
Y. Shi et al. (Eds.): ICCS 2007, Part III, LNCS 4489, pp. 813–820, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Efficient XML Index Structure with Bottom-Up
Query Processing

Dong Min Seo, Jae Soo Yoo, and Ki Hyung Cho

Department of Computer and Communication Engineering, Chungbuk National University,
48 Gaesin-dong, Cheongju Chungbuk, Korea

{dmseo, yjs, khjoe}@chungbuk.ac.kr

Abstract. With the growing importance of XML in data exchange, much re-
search has been done in proving flexible query mechanisms to extract data from
structured XML documents. The semi-structured nature of XML data and the
requirements on query flexibility pose unique challenges to database indexing
methods. Recently, ViST that uses suffix tree and B+Tree was proposed to re-
duce the search time of the documents. However, it can cause a lot of unneces-
sary computation and I/O when processing structural join queries because the
numbering scheme of ViST is not optimized. In this paper, we propose a novel
index structure to solve the problems of ViST. Our index structure provides the
bottom-up query processing method to efficiently process structural queries.
Our experiments show that the proposed index structure is efficient in
processing both single-path and branching queries with various wild-cards (‘*’
and ‘//’).

Keywords: XML Index, XML Query, Bottom-Up Query Processing.

1 Introduction

XML provides a flexible way to define semi-structured data with the hierarchical
structure. Because of such features of XML, XML is represented by a tree structure to
process XML data [1]. Several query languages, including XPath, Quilt, XML-QL,
and XQuery, have been proposed for semi-structured XML data. Also, path index
methods that construct a graphical index on XML data to reduce query costs have
been worked [2, 3].

Recently, many research papers on the structural join methods to efficiently proc-
ess the XML queries involving the ancestor-descendant relationship have been done
[4, 5, 6]. The structural join methods can answer simple queries efficiently. However,
queries involving branching structures usually have to be disassembled into multiple
subqueries. The results of these subqueries are then combined by expensive join op-
erations to produce final answer.

To improve existing structural join methods, ViST that combines suffix tree and
B+Tree was proposed [7]. The suffix tree with sequence matching matches structured
queries against structured data to avoid many unnecessary structural join operations.
B+Tree avoids a traversal of the whole XML document tree. However, the numbering

814 D.M. Seo, J.S. Yoo, and K.H. Cho

scheme used in suffix tree is not optimized because it regards element y that does not
have ancestor-descendant relation with element x in XML data as the descendent of
the element x. For the same reason, ViST can cause a lot of unnecessary computation
and I/O when processing the queries.

In this paper, we propose an efficient index structure to solve problems of ViST
and a novel query processing method suitable for proposed index structure. To verify
the efficiency of our index structure, we compare the performance of our index struc-
ture with that of ViST.

The rest of this paper is organized as follows. In section 2, we review related works
and describe the problems of ViST. In section 3, we present our proposed indexing
technique. In section 4, we present the experimental results that compare our tech-
nique with ViST. Finally, conclusions and future works are discussed in section 5.

2 Related Work

2.1 Query Processing Methods Using Suffix Tree

Recently, query processing methods using suffix tree were proposed [8]. This meth-
ods use a sequential representation of both XML data and XML queries. Querying
XML is equivalent to finding subsequence matches. Sequence matching matches
structured queries against structured data as a whole without breaking down the que-
ries into subqueries of paths or nodes and relying on join operations to combine their
results. The purpose of modeling XML queries through sequence matching is to avoid
as many unnecessary join operations as possible in query processing.

After both XML data and XML queries are converted to structure-encoded se-
quences in the suffix tree, it is straightforward to devise the naive algorithm to per-
form sequence matching. However, there are several difficulties. First, searching for
the satisfied nodes is extremely costly since we need to traverse a large portion of the
subtree for each match. Finally, suffix tree is main memory structure that is seldom
used for disk resident data, and most commercial DBMSs do not have support for
such structures [7].

2.2 The Problems of ViST

ViST improves the naive algorithm by eliminating costly suffix tree traversal. It uses
a virtual suffix tree to organize structure-encoded sequences to speed up the matching
process. ViST labels each suffix tree node x by a pair <nx, sizex>, where nx and sizex
are the prefix traversal order of x and the total number of descendants of x in suffix
tree, respectively. Figure 1 shows the index structure of ViST. ViST consists of three
parts such as the D-Ancestor B+Tree, the S-Ancestor B+Tree and the DocID B+Tree.
To construct the B+Trees of ViST, it first inserts all suffix tree nodes into the
D-Ancestor B+Tree using their (symbol, prefix) as keys. For all nodes x inserted with
the same (symbol, prefix), ViST indexes them by an S-Ancestor B+Tree, using the nx
values of their labels as keys. In addition, ViST also builds a DocId B+Tree, which
stores for each node x (using nx as key), the document IDs of those XML sequences
that end up at node x when they are inserted into the suffix tree [7]. ViST simply

 An Efficient XML Index Structure with Bottom-Up Query Processing 815

determines the ancestor-descendant relationship between two elements by the
D-Ancestor B+Tree and the S-Ancestor B+Tree. If x and y are labeled < nx, sizex > and
< ny, sizey > respectively, node x is the ancestor of node y iff ny∈(nx, nx+sizex]. As a
result, ViST no longer need to search the descendent of x to find such y.

(a) The suffix tree for Doc1 and Doc2 (b) The structure of ViST

Fig. 1. The ViST index structure

Figure 2 shows the query processing method in ViST of Figure 1. If the query for
“/P/S/L/v1” is requested, a structure-encoded sequence about this query is con-
structed. And it obtains the nx and sizex of the (P, ε) that is the first (symbol, prefix) of
above structure-encoded paths by searching the D-Ancestor B+Tree and the S-
Ancestor B+Tree of Figure 1.

Fig. 2. The query processing in ViST

816 D.M. Seo, J.S. Yoo, and K.H. Cho

These values are used for range queries about the (symbol, prefix) of (S, P) in-
volved in the (nx, nx+sizex) of the (P, ε). Then the range query about the (symbol, pre-
fix) of the (L, PS) involved in the <nx, nx+sizex> of the (S, P) and the (symbol, prefix)
of the (v1, PSL) involved in the <nx, nx+sizex> of the (L, PS) are executed with the set
of above range query results, respectively. Finally, to obtain the documents corre-
sponded to the query, the range query about the [nx, nx+sizex] of the last (symbol,
prefix) is executed in the DocID B+Tree.

As shown in Figure 2, the child node of the (S, P) with nx=2 is only the (L, PS)
with nx=3 in the Doc1 of Figure 1. However, when the range query about the (symbol,
prefix) of the (L, PS) involved in above (S, P) is executed, the (L, PS) with nx=6 is
represented as the child of above (S, P). Moreover, because the characteristic that
prefix of an element represents the path from the root element to itself is not used, the
unnecessary nodes are accessed as shown in Figure 2. For example, with the PSL of
the (v1, PSL), we estimate that the (v1, PSL) has the (L, PS) as its parent node, and the
(P, ε) and (S, P) as its ancestor nodes. Therefore the range queries about the (P, ε), (S,
P), and (L, PS) involving the (v1, PSL) are unnecessary. Also, because of noncontigu-
ous subsequence matches, the branching query processing method of ViST triggers
false alarms [9].

3 Our Proposed Index Structure

3.1 Our Proposed Index Structure

We use the durable numbering scheme [4] to solve the numbering scheme problem of
ViST. Figure 3 shows our proposed index structure about the XML documents of
Figure 1. The D-Ancestor B+Tree and the S-Ancestor B+Tree of our index structure
are same as those of ViST. But our index structure inserts a pair <order, size> of the
durable numbering scheme into the S-Ancestor B+Tree.

Fig. 3. Our proposed index structure

 An Efficient XML Index Structure with Bottom-Up Query Processing 817

To directly find the documents involving the <nx, sizex> of the last node by the
range query, we use the DocID R-Tree instead of the DocID B+Tree. The key of Do-
cID R-Tree is assigned with a pair of numbers <start, end>. Element start is the min-
imum order and end is the maximum order in an XML document except for the root
element.

3.2 Our Proposed Bottom-Up Query Processing Algorithm

Each prefix of nodes represents the path from the root node to each node. Therefore,
when a query is executed, if we use the characteristic of the prefix, the query per-
formance is significantly improved. We propose the bottom-up query processing
method. Figure 4 shows the query processing methods in ViST and the proposed
index structure. If the query of Figure 4(a) is executed by the top-down query process-
ing method of ViST, ViST performs a range query to match (L, P*) of the query se-
quence in the D-Ancestor B+Tree of Figure 1 after the search for the (P, ε). The search
then continues on the S-Ancestor B+Tree with the results returned by the range query
so the searches for the (L, PB) and the (L, PS) are executed. However, if the query is
executed by our bottom-up processing method, our proposed index structure performs
only a range query to match last element (v1, P*L) of the query sequence in the D-
Ancestor B+Tree of Figure 3.

(a) By the top-down query processing in ViST

(b) By the bottom-up query processing in our index structure

Fig. 4. The bottom-up wild-card query processing

818 D.M. Seo, J.S. Yoo, and K.H. Cho

As a result, in a single path query case, our method only executes the range query
about last element of a query sequence. Moreover, as shown in Figure 4, our bottom-
up query processing method is very efficient for wild-cards (‘*’ and ‘//’) queries be-
cause node accesses for wild-cards in our bottom-up query processing method are
smaller than that in ViST.

Figure 5 shows the branching query processing method in proposed index struc-
ture. First, to find (v2, PSL), our index structure performs the search in the D-
Ancestor B+Tree and the S-Ancestor B+Tree of Figure 3. The search then continues
on the D-Ancestor B+Tree and the S-Ancestor B+Tree to find (L, PS) involving <nx,
sizex> of (v2, PSL). The search then finds (S, P) involving <nx, sizex> of (L, PS) re-
turned by the search for (L, PS). Then our index structure performs the search to find
(v1, PSL) that is involved in <nx, sizex> of (S, P) and isn’t involved in <nx, sizex> of
(L, PS) that is the parent node of (v2, PSL). This processing method avoids unneces-
sary computation and I/O of the search to find (P, ε) and (L, PS) that are the parent
nodes of (v1, PSL). In addition, our bottom-up query processing method for the
branching query has no false alarm because it processes the branching query with a
pair <order, size> of the durable numbering scheme. In Figure 5, our bottom-up
query processing executes the range queries about (S, P) and (L, PS) to avoid false
alarms.

Fig. 5. The bottom-up branching query processing

4 Performance Evaluation

4.1 Experimental Setup

To determine the effectiveness of our index structure, we compare the performance of
our index structure with that of ViST. Our results indicate that our index structure
outperforms ViST. We implemented our XML indexing in C++. The implementation
uses the B+Tree API provided by the Berkeley DB library [10]. All the experiments
are carried out on a 3GHz Pentium � processor with 512 MB of RAM and Windows
XP. We use the same set of queries for NIAGARA [11] with some slight changes on
value predicates as shown in Table 1.

 An Efficient XML Index Structure with Bottom-Up Query Processing 819

Table 1. Sample queries for the performance evaluation

No Description
Q1 /W4F_DOC/Actor/Name/FirstName/Robert
Q2 /W4F_DOC/Actor/Name/*/Rebert
Q3 //Name/*/Robert
Q4 /W4F_DOC/Actor/Name[FirstName/Claudio]/LastName/Alfonsi
Q5 //*/Name[FirstName/Claudio]/LastName/Alfonsi

4.2 Performance Evaluation Results

The query processing performances of our index structure and ViST are illustrated in
Figure 6.

 (a) The average query processing time (b) The average number of node accesses

Fig. 6. The query processing performance about ViST and the proposed index structure

Figure 6(a) shows the average query processing time to process queries. Q1 repre-
sents a single path query. Q1 is evaluated with changing the depth of a query path. Q2
represents the query with the wild-card ‘*’ and Q3 represents the query with wild-
card ‘//’. Q2 and Q3 are evaluated with changing the appearance position and the
number of wild-cards. Q4 represents a multiple path query. Q4 is evaluated with
changing the number of the branches of queries. Q5 represents a complex query that
combines wild-cards ‘*’ and ‘//’. Our index structure takes the same time in all cases
because our bottom-up query processing method searches only last element of a query
sequence. But, if the depth of the query path is longer, ViST takes longer time be-
cause it searches all elements of a query sequence. As a result, our index structure
outperforms ViST because the proposed bottom-up query processing method avoids a
lot of unnecessary computation and I/O of ViST.

Figure 6(b) shows the number of node accesses to process a query. This experi-
ment is performed with single path queries, wild-cards queries and branching queries.
Our index structure significantly outperforms ViST in all cases. In our index struc-
ture, the number of node accesses for a branching query is larger than that for a single
path query and a wild-cards query. The reason is that our bottom-up query processing
method for a branching query requires many range queries about elements in a query

820 D.M. Seo, J.S. Yoo, and K.H. Cho

sequence to avoid false alarms. As a result, our index structure is more efficient than
ViST because our index structure has no false alarms.

5 Conclusion

In this paper, we have proposed a novel index structure for indexing XML data and
processing XML queries. Our index structure provides the D-Ancestor B+Tree and the
S-Ancestor B+Tree using the durable numbering scheme to efficiently determine
structural relationship between any pair of element nodes and find all occurrences of
structural relationships between two element sets. In addition, our index structure
provides the bottom-up query processing to avoid a lot of unnecessary computation
and I/O for structural join queries and has no false alarms. We have performed vari-
ous experiments to evaluate the effectiveness of our index structure. Our studies show
that our index structure significantly outperforms ViST for all the tested queries. In
the future, we will study how to efficiently process the delimiters of the prefix
schemes, to decrease the label size and to keep low label update costs.

Acknowledgement. This work was supported by the Korea Research Foundation
Grant funded by the Korean Government(MOEHRD)(The Regional Research Univer-
sities Program/Chungbuk BIT Research-Oriented University Consortium) and Uni-
versity Fundamental Research Program supported by Ministry of Information &
Communication in Republic of Korea.

References

1. T. Bray, J. Paoli, C. M. et. al., “Extensible Markup Language (XML) 1.0 3rd”,
http://www.-w3.org/TR/REC-xml (2004)

2. M. Fernandez and D. Suciu, “Optimizing regular path expressions using graph schemas”,
In -ICDE (1998) 14-23

3. C. W. Chung, J. K. Min, K. S. Shim, “APEX: An Adaptive Path Index for XML Data”, In
S-IGMOD (2002) 121-132

4. Q. Li and B. Moon, “Indexing and querying XML data for regular path expressions”, In
VL-DB (2001) 361-370

5. D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, and Y. Wu, “Structural
joins: A primitive for efficient XML query pattern matching”, In ICDE (2002) 141-152

6. S, -Y, Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zaniolo, “Efficient structural joins
on indexed XML documents”, In VLDB (2002) 263-274

7. H. Wang, S. Park, W. Fan, and P. S. Yu, “ViST: A Dynamic Index Method for Querying
X-ML Data by Tree Structures”, In SIGMOD (2003) 110-121

8. E. M. McCreight, “A space-economical suffix tree construction algorithm”, Journal of the
ACM (1976) 262-272

9. H. Wang and X. Meng, “On the Sequencing of Tree Structures for XML Indexing”, In
ICD-E (2005) 372-383

10. Sleepycat Software, “http://www.sleepycat.com”, The Berkeley Database
11. The Niagara Project Group, “The Niagara Project Experimental Data”,

http://www.cs.wisc.-edu/niagara/data.html (2005)

	Introduction
	Related Work
	Query Processing Methods Using Suffix Tree
	The Problems of ViST

	Our Proposed Index Structure
	Our Proposed Index Structure
	Our Proposed Bottom-Up Query Processing Algorithm

	Performance Evaluation
	Experimental Setup
	Performance Evaluation Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

