2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

Semantic Web Service Selection at the Process-level:
the eBay/Amazon/PayPal Case Study

Ivan Di Pietro, Francesco Pagliarecci, Luca Spalazzi
Universita Politecnica delle Marche — Ancona, Italy
{dipietro — pagliarecci — spalazzi} @diiga.univpm.it

Abstract

Several approaches have been proposed to tackle the se-
lection of distributed processes described as semantic web
services. However, their practical applicability in real com-
position scenarios is still an open question. Addressing
this problem requires on the one hand to deal with services
described as stateful business processes and, on the other
hand, to consider complex selection requirements concern-
ing both the service interface and its behavior. In fact, in
most existing approaches the selection is performed on the
basis of the “functional” description of a service, i.e. in
terms of its inputs, outputs, preconditions and effects. In
this paper, we present our approach for the process-level
service selection and evaluate it on a real world scenario
that entails a high level of complexity: the eBay Web Ser-
vices, the Amazon E-Commerce Services and the e-payment
service offered by PayPal. The approach is based on a rep-
resentation of services at the process level that is based on
BPEL and WSDL specifications and that extends these stan-
dard specifications with minimal semantic annotations that
permit to perform an efficient and yet useful, semantic rea-
soning for the process-level selection of web services.

1 Introduction

The importance of describing web services at the process-
level is widely recognized. Consider, for instance, the stan-
dard languages for describing business processes, like BPEL
[3], and the most popular standards for semantic web ser-
vices, like OWL-S [8] and WSMO [1]. In a process-level
description, a web service is not simply represented as an
“atomic” component - with its inputs, outputs, precondi-
tions, and effects - that can be executed in a single step.
Instead, the interface of the service describes its behavior,
i.e., a process that interacts with other services in differ-
ent steps, and which can have different control constructs,
e.g., sequence, condition, and iteration. These information

978-0-7695-3496-1/08 $25.00 © 2008 IEEE
DOI 10.1109/WIIAT.2008.237

605

Annapaola Marconi, Marco Pistore
Fondazione Bruno Kessler — Trento, Italy
{marconi—pistore } @fbk.eu

on the process model can be exploited to perform sophisti-
cated kind of automated verification, discovery, selection,
and composition of services and to express requirements
at process level (e.g., see [2]). This is especially true for
composition, as witnessed by [14, 11, 4, 23, 19]. Most ap-
proaches that deal with complex behavioral descriptions do
not deal with semantic annotations of services, and cannot
thus exploit the ability to do reasoning about what services
do. This is the case of techniques for composing BPEL pro-
cesses [19] and of theoretical frameworks for the composi-
tion of services represented as finite state automata [11, 4].
From the other side, most of the approaches that have been
proposed so far to exploit semantics (see, e.g., [14, 23, 1])
can deal only with atomic services. The few exceptions
have the disadvantage of requiring a comprehensive seman-
tic description of the processes. Such descriptions, based on
expressive languages such as OWL [13] or WSMO [1], are
time- and effort- consuming, and are very hard to propose
in practice for industrial applications.

The key idea of our approach is to keep the procedu-
ral description of processes separate from their ontological
descriptions, and to link the two through semantic annota-
tions. The main characteristics of our approach can be sum-
marized as follows:

e The procedural behavior of a web service is described in
BPEL [3]. A BPEL process can be formally modeled as a
State Transition System (STS) [23].

e The data exchanged among processes are described in a
standard WSDL file.

e The semantics of exchanged data is described in a sepa-
rate ontological language. The language we use is WSML
[1] that belongs to the Description Logic family [22].

e We define an annotation language [18] that allows us to
link data (WSDL) and behavioral (BPEL) definitions of the
process with ontology elements (WSML). The language is
based on XML and, from a theoretical point of view, it be-
longs to the assertional part of a Description Logic. This
approach allows us to annotate only what we need and leave
BPEL the duty of describing the behavior.

e We define a language that can express requirements on the

IEEE
computer
psouety

behavior of the service that has to be verified, selected, or
composed. The language is a temporal logic based on CTL
(Computation Tree Logic) [10], enriched with concept and
role assertions of a Description Logic.

e We propose a grounding algorithm that includes semantic
annotations in the STS that models the web services. This
allows us to obtain an STS model processable by existing
model checkers (e.g.[7]) and planners (e.g. [5]) to solve
verification, selection, and composition problems.

In our previous work we have proposed a discovery al-
gorithm [16] and a composition algorithm [20] that ex-
ploit a minimalist semantic annotation of web services. In
this paper, we present our comprehensive approach for the
process-level service selection and evaluate it on a real
world scenario: the eBay Web Services, the Amazon E-
Commerce Services and the e-payment service offered by
PayPal.

The paper is structured as follows. In Section 2 we give
an overview of our approach. In Section 3 we present the
Amazon-eBay-PayPal reference example and show the on-
tology and the annotations used in this case study. Then
we show in details the different phases of our approach at
work: in Section 4 we show how the annotated BPEL pro-
cesses are translated into an abstract STS; in Section 5, we
describe the language for defining semantically annotated
requirements for service selection, verification and com-
position; in Section 6 we present the automated selection
through Model Checking on our case study. Finally, Sec-
tion 7 reports some concluding remarks.

2 Overview of the Approach

A web service can be characterized in terms of its data and
its behavior. Data description is the definition of the data
types used within the service and this can be done by means
of the standard language WSDL (Web Services Description
Language). This is not enough, since WSDL only repre-
sents the static part of a service. With WSDL, we are not
aware of the actual control and data flows in the process:
we only know the interface of the web service and the data
structures it uses. The behavioral aspects of a service can
be represented with several languages. One of the most
promising languages, which is going to become a de facto
standard in process representation, is BPEL (Business Pro-
cess Execution Language). As a consequence, we will refer
to BPEL in this paper. WSDL plus BPEL are the “classical”,
purely syntactical representation of a process. Enriching
these descriptions with semantic annotations allows us to
use automated reasoning techniques that help us solve sev-
eral problems related to services in a pervasive computing
environment, such as selection, discovery and composition.

Our approach can be described in four steps: annotation,
model translation, grounding, model checking.

606

Annotation: it is the phase in which both data and be-
havioral definitions of the process are enriched with links
to the ontology. The ontology should be a commonly ac-
cepted formalization of a certain domain. It is difficult to
have such an ontology, indeed every organization may have
its own one. Ontology matching is a parallel problem and
we will not delve into it, therefore we assume we have a
general shared ontology for our domain. There are different
approaches to process annotation (e.g., see SAWSDL [25]).
We propose a novel one that aims mainly at preserving the
original syntax of the BPEL and WSDL files. Therefore, in
our approach the annotation is put in a different file with
links to BPEL and WSDL through XPath expressions.

Model Translation: it consists in expressing our process
in a different form that can be model checked easily and
automatically. In particular, as model checkers usually deal
with some kind of State Transition Systems, we translate an
annotated BPEL process into an Annotated State Transition
Systems (ASTS). This step can be done automatically.

Grounding: it is the procedure by which the seman-
tic annotations are “lowered” to a purely syntactic form;
roughly speaking, concepts and role assertions are trans-
formed into boolean propositions. From a technical point
of view, each annotated state is a knowledge base modeling
the assertions that hold in that state. This ensures that our
annotations can be treated by existing model checkers that
work only with propositions. The grounding is applied to
both the Annotated STS and the goal specification, which
is expressed in Annotated CTL. After the execution of the
grounding algorithm, we obtain a ground (propositional)
STS and a ground (propositional) CTL specification.

Model checking: it consists in checking whether the
ground CTL specification is verified by the ground STS (if
not, a counter-example is provided). In our experiments,
we used NuSMYV ([7]), a well-known state-of-the-art model
checker.

3 Case Study Overview

As our case study, we refer to two real services provided by
the two major e-commerce sites: eBay and Amazon. For
the sake of readability, let us represent the abstract BPEL of
the case study graphically' (see Fig. 1 and Fig. 2).

Both services allow user to search for an object. Sev-
eral search mechanisms are possible, but for space’s sake
we will consider the keyword-based search only.

In case the user found the item he was looking for and he
is satisfied with its price, he may proceed with a checkout
phase. Of course eBay has a bidding mechanism, but we
will not consider it, rather focussing on a “buy now” inter-
action or the checkout on the Express site. The checkout

Al the files are available at
http://leibniz.diiga.univpm.it/ spalazzi/SWS/eCommerceCS.zip

Sequence

C’ searchRequest

J

l

qij Assign

J

L swich

\

L

ilv_j

Sequence

Sequence

iy

searchResponse

J

(' checkoutRequest

@

searchResponse

7

¥ sequence
C' searchRenquest

|

iy [

l

-ﬁ Assign

|

[Swikch

W Sequence Ld

\ |
-ﬁ Assign -ﬁ Assign

l |

8) searchiesut 8) seorchiror

Sequence

y="ipr fseq i 1
uencefinvoke[2]">
<assertion>

l <procedural_annotation

|

[] checkout_on_Fbay

<procedural_annotation
activity="fpr i i q

|

-ﬁ Assign

|

= wech

<assertion>

<concept_assertion>
<individual id="payToken">
<varreBay_payMeRequest</var>
<part>payToken</part>
<findividual
<concept-
diiga:virtualStore#PayPalCheckoutToken
«<fconcept>
<iconcept_assertion>

<concept_assertion>
<individual id="search">

Seq. P seq.

| I
‘Uﬂ Assign F

| asson

| |

< Bay_: P fvar>
<findividual>
<concept-
diiga:virtualStore#Search
<lconcept-
<iconcept_assertion>

<role_assertion>
<individual_ID>search</individual_|D>

<r

5 pame €5) pame

iiga:vi frole>
<right_part-
<onto_individuak
diiga:virtualStore#Success
<lento_individuab
<fright_part>-
<lrole_assertion>

<fassertion>
<Iprocedural_annotations

(’ checkout <concept_assertion>

- <individual id="search'>
«<var>Amazon_searchResultMsg<ivar>
i <lindividual>

<concept>
[] checkout_on_Amazon

diiga:vir h
l <concept_assertion>

<lconcept_assertion>

«individual id="payToken'>
<var>Amazon_payMeRequest</var>
<part>PayPalToken</part>

B i <findividuab
<concept>

diiga:vir
l <iconcept>

<lconcept_assertion>

ayP

5 popme

<role_assertion>
«individual_ID> search</individual_|D>

<role>diiga:vi
<right_pal
<onto_i
<jonto_individuab-
<iright_part>
<lrole_assertion>

<lassertion>
fprocedural_annotation>

Irolex

7| sequence L4

-ﬁ Assign -ﬁ Assign

-i] Assign <jconcept_assertion>
<fassertion>
J </procedural_annotation>

Sequence 71 sequence

-ﬂ Assign -ﬂ Assign

i |

Figure 1. BPEL of the eBay e-commerce ser-

vice

l |

@ checkoutResponse o checkoutResponse

Figure 2. BPEL of the Amazon e-commerce

service
process has a payment phase that can be accomplished in
different ways. The most interesting part is the payment
phase, which has a different flow in the two services. In
Amazon, we assume that the payment (the payMe opera-
tion) is performed by PayPal only. Instead, in eBay the pay-
ment can be performed over two branches: on the left the
payment is done with PayPal, whereas on the right one it is

607

done by means of credit card. How can we express the fact
that we have two different payment methods and what these
methods are? This information can be needed for selecting
or composing these services. Can this information be de-
rived from data types? Generally speaking, the answer is
no. Data type definition does not help figuring out what is
the specific payment method offered. In our example, this
means that the same messages can be used for both the Pay-
Pal and credit card payment methods, creating an ambiguity
for selection. The usage of semantic annotations, referring
an e-commerce ontology, allow to clearly define this kind
of information.

According to our approach [20, 16], for each Web ser-
vice we have: (1) an ontology defining the relevant termi-
nology; (2) an interface process defining the interactions
necessary to execute the service; and (3) its annotation that
defines (partial) correspondences between the ontology and
the process 2. Our ontology (see Fig. 3) is very simple,
but it expresses the main concepts useful to model the e-
commerce domain. In the definition of Checkout and Search
we have the attributes result and searchResult respectively,
whose values are restricted to belong to the concept Result.
The possible values (instances) of Result are CustomCode,
Failure, Success, Warning, . .., as depicted in Fig. 3.

= @ htkp: f v, diiga.univpr,itjontologiesvirtualStor e
* ChannelType
= Checkout
O result

L Paymenkackion
® PayPalcheckoutTaken
O value

® PrExpresscheckout

= Result
o CustomCode
- Failure
- Failuretwithiwarning
- Success
B SuccessWwithiarning
- \Warning

= Search

) searchResult

- E- - B

Figure 3. WSML e-commerce ontology

As a second step, we annotate the significant variables
and activities of our processes. For the sake of space, let
us skip the annotation of the WSDL file (annotation of data
types) and go directly to the annotation of the BPEL files
(annotation of behavior). Let us suppose we have to say
that, after activity searchResponse and searchResult (see

2We assume that the ontologies provided by the different services have
been mapped into a common ontology that defines all the relevant concepts
of the scenario — the literature on ontologies defines many powerful tech-
niques to achieve this mapping among the local ontologies of processes.

608

Fig. 1 and Fig. 2, respectively), a search has been per-
formed with a successful result. This means adding the fol-
lowing concept and role assertions to those activities:

search : Search search.Result = Success

Similarly, in the other branch of the BPEL processes, we
have to annotate a failure. For the activities named check-
outResponse in the final two branches of the BPEL processes
the annotation is similar; indeed, in the left branch we have:

checkout : Checkout checkout.Result = Success

whereas, in the right branch we have:

checkout : Checkout” checkout.Result = Failure”

An important annotation must be associated to the pay-
ment actions where PayPal is used. This is specified by
putting a concept assertion for the concept PayPalCheck-
outToken in the annotation of the activity payMe in the left
branch in Fig. 1. The same annotation is used for Amazon
in its unique payment action (see Fig. 2).

4 BPEL Processes as Annotated STSs

We encode BPEL processes (extended with semantic anno-
tations) as annotated state transition systems. State transi-
tion systems (STS) describe dynamic systems that can be
in one of their possible states (some of which are marked
as initial states) and can evolve to new states as a result of
performing some actions. We distinguish actions in input
actions, output actions, and 7. Input actions represent the
reception of messages, output actions represent messages
sent to external services, and 7 is a special action, called
internal action, that represents internal evolutions that are
not visible to external services. In other words, 7 represents
the fact that the state of the system can evolve without pro-
ducing any output, and without consuming any input (this
is a consequence of the fact we use abstract BPEL, where
the internal actions are “opaque”). A transition relation
describes how the state can evolve on the basis of inputs,
outputs, or of the internal action 7. We assume that infi-
nite loops of 7 transitions cannot appear in the system. In
an Annotated STS, we associate a set of concept assertions
and role assertions to each state . This configures a state as
the assertional component (or ABox) of a knowledge repre-
sentation system based on a given description logic where
the ontology plays the role of the terminological compo-
nent (or TBox). Therefore, concept assertions are formulas
of the form a : C (or C'(a)) and state that a given individual
a belongs to (the interpretation) of the concept C'. Role as-
sertions are formulas of the form a.R = b (or R(a, b)) and
state that a given individual b is a value of the role R for
a. As a consequence, each action can be viewed as a tran-
sition from a state consisting in an ABox in a different state

consisting in a different ABox. Concerning loops, the min-
imalistic approach allows us to use invariants to annotate
actions that must be iterated.

Definition 1 Annotated State Transition System

An annotated state transition system defined over a state
transition system % is a tuple (X, T, A) where:

oY = (5,8° 7,0, R) is the state transition system,

o S is the finite set of states;

o SO C S is the set of initial states;

o 7 is the finite set of input actions;

e O is the finite set of output actions;

e R CS X (ZUOU{r}) x 8 is the transition relation;

o 7 is the terminology (TBox) of the annotation;

o A : S — 247 js the annotation function, where A is the
set of all the concept assertions and role assertions defined
overT.

The representation of the above processes as Annotated
STSs has the terminology 7 given by the WSML ontology.
The corresponding list of concepts is simply reported into
the CONCEPTS section of the ASTS.

CONCEPTS
Search, PayPalCheckoutToken, Checkout,
Result, PaymentAction, ChannelType

The A function contains, for each state, the set of global
assertions (included the concept assertions declared in the
ontology) and the assertions, if any, associated to that state.
As an example, we report a A function for only one anno-
tated state, namely the state in which the payment by PayPal
is performed (see Figures 1 and 2).

ANNOTATION FUNCTION

LAMBDA (payMe’Sync)
Failure : Result, Success : Result, Warning : Result,
SuccessWithWarning : Result, FailureWithWarning : Result,
CustomCode : Result, Sell : PaymentAction, Order : PaymentAction,
Authorization : PaymentAction, eVendorltem : ChannelType,
search : Search, search.searchResult = Success,
payToken : PayPalCheckoutToken

The last three assertions have been added during the an-
notation phase, whereas the other ones derive directly from
the ontology and are present in every state, since they are
global.

5 Conditions on Annotated STSs

In order to express verification, selection, and composition
requirements, we need to express conditions on an Anno-
tated STS, i.e., conditions on concept and role assertions
that hold in given states. Let us start with the notion of con-
junctive query over a description logic as defined in [15].

Definition 2 Conjunctive Query
A conjunctive query q over (T,A(s)) is a set of atoms

609

{p1(Z7), ..., pn(Tn)} where each p;(T;) is either p;(x;) or
pi(xi1,xi2) and T; is a tupla of variables or individuals:
pz‘(l‘i =x;:C; pi(xi,lyxi,Q) = l'i,l'Ri = T4,2

V(q) denotes the set of variables of ¢ and C(q) denotes the
set of individuals of ¢. Therefore, VC(q) = V(q) U C(q)
denotes the set of variables and individuals of q. When
V(g) = 0 we have a ground conjunctive query, i.e. each
T, i1, OF X; o is an individual. A concept assertion in
a propositional condition intuitively denotes a typical de-
scription logic problem: the retrieval inference problem.
Let z : C be a goal concept assertion, the retrieval infer-
ence problem is the problem of finding for each state s all
individuals mentioned in the ABox A(s) that are an instance
of the concept C' w.r.t. the given TBox 7. A non-optimized
algorithm for a retrieval can be realized by testing for each
individual occurring in the ABox whether it is an instance
of the concept C. Once we have retrieved a set of instances
{a} for the concept assertion = : C, we can substitute =
in the propositional condition with the retrieved instances
and check whether the condition holds. Therefore, a con-
junctive query denotes in fact a set of specifications to be
checked instead of a single one.

A temporal specification for an Annotated STS is a CTL
formula containing conjunctive queries, as defined in the
following:

Definition 3 Temporal Specification of Annotated STS
A Temporal Specification ¢(q1,...,qm) over (X,7,A)
is a formula defined over the set of conjunctive queries

{q1,---,qm} as follows:
@ Gl oNS OV S| ¢ |AFS|AGS | EF S| EG ¢ |
AX | EXP|A(dU) |E(dUP) |A(dB)| E(PB¢)

We can extend to temporal specifications the definition of V
as follows: V(¢(q1, - .., aqm)) = V(q1) UV(g2)U. .. V(gm).
The definition of C and VC can be extended in a similar
way. A ground temporal specification is a formula without
variables, i.e., such that V(¢(q1, - - ., gm)) = 0. Obviously,
we can annotate other temporal languages, as for example
EAGLE [9], but for the goal of this paper, the annotation of
CTL formulas is enough.

CTL is a propositional, branching-time, temporal logic.
Intuitively, according to our extension, a temporal condition
must be verified along all possible computation paths (state
sequences) starting from the current state. Concerning the
temporal operators (i.e., AF, EF, AX, and so on), they main-
tain the same intuitive meaning that they have in standard
CTL. As a consequence of the fact that a temporal specifi-
cation has concept and role assertions, a temporal condition
denotes a set of specifications to be checked instead of a sin-
gle one, as well as for a conjunctive query.

Now, let us suppose we want to check some extra re-
quirements over the services we found. These requirements
may help us selecting the most suitable service among the

services returned by a preliminary, keyword-based search.
This is the so called service selection.

Requirement 1: 1 want to find an e-commerce service that
makes me perform a search and then, if some items are
returned, it guarantees the possibility to pay through my
PayPal account.

In this requirement we can find something different from
the classical search engine-fashion search. Indeed, we have
a procedural specification that looks for a payment after a
search has been successfully performed. It is clear that we
need the concept of time or sequence of actions to express
the concept “after”. Second, we have a semantic compo-
nent that lets us refer to a PayPal account as described in
an appropriate e-commerce ontology. The use of semantics
eliminates possible misunderstanding about the terms used.
As long as we refer to a commonly accepted ontology, what
we mean with search, checkout and account is clear. We
can express our requirement in annotated CTL:

AF (!(x:Search & x.searchResult=Failure) ->
(x:Search & x.searchResult=Success & y:PayPalCheckoutToken))

6 The Selection of Annotated STSs

A temporal specification can be efficiently verified by
means of model checking [6, 7]. Concerning annotated tem-
poral specifications, the basic idea consists of using model
checking, as well. However, the traditional model checkers
cannot be used, as they are not able to deal with the ontolog-
ical reasoning necessary to cope with state annotations. We
adopt an approach that makes it possible to reuse existing
model checkers (e.g., NuSMV [7]), in order to exploit their
very efficient and optimized verification techniques. This
approach is based on the idea to solve the problem of know-
ing in which states the assertions contained in the temporal
specification hold before the model checking task and the
algorithm is based on the query answering service (e.g., the
algorithm reported in [15]).

For the sake of space, we do not report a formal de-
scription of the grounding algorithm (the reader can refer
to [18]). Here we present the algorithm at work through our
reference case study. The idea is to automatically select the
service (among eBay and Amazon) that satisfy Requirement
1. Let us separate the conjunctive queries that compose the
requirement:

Q1 {x:Search, x.searchResult=Failure }

q2 {x:Search,

x.searchResult=Success, y:PayPalCheckoutToken }
The corresponding sets of variables and the individuals are:

V(#(q1,q2)) = {search, payToken}
C(#(q1,4q2)) = {Success, Failure}.

610

If we apply the query answering algorithm to the previ-
ous conjunctive queries and to our eBay ASTS, we obtain
in which states the assertions reported in the temporal
condition hold. The state searchResponse2 corresponds to
the failure of the search (conjunctive query ¢;) and the state
payMe _Sync corresponds to the payment through PayPal
(conjunctive query g2). The corresponding ground CTL
specification is the following:

AF (I(search:Search & search.searchResult=Failure) ->
(search:Search & search.searchResult=Success &

payToken:PayPalCheckoutToken))

At this point, we can verify the satisfiability of the CTL
specification for the ground representation of the Ama-
zon and eBay processes, using the NuSMV model checker.
As result, we have that Amazon satisfies the specification
whereas eBay does not. Indeed, eBay has an alternative
payment branch and a counter-example that covers this path
is provided.

7 Related work and conclusions

This work is based on and extends the work reported in
[20, 16]. In this paper, we present the overall approach
for process-level web service selection and evaluate it on a
real world case study. The wWsMO [1] framework recognizes
the importance of interfaces that describe behaviors of ser-
vices, and proposes the use of mediators to match service
behaviors against (discovery) goals. However, the WSMO
framework includes services representations in its ontolog-
ical model. We chose to use a bottom-up approach, not
dismissing the existing and widespread technologies like
BPEL. Indeed, BPEL provides us with the behavioral fea-
tures of a service, whereas in WSMO we would need to ex-
press them in the orchestration and the choreography prop-
erties. The work on WSDL-S and METEOR-S [21, 17, 24]
provides semantic annotations for WSDL. It is close in
spirit to ours, but does not deal with semantically annotated
(BPEL) process-level descriptions of web services. The
work in [12] is also close in spirit to our general objective of
bridging the gap between the semantic web framework and
the business process technologies. However, [12] focuses
on the problem of extending BPEL with semantic web tech-
nology to facilitate web service interoperation, while the
problem of automated composition is not addressed. Re-
cently, an increasing amount of work is dealing with the
problem of composing semantic web services taking into
account their behavioral descriptions [14, 26, 23, 1]. In
this context, research is following two related but different
main approaches: OWL-S [8] and WSMO [1]. Approaches
based on OWL-S [14, 26, 23] are different from the one pro-
posed in this paper, since, in OWL-S, even processes are
described as ontologies, and therefore there is no way to

separate reasoning about processes and reasoning about on-
tologies. In the approach undertaken in WSMO, processes
are represented as Abstract State Machines, a well known
and general formalism to represent dynamic behaviors. The
idea underlying WSMO is that the variables of Abstract State
Machines are all defined with terms of the WSMO ontologi-
cal language. Our processes work instead on their own state
variables, some of which can be mapped to a separated on-
tological language, allowing for a minimalist and practical
approach to semantic annotations and for effective reason-
ing to discover, select, or compose services automatically.
Indeed, the aim of the work on WSMO is to propose a gen-
eral language and representation mechanism for semantic
web services, while we focus on the practical problem of
providing effective techniques for selecting and composing
semantic web services automatically. It would be interest-
ing to investigate how our approach can be applied to WSMO
Abstract State Machines rather than BPEL processes, and
how the idea of minimalist semantic annotations can be ex-
tended to work with the rest of the WSMO framework. This
task is in our research agenda. In [2] the author proposes
combination of the SHZQ(D) DL and p-calculus. In our
approach, we use CTL to express temporal specifications.
CTL is subsumed by p-calculus, according with the mini-
malist nature of our approach.

References

[1] The Web Service
http://www.wsmo.org/.
S. Agarwal. A goal specification language for automated
discovery and composition of web services. In International
Conference on Web Intelligence (WI ‘07), Silicon Valley,
USA, NOV 2007.

T. Andrews, F. Curbera, H. Dolakia, J. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weeravarana. Business Process Execution Lan-
guage for Web Services (version 1.1), 2003.

D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of E-Services that ex-
port their behaviour. In Proc. ICSOC’03, 2003.

P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. MBP: a Model Based Planner. In IJCAI-2001
workshop on Planning under Uncertainty and Incomplete
Information, 2001.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic Model Checking: 10%° States and
Beyond. Information and Computation, 98(2), June 1992.
A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: a new symbolic model checker. International
Journal on Software Tools for Technology Transfer, 2(4),
2000.

T. O. S. Coalition. OWL-S: Semantic Markup for Web Ser-
vices, 2003.

U. Dal Lago, M. Pistore, and P. Traverso. Planning with a
Language for Extended Goals. In Proc. AAAI’02, 2002.

Modeling Framework -

(2]

(31

(4]

(]

(6]

(71

(8]
(9]

611

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17

—

[18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, volume B: Formal Models and Semantics, chapter 14,
pages 996-1072. Elsevier Science Publishers B.V.: Amster-
dam, The Netherlands, New York, N.Y., 1990.

R. Hull, M. Benedikt, V. Christophides, and J. Su. E-
Services: A Look Behind the Curtain. In Proc. PODS’03,
2003.

D. Mandell and S. Mcllraith. Adapting BPEL4WS for the
Semantic Web: The Bottom-Up Approach to Web Service
Interoperation. In Proc. of 2nd International Semantic Web
Conference (ISWC03), 2003.

D. L. McGuinness and E. F. van Harmelen. OWL Web On-
tology Language Overview. W3C Recommendation, 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.
S. Narayanan and S. Mcllraith. Simulation, Verification
and Automated Composition of Web Services. In Proc.
WWW’02, 2002.

M. Ortiz, D. Calvanese, and T. Eiter. Characterizing Data
Complexity for Conjunctive Query Answering in Expressive
Description Logics. AAAI 2006.

F. Pagliarecci, M. Pistore, L. Spalazzi, and P. Traverso. Web
service discovery at process-level based on semantic anno-
tation. In Proceedings of the Fifteenth Italian Symposium on
Advanced Database Systems, Torre Canne, BR, Italy, 2007.
A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-
S Web Service Annotation Framework. In WWW04, 2004.
I. D. Pietro, F. Pagliarecci, and L. Spalazzi. Se-
mantic Annotation of Web Services. Technical re-

port, DIIGA — Universita Politecnica delle Marche,
2008. http://leibniz.diiga.univpm.it/~spalazzi/reports/TR-
2008-01.pdf.

M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Au-
tomated Composition of Web Services by Planning at the
Knowledge Level. In Proc. IJCAI’05, 2005.

M. Pistore, L. Spalazzi, and P. Traverso. A minimalist ap-
proach to semantic annotations for web processes composi-
tions. In Proc. of the 3rd European Semantic Web Confer-
ence (ESWC 2006), Budva (Montenegro), 11-14 June, 2006.
Springer—Verlag, Berlin, Germany.

A. Sheth, K. Verna, J. Miller, and P. Rajasekaran. Enhacing
Web Service Descriptions using WSDL-S. In EclipseCon,
2005.

S. Tobies. Complexity Results and Practical Algorithms for
Logics in Knowledge Representation. PhD thesis, RWTH
Aachen, 2001.

P. Traverso and M. Pistore. Automated Composition of Se-
mantic Web Services into Executable Processes. In Proc.
ISWC’04, 2004.

K. Verma, A. Mocan, M. Zarembra, A. Sheth, and J. A.
Miller. Linking Semantic Web Service Efforts: Integrationg
WSMX and METEOR-S. In Semantic and Dynamic Web
Processes (SDWP), 2005.

W3C Semantic Annotations for Web Service Description
Language Working Group. Semantic Annotations for
WSDL and XML Schema, 2007.

D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automat-
ing DAML-S Web Services Composition using SHOP2. In
Proc. ISWC’03, 2003.

