
Scalable Dynamic User Preferences for Recommender Systems through the use
of the Well-founded Semantics

Manoela Ilic
Universidade Nova de Lisboa

Portugal

João Leite
Universidade Nova de Lisboa

Portugal

Martin Slota
Universidade Nova de Lisboa

Portugal

Abstract

User modeling and personalisation are the key aspects
of recommender systems in terms of recommendation qual-
ity. ERASP is an add-on to existing recommender systems
which uses dynamic logic programming – an extension of
answer set programming – as a means for users to spec-
ify and update their models and preferences, with the pur-
pose of enhancing recommendations. While being an ex-
cellent solution in recommender systems limited to a few
thousand products, ERASP does not scale well beyond that
point. In this paper we present a major theoretical redesign
of ERASP which entails a significant improvement in the
performance of its implementation, making it usable in do-
mains with hundreds of thousands of products.

1 Introduction

In this paper we propose a major change in the theory
and implementation of ERASP [21, 19] – an add-on to ex-
isting recommender systems which uses dynamic logic pro-
gramming as a means for users to specify and update their
models with the purpose of enhancing recommendations –
that significantly improves its time performance widening
its usability from domains with a few thousand products to
domains with several hundreds of thousand of products.

Currently, almost every e-commerce application pro-
vides a recommender system to suggest products or infor-
mation that the user might want or need [23]. Recom-
mender systems are employed to recommend products in
online stores, news articles in news subscription sites or fi-
nancial services, to mention only a few.

Common techniques for selecting the right item for
recommendation are: collaborative filtering (e.g. [18])
where user ratings for objects are used to perform an inter-
user comparison and then propose the best rated items;
content-based recommendation (e.g.[9]) where descriptions
of the content of items are matched against user pro-
files, employing techniques from the information retrieval

field; knowledge-based recommendation (e.g. [10]) where
knowledge about the user, the objects, and some distance
measures between them are used to infer the right selec-
tions; and hybrid versions of these where two or more tech-
niques (collaborative filtering being usually one of them)
are used to overcome their individual limitations. For fur-
ther details on this subject the reader is referred to [11].

The extent to which users find the recommendations sat-
isfactory is the key feature of a recommendation system,
and the accuracy of the user models that are employed is of
significant importance to this goal. Such user models rep-
resent the user’s taste and can be implicit (e.g. constructed
from information about the user behavior), or explicit (e.g.
constructed from direct feedback or input by the user, like
ratings). The accuracy of a user model greatly depends on
how well short-term and long-term interests are represented
[8], making it a challenging task to include both sensibility
to changes of taste and maintenance of permanent prefer-
ences. While implicit user modeling disburdens the user of
providing direct feedback, explicit user modeling may be
more confidence inspiring to the user since recommenda-
tions are based on a conscious assignment of preferences.

Though most recommender systems are very efficient
from a large-scale perspective, the effort in user involve-
ment and interaction is calling for more attention. More-
over, problems concerning trust and security in recom-
mender systems could be approached with a better integra-
tion of the user and more control over the user model [20].

This calls for more expressive ways for users to express
their wishes. The natural way to approach this is through the
use of symbolic knowledge representation languages. They
provide the necessary tools for representing and reasoning
about users, while providing formal semantics that make it
possible to reason about the system, thus facilitating trust
and security management.

However, we want to keep the advantages of the more
automated recommendation techniques such as collabora-
tive filtering and statistical analysis, and the benefit of us-
ing large amounts of data collected over the years by exist-
ing recommender systems that use these techniques. Un-

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.122

836

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.122

840

fortunately, the use of these methods makes it impossible
to embed in them the explicit user models we seek. A
tight combination between expressive (logic based) knowl-
edge representation languages and sub-symbolic/statistical
approaches is still the Holy Grail of Artificial Intelligence.

One solution to tackle this problem is through the use of
a layered architecture, as proposed in [21], where expressive
knowledge based user models, specified in Dynamic Logic
Programming (DLP) [3, 22, 2], are used to enhance the rec-
ommendations provided by existing recommender systems.

In a nutshell, DLP is an extension of Answer-set Pro-
gramming (ASP) [17] introduced to deal with knowledge
updates. ASP is a form of declarative programming that is
similar in syntax to traditional logic programming and close
in semantics to non-monotonic logic, that is particularly
suited for knowledge representation. Enormous progress
concerning the theoretical foundations of ASP (c.f. [7] for
more) have been made in recent years, and the existence
of very efficient ASP solvers (e.g. DLV1 and SMODELS2

make it possible to investigate some serious applications.
Whereas in ASP knowledge is specified in a single theory,
in DLP knowledge is given by a sequence of theories, each
representing an update to the previous ones. The declarative
semantics of DLP ensures that any contradictions that arise
due to the updates are properly handled. Intuitively, one can
add newer rules to the end of the sequence and DLP auto-
matically ensures that these rules are in force and that the
older rules are kept for as long as they are not in conflict
with the newly added ones (c.f. [22] for more).

ERASP (Enhancing Recommendations with Answer-Set
Programming) is the system that resulted from following
this path. Specifically, ERASP takes the output of an ex-
isting recommender algorithm (we used collaborative filter-
ing, but it could be another) and enhances it taking into ac-
count explicit models and preferences specified both by the
user and the owner of the system, represented in DLP. The
main features of ERASP include:

– Providing owner and user with a simple, expressive and
extensible language to specify models and preferences, by
means of rules and employing existing (e.g. product charac-
teristics) as well as user defined (e.g. own qualitative clas-
sifications based on product characteristics) concepts.

– Facilitating the update of user models by automatically
detecting and solving contradictions that arise due to the
evolution of the user’s tastes and needs, which otherwise
would discourage system usage.

– Taking advantage of existing recommender systems
which may encode large amounts of data that should not
be disregarded, particularly useful in the absence of user
specified knowledge, while giving precedence to user spec-
ifications which, if violated, would turn the user away from

1http://www.dlvsystem.com
2http://www.tcs.hut.fi/Software/smodels

the recommendation system.
– Enjoying a formal semantics which allows to study the

properties of the system and provides support for explana-
tions, thus improving interaction with the user.

– Having a connection with relational databases (ASP
can be seen as a query language, more expressive than
SQL), easing integration with existing systems3.

– Allowing the use of the combination of both strong and
default negation to reason with the closed and open world
assumptions, thus allowing for reasoning with incomplete
information, and to encode non-deterministic choice, thus
generating more than one set of recommendations, facilitat-
ing diversity each time the system is invoked;

In [19], benchmark results indicate that ERASP can per-
form well when the number of products is restricted to a
few thousand. As the number of products increases, the
time to compute the enhanced recommendations increases
substantially. This is not surprising since ERASP is based
on Answer-Set Programming which is in the NP class of
complexity. Despite most current ASP solvers (e.g. SMOD-
ELS and DLV) being very efficient, the original system will
never scale well. For those applications that do not employ
more than a few thousand products ERASP is an excellent
solution. But we need to find alternatives to widen the scope
of applicability of ERASP by reducing complexity.

In this paper we explore one solution to this problem. In-
stead of using a semantics based on Answer-Set Program-
ming, we employ one based on the Well-Founded Seman-
tics for Dynamic Logic Programming [16, 5]. The Well
Founded Semantics lies in the polynomial class of com-
plexity making it more scalable. Like for ASP, there are
very efficient systems to compute the WFS, notably XSB4.
The price to pay for such change is a reduction in expres-
sivity which, in our application, will mean that there will
no longer be the possibility to encode non-deterministic
choice. In other words, whereas in the original system each
input could produce several sets of recommended products,
the new version will produce only one i.e. if the system
is twice invoked by some user without changes in the in-
put (i.e. output from the initial recommender system, user
preferences, owner preferences and database), the origi-
nal system could output a different set of recommendations
whereas the new version will produce the same. Given all
qualities of ERASP, we feel that this is a small price to pay,
especially when we realise that this dramatically increases
scalability, making it cope with hundreds of thousands of
products where the original could only cope with a few
thousand products.

3Recent developments have introduced an extension of Logic Program-
ming for Non-monotonic reasoning that allows for the interface with on-
tologies [14], making our ERASP easily extensible to the case where prod-
uct information is available in the Semantic Web instead.

4http://xsb.sourceforge.net

837841

The remainder of this paper is organised as follows: In
Sect. 2, for self containment, we recap the notion of Dy-
namic Logic Programming, establishing the language and
semantics used throughout. In Sect. 3 we present ERASP
architecture, semantics (both the original and the new ver-
sions) and implementation. In Sect. 4 we present a short
illustrative example used for benchmarking the system and
comparing with the original. In Sect. 5 we discuss the re-
sults and conclude.

2 Dynamic Logic Programming

Let A be a set of propositional atoms. An objective lit-
eral is either an atom A or a strongly negated atom ¬A.
A default literal is an objective literal preceded by not .
A literal is either an objective literal or a default literal.
A rule r is an ordered pair H(r) ← B(r) where H(r)
(dubbed the head of the rule) is a literal and B(r) (dubbed
the body of the rule) is a finite set of literals. A rule with
H(r) = L0 and B(r) = {L1, . . . , Ln} will simply be
written as L0 ← L1, . . . , Ln. A generalised logic pro-
gram (GLP) P , in A, is a finite or infinite set of rules. If
H(r) = ¬A (resp. H(r) = not A), then ¬H(r) = A
(resp. not H(r) = A). By the expanded generalised logic
program corresponding to the GLP P , denoted by P, we
mean the GLP obtained by augmenting P with a rule of the
form not ¬H(r) ← B(r) for every rule, in P , of the form
H(r)← B(r), where H(r) is an objective literal. An inter-
pretation M ofA is a set of objective literals that is consis-
tent, i.e. M does not contain both A and ¬A. An objective
literal L is true in M , denoted by M |= L, iff L ∈ M ,
and false otherwise. A default literal not L is true in M ,
denoted by M |= not L, iff L /∈M , and false otherwise. A
set of literals B is true in M , denoted by M |= B, iff each
literal in B is true in M . Let least(.) denote the least model
of the argument program while treating all default literals as
new atoms. A dynamic logic program (DLP) is a sequence
of generalised logic programs. Let P = (P1, . . . , Pn) be a
DLP and P, P ′ be GLPs. We use ρ(P) to denote the mul-
tiset of all rules appearing in the programs P1, . . . ,Pn and
(P, P ′,P) to denote the DLP (P, P ′, P1, . . . , Pn). We can
now set forth the definition of a semantics, based on causal
rejection of rules, for DLPs. We start with the notion of con-
flicting rules: two rules r and r′ are conflicting, denoted by
r �� r′, iff H(r) = not H(r′). Further we define:

Rej(P,M) = {r | r ∈ Pi,∃r ∈ Pj , i < j, r �� r,
M |= B(r)}

RejS(P,M) = {r | r ∈ Pi,∃r ∈ Pj , i ≤ j, r �� r,
M |= B(r)}

Def(P,M) = {not A | �r ∈ ρ(P),H(r) = A,
M |= B(r)}

Figure 1. ERASP System Architecture

ΓP = least([ρ(P) \Rej(P,M)] ∪Def(P,M))
ΓS
P = least([ρ(P) \RejS(P,M)] ∪Def(P,M))

An interpretation M is a (refined) dynamic stable
model of P iff it is a fixpoint of the ΓS

P operator. An in-
terpretation M is a well-founded model of P iff it is the
(set inclusion) least fixpoint of the ΓPΓS

P operator5.

3 Framework and its Implementation

In this Section, we introduce the architecture, its seman-
tics and describe the implementation. ERASP’s goal is to
take the strengths of DLP as a framework for the represen-
tation of evolving knowledge, and put it at the service of
both the user and owner of a recommender system, while
at the same time ensuring some degree of integration with
other recommendation modules, possibly based on distinct
paradigms (e.g. statistical).

Fig. 1 depicts the system architecture, representing the
information flow. To facilitate presentation, we assume a
layered system where the output of an existing recommen-
dation module is simply used as input to our system. We
are aware that allowing for feedback from our system to the
existing module could benefit its output, but such process
would greatly depend on the particular module and we want
to keep our proposal as general as possible, and concentrate
on other aspects of the framework. The output of the initial
module is assumed to be an interpretation, i.e. a consis-
tent set of atoms representing the recommendations. We as-
sume that our language contains a reserved predicate of the
form rec/1 where the items are the terms of the predicate6.
The owner policy, possibly used to encode desired market-
ing strategies (e.g. introduce some bias towards some prod-
ucts), is encoded as a generalised logic program. The user
model (including its updates) is encoded as a dynamic logic

5We use the notation ΓPΓS
P to denote the operator obtained by first

applying ΓS
P and then ΓP .

6It would be straightforward to also have some value associated
with each recommendation, e.g. by using a predicate of the form
rec(item, value). However, to get our point across, we will keep to the
simplified version.

838842

program. The Product Database is a relational database that
can easily be represented by a set of facts in a logic pro-
gram. For simplicity, we assume such database to be part of
the generalised logic program representing the owner’s pol-
icy. A formalization of the system is given by the concept
of Dynamic Recommender Frame:

Definition 1 (Dynamic Recommender Frame) Let A be
a set of propositional atoms. A Dynamic Recommender
Frame (DRF), over A, is a triple 〈M,P0,P〉 where M is
an interpretation ofA, P0 a generalised logic program over
A, and P a DLP over A.

The semantics of a Dynamic Recommender Frame is given
by the set of dynamic stable models of its transformation
into a DLP. This transformation is based on two natural
principles: – the user’s specification should prevail over
both the initial recommendations and the owner’s rules,
since users would not accept a recommendation system that
explicitly violates their rules; – the owner should be able to
override the recommendations in the initial interpretation,
e.g. to specify preference among products according to the
profit. Intuitively, we construct a DLP with the initial pro-
gram obtained from the initial recommendations, which is
then updated with the owner’s policy specification (P0) and
the user’s specification (P). A formal definition follows:

Definition 2 (Recommendation Semantics) Let R =
〈M,P0,P〉 be a Dynamic Recommender Frame, PR be the
dynamic logic program (PM , P0,P) where PM = {A ←|
A ∈ M} and MR be an interpretation. MR is a Stable
Recommendation ofR iff MR is a dynamic stable model of
PR. MR is a Well-founded Recommendation of R iff MR

is a well-founded model of PR.

According to this semantics, each Dynamic Recommender
Frame can have several Stable Recommendations but ex-
actly one Well-founded Recommendation. The advantage
of Stable Recommendations is that it allows the system to
present different recommendations each time the user in-
vokes the system, adding diversity, while the advantage of
the Well-founded Recommendation is that it always exists.

ERASP is implemented as an online application7 using a
PHP-based initial collaborative filtering recommender sys-
tem. The product database consists of the complete Movie-
Lens (http://www.grouplens.org/) dataset (3883 movies
with title, genre and year). After rating some movies and re-
ceiving some initial recommendations (using the collabora-
tive filtering algorithm), the user can edit his preferences en-
coded as a dynamic logic program using an interface which
provides help in rule creation. This program P , the initial
recommendations M , the product database and the owner
specifications P0 are given to a DLP solver which computes

7Available at http://centria.di.fct.unl.pt/erasp/

Figure 2. ERASP User Model Interface and
Recommendations

the recommendations. Our program then writes the recom-
mendations into an SQL database and presents them to the
user. Figure 2 shows two screen-shots of ERASP.

We implemented both the Stable Recommendation se-
mantics and Well-founded Recommendation semantics.
Both solvers are based on a transformation that convert a
dynamic logic program into an equivalent normal logic pro-
gram [6]. The input is parsed and the dynamic logic pro-
gram PR is created. In case of the Stable Recommenda-
tion semantics, Lparse is used to produce an equivalent DLP
PG without variables which is further transformed into an
equivalent normal logic program PR

G . Smodels is then used
to compute the stable models of PR

G which directly corre-
spond to the desired Stable Recommendations.

In case of the Well-founded Recommendation seman-
tics, the grounding phase is not required and the transfor-
mation can be performed directly. The well-founded model
of the transformed program can then be queried using XSB
in order to find the Well-founded Recommendations. The
database part of the input is treated separately in order to
minimize its loading time. In particular, the database facts
are not subject to the transformation. This is only possible
because the program doesn’t need to be grounded in order
to compute its well-founded model.

4 Illustrative Example and Benchmarks

In this Section, we show an example that illustrates some
features of our proposal, and present the results of bench-

839843

mark tests based on the example.
Let’s consider a typical on-line movie recommender. Its

product database contains information about a number of
movies and its recommendations are based on some kind of
statistical analysis performed over the years. The owner of
the recommender system may want to explicitly influence
the recommendations of the system in a certain way. She
may also want to give the users the ability to specify some
explicit information about their tastes in order to correct or
refine the recommendations of the existing system. Below
we will illustrate how our framework can help achieve both
these goals in a simple way. A list of the movies involved
in the example together with their relevant properties can be
found in Table 1. We will also consider the initial interpre-
tation M obtained from the statistical system to be constant
throughout the example:

M = {rec(497), rec(527), rec(551), rec(589), rec(1249),
rec(1267), rec(1580), rec(1608), rec(1912), rec(2396)}

We first consider the following owner specification P0:

rec(12)← not rec(15). (1)
rec(15)← not rec(12). (2)
rec(X)← rec(Y), year(Y, 1998), year(X, 1998),

genre(Y, “Romance”), genre(X, “Musical”). (3)

Rules (1) and (2) specify that the system should non-
deterministically recommend either movie 12 or 158. Rule
(3) encodes that the system should recommend all movies
with the genre Musical from 1998 if any movie with
the genre Romance from the same year is recommended.
Adding an empty set of user specifications P0 = (), the
recommender frame 〈M,P0,P0〉 has two stable recommen-
dations: MR1 = M∪{rec(12), rec(1856), rec(2394)} and
MR2 = M ∪ {rec(15), rec(1856), rec(2394)}. The reader
can easily check that each of these two stable recommenda-
tions extend the results from the initial recommendation to
reflect the wishes of the owner. The well-founded recom-
mendation is a skeptical approximation of the stable recom-
mendations: MR = M ∪{rec(1856), rec(2394)}. We now
turn to the user specifications, assuming four updates:

P1 : not rec(X)← genre(X, “Animation”). (4)
P2 : good(X)← genre(X, “Action”),

genre(X, “Adventure”),
genre(X, “Fantasy”). (5)

rec(X)← good(X). (6)
P3 : good(X)← genre(X, “War”),

year(X, 2000). (7)
P4 : not rec(X)← genre(X, “Adventure”). (8)

8The even loop through default negation is used in ASP to generate two
models. In the well-founded semantics, atoms simply become undefined if
there isn’t any other rule for them

ID Title Year Genres

12 Dracula: Dead and Loving It 1995 Comedy, Horror
15 Cutthroat Island 1995 Action, Adventure
497 Much Ado About Nothing 1993 Comedy, Romance
527 Schindler’s List 1993 Drama, War
551 Nightmare Before Christmas 1993 Children’s, Comedy
558 Pagemaster, The 1994 Action, Adventure, Fantasy
589 Terminator 2: Judgment Day 1991 Action, Sci-Fi
1249 Nikita 1990 Thriller
1267 Manchurian Candidate, The 1962 Film-Noir, Thriller
1580 Men in Black 1997 Action, Adventure
1608 Air Force One 1997 Action, Thriller
1856 Kurt & Courtney 1998 Documentary, Musical
1912 Out of Sight 1998 Action, Crime
2394 Prince of Egypt, The 1998 Animation, Musical
2396 Shakespeare in Love 1998 Comedy, Romance
3746 Butterfly 2000 Drama, War

Table 1. Some movies used in the example
with some of their properties

of movies # of facts (S) Size (S) # of facts (WF) Size (WF)
500 1750 38 kB 1251 33 kB

1000 3421 75 kB 2438 65 kB
3883 13523 307 kB 9640 264 kB

200000 700551 21 MB
400000 1400163 42 MB
600000 2100592 63 MB

Table 2. Databases used in the tests

In the single rule (4) of program P1, the user simply over-
rides any previous rule that would recommend an Animation
movie. In program P2, he introduces the notion of a good
movie in rule (5) and rule (6) makes sure all good movies
get recommended. Program P3 extends the definition of
a good movie and program P4 avoids recommendations of
Adventure movies.

With P1 = (P1), P2 = (P1, P2), P3 = (P1, P2, P3),
P4 = (P1, P2, P3, P4), the recommender frames
〈M,P0,P1〉, 〈M,P0,P2〉, 〈M,P0,P3〉 and 〈M,P0,P4〉
have 2, 2, 2 and 1 stable recommendations, respectively,
which, for lack of space we cannot list here. Instead, we list
only the final one and invite the reader to see how it com-
plies with the user rules, how contradictory rules are solved
(e.g. adventure movies that are good, such as movie 558),
as well as those between user and owner rules (e.g. movie
15 is no longer recommended).

M = {rec(12), rec(497), rec(527), rec(551),
rec(589), rec(1249), rec(1267), rec(1608),
rec(1856), rec(1912), rec(2396), rec(3746)}

We now turn our attention to time performance. To in-
vestigate the importance of the size of the input, we tested
using the programs specified above with the databases listed
in Table 2. The first three databases were used to com-
pute both the stable recommendations and well-founded
recommendations in order to compare the two implemen-
tations. The table also contains the number of facts in those

840844

DB DLP PA GR TR SM Total
500 P1 0.0895 0.3077 0.0897 0.2198 0.7067
500 P2 0.0810 0.3050 0.0890 0.2232 0.6982
500 P3 0.0836 0.2996 0.0888 0.2259 0.6978
500 P4 0.0774 0.2948 0.0900 0.2205 0.6827

1000 P1 0.0973 0.5047 0.1311 0.3311 1.0643
1000 P2 0.1082 0.5075 0.1325 0.3273 1.0756
1000 P3 0.1020 0.5120 0.1315 0.3448 1.0902
1000 P4 0.1008 0.5214 0.1355 0.3398 1.0974
3883 P1 0.2042 1.9126 0.5022 1.4106 4.0296
3883 P2 0.2074 1.8990 0.4997 1.4199 4.0260
3883 P3 0.2080 1.8816 0.5037 1.4564 4.0496
3883 P4 0.2096 1.8995 0.5039 1.4746 4.0876

Table 3. Stable Recommendations

DB DLP Load TR Query Total
500 P1 0.0130 0.0043 0.0006 0.0179
500 P2 0.0130 0.0057 0.0011 0.0198
500 P3 0.0130 0.0060 0.0012 0.0202
500 P4 0.0130 0.0064 0.0012 0.0206

1000 P1 0.0240 0.0041 0.0008 0.0289
1000 P2 0.0240 0.0056 0.0015 0.0311
1000 P3 0.0240 0.0061 0.0018 0.0318
1000 P4 0.0240 0.0066 0.0014 0.0320
3883 P1 0.0950 0.0043 0.0013 0.1005
3883 P2 0.0950 0.0057 0.0039 0.1046
3883 P3 0.0950 0.0061 0.0045 0.1055
3883 P4 0.0950 0.0064 0.0045 0.1059

Table 4. Well-founded Recommendations

databases and the size of the file with the facts. For the
well-founded computation, we chose a less redundant en-
coding of the product database – instead of having the pred-
icates title(Id, T itle) and year(Id, Y ear), we have a sin-
gle predicate movie(Id, T itle, Y ear) and the original two
are added by adding the rules:

title(Id, T itle)← movie(Id, T itle,).
year(Id, Y ear)← movid(Id, , Y ear).

The same database format change for stable recommen-
dations would have a negative effect since the program is
grounded in a later stage of execution and hence the number
of atoms processed by the answer set solver would increase
instead of decreasing. We also tested the well-founded rec-
ommender for larger databases, generated for test purposes,
also listed in Table 2. For each database and each recom-
mender frame we computed all recommendations 20 times
using an Intel Pentium D 3.4 GHz processor with 2 MB
cache and 1 GB of RAM. The average times (in seconds)
for each step can be seen in Tables 3, 4 and 5. Table 3 lists
the parsing time (PA), grounding time (GR), transformation
time (TR), stable model computation time (SM) and total
time. Tables 4 and 5 list the database loading time (Load),
transformation time (TR), query time (Query) needed to ex-
tract the well-founded recommendations and the total time.
However, since in the well-founded case, it is possible to
load the database separately and then work with it for dif-
ferent queries, and the transformation time is very low, the

DB DLP Load TR Query Total
200000 P1 6.3570 0.0045 0.5739 6.9354
200000 P2 6.3570 0.0058 0.8766 7.2394
200000 P3 6.3570 0.0063 1.1934 7.5566
200000 P4 6.3570 0.0066 0.9768 7.3403
400000 P1 12.7370 0.0046 2.0610 14.8025
400000 P2 12.7370 0.0059 2.8576 15.6005
400000 P3 12.7370 0.0063 3.8791 16.6225
400000 P4 12.7370 0.0068 3.0066 15.7504
600000 P1 19.1010 0.0046 4.8464 23.9520
600000 P2 19.1010 0.0060 6.5242 25.6312
600000 P3 19.1010 0.0065 9.2211 28.3633
600000 P4 19.1010 0.0070 6.4636 25.5716

Table 5. Well-founded Recommendations for
larger databases

relevant time for computing the recommendation for one
user is the query time, not the total time.

As can be seen from Table 3, the stable recommendations
can be computed in reasonable time for a database up to
a few thousand products. However, with these databases,
the well founded recommendations can be computed 30-40
times faster as seen in Table 4. Furthermore, query time
in Table 5 shows that the well founded version scales well
to databases with hundreds of thousands of products. It is
also worth noting that the effect of addition of common user
rules to the user specification can have both a positive and a
negative effect on the query time, depending from the size
of product database and the number of recommendations
generated by those rules.

5 Concluding Remarks

In this paper we took a closer look at ERASP – a sys-
tem that can work as an add-on for existing recommender
systems – and proposed a major change in its supporting
theory, accompanied by a new implementation, to address
the lack of scalability to systems that deal with more than
a few thousand items. The new system, based on the well
founded semantics which rests in the polynomial class of
complexity, is able to cope with databases with several hun-
dreds of thousands of products, thus increasing the scope of
application to most existing recommender systems.

ERASP will allow owners of existing recommender sys-
tems be able to plug in the application as a recommendation
enhancer, for offering users the possibility of explicit prefer-
ence creation, for defining specific system rules, or both. A
rule-based language like DLP can empower owners of rec-
ommender systems with the necessary tools to employ mar-
keting strategies with precision, while keeping the diver-
sity of recommendations and following user’s preferences.
Moreover, it can be used as a query tool to extract informa-
tion from the database using a more sophisticated language
than for example SQL, allowing the system to be used on its

841845

own without the need of a previously existing recommender
system. Users of ERASP can find a rich language to inter-
act with the recommender system, gaining control, if they
so desire, over the recommendations provided.

The new ERASP, like its predecessor, still enjoys a for-
mal declarative semantics thus inheriting many of their the-
oretical properties. ERASP also enjoys other formally prov-
able properties, e.g. the property of both positive and neg-
ative supportiveness which insures there always exists an
explanation for each recommended item.

One issue that needs to be tackled is that of the user in-
terface, namely the task of writing rules, burdening for the
user [13]. Without addressing this issue, ERASP can still
provide added value for experts of specific domains that are
willing to learn how to write such rules to satisfy their de-
mand of higher accuracy and, more important, reliability of
recommendations. Even for less demanding users, there are
still some easy to write rules that provide some basic inter-
action with the recommender system that is of great help.
Dealing with this issue includes transforming natural lan-
guage sentences into logic programs [15], creating natural
language interfaces for databases [4], creating rules by tag-
ging and suggestion and learning rules by induction [1].

As for related work, in [12] Defeasible Logic Program-
ming is employed in the ArgueNet website recommender
system. Lack of space prevents us from comparing both ar-
chitectures. To the best of our knowledge, ArgueNet has
not been implemented yet. However, the complexity of De-
feasible Logic Programming (NP-hard at least) makes it im-
possible to compete with the improved ERASP in terms of
scalability.

Acknowledgements

We would like thank Paulo Lopes for providing dedicated
hardware for running the benchmark tests, and for his reli-
able technical support and advice. Martin Slota is partially
supported by FCT grant SFRH/BD/38214/2007.

References

[1] J. Aitken. Learning information extraction rules: An induc-
tive logic programming approach. In ECAI’02. IOS Press,
2002.

[2] J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined
extension principle for semantics of dynamic logic program-
ming. Studia Logica, 79(1), 2005.

[3] J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and T. Przy-
musinski. Dynamic updates of non-monotonic knowledge
bases. J. Logic Programming, 45(1-3), 2000.

[4] I. Androutsopoulos, G. Ritchie, and P. Thanisch. Natural
language interfaces to databases–an introduction. Journal of
Language Engineering, 1(1):29–81, 1995.

[5] F. Banti, J. Alferes, and A. Brogi. Well founded semantics
for logic program updates. In IBERAMIA’04, volume 3315
of LNCS. Springer, 2004.

[6] F. Banti, J. Alferes, and A. Brogi. Operational semantics for
DyLPs. In EPIA’05, volume 3808 of LNAI. Springer, 2005.

[7] C. Baral. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge U. Press, 2003.

[8] D. Billsus and M. J. Pazzani. User modeling for adap-
tive news access. User Model. User-Adapt. Interact, 10(2-
3):147–180, 2000.

[9] D. Billsus and M. J. Pazzani. Content-based recommenda-
tion systems. In The Adaptive Web, volume 4321 of LNCS,
pages 325–341. Springer, 2007.

[10] R. Burke. Knowledge-based recommender systems. In En-
cyclopedia of Library and Information Systems, volume 69.
M. Dekker, 2000.

[11] R. D. Burke. Hybrid recommender systems: Survey and
experiments. User Model. User-Adapt. Interact, 12(4):331–
370, 2002.

[12] C. Chesñevar and A. Maguitman. ArgueNet: An argument-
based recommender system for solving web search queries.
In the 2nd. International IEEE Conference on Intelligent
Systems, pages 282–287. IEEE Press, June 2004.

[13] M. Claypool, P. Le, M. Wased, and D. Brown. Implicit in-
terest indicators. In IUI’01, 2001.

[14] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.
Combining answer set programming with description logics
for the semantic web. In KR’04. AAAI Press, 2004.

[15] N. E. Fuchs and R. Schwitter. Specifying logic programs
in controlled natural language. CoRR, abs/cmp-lg/9507009,
1995.

[16] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-
founded semantics for general logic programs. J. ACM,
38(3):620–650, 1991.

[17] M. Gelfond and V. Lifschitz. Logic programs with classical
negation. In ICLP’90. MIT Press, 1990.

[18] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Us-
ing collaborative filtering to weave an information tapestry.
Communications of the ACM, 35(12):61–70, Dec. 1992.
Special Issue on Information Filtering.

[19] M. Ilic, J. Leite, and M. Slota. Explicit dynamic user pro-
files for a collaborative filtering recommender system. In
IBERAMIA’08, volume 5290 of LNAI. Springer, 2008.

[20] S. K. Lam, D. Frankowski, and J. Riedl. Do you trust your
recommendations? An exploration of security and privacy
issues in recommender systems. In ETRICS’06, 2006.

[21] J. Leite and M. Ilic. Answer-set programming based dy-
namic user modeling for recommender systems. In EPIA’07,
volume 4874 of LNAI. Springer, 2007.

[22] J. A. Leite. Evolving Knowledge Bases. IOS press, 2003.
[23] J. B. Schafer, J. A. Konstan, and J. Riedl. E-commerce

recommendation applications. Data Min. Knowl. Discov,
5(1/2):115–153, 2001.

842846

