depth of the query path is longer, ViST takes longer time be-
cause it searches all elements of a query sequence. As a result, our index structure 
outperforms ViST because the proposed bottom-up query processing method avoids a 
lot of unnecessary computation and I/O of ViST. 

Figure 6(b) shows the number of node accesses to process a query. This experi-
ment is performed with single path queries, wild-cards queries and branching queries. 
Our index structure significantly outperforms ViST in all cases. In our index struc-
ture, the number of node accesses for a branching query is larger than that for a single 
path query and a wild-cards query. The reason is that our bottom-up query processing 
method for a branching query requires many range queries about elements in a query 
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sequence to avoid false alarms. As a result, our index structure is more efficient than 
ViST because our index structure has no false alarms. 

5   Conclusion 

In this paper, we have proposed a novel index structure for indexing XML data and 
processing XML queries. Our index structure provides the D-Ancestor B+Tree and the 
S-Ancestor B+Tree using the durable numbering scheme to efficiently determine 
structural relationship between any pair of element nodes and find all occurrences of  
structural relationships between two element sets. In addition, our index structure 
provides the bottom-up query processing to avoid a lot of unnecessary computation 
and I/O for structural join queries and has no false alarms. We have performed vari-
ous experiments to evaluate the effectiveness of our index structure. Our studies show 
that our index structure significantly outperforms ViST for all the tested queries. In 
the future, we will study how to efficiently process the delimiters of the prefix 
schemes, to decrease the label size and to keep low label update costs.  
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